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1 Introduction

In the early 20th century, L. E. J. Brouwer developed the first concept of constructive
mathematics. As the name suggest, constructive mathematics distinguishes from the
classical counterpart by the aim of finding or rather constructing a mathematical object
in order to prove its existence. In classical mathematics we work with axioms which allow
the principle of indirect proofs, also called proof by contradiction. Thereby one assumes
the non-existence of a mathematical object and then derives a contradiction from the
assumption. However, this kind of proof is not valid in constructive mathematics. The
constructive viewpoint requires a verificational interpretation not only of the existential
quantifier but all the logical expressions.

In his time, Brouwer could only convince a few mathematicians. However, he was the
one who laid the foundation of an accurate, structured approach to constructive mathe-
matics. Though, his approach differs from constructive mathematics known today. The
so-called intuitionism is considered to be a philosophy of mathematics, in which mathe-
matics is assumed to be the result of precise, constructive thinking, which produces its
own objects and does not presuppose them.1

It took quite some years until a classical mathematician achieved progress in the devel-
opment of constructive mathematics. E. Bishop published a modern version of Brouwer’s
view in his book Foundations of Constructive Analysis in 1967 [1]. Unlike Brouwer,
Bishop’s constructive mathematics (BISH) (see also [5] and [6]) is not contradictory to
classical mathematics. Instead, he developed a large part of the 20th century’s classical
analysis further into constructive analysis. His approach is that for every constructive
theorem and proof in BISH, a counterpart theorem and proof in classical analysis exists.
See also Bishop’s and D. Bridges’s book Constructive Analysis from 1985 [2], which is a
revision and extension of [1].

In 2006 M. Bridger published Real Analysis: A Constructive Approach [3]. He follows
the same path as Bishop; to prove an existing theorem by providing a construction of the
object in question. However, Bridger’s goal was a bit different: he wants to show, that
the constructive approach ”makes sense - not just to math majors, but to students from
all branches of the sciences” [3, Preface].

The goal of this thesis is to to study the field of differentiability in constructive anal-
ysis as this is done by Bishop and Bridger. Therefore we have to introduce all relevant
definitions and notions, following Bishop’s book Constructive Analysis [2] and Bridger’s
book Real Analysis: A Constructive Approach [3]. The thesis will be structured as follows:

According to Bishop, we find that in constructive analysis, unlike in classical analysis,
we only work with uniform continuity. This concept and its basic properties are intro-
duced in chapter two, which allows us to study uniform differentiability.

1See Bridges’ and Palmgren’s Constructive Mathematics, 2018 [4]
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In chapter three we discuss uniform differentiability by working with Bishop’s elabora-
tion on constructive differentiability. Thereby we use Definitions and Propositions given
by Bishop but structure them in a new way. Besides basic properties of differentiability,
we introduce Bishop’s approximation to Rolle’s Theorem, to the Mean Value Theorem
and to Taylor’s Theorem. These approximations can be proven constructively.

After studying Bishop’s constructive differentiability we continue with the study of
Bridger’s approach to uniform differentiability in constructive analysis. In order to define
uniform differentiability, Bridger provides three different definitions of differentiability
and proves their equivalence. Since Bridger’s definition of differentiability demands for
fewer assumptions, we complete the chapter with additional theorems on continuity.

Finally we compare two approaches to uniform differentiability and discuss their dif-
ferences. Thereby we find out, that Bridger follows more closely the idea of constructive
analysis. In addition, we prove that we can apply Bridger’s theorems on continuity to a
modeled version of Bishop’s differentiability.
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2 Bishop continuity

In classical analysis, one can prove that pointwise continuity on a compact interval implies
uniform continuity. However, a proof of the so-called Uniform Continuity Theorem is not
expected to be given in constructive analysis and not a disprove of it either. The concept
of uniform continuity is given by the next Definition. We abbreviate this concept to
continuity, since the classical version of continuity - that is pointwise continuity - is not
used within this thesis. By the assumption of uniform continuity from the start, nothing
essential is lost.

Definition 2.1 (Bishop - continuity). Let [a, b] be a compact interval, a, b ∈ R, a < b
and f : [a, b] → R and ωf : R+ → R+ be functions. The function f is called continuous
on [a, b] if for each positive real number ε and for x, y in [a, b] such that |x − y| ≤ ωf (ε)
we have

|f(x)− f(y)| ≤ ε.

The function ωf : ε 7→ ω(ε) is called a modulus of continuity for f on [a, b].
We also say the pair (f, ωf ) is in ContB

(
[a, b]

)
with

ContB
(
[a, b]

)
:=
{

(f, ωf ) ∈ F([a, b],R)× F(R+,R+)
∣∣ ωf : contB(f)

}
and ωf : contB(f) :⇔ ∀ε>0 ∀x, y∈ [a, b] :

(
|x− y| ≤ ωf (ε)⇒ |f(x)− f(y)| ≤ ε

)
.

The pair (f, ωf ) ∈ F(J,R)×F(R+,R+) on an arbitrary interval J is in ContB(J), thus
f is continuous on J , if it is continuous on every compact subinterval of J .

Remark 2.2. 1. F([a, b],R) is the set of all functions f : [a, b]→ R.

2. Instead of saying f is a continuous function on [a, b] we may also say f is in C([a, b]).

3. f ∨ g = maxx∈I{f(x), g(x)}

Theorem 2.3. Let I be an interval in R and (f, ωf ) and (g, ωg) be in ContB(I). Then
there exist moduli of continuity ωf+g, ωfg and ωf∨g in F(R+,R+) such that the pairs
(f + g, ωf+g), (fg, ωfg) and (f ∨ g, ωf∨g) are in ContB(I).

If f is bounded away from 0 on every compact subinterval J of I - that is, if |f(x)| ≥ c
for all x in J and some c > 0 (depending on J) - then there exists ωf−1 such that the pair
(f−1, ωf−1) is in ContB(I).

Proof. Due to the definition of continuity, it is enough to consider the case in which I is
compact. (f, ωf ) and (g, ωg) are in ContB(I). Thus ωf and ωg are moduli of continuity
of f and g.

1. Goal: (f + g, ωf+g) ∈ ContB(I)
We begin by writing out, what we must prove.
Let ε > 0 be arbitrary, x, y ∈ I s.t. |x − y| ≤ ωf+g(ε) = min

{
ωf
(
ε
2

)
, ωg
(
ε
2

)}
. We

must show:
|(f + g)(x)− (f + g)(y)| ≤ ε
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Since we know about f and g separately, we rearrange and use the triangle inequality
to obtain

|(f + g)(x)− (f + g)(y)| = |f(x) + g(x)− f(y)− g(y)|
≤ |f(x)− f(y)|+ |g(x)− g(y)|

≤ ε

2
+
ε

2
= ε.

The second inequality holds, since (f, ωf ) and (g, ωg) are in ContB(I) and |x− y| ≤
ωf+g(ε). Therefore (f + g, ωf+g) is in ContB(I) with ωf+g(ε) = min

{
ωf
(
ε
2

)
, ωg
(
ε
2

)}
being a modulus of continuity of f + g.

2. Goal: (fg, ωfg) ∈ ContB(I)
We begin by writing out, what we must prove.
Let ε > 0 be arbitrary, x, y ∈ I s.t. |x− y| ≤ ωfg(ε) = min

{
ωf
(
ε
2m

)
, ωg
(
ε
2m

)}
with

m := max
{

max
{
|f(x)| : x ∈ I

}
,max

{
|g(x)| : x ∈ I

}}
+ 1

We must show:
|(fg)(x)− (fg)(y)| ≤ ε

By using the triangle inequality we obtain

|(fg)(x)− (fg)(y)| = |f(x)g(x)− f(y)g(y)|
= |f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)|
≤ |f(x)g(x)− f(x)g(y)|+ |f(x)g(y)− f(y)g(y)|
≤ |f(x)| · |g(x)− g(y)|+ |f(x)− f(y)| · |g(y)|

≤ |f(x)| ε
2m

+
ε

2m
|g(y)|

=
(
|f(x)|+ |g(y)|

)
· ε
2m

≤ (m+m) · ε
2m

= ε

Therefore (fg, ωfg) is in ContB(I) with ωfg(ε) = min
{
ωf
(
ε
2m

)
, ωg
(
ε
2m

)}
being a

modulus of continuity of fg.

3. Goal: (f ∨ g, ωf∨g) ∈ ContB(I)
Since it is for x ∈ I

(f ∨ g)(x) = max{f, g}(x) =
f(x) + g(x)

2
+
|f(x)− g(x)|

2

we can prove (αf, ωαf ) is in ContB(I), α ∈ R \ {0} and (|f |, ω|f |) is in ContB(I).
Then by (f + g, ωf+g) ∈ ContB(I) it follows that (f ∨ g, ωf∨g) is in ContB(I).

Let α ∈ R \ {0}, ε > 0 be arbitrary, x, y ∈ I s.t. |x− y| ≤ ωαf (ε) = ωf
(
ε
|α|

)
. Then

|(αf)(x)− (αf)(y)| = |α||f(x)− f(y)| ≤ |α| · ε
|α|

= ε

and therefore (αf, ωαf ) is in ContB(I).
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Let ε > 0 be arbitrary, x, y ∈ I s.t. |x − y| ≤ ω|f |(ε) = ωf (ε). Then by using the
inverse triangle inequality we obtain∣∣(|f |)(x)− (|f |)(y)

∣∣ =
∣∣|f(x)| − |f(y)|

∣∣ ≤ ∣∣f(x)− f(y)
∣∣ ≤ ε

and therefore (|f |, ω|f |) is in ContB(I).

Thus it follows that (f ∨ g, ωf∨g) is in ContB(I).

4. Goal: (f−1, ωf−1) ∈ ContB(I)
f is bounded away from 0 on every compact subinterval J of I. Thus there exists a
c > 0 s.t. for all x ∈ I we have |f(x)| > c. We begin by writing out, what we must
prove.
Let ε > 0 be arbitrary, x, y ∈ I s.t. |x− y| ≤ ωf−1(ε) = ωf (εc

2). We must show:

|(f)−1(x)− (f)−1(y)| ≤ ε

Since f is bounded away from zero we obtain∣∣∣∣ 1

f(x)
− 1

f(y)

∣∣∣∣ =

∣∣∣∣f(y)− f(x)

f(x)f(y)

∣∣∣∣
=
|f(x)− f(y)|
|f(x)||f(y)|

≤ |f(x)− f(y)|
c2

≤ ε · c2

c2
= ε

Therefore (f−1, ωf−1) is in ContB(I) with ωf−1(ε) = ωf (εm
2) being a modulus of

continuity of f−1.
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3 Bishop differentiability

Besides continuity, differentiability is a fundamental property of a function. It describes
the rate at which a function changes. The following section provides the basic properties
of this concept defined by Bishop. The concept introduced in the next Definition is
classically called uniform differentiability. Similarly to continuity, we abbreviate this to
differentiability.

3.1 Definition and basic properties

Definition 3.1 (Bishop - differentiability (Bd)). Let [a, b] be a compact interval, a, b ∈
R, a < b, let f and g be in C([a, b]) and let δf : R+ → R+ be a function. The function f
is called differentiable on [a, b] with g being its derivative, if for each positive real number
ε and for x, y in [a, b] such that |x− y| ≤ δ(ε) we have

|f(y)− f(x)− g(x)(y − x)| ≤ ε|y − x|.
The function δf : ε 7→ δf (ε) is called a modulus of differentiability for f on [a, b].

We also say the triplet (f, g, δf ) is in DifB
(
[a, b]

)
with

DifB
(
[a, b]

)
:=
{

(f, g, δf ) ∈ C([a, b])× C([a, b])× F(R+,R+)
∣∣ δf : difB(f)

}
and δf : difB(f) :⇔ ∀ε>0 ∀x, y∈ [a, b] :(

|y − x| ≤ δ(ε)⇒ |f(y)− f(x)− g(x)(y − x)| ≤ ε|y − x|
)

The triplet (f, g, δf ) ∈ C(J) × C(J) × F(R+,R+) on an arbitrary interval J is in
DifB(J), thus f is differentiable on J with derivative g and modulus of differentiability δf
in J , if f is differentiable on every proper compact subinterval of J .

Remark 3.2. 1. For the derivative g we also write g = f ′, g = Df , or g(x) = df(x)
dx

.

2. As already mentioned, g is the rate of change of f . This interpretation comes from
the difference quotient

f(y)− f(x)

y − x
that approaches g(x) as y approaches x.

Theorem 3.3 (Calculation rules for the derivative). Let I be an arbitrary interval in R
and (f1, f

′
1, δf1) and (f2, f

′
2, δf2) be in DifB(I). Then there exist moduli of differentiability

δf1+f2 and δf1f2 in F(R+,R+), such that the triplets

1. (f1 + f2, f
′
1 + f ′2, δf1+f2) and

2. (f1f2, f1f
′
2 + f2f

′
1, δf1f2) are in DifB(I).

In case f1 is bounded away from 0 on every compact subinterval of I, there exists δf−1
1

in

F(R+,R+), such that the triplet

3. (f−11 ,−f ′1f−21 , δf−1
1

) is in DifB(I).

In addition, for the identity function id and a constant function h there exist moduli of
differentiability such that

4. (id, 1, δid) and

5. (h, 0, δh) are in DifB(I).
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Proof. Due to Definition 3.1 it is sufficient to proof the theorem for I being a compact
interval. (f1, f

′
1, δf1) and (f2, f

′
2, δf2) are in DifB(I), thus δf1 and δf2 are moduli of differ-

entiability of f1 and f2. As f1 ∈ C(I) let ωf1 be a corresponding modulus of continuity.

1. The modulus of differentiability δf1+f2 : R+ → R+ is defined by
ε 7→ min

{
δf1
(
ε
2

)
, δf2

(
ε
2

)}
. We begin by writing out, what we must prove:

Let ε > 0 be arbitrary, x, y ∈ I s.t. |y − x| ≤ δf1+f2(ε). We must show

|(f1 + f2)(y)− (f1 + f2)(x)− (f ′1 + f ′2)(x)(y − x)| ≤ ε|y − x|

Since we know about f1 and f2 separately, we rearrange and use the triangle in-
equality to obtain

A = |(f1 + f2)(y)− (f1 + f2)(x)− (f ′1 + f ′2)(x)(y − x)|
≤ |(f1)(y)− (f1)(x)− (f ′1)(x)(y − x)|︸ ︷︷ ︸

≤ ε
2
|y−x|

+ |(f2)(y)− (f2)(x)− (f ′2)(x)(y − x)|︸ ︷︷ ︸
≤ ε

2
|y−x|

≤ ε|y − x|

The second inequality holds, since (f1, f
′
1, δf1) and (f2, f

′
2, δf2) are in DifB(I) and

|y− x| ≤ δf1+f2(ε). Therefore
(
f1 + f2, f

′
1 + f ′2, δf1+f2

)
is in DifB(I) with δf1+f2(ε) =

min
{
δf1
(
ε
2

)
, δf2

(
ε
2

)}
being a modulus of differentiability of f1 + f2.

2. Since f1, f2 and f ′2 ∈ C(I) with I being a compact interval, their suprema and infima
on I exists. Therefore we can define

M := max
{

max
{
|f1(x)| : x ∈ I

}
,max

{
|f2(x)| : x ∈ I

}
,max

{
|f ′2(x)| : x ∈ I

}}
+ 1

The modulus of differentiability of f1f2 is defined by δf1f2 : R+ → R+ with

ε 7→ min
{
δf1
(

ε
3M

)
, δf2

(
ε

3M

)
, ωf1

(
ε

3M

)}
.

Let ε > 0 be arbitrary, x, y ∈ I s.t. |y − x| ≤ (δf1f2)(ε). We must show:

|(f1f2)(y)− (f1f2)(x)− (f1f
′
2 + f2f

′
1)(x)(y − x)| ≤ ε|y − x|

By using the triangle inequality, we obtain:

B = |(f1f2)(y)− (f1f2)(x)− (f1f
′
2 + f2f

′
1)(x)(y − x)|

= |f1(y)f2(y)− f1(x)f2(x)− f1(x)f ′2(x)(y − x) + f2(x)f ′1(x)(y − x)|
= |f1(y)f2(y)− f1(y)f2(x) + f1(y)f2(x)− f1(x)f2(x)− f1(y)f ′2(x)(y − x)

− f1(x)f ′2(x)(y − x) + f2(x)f ′1(x)(y − x) + f1(y)f ′2(x)(y − x)|
≤ |f1(y)||f2(y)− f2(x)− f ′2(x)(y − x)|

+ |f2(x)||f1(y)− f1(x)− f ′1(x)(y − x)|
+ |f1(y)− f1(x)||f ′2(x)(y − x)|

≤ 3M
ε

3M
|y − x|

= ε|y − x|

The last but one inequality holds, since (f1, f
′
1, δf1) and (f2, f

′
2, δf2) are in DifB(I)

and |y−x| ≤ δf1f2(ε). Therefore
(
f1f2, f1f

′
2+f2f

′
1, δf1f2

)
is in DifB(I) and a modulus

of differentiability of f1f2 is δf1f2(ε) = min
{
δf1
(

ε
3M

)
, δf2

(
ε

3M

)
, ωf1

(
ε

3M

)}
.
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3. As I is compact and f ′1 and f−11 ∈ C(I), set

M := max
{

max
{
|f−11 | : x ∈ I

}
,max

{
|f ′1| : x ∈ I

}}
+ 1

The modulus of differentiability δf−1
1

: R+ → R+ is defined by

ε 7→ min
{
δf1
(

ε
2M2

)
, ωf1

(
ε

2M4

)}
. Let ε > 0 be arbitrary, x, y ∈ I s.t. |y−x| ≤ δf−1

1
(ε).

We must show: ∣∣∣∣ 1

f1(y)
− 1

f1(x)
−
(
− f ′1(x)

f1(x)2

)
(y − x)

∣∣∣∣≤ ε|y − x|

By using the triangle inequality, we obtain:

C =

∣∣∣∣ 1

f1(y)
− 1

f1(x)
−
(
− f ′1(x)

f1(x)2

)
(y − x)

∣∣∣∣
=

1

|f1(x)f1(y)|

∣∣∣∣f1(x)− f1(y) +
f ′1(x)f1(y)

f1(x)
(y − x)

∣∣∣∣
=

1

|f1(x)f1(y)|︸ ︷︷ ︸
≤M2

∣∣∣∣f1(y)− f1(x)− f ′1(x)(y − x) + f ′1(x)(y − x)− f ′1(x)f1(y)

f1(x)
(y − x)

∣∣∣∣
≤M2|f1(y)− f1(x)− f ′1(x)(y − x)|+M2

∣∣∣∣ 1

f1(x)

∣∣∣∣︸ ︷︷ ︸
≤M

|f ′1(x)f1(x)− f ′1(x)f1(y))||y − x|

≤M2|f1(y)− f1(x)− f ′1(x)(y − x)|+M3 |f ′1(x)|︸ ︷︷ ︸
≤M

|f1(y)− f1(x)||y − x|

≤M2 ε

2M2
|y − x|+M4 ε

2M4
|y − x| = ε|y − x|

The last but one inequality holds, since (f1, Df1, δf1) is in DifB(I) and |y − x| ≤
δf−1

1
(ε). Therefore

(
f−11 , Df−11 , δf−1

1

)
is in DifB(I) and the modulus of differentiabil-

ity of f−11 is δf−1
1

(ε) = min
{
δf1
(

ε
2M2

)
, ωf1

(
ε

2M4

)}
.

4. The modulus of differentiability δid : R+ → R+ is defined by ε 7→ ε. Let ε > 0 be
arbitrary, x, y ∈ I s.t. |y − x| ≤ δid(ε). Then:

|id(y)− id(x)− id′(x)(y − x)| = |y − x− 1(y − x)| = 0 ≤ ε|y − x|

Therefore (id, 1, δid) is in DifB(I).

5. The modulus of differentiability δh : R+ → R+ is defined by ε 7→ ε. Let ε > 0 be
arbitrary, x, y ∈ I s.t. |y − x| ≤ δh(ε). Then:

|h(y)− h(x)− h′(x)(y − x)| = |c− c− 0(y − x)| = 0 ≤ ε|y − x|

Therefore (h, 0, δh) is in DifB(I).
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Corollary 3.4. For all n in N there exits an operation δn : R+ → R+ such that the
triplets

(
idnR, D(idnR), δn

)
n∈N are in DifB(R) with

D(idnR) = n · idn−1R (1)

Th function idR is called the identity function on R.

Proof. First we prove equation (1). To simplify the calculations, we write idnR = xn, x ∈ R.
The proof is by induction on n ∈ N:
n = 1

dx

dx
= 1 by Theorem 3.3 4.

n n+ 1 The induction hypothesis (1) holds for n ∈ N. Then:

dxn+1

dx
=
d(xnx)

dx

= xn · dx
dx

+ x · d(xn)

dx
by Theorem 3.3 2.

= xn + x · nxn−1 by the induction hypothesis.

= (n+ 1)xn+1

Next we have to show for n ∈ N that
(
idnR, D(idnR), δn

)
∈ DifB(R).

We know for x, y ∈ R, k ∈ N :

yn − xn = (y − x) ·
n−1∑
k=0

ykxn−1−k

Thus we can write

yn − xn − nxn−1(y − x) = (y − x) ·
n−1∑
k=0

ykxn−1−k − xn−1

Define M = |x|+ 1 and suppose |y − x| ≤ 1. Then |y| ≤M and |x| ≤M and

|yk − xk| ≤ |y − x| ·
k−1∑
p=0

|y|p|x|k−1−p

≤ |y − x| ·
k−1∑
p=0

MpMk−1−p

≤ |y − x| ·
k−1∑
p=0

Mk−1

= |y − x| · kMk−1

11



Then

|yn − xn − nxn−1(y − x)| ≤ |y − x| ·
n−1∑
k=0

|ykxn−1−k − xn−1|

≤ |y − x| ·
n−1∑
k=0

|x|n−1−k|yk − xk|

≤ |y − x| ·
n−1∑
k=1

|x|n−1−k|y − x|kMk−1

≤ |y − x| ·
n−1∑
k=1

|y − x|kMn−2

= |y − x|2Mn−2 ·
n−1∑
k=1

k

= |y − x|2Mn−2 · n(n− 1)

2

For n = 1 we are done. Therefore consider the case n > 1. We can set the modulus
of differentiability δn = min

{
1, 2ε

Mn−2n(n−1)

}
. Then for an arbitrary ε > 0, x, y ∈ R with

|x− y| ≤ δn we have

|yn − xn − nxn−1(y − x)| = |y − x|2Mn−2 · n(n− 1)

2

≤ |y − x|δnMn−2n(n− 1)

2
≤ |y − x|ε

Therefore for n ∈ N holds
(
idnR, D(idnR), δn

)
is in DifB(R).

With Theorem 3.3 and its Corollary we obtain the following formulas

D
(
f1f

−1
2

)
= f−12

(
f2Df1 − f1Df2

)
D
( n∑
k=0

an−kx
k
)

=
n∑
k=1

kan−kx
k−1

for the derivatives of a quotient and a polynomial.

Theorem 3.5 (Chain Rule). I and J are arbitrary intervals in R. Let the triplet (f, f ′, δf )
be in DifB(I) and the triplet (g, g′, δg) be in DifB(J), s.t. f maps each compact subinterval
of I into a compact subinterval of J . Then there exists δg◦f : R+ → R+ such that(
g ◦ f, (g′ ◦ f)f ′, δg◦f

)
is in DifB(I).

Proof. Due to the definition of differentiability, we may assume that I and J are compact
intervals. (f, f ′, δf ) is in DifB(I), thus δf is a modulus of differentiability of f in I.
As f ∈ C(I) let ωf be the corresponding modulus of continuity. δg is a modulus of
differentiability of g in J . The modulus of differentiability δg◦f : R+ → R+ is defined by
ε 7→ min{ωf (δg(α)), δf (β)}, α, β ∈ R.

12



We begin by showing, what we must prove:
Let ε > 0 be arbitrary, x, y ∈ I s.t. |y − x| ≤ δg◦f (ε). We must show:∣∣g(f(y)

)
− g
(
f(x)

)
− g′

(
f(x)

)
f ′(x)(y − x)

∣∣ ≤ ε
∣∣y − x∣∣

We know from |y − x| ≤ δg◦f (ε):

1.
∣∣f(y)− f(x)

∣∣ ≤ δg(α)

2.
∣∣g(f(y)

)
− g
(
f(x)

)
− g′

(
f(x)

)(
f(y)− f(x)

)∣∣ ≤ α
∣∣f(y)− f(x)

∣∣
3.
∣∣f(y)− f(x)

∣∣ ≤ ∣∣f(y)− f(x)− f ′(x)(y − x)
∣∣+
∣∣f ′(x)(y − x)

∣∣
Therefore we have

D = |g(f(y))− g(f(x))− g′(f(x))f ′(x)(y − x)|
≤ |g(f(y))− g(f(x))− g′(f(x))(f(y)− f(x))|+ |g′(f(x))||(f(y)− f(x))− f ′(x)(y − x)|
≤ α|f(y)− f(x)|+ ‖g′‖J |(f(y)− f(x))− f ′(x)(y − x)|
≤ α|f ′(x)(y − x)|+ α|f(y)− f(x)− f ′(x)(y − x)|+ ‖g′‖J |(f(y)− f(x))− f ′(x)(y − x)|
≤ α‖f ′‖I |y − x|+ (α + ‖g′‖J) · |(f(y)− f(x))− f ′(x)(y − x)|
≤ α‖f ′‖I |y − x|+ (α + ‖g′‖J)β|y − x|

As each of the summands should be less than ε/2, we got(
α + ‖g′‖J

)
β ≤ ε

2
⇔ β =

(
α + ‖g′‖J

)−1 ε
2

α‖f ′‖I ≤
ε

2
⇔ α = ‖f ′‖−1I

ε

2

As ‖f ′‖I might be 0, we set α =
(
1 + ‖f ′‖I

)−1 ε
2
. Then:

α‖f ′‖I |y − x|+
(
α + ‖g′‖J

)
β|y − x| ≤ ε

2
|y − x|+ ε

2
|y − x| = ε|y − x|

It follows that
(
g ◦ f, (g′ ◦ f)f ′, δg◦f

)
is in DifB(I) with (g′ ◦ f)f ′ being the derivative and

δg◦f a modulus of differentiability of g ◦ f in I.

3.2 Approximate Rolle’s Theorem & the Mean Value Theorem

The following Theorem is the counterpart to Rolle’s Theorem in constructive analysis.

Theorem 3.6 (Bishop - approximate Rolle’s Theorem). Let [a, b], a, b ∈ R, a < b be an
interval, (f, f ′, δf ) be in DifB

(
[a, b]

)
with f(a) = f(b). Then for each ε > 0 there exists x

in [a, b] with
|f ′(x)| ≤ ε

Proof. From (f, f ′, δf ) in DifB
(
[a, b]

)
we know that the pair (f ′, ωf ′) is in ContB

(
[a, b]

)
with ωf ′ : R+ → R+ being a modulus of continuity of f ′. δf is a modulus of differentiability
for f on [a, b]. We choose the points x0, x1, . . . , xn ∈ R such that

a = x0 ≤ x1 ≤ · · · ≤ xn = b and |xk+1 − xk| ≤ min
{
δf

(ε
2

)
, ωf ′

(ε
2

)}
13



for all k in (0, 1, . . . , n− 1). Then we have

f(xk+1)− f(xk) = f ′(xk)(xk+1 − xk) + f(xk+1)− f(xk)− f ′(xk)(xk+1 − xk)

≤ f ′(xk)(xk+1 − xk) +
ε

2
|xk+1 − xk|

= (f ′(xk) +
ε

2
)|xk+1 − xk|

< (f ′(xk) + ε)|xk+1 − xk|
for all k in (0, 1, . . . , n− 1) and therefore it is

0 = f(b)− f(a) =
n−1∑
k=0

f(xk+1)− f(xk) ≤
n−1∑
k=0

(
f ′(xk) + ε

)
|xk+1 − xk|

Thus for at least one k in (0, 1, . . . , n− 1) it holds f ′(xk) > −ε. Furthermore, we have

f(xk)− f(xk+1) = f(xk)− f(xk+1)− f ′(xk+1)(xk − xk+1) + f ′(xk+1)(xk − xk+1)

≤ ε

2
|xk − xk+1|+ f ′(xk+1)(xk − xk+1)

< ε|xk − xk+1|+ f ′(xk+1)(xk − xk+1)

= ε|xk − xk+1| − f ′(xk+1)|xk − xk+1|
= (ε− f ′(xk+1))|xk − xk+1|

for all k in (0, 1, . . . , n− 1) and therefore it is

0 = f(a)− f(b) =
n−1∑
k=0

f(xk)− f(xk+1) ≤
n−1∑
k=0

(
ε− f ′(xk)

)
|xk − xk+1|

Thus for at least one k in (0, 1, . . . , n− 1) it holds f ′(xk) < ε.
Since ε

2
< ε we have for at least one k in (0, 1, . . . , n − 1) either |f ′(xk)| < ε or

|f ′(xk)| > ε
2
. In the first case we are done with the prove. So let’s have a look at the

second case: |f ′(xk)| > ε
2

for k in (0, 1, . . . , n − 1) . From |xk+1 − xk| ≤ ωf ′(
ε
2
) we know

|f ′(xk+1) − f ′(xk)| ≤ ε
2
. Thus we obtain the property that f ′(xk+1) and f ′(xk) are both

positive or both negative. This holds obviously for all k in (0, 1, . . . , n− 1). From above
we know that for at least one value of k we have f ′(xk) > −ε and for at least one value
of k we have f ′(xk) < ε. Thus we get that 0 < |f ′(xk)| < ε for at least one value of k .

In classical mathematics Rolle’s theorem implies the mean value theorem, whereas in
constructive mathematics the approximate Rolle’s theorem implies the approximate mean
value theorem. This theorem gives a basic estimate for the difference of two values of a
differentiable function.

Theorem 3.7 (Bishop - approximate mean value theorem). Let (f, f ′, δf ) be in DifB
(
[a, b]

)
.

Then for an arbitrary ε > 0 there exists x in [a, b] with

|f(b)− f(a)− f ′(x)(b− a)| ≤ ε.

Proof. Define the function h(x) on [a, b] by

h(x) = (x− a) ·
(
f(b)− f(a)

)
−f(x)(b− a), x ∈ [a, b].

Then h(a) = −f(a)(b− a) = h(b). By Theorem 3.6 there exists x ∈ [a, b] s.t. |h′(x)| ≤ ε
for ε > 0. Thus

ε ≥ |h′(x)| = |f(b)− f(a)− f ′(x)(b− a)|.

14



3.3 Taylor’s theorem

Remark 3.8. A function f on a proper interval I is (srictly) increasing if f(x) >
(=)
f(y)

whenever x, y ∈ I, x > y. We say f is (srictly) decreasing, if −f is (srictly) increasing.
With theorem 3.7 we obtain that if the triple (f, f ′, δf ) is in DifB(I) and f ′(x) ≥ 0
(respectively, f ′(x) ≤ 0) for all x in I, then f is increasing (resp. decreasing) on I.

Definition 3.9 (nth derivative). Let the triplets(
f,Df, δf

)
,
(
f (1), Df (1), δf (1)

)
, . . . ,

(
f (n−1), Df (n−1), δf (n−1)

)
be in DifB(I) such that Df = f (1), Df (1) = f (2), . . . , Df (n−2) = f (n−1) and set Df (n−1) =
f (n). The function f is then said to be n times differentiable on I with f (n) being its nth

derivative. The class of n times differentiable functions on I is recursively defined by

f ∈ DifB
(n)(I)⇔

(
f, f ′, δf

)
∈ DifB(I) and f ′ ∈ DifB

(n−1)(I).

The function f itself may be written f (0) or D0f .

We now want to find a polynomial in order to approximate the function f.

Definition 3.10 (Taylor polynomial). Let f ∈ DifB
(n)(I) and a ∈ I. Then we call

Ta,nf(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k

the nth Taylor polynomial for f about a and for a given value b

R := f(b)−
n∑
k=0

f (k)(a)

k!
(b− a)k (2)

is called the remainder term.
Special case: f is infinitely differentiable on an open Interval I = (a − t, a + t), also

written f ∈ DifB
(∞)(I) :=

⋂
n∈N

DifB
(n)(I). This means f (n) exists for all positive integers

n. In that case, if

rnf (n+1)

n!
→ 0 as n→∞ (0 < r < t),

then the Taylor series for f about a,

∞∑
n=0

f (n)(a)

n!
(x− a)n,

converges to f on I.

Theorem 3.11 (Taylor’s theorem). Let f ∈ DifB
(n+1)(I) , let ε > 0, and a, b ∈ I. Then

there exists c with min{a, b} ≤ c ≤ max{a, b} such that∣∣∣R− f (n+1)(c)

n!
(b− c)n(b− a)

∣∣∣≤ ε.

where R represents the remainder term, given by (2).
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Proof. We start by defining

M := 1 + max

{∣∣∣f (k)(a)

k!

∣∣∣ ∣∣∣∣ k ∈ (1, . . . , n)

}
In addition we have f ∈ DifB

(n+1)(I), therefore there exits a modulus of differentiability
δf > 0 s.t. (f, f ′, δf ) ∈ DifB(I). Set δf (ε) = min

{
1, ε

2nM
, ωf
(
ε
2

)}
where ωf is the modulus

of continuity for f on [min{a, b},max{a, b}]. We know it holds either |a − b| ≤ δf (ε) or
|a− b| ≥ 0.

First suppose |a− b| ≤ δf (ε). Then

|R| =
∣∣∣∣f(b)−

n∑
k=0

f (k)(a)

k!
(b− a)k

∣∣∣∣
=

∣∣∣∣f(b)− f(a)−
n∑
k=1

f (k)(a)

k!
(b− a)k

∣∣∣∣
≤ |f(b)− f(a)|+

n∑
k=1

∣∣∣∣f (k)(a)

k!︸ ︷︷ ︸
<M

∣∣∣∣|b− a|k
≤ ε

2
+M

n∑
k=1

δf (ε)
k

≤ ε

2
+M

n∑
k=1

ε

2nM
= ε

If we choose c = b, the theorem holds.
Now suppose that |a− b| ≥ 0. Consider the function

g(x) = f(b)− f(x)− f ′(x)

1!
(b− x)− f ′′(x)

2!
(b− x)2 − . . .

− f (n)(x)

n!
(b− x)n −R(b− x)(b− a)−1

It holds:

g(a) = f(b)−
∑n

k=0
f (k)(a)
k!

(b− a)k −R(b− a)(b− a)−1 = 0
g(b) = f(b)− f(b)− 0− · · · − 0 = 0

}
⇒ g(a) = g(b)

The function g is differentiable on I as a composition of differentiable functions on I. For
the derivative we have:

g′(x) = −f ′(X) + f ′(x)− f ′′(x)(b− x)− . . .

+
f (n)(x)

(n− 1)!
(b− x)n−1 − f (n+1)(x)

n!
(b− x)n +R(b− a)−1

= −f
(n+1)(x)

n!
(b− x)n +R(b− a)−1

By the approximate Rolle’s theorem (3.6), we know that for an arbitrary ε > 0 there
exists c ∈ [min{a, b},max{a, b}] such that |g′(c)| ≤ ε. Let’s apply the approximate
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Rolles’s theorem:

|g′(x)| =
∣∣∣∣−f (n+1)(x)

n!
(b− x)n +R(b− a)−1

∣∣∣∣≤ ε|b− a|−1

⇔
∣∣∣∣R− f (n+1)(x)

n!
(b− x)n(b− a)

∣∣∣∣≤ ε

and the proof is complete.
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4 Bridger differentiability

The following chapter also features differentiability in constructive analysis. This ap-
proach is due to Marc Bridger. Similarly to Bishop, he only uses the uniform version of
continuity, as this is the stronger and more important form of continuity within construc-
tive analysis. For the sake of completeness, we provide Bridger’s definition of uniform
continuity and abbreviate it to continuity.

Definition 4.1 (Bridger - continuity (Brc)). Let E be a subset of R and let f : E → R
be functions in E. Let ωf : R+ → R+ be an operation, called modulus of continuity. The
function f is called continuous on E if for each positive real number ε and for x, y in E
such that 0 < |y − x| < ωf (ε) we have

|f(y)− f(x)| ≤ ε.

Note that Bridger, unlike Bishop, does not require E to be a compact interval. He
takes a similar approach to differentiability. Instead of dealing with the derivative of a
function at a point, he engages himself in the derivative function at an interval. As with
continuity, this notion of uniform differentiability is the one that is most important in
later theory and applications. In order to define uniform differentiability, he provides
three different definitions of differentiability and proves their equivalence.

4.1 Equivalent definitions

Definition 4.2 (Bridger - differentiability 1 (Brd1)). Let E be a subset of R and let
f, g : E → R be functions on E and let δf : R+ → R+ be an operation. The function
f is called differentiable on E with g being its derivative on E, if for each positive real
number ε and for x, x+ h in E such that 0 < |h| < δf (ε) we have∣∣∣∣f(x+ h)− f(x)

h
− g(x)

∣∣∣∣≤ ε.

The operation δf > 0 is called a modulus of differentiability.

Note that Bridger, unlike Bishop, does not require the functions f and g to be contin-
uous and E to be a compact interval. The next definition of differentiability comes from
a slightly change in notation. Let’s write y = x+ h, such that h = y − x.

Definition 4.3 (Bridger - differentiability 2 (Brd2)). Let E be a subset of R and let
f, g : E → R be functions on E and let δf : R+ → R+ be a modulus of differentiability.
The function f is called differentiable on E with g being its derivative on E, if for each
positive real number ε and for x, y in E such that 0 < |y − x| < δf (ε) we have∣∣∣∣f(y)− f(x)

y − x
− g(x)

∣∣∣∣ ≤ ε (3)

We also say the triplet
(
f, g, δf

)
is in DifBr(E) with

DifBr(E) :=
{

(f, g, δf ) ∈ F(E,R)× F(E,R)× F(R+,R+)
∣∣ δf : difBr(f)

}
and δf : difBr(f) :⇔ ∀ε>0 ∀x, y∈E :

(
0 < |y − x| < δf (ε)⇒

∣∣∣f(y)−f(x)y−x − g(x)
∣∣∣ ≤ ε

)
.
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Remark 4.4. The quotient (3) in definition 4.3 is called the difference quotient of f and
may be written as D(x, y).

Since the difference quotient must be close to g(x) for x ∈ E, let’s take a look at their
difference and call it r(x, y). Before introducing the third definition, we have to define
the following property:

Remark 4.5. r(x, y) → 0 as y → x on E ⊂ R means that for each ε > 0 there is a
δ(ε) > 0 such that |r(x, y)| ≤ ε whenever x, y ∈ E and 0 < |y − x| < δ(ε).

Note that r(x, y) does not have to exist when y = x. Finally we receive the third
definition:

Definition 4.6 (Bridger - differentiability 3 (Brd3)). Let E be a subset of R and let
f, g : E → R be functions on E and let r(x, y) be a function on E defined for x, y ∈ E.
The function f is called differentiable on E with g being its derivative on E, if for x, y ∈ E
with |y − x| > 0 and for r(x, y)→ 0 as y → x we have

f(y)− f(x) = g(x) · (y − x) + r(x, y) · (y − x)

We now show that the three definitions of g being the derivative of f are logically
equivalent.

Theorem 4.7 (Equivalence between Brd1, Brd2 and Brd3). For a subset E of R and the
functions f, g : E → R on E, the following statements are equivalent.

1. There is an operation δf : R+ → R+ with the property that for each positive real
number ε and for x, x+ h in E such that 0 < |h| < δf (ε) we have∣∣∣∣f(x+ h)− f(x)

h
− g(x)

∣∣∣∣≤ ε.

2. There is an operation δf : R+ → R+ with the property that for each positive real
number ε and for x, y in E such that 0 < |y − x| < δf (ε) we have∣∣∣∣f(y)− f(x)

y − x
− g(x)

∣∣∣∣≤ ε.

3. There is a function r(x, y) with x, y ∈ E such that

f(y)− f(x) = g(x) · (y − x) + r(x, y) · (y − x)

if |y − x| > 0 and r(x, y)→ 0 as y → x.

Proof. To prove the equivalence of the three statements, it is sufficient to prove the
following implications.

1. (2⇒ 3)
Let E be a subset of R and let the triplet (f, g, δf ) be in DifBr(E), thus for an
arbitrary ε > 0, x, y ∈ E with 0 < |y − x| < δf (ε) it is∣∣∣∣f(y)− f(x)

y − x
− g(x)

∣∣∣∣≤ ε
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Now set r(x, y) = f(y)−f(x)
y−x − g(x). Thus r(x, y) is defined on E for x, y ∈ E and

0 < |y − x|. We have

r(x, y) =
f(y)− f(x)

y − x
− g(x) | +g(x)

⇔ r(x, y) + g(x) =
f(y)− f(x)

y − x
| ·(y − x)

⇔ r(x, y) · (y − x) + g(x) · (y − x) = f(y)− f(x)

whenever |r(x, y)| ≤ ε with x, y ∈ E and 0 < |y − x| < δf (ε).

2. (3⇒ 1)
There is a function r(x, y), defined for x, y ∈ E and |y − x| > 0, with the property
that

f(y)− f(x) = g(x) · (y − x) + r(x, y) · (y − x)

where r(x, y)→ 0 as y → x. Now set y = x+ h. Then

|r(x, y)| =
∣∣∣∣f(y)− f(x)

y − x
− g(x)

∣∣∣∣
=

∣∣∣∣f(x+ h)− f(x)

h
− g(x)

∣∣∣∣
whenever |r(x, y)| ≤ ε with x, y ∈ E and 0 < |y − x| < δf (ε) or rather x, x+ h ∈ E
and 0 < |h| < δf (ε).

3. (1⇒ 2)
For each positive real number ε > 0, let x, x + h ∈ E such that 0 < |h| < δf (ε).
Then ∣∣∣∣f(x+ h)− f(x)

h
− g(x)

∣∣∣∣≤ ε

Now set h = y − x. Thus

ε ≥
∣∣∣∣f(x+ h)− f(x)

h
− g(x)

∣∣∣∣= ∣∣∣∣f(x+ (y − x))− f(x)

y − x
− g(x)

∣∣∣∣
=

∣∣∣∣f(y)− f(x)

y − x
− g(x)

∣∣∣∣
whenever x, y ∈ E and 0 < |y − x| < δf (ε).

Therefore the three definitions of differentiability are equivalent.
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4.2 Some basic properties

The modulus of differentiability δf (ε) is not unique; if you have one, any positive smaller
number is also a modulus of differentiability. In contrast, the derivative of a function is
unique as we prove with the following theorem.

Theorem 4.8 (Uniqueness of the derivative). Suppose E is a subset of R and the triplets(
f, g1, δ1f

)
and

(
f, g2, δ2f

)
are in DifBr(E). Then g1 = g2.

Proof. Let E be a subset of R and let the triplets
(
f, g1, δ1f

)
and

(
f, g2, δ2f

)
be in DifBr(E).

Then we have

|g1(x)− g2(x)| =
∣∣∣g1(x)− f(y)− f(x)

y − x
+
f(y)− f(x)

y − x
− g2(x)

∣∣∣
≤
∣∣∣g1(x)− f(y)− f(x)

y − x

∣∣∣+∣∣∣f(y)− f(x)

y − x
− g2(x)

∣∣∣
Both of these last quantities can be made arbitrarily small if 0 < |y − x| is sufficiently
small. As g1 and g2 are derivatives of f, we can choose another modulus of differentiability
for f such that |y − x| < δ(ε) = min

{
δ1f
(
ε
2

)
, δ2f

(
ε
2

)}
. Thus∣∣∣g1(x)− f(y)− f(x)

y − x

∣∣∣+∣∣∣f(y)− f(x)

y − x
− g2(x)

∣∣∣≤ ε

2
+
ε

2
= ε

It follows that g1(x) = g2(x) for x in E.

Theorem 4.9. If E is a subset of R and the triplet
(
f, f ′, δf

)
is in DifBr(E), then f ′ is

continuous on E.

Proof. Let E ⊆ R and the triplet
(
f, f ′, δf

)
∈ DifBr(E). The difference quotient is

symmetric in x and y:

D(x, y) =
f(y)− f(x)

y − x
=
−(f(y)− f(x))

−(y − x)
=
f(x)− f(y)

x− y
= D(y, x).

Set the modulus of differentiability δf (ε) = ε
2
. Then if |y − x| ≤ δf (ε), we have both

|D(x, y)− f ′(x)| ≤ ε
2

and |D(y, x)− f ′(y)| ≤ ε
2

and thus

|f ′(y)− f ′(x)| = |f ′(y)−D(y, x) +D(x, y)− f ′(x)|
≤ |f ′(y)−D(y, x)|+ |D(x, y)− f ′(x)|

≤ ε

2
+
ε

2
= ε

Therefore f ′ is continuous on E.

Corollary 4.10. Let E be a subset of R and the triplet
(
f, f ′, δf

)
be in DifBr(E). If E

is a compact interval, then f ′ is bounded on E.

Proof. Let E be a compact interval in R. By Theorem 4.9, f ′ is continuous on E. By
Bishop [2, Proposition 4.6], we know that for continuous functions on compact intervals
the supremum and the infimum exist. If a supremum and a infimum exist for a function,
this function is bounded. Thus f ′ is bounded in E.
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Theorem 4.11. Let E be a subset of R and the triplet
(
f, f ′, δf

)
be in DifBr(E). If f ′ is

bounded on E, then f is continuous in E.

Proof. Let E be a compact interval in R. Then by Theorem 4.10, f ′ is bounded on E.
Let B be the bound of f ′, hence ∀x ∈ E : |f ′(x)| ≤ B. Set |y − x| ≤ min

{
δf (1), ε

B+1

}
.

By definition of differentiability, we receive∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣≤ 1⇒
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣≤ B + 1

⇒ |f(y)− f(x)| ≤ (B + 1) |y − x|︸ ︷︷ ︸
≤ ε

B+1

≤ ε

Therefore f is continuous in E.

4.3 Examples

Theorem 4.12. The triplet
(
ex, ex, δexp

)
is in DifBr

(
(−∞, c]

)
for c ∈ R.

Proof. To prove theorem 4.12, we have to introduce some properties of the exponential
function: ∀x > 0 :

1. e−x−1
−x ≤ 1⇔ ex − 1 ≤ ex · x

2. 1 ≤ ex−1
x
⇔ x ≤ ex − 1

Let ε > 0 be arbitrary, x, y in (−∞, c] with x < y and 0 < |y − x| ≤ δexp(ε) = ε
ec

. By
using the properties of the exponential function and with y − x > 0, we can follow

y − x ≤ ey−x − 1 ≤ ey−x · (y − x)

or rather

ex · (y − x) ≤ ey − ex ≤ ey · (y − x) (4)

Then ∣∣∣∣ey − exy − x
− ex

∣∣∣∣≤ |ey − ex| ≤ ey · |y − x| ≤ ec · ε
ec

= ε

Therefore the triplet
(
ex, ex, δexp

)
is in DifBr

(
(−∞, c]

)
for c ∈ R.

Theorem 4.13. The triplet
(
ln(x), 1

x
, δln
)

is in DifBr

(
[R,∞)

)
for R ∈ R+.

Proof. Using inequality (4) above, with x 7→ ln(x) and y 7→ ln(y), we get

x(ln(y)− ln(x)) ≤ y − x ≤ y(ln(y)− ln(x))

⇔ 1

y
(y − x) ≤ ln(y)− ln(x) ≤ 1

x
(y − x)

⇔ 1

y
≤ ln(y)− ln(x)

y − x
≤ 1

x

Then ∣∣∣∣ ln(y)− ln(x)

y − x
− 1

x

∣∣∣∣≤ ∣∣∣∣1x − 1

x

∣∣∣∣= 0 ≤ ε

Therefore the triplet
(
ln(x), 1

x
, δln
)

is in DifBr

(
[R,∞)

)
for R ∈ R+.
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5 A comparison between Bishop and Bridger differ-

entiability

The last chapters outline Bishop’s and Bridger’s definitions of differentiability in con-
structive analysis. Before comparing their approaches the next paragraphs shortly recap
the definitions.

Definition 5.1 (Bd). Let E be a compact interval in R, f, g ∈ C(E) be continuous
functions in E and δf : R+ → R+ be a modulus of differentiability of f on E. The
function f is called differentiable on E if the triplet (f, g, δf ) is in DifB(E), with

DifB(E) :=
{

(f, g, δf ) ∈ C(E)× C(E)× F(R+,R+)
∣∣ δf : difB(f)

}
and δf : difB(f) :⇔ ∀ε>0 ∀x, y∈E :(

|y − x| ≤ δ(ε)⇒ |f(y)− f(x)− g(x)(y − x)| ≤ ε|y − x|
)

Definition 5.2 (Brd2). Let E ⊂ R, f, g ∈ F(E,R) be functions in E and δf : R+ → R+

be a modulus of differentiability of f on E. The function f is called differentiable on E
if the triplet (f, g, δf ) is in DifBr(E), with

DifBr(E) :=
{

(f, g, δf ) ∈ F(E,R)× F(E,R)× F(R+,R+)
∣∣ δf : difBr(f)

}
and δf : difBr(f) :⇔ ∀ε>0 ∀x, y∈E :

(
0 < |y − x| < δf (ε)⇒

∣∣∣f(y)−f(x)y−x − g(x)
∣∣∣ ≤ ε

)
.

The differences are easy to see. Bishop requires E to be a compact interval in R. f
and its derivative are continuous functions. In contrast, Bridger only requires E to be a
set in R and f and its derivative not to be continuous. However, he proves the continuity
of f ′ and of f if E is a compact interval. See Theorem 4.9 and 4.11.

The task of constructive analysis is to avoid non relevant definitions. Using a less
strict approach, Bridger’s definition of differentiability follows more closely this idea of
constructive analysis. This chapter checks if the Theorems 4.9 and 4.11 also apply to
Bishop’s differentiability, if we assume that f and f ′ are not continuous.

Therefore we present an appropriate Definition of differentiability.

Definition 5.3 (Bd*). Let E be a compact interval in R, f, g ∈ F(E,R) be functions
and δf : R+ → R+ be a modulus of differentiability of f on E. The function f is called
differentiable in E if the triplet (f, g, δf ) is in DifB

∗(E), where

DifB
∗(E) :=

{
(f, g, δf ) ∈ F(E,R)× F(E,R)× F(R+,R+)

∣∣ δf : difB(f)
}

We start by assuming that E is an arbitrary interval in R.

Theorem 5.4. Let E be an interval in R, f, f ′ ∈ F(E,R) and δf ∈ F(R+,R+) be
functions, such that the triplet (f, f ′, δf ) is in DifB

∗(E). Then f ′ is continuous on E or
rather f ′ is in C(E).

23



Proof. Due to Bishops Definition of continuity, it is sufficient to proof the Theorem for E
being a compact interval in R. So let E be a compact interval and let the triplet (f, f ′, δf )
be in DifB

∗(E). We have to show, that the pair (f ′, ωf ′) is in ContB(E).
Let ε > 0 and x, y ∈ E such that |y − x| ≤ ωf ′(ε) = δf (ε) = ε

2
. Then

|f ′(y)− f ′(x)| =
∣∣∣∣f ′(y)− f(y)− f(x)

y − x
+
f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣
≤
∣∣∣∣f ′(y)− f(y)− f(x)

y − x

∣∣∣∣+∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣
=

1

|x− y|
· |f(x)− f(y)− f ′(y)(x− y)|

+
1

|y − x|
· |f(y)− f(x)− f ′(x)(y − x)|

≤ 1

|x− y|
ε

2
|x− y|+ 1

|y − x|
ε

2
|y − x|

= ε

Therefore (f ′, ωf ′) is in ContB(E).

Now we assume that E is a compact interval in R. By Corollary 4.10 is f ′ bounded
on E. We continue by checking Theorem 4.11 for Bd*.

Theorem 5.5. Let E be an subset of R, f, f ′ ∈ F(E,R) and δf ∈ F(R+,R+) be functions,
such that the triplet (f, f ′, δf ) is in DifB

∗(E). If f ′ is bounded in E, then f is continuous
on E.

Proof. Let E be a compact interval of R and let the triplet (f, f ′, δf ) be in DifB
∗(E).

By Lemma 5.4 is f ′ continuous in E. As E is a compact interval, the supremum and
infimum of f ′ exists in E and f ′ is bounded in E. Let B be the bound of f ′, hence
∀x ∈ E : |f ′(x)| ≤ B. We have to show, that the pair (f, ωf ) is in ContB(E).
Let x, y be in E such that |y − x| ≤ min

{
δf (1), ε

1+B

}
. Then

|f(y)− f(x)− f ′(x)(y − x)| ≤ 1 · |y − x|
⇒ |f(y)− f(x)| ≤ |y − x|+ |f ′(x)||y − x| = |y − x|︸ ︷︷ ︸

≤ ε
B+1

·(1 +B) ≤ ε

Therefore (f, ωf ) is in ContB(E).

By assuming that E is a compact interval and (f, f ′, δf ) ∈ DifB
∗(E), we have now

shown that the Theorems 4.9 and 4.11 also apply to Bishop’s differentiability. With
Theorem 5.4 and 5.5 we obtain the following Corollary:

Corollary 5.6. Let E be a compact interval in R. If (f, f ′, δf ) is in DifB
∗(E), then

(f, f ′, δf ) is in DifB(E).

Proof. Let E be a compact interval in R and let the triplet (f, f ′, δf ) be in DifB
∗(E). By

Lemma 5.4 and 5.5 are f ′ and f continuous in E. Thus the triplet (f, f ′, δf ) is in DifB(E).
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In addition, if E is a compact interval, Bridger’s definition of differentiability Brd2 is
equivalent to Bd*.

Corollary 5.7. Let E be a compact interval in R. (f, f ′, δf ) is in DifBr(E) if, and only
if, (f, f ′, δf ) is in DifB

∗(E).

Proof. Let E be a compact interval in R and let the triplet (f, f ′, δf ) be in DifBr(E). Then
for an arbitrary ε > 0, x, y ∈ E such that 0 < |y − x| < δf (ε) we have∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣≤ ε⇔ |f(y)− f(x)− f ′(x)(y − x)| ≤ ε|y − x|

Last but not least we can conclude that Bridger’s definition of differentiability (Brd2)
implies Bishop’s definition of differentiability (Bd).

Corollary 5.8. Let E be a subset of R. If the triplet (f, f ′, δf ) is in DifBr(E), then it is
in DifB(E).

Proof. Let E be a subset of R and let the triplet (f, f ′, δf ) be in DifBr(E). We know:

(f, f ′, δf ) ∈ DifBr(E)⇔ ∀
I⊂E compact

(
(f, f ′, δf ) ∈ DifBr(I)

)
Then by Corollary 5.7 and 5.6 it holds

∀
I⊂E compact

(
(f, f ′, δf ) ∈ DifBr(I)

)
5.7⇒ ∀

I⊂E compact

(
(f, f ′, δf ) ∈ DifB

∗(I)
)

5.6⇒ ∀
I⊂E compact

(
(f, f ′, δf ) ∈ DifB(I)

)
It holds

∀
I⊂E compact

(
(f, f ′, δf ) ∈ DifB(I)

)
⇔ (f, f ′, δf ) ∈ DifB(E)

With Corollary 5.8 we have shown, that Bridger’s Definition of differentiability (Brd2)
implies Bishop’s Definition of differentiability (Bd). Hence Brd2 is the stronger Definition.
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