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Abstract

This thesis discusses the Yoneda lemma, which is considered one of the central
theorems in category theory. The first chapter of this thesis introduces the topic
by raising the question how can the set of natural transformations between a
Hom-functor and another set-valued functor be described, which the Yoneda
lemma gives the answer to. The second chapter deals with basic concepts of
category theory and some important examples, which will be needed later for the
formulation and the proof of the lemma, as well as for some of its applications. In
Chapter 3 the Yoneda lemma is formulated and proven. Chapter 4 is devoted to
some applications of the Yoneda lemma. The final chapter refers to the question
of the introduction and summarizes the impact of the Yoneda lemma.





1 Introduction

This thesis deals with the Yoneda lemma and some of its applications. The
Yoneda lemma goes back to a conversation between the American mathemati-
cian Saunders Mac Lane (1909 - 2005) and the Japanese mathematician Nobuo
Yoneda (1930-1996). Regarding the fact that nowadays it is considered as one
of the most important results of category theory the circumstances surrounding
the emergence of the Yoneda lemma are all the more astonishing. In the years
1954/1955 Yoneda went on a one-year research trip to France, where he met Mac
Lane, who at that time was collecting information for a book on category theory.
Category theory was a new theory in that time, as it was first formulated by Mac
Lane and Eilenberg in 1945. The myth states that Mac Lane and Yoneda met in
a café at the Gare du Nord in Paris, where Mac Lane interviewed Yoneda, contin-
uing their conversation even on Yoneda’s train until he left. It is remarkable that
such an important result emerged in such a short meeting and also that Yoneda
was only about 24 years old at that time. The content of this meeting was then
named by Mac Lane as the “Yoneda lemma”. [Kinoshita, 1997]

The Yoneda lemma provides an answer to the question: how can the set Hom(ya, F )
of natural transformations between a Hom-functor ya and another set-valued
functor F , be described?

The aim of this work is to present the Yoneda lemma and to clarify its use
for different mathematical problems. This thesis consists of three main parts.
Chapter 2 introduces the essential concepts of category theory, that are based on
the book Category Theory by Steve Awodey [Awodey, 2010, chapter 1-3, 5-7] and
the lecture notes by Iosif Petrakis [Petrakis, 2021, chapter 1]. The approach to
the Yoneda lemma in chapter 3 and 4 with the given definitions, theorems, proofs
and examples is mainly based on the book Category Theory by Steve Awodey,
[Awodey, 2010, chapter 8]. Chapter 3 introduces the Yoneda lemma and provides
a proof. Chapter 4 deals with some consequences and applications of the Yoneda
lemma, whereas in comparison to Awodey, the proof in 4.9 is given more explicit.
Where indicated, amendments from additional literature are included. The text
is adapted and explained in such a way that this should serve as a self-contained
approach to the topic for readers on the bachelor level.
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2 Background in category theory

In this section, basic terminology from category theory will be defined and ex-
plained. This chapter serves as a general introduction and summary of those
definitions necessary for conducting the proof of the Yoneda Lemma.

2.1 Definition of a category

Definition 2.1. A category C is a structure (C0,C1, dom, cod, ◦, 1), where

(i) C0 is the collection of the objects of C, denoted by A, B, C,...

(ii) C1 is the collection of the arrows of C,denoted by f,g,h,...

(iii) For every f in C1, there are given two objects

dom(f), cod(f)

called the domain and codomain of f. We write

f : A→ B,

where A = dom(f) and B = cod(f).

(iv) If f : a→ b, g : b→ c arrows in C, that is, with

cod(f) = dom(g),

there is an arrow

g ◦ f : A→ C

called the composite of f and g.

(v) For every a ∈ C0, there is given an arrow

1A : A→ A

called the identity arrow of A.

These data need to satisfy the following conditions:

(a) Unit:

f ◦ 1A = f = 1B ◦ f

for all f : A→ B.
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(b) Associativity:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

for all f : A→ B, g : B → C, h : C → D.

Given any objectsA,B inC, we write HomC(A,B), or sometimes just Hom(A,B),
if C is clear, to denote the collection of arrows f in C1 with dom(f) = A and
cod(f) = B.

Example 2.2 (The category of sets). We write Set to denote the category which
has sets as objects and functions as arrows between objects.

To prove that Set is indeed a category, we need to show that Set satisfies the
following data and properties:

(i) Objects: sets A,B,C, ... in Set0.

(ii) arrows: functions f, g, h, ... in Set1.

(iii) Every arrow f : A→ B is an function from a set

A = dom(f)

to a set

B = cod(f).

(iv) If f : A→ B, g : B → C, there is a composite function

g ◦ f : A→ C,

given by

(g ◦ f)(a) = g(f(a)) for any a ∈ A. (1)

(v) For every A ∈ Set0, there is an identity function

1A : A→ A

given by

1A(a) = a. (2)

We need to show that the following conditions are satisfied:

(a) Unit: If f : A→ B, then

f ◦ 1A = f = 1B ◦ f

since for any a ∈ A, we have that

(f ◦ 1A)(a) = f(1A(a)) = f(a),

(1B ◦ f)(a) = 1B(f(a)) = f(a)
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using equations (1) and (2).

(b) Associativity: If f : A→ B, g : B → C, h : C → D, then

(h ◦ g) ◦ f = h ◦ (g ◦ f)

always holds, since for any a ∈ A, we have

((h ◦ g) ◦ f)(a) = h(g(f(a))) = (h ◦ (g ◦ f))(a)

using equation (1).

Some other important examples of categories that will be discussed in the course
of this thesis include the functor category, which is discussed in chapter 2.3.2, the
category of cones, which is defined in chapter 2.8 and the category of elements,
defined in theorem 4.9.

Definition 2.3. A category C is called small, if the the collections C0 and C1

are both sets. If one of them is a proper class i.e., a class that is not a set, then
C is called large. A category C is said to be locally small if for every A,B ∈ C0

the collection Hom(A,B) form a set.

Example 2.4. A lots of interesting categories have a proper class of objects, for
example the category of sets, which we will discuss next. The category of sets
is locally small, since the collection of all functions from a set A to a set B do
indeed form a set.

Remark 2.5. All sets are themselves classes, but it is possible for a class not to
form a set. This is made clear by the so called Russell’s paradox. One might think
that every collection of things forms a set. The Russell’s paradox shows that such
naive construction leads to a contradiction. Let V denote the class of all sets x.
Suppose V is a set, then by the axiom schema of separation R = {x ∈ V : x /∈ x}
were set. But then R ∈ R ⇔ R /∈ R, which is not possible. So, the assumption
that V is a set must be wrong.

2.2 The opposite (or “dual”) category

In this section, we consider a new category that can be constructed from existing
ones.

Definition 2.6. The opposite (or “dual”) category Cop denotes the category ob-
tained by taking the category C and reversing the direction of all arrows. That
means, that Cop has the same collection of objects as C has, but the collection
of arrows of Cop is the collection of fop : d → c such that f : c → d is an arrow
of C. Here fop is the reversal of the arrow f in C.
We can define units and composition in Cop in terms of the corresponding oper-
ations in C in following way, namely, for any c in C0
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(1c)op = 1c

and if f : a→ b, g : b→ c in C1, we have

(g ◦ f)op = fop ◦ gop.

Thus, a diagram in C

A B

C

f

g
g ◦ f

looks like this is Cop

A B

C,

fop

gop
gop ◦ fop

where we have left out the identity arrows in both drawings.

2.3 Functors

Just like functions allow one to compare and relate sets, we have the concept of
functors to relate categories.

Definition 2.7. [Petrakis, 2021, chapter 1.14]

Let C and D be categories. A covariant functor from C to D is a pair

F = (F0, F1),

such that

(i) F0 : C0 → D0 is a function that maps an object A in C to an object F0(A)
of D,

(ii) F1 : C1 → D1 is a function that maps an arrow f : A→ B of C to an arrow

F1(f) : F0(A)→ F0(B)

of D, which satisfy the following properties:

(a) For every A in C0 we have that

F1(1A) = 1F0(A) (3)

(b) If f : A→ B and g : B → C, then

F1(g ◦ f) = F1(g) ◦ F1(f) (4)
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i.e., the diagram above marked by # commutes,

A B

C

C

F (B)

D

F (A) F (C).

f

g
g ◦ f

F (g)
F (f)

F (g ◦ f)

F

#

In this case we write F : C→ D.

A contravariant functor from C to D is a pair F = (F0, F1), such that

(i) F0 : C0 → D0 is a function that maps an object A in C to an object F0(A)
of D,

(ii′) F1 : C1 → D1 is a function that maps an arrow f : A→ B of C to an arrow

F1(f) : F0(B)→ F0(A)

of D, which satisfy the following properties:

(a) For every A in C0 we have that

F1(1A) = 1F0(A) (5)

(b′) If f : A→ B and g : B → C, then

F1(g ◦ f) = F1(f) ◦ F1(g) (6)

i.e., the following diagram marked by # commutes,
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A B

C

C

F (B)

D

F (A) F (C).

f

g
g ◦ f

F (g)
F (f)

F (g ◦ f)

F

#

In this case we write F : Cop → D.

Remark 2.8. For more clarity, we omit the identity arrows in drawing categories.

A covariant functor is F : Cop → D is exactly a contravariant functor from C to
D.

Definition 2.9. Let C be a locally small category. A functor F : C → D is
called

• injective (res. surjective) on objects if the object part F0 : C0 → D0 is
injective (res. surjective).

• injective (res. surjective) on arrows if the arrow part F1 : C1 → D1 is
injective (res. surjective).

• faithful if for all a, b in C0 the map

Fab : HomC(a, b)→ HomD(F (a), F (b))

defined by f 7→ F (f) is injective i.e. a faithful functor is only injective with
respect to pairs of arrows that had the same domain and codomain to begin
with. That is, if f, g : a→ b and F is a faithful functor,

F (f) = F (g)⇒ f = g.

• full if Fab is always surjective for every a,b.

2.3.1 Natural transformations

We talked about functors as mappings between categories, now a natural trans-
formation is a “map” between two functors from a category C to a category
D.
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Definition 2.10. Let C, D be categories. Suppose F = (F0, F1) and G =
(G0, G1) are functors from C to D. A natural transformation from F to G is
a family of arrows in D of the form

τc : F0(c)→ G0(c),

such that for every c in C0, and every f : c→ c′ in C1 the diagram below marked

with # commutes,

F0(c) F0(c′)

C D

G0(c) G0(c′)

F1(f)

τc

G1(f)

τc′

G

F

τ #

i.e.

τc′ ◦ F1(f) = G1(f) ◦ τc. (7)

We denote a natural transformation τ from F to G by τ : F ⇒ G.

2.3.2 The functor category

Definition 2.11. For categoriesC,D we define the functor category Fun(C, D)1

to be the category where the objects are the functors from C to D and the arrows
are natural transformation between them i.e., if F,G : C→ D, an arrow from F
to G is a natural transformation from F to G. The identity arrow

1F : F ⇒ F

is the family of arrows

(1F )c : F0(c)→ F0(c),

where

(1F )c = 1F0(c),

and the following diagram trivially commutes in D

F0(c) F0(c′)

F0(c) F0(c′).

1F0(c)

F1(f)

F1(f)

1F0(c′)

If F,G,H : C → D, τ : F ⇒ G and σ : G ⇒ H, the composite arrow σ ◦ τ is
1In literature, the functor category F un(C, D) is often denoted by DC.
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defined by

(σ ◦ τ)c = σc ◦ τc : F0(c)→ H0(c), (8)

for every c in C0, and , if f : C → C′ in C1, the following outer diagram com-
mutes

F0(c) F0(c′)

G0(c) G0(c′)

H0(c) H0(c′),

F1(f)

τc

G1(f)

τc′

σc σc′

H1(f)

(σ ◦ τ)c (σ ◦ τ)c′

since

(σ ◦ τ)c′ ◦ F1(f) = (σc′ ◦ τc′) ◦ F1(f)

= σc′ ◦ (τc′) ◦ F1(f))

= σc′ ◦ (G1(f) ◦ τc) (9)

= (σc′ ◦G1(f)) ◦ τc)

= (H1(f) ◦ σc) ◦ τc (10)

= H1(f) ◦ (σc ◦ τc)

= H1(f) ◦ (σ ◦ τ)c.

In equation (9) we used that τ is a natural transformation form F to G and in
equation (10) we used that σ is a natural transformation form G to H.

Definition 2.12. Let F,G : C → D functors. A natural isomorphism is a
natural transformation

ϑ : F ⇒ G

which is an isomorphism in the functor category Fun(C, D).

Lemma 2.13. A natural transformation ϑ : F ⇒ G is a natural isomorphism iff
each component ϑc : F (c)→ G(c) is an isomorphism.

Proof. Suppose ϑ : F ⇒ G is a natural isomorphism. Then by definition there
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exist an inverse ϑ−1 : G⇒ F such that

ϑ−1 ◦ ϑ = 1F and ϑ ◦ ϑ−1 = 1G.

Therefore,

[ϑ−1 ◦ ϑ]c = [1F ]c and [ϑ ◦ ϑ−1]c = [1G]c.

Because of (8), this is equivalent to

ϑ−1
c ◦ ϑc = 1F (c) and ϑc ◦ ϑ−1

c = 1G(c).

So, the components of ϑ are isomorphisms. If conversely each component
ϑc : F (c)→ G(c) is an isomorphism for each c ∈ C0. That means, there exist an
inverse (ϑc)−1 : G(c)→ F (c) such that

(ϑc)−1 ◦ ϑc = 1F (c) and ϑc ◦ (ϑc)−1 = 1G(c).

We define

(ϑ−1)c := (ϑc)−1.

Knowing that ϑ is an natural transformation, for any f : c→ c′ we have

G(f) ◦ ϑc = ϑc′ ◦ F (f)

⇔ (ϑ−1)c′ ◦G(f) ◦ ϑc ◦ (ϑ−1)c = (ϑ−1)c′ϑb ◦ F (f) ◦ (ϑ−1)c
⇔ (ϑ−1)c′ ◦G(f) = F (f) ◦ (ϑ−1)c

⇒ ϑ−1 is a natural transformation, which is the inverse of ϑ.

From now on, we will denote the objects with lowercase letters instead of upper-
case letters.

2.4 The covariant representable functors

Example 2.14. We assume that the category C is locally small. For each object
a of C,

Hom(a,−) : C→ Set

is a covariant functor, called representable functor of a.

To show that this indeed determines a functor, we need to show that

(i) For any object b in C,

[Hom(a,−)]0 (b) = Hom(a, b).
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Since C is locally small, Hom(a, b) is a set and therefore the function

[Hom(a,−)]0 : b 7→ Hom(a, b)

is well defined.

(ii) Any arrow f : b→ b′ in C induces a function

[Hom(a,−)]1 (f) = [Hom(a, f)]1 :
Hom(a,b)︷ ︸︸ ︷

[Hom(a,−)]0 (b)→
Hom(a,b′)︷ ︸︸ ︷

[Hom(a,−)]0 (b′)
(g : a→ b) 7→ (f ◦ g : a→ b′)

a b b′
g f

f◦g

Thus,

[Hom(a, f)]1 (g) = f ◦ g. (11)

In order to be a functor we require Hom(a,−) to satisfy the following con-
ditions:

(a) For any c ∈ C0,

[Hom(a, 1c)]1 = 1[Hom(a,−)]0 (c)︸ ︷︷ ︸
Hom(a,c)

(12)

and that

(b) if f : c→ c′, g : c′ → c′′, then

[Hom(a, g ◦ f)]1 = [Hom(a, g)]1 ◦ [Hom(a, f)]1 (13)

We show the equations (12) and (13), by taking an argument x : a→ c, then for
any c ∈ C0

[Hom(a, 1c)]1 (x) = 1c ◦ x
= x

= 1Hom(a,c)(x)

and for f : c→ c′, g : c′ → c′′, g ◦ f : c→ c′′,

[Hom(a, g ◦ f)] (x) = (g ◦ f) ◦ x

= g ◦ (f ◦ x)

= [Hom(a, g)]1 (f ◦ x)

= [Hom(a, g)]1 ([Hom(a, f)]1 (x))

= [Hom(a, g)]1 ◦ [Hom(a, f)]1 (x).
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2.5 The contravariant representable functors

Example 2.15. We assume that the category C is locally small. For each object
a of C,

Hom(−, a) : Cop → Set

is a contravariant functor, called representable functor of a.

To show that this indeed determines a functor, we need to show that

(i) For any object b in C,

[Hom(−, a)]0 (b) = Hom(b, a)

note that b 7→ Hom(b, a) is well defined, since C is locally small.

(ii′) Any arrow f : b→ b′ in C induces a function

[Hom(−, a)]1 (f) = [Hom(f, a)]1 : Hom(b′, a)→ Hom(b, a)
(g : b′ → a) 7→ (g ◦ f : b→ a)

b b′ a
gf

g◦f

Thus,

[Hom(f, a)]1 (g) = g ◦ f. (14)

In order to be a functor we require Hom(−, a) to satisfy the following con-
ditions:

(a) For any c ∈ C0,

[Hom(1c, a)]1 = 1Hom(c,a) (15)

and that

(b′) if f : c→ c′, g : c′ → c′′, then

[Hom(g ◦ f, a)]1 = [Hom(f, a)]1 ◦ [Hom(g, a)]1 (16)

We show equation (15), by taking an argument x : c→ a, then for any c ∈ C0

[Hom(1c, a)]1 (x) = x ◦ 1c
= x

= 1Hom(c,a)(x)
= 1[Hom(−,a)]0(c)(x).
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We show equation (16), by taking an argument x′ : c→ c′′, then for f : c→ c′,

g : c′ → c′′, g ◦ f : c→ c′′,

[Hom(g ◦ f, a)]1 (x′) = x′ ◦ (g ◦ f)

= (x′ ◦ g) ◦ f

= [Hom(f.a)]1 (x′ ◦ g)

= [Hom(f, a)]1 ([Hom(g, a)]1 (x′))

= [Hom(f, a)]1 ◦ [Hom(g, a)]1 (x′).

2.6 Some basic notions in categories

2.6.1 Isomorphism

Definition 2.16. In any category C, an arrow f : a → b in C is called an
isomorphism, or an iso, if there exists an arrow g : b→ a in C such that

g ◦ f = 1a and f ◦ g = 1b.

In this case we say that a is isomorphic to b, and write a ∼= b.

For example an isomorphism of sets is a bijective function. Isomorphic objects
in Set correspond to sets with the same number of elements.

2.6.2 Initial and terminal objects

Definition 2.17. In any category C, an object
0 is initial if for any object c there is a unique morphism

0→ c,

1 is terminal if for any object c there is a unique morphism

c→ 1.

Note that there is a kind of “duality” in these definitions. Precisely, a terminal
object in C is exactly an initial object in Cop.

Proposition 2.18. Initial and terminal objects are unique up to isomorphism.

Proof. In fact, if c and c′ are both initial (terminal) in the same category, then
there is a unique isomorphism c → c′. Indeed, suppose that 0 and 0’ are both
initial objects in some category C; the following diagram makes it clear that 0
and 0’ are uniquely isomorphic,

14



0 0′

0 0′

u

v
10

10′

u

since v ◦ u = 1c and u ◦ v = 1c′ , and u, v are unique. For terminal objects, apply
the foregoing to Cop.

Example 2.19. In the category Set, the empty set ∅ is an initial object because,
for every set c, there always exists an unique function, namely the empty function
from the empty set ∅ to c. The graph of an empty function is the empty set
itself. If {x} is a singleton set, then, for every set c, there is an unique function
from c to {x}, namely the function that maps every element of c to the unique
element of {x}. Therefore, {x} is a terminal object in Set.

2.6.3 Products

Definition 2.20. Let C be a category and a, b objects of C. A (binary) product2

of a and b consists of an object

a× b

of C together with two arrows

pra : a× b→ a and prb : a× b→ b,

such that the universal property of product is satisfied i.e., if c is an object in C
and fa : c→ a and fb : c→ b, there is a unique arrow

h = 〈fa, fb〉 : c→ a× b,

such that the following inner diagrams commute i.e.,

pra ◦ h = fa and prb ◦ h = fb.

c

a a× b b

h

prb

fb

pra

fa

A category C has products, if for every objects a, b of C, there is a product a× b
in C (for simplicity we avoid to mention the corresponding projection arrows).

In any category with binary products, we can show, that

a× (b× c) ∼= (a× b)× c.
2products are unique up to isomorphism, so one may speak of the product.
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Proof. Let p := a× (b× c) be the iterated product with the maps p1 : p→ a,

p2 : p→ (b×c)→ b and p3 : p→ (b×c)→ c,. Define q := (a×b)×c with the maps
q1 : q → a×b→ a, q2 : q → b×c→ b and q3 : q → c. By the universal property of
product we get a unique map p1×p2 : p→ a×b. Applying the universal property
of product again, we get a unique map f := (p1 × p2)× p3 : p→ q with qi ◦ f =
pi for i = 1, 2, 3. With a similar argument we get g := p1 × (p2 × p3) : q → p. By
composing, we get g ◦ f : p→ p which respects the pi. By the universal property
of product, such a map is unique, but the identity is another such map. Thus
they must be the same, therefore g ◦ f = 1p. Similarly we get f ◦ g = 1q, so
f and g are inverse and p ∼= q.

Definition 2.21. If a category C has products, f : a→ b and
f ′ : a′ → b′ are in C1, then

f × f ′ = 〈f ◦ pra, f ′ ◦ pra′〉 : a× a′ → b× b

a× a′

a a′

b b× b′ b′

pra

f

pra′

f ′

prb′prb

f×f ′

2.6.4 Equalizers

Definition 2.22. In any category C, given parallel arrows

a b
f

g

an equalizer of f and g consists of an object eq and an arrow e : eq → a, universal
such that

f ◦ e = g ◦ e.

That is, given any z : c→ a with f ◦ z = g ◦ z, there is a unique
u : c→ eq with e ◦ u = z, as in the diagram below:

eq a b

c

e
f

u z

g
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2.7 Exponentials

Definition 2.23. If b, c are objects of a category C with products, an exponential
of b and c is an object

cb

in C together with an arrow

evalb,c : cb × b→ c,

such that for any object d in C and every arrow

f : d× b→ c

there is a unique arrow

f̂ : d→ cb (17)

such that

evalb,c ◦ (f̂ × 1b) = f,

all as in the diagram above

cb cb × b c

d d× b

evalb,c

f̂×1b f
f̂

where the arrow f̂ × 1b is determined in definition 2.21

d× b

d b

cb cb × b b.

prd

f̂

prb

1b

pr
cb

prb

f̂×1b

The arrow f̂ is called the (exponential) transpose of f. A category has exponen-
tials, if for every b, c in C there is an exponential cb in C.

Given any arrow

g : d→ cb

we write

ḡ := evalb,c ◦ (g × 1b) : d× b→ c (18)

and also call ḡ the transpose of g.
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Since
ˆ̄g : d→ cb

is unique by (17), we have that

ˆ̄g = g

and for any f : d× b→ c, by (17) there is a unique arrow f̂ : d→ cb, then

¯̂
f := evalb,c ◦ (f̂ × 1b) = d× b→ c (19)

is also unique and therefore
¯̂
f = f.

Briefly, transposition of transposition is the identity.

Thus, the operation ˆ

(f : d× b→ c) 7−→ (f̂ : d→ cb)

provides an inverse to the operation ¯

(g : d→ cb) 7−→ (ḡ : d× b→ c).

Since for any f : d× b→ c and g : d→ cb

¯ ◦ ˆ(f) = ¯̂
f = f = 1HomC(d,cb)(f),

ˆ ◦ ¯(g) = ˆ̄g = g = 1HomC(d×b,c)(g)

we have

HomC(d× b, c) ∼= HomC(d, cb). (20)

Definition 2.24. A category C is called cartesian closed, if it has a terminal
object, products and exponential.

Example 2.25. The category Set of all sets, with functions as arrows is cartesian
closed, since

• the terminal object is the singleton set,

• the product A×B is the cartesian product of A and B,

• the exponential CB is the set of all functions from B to C and the evaluation
function evalB,C : CB × B → C is defined by evalB,C(g, b) = g(b) for any
g : B → C and b ∈ B. This evaluation function has the following universal
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mapping property (UMP): given any set A and any function f : A×B → C

there exist a unique function f̃ : A → CB defined by f̃(a)(b) = f(a, b) for
all a ∈ A and b ∈ B such that evalB,C ◦ (f̃ × 1B) = f . This holds because
evalB,C(f̃(a), b) = f̃(a)(b) = f(a, b).

2.8 Limits and colimits

Definition 2.26. Let J and C be categories. A diagram of type J in C is a
functor

D : J→ C.

We write the objects in the “index category” J lower case, i, j,... and the values
of the functor D : J→ C in the form Di, Dj , etc.
A cone (c, (cj)j∈J) to a diagram D consists of an object c in C and a family of
arrows in C,

cj : c→ Dj

one for each object j ∈ J, such that for each arrow α : i → j in J, the following
triangle commutes:

c Dj

Di

cj

ci
Dα

#

i.e.,

Dα ◦ ci = cj .

A morphism of cones

ϑ : (c, cj)→ (c′, c′j)

is an arrow ϑ in C making each triangle,

c c′

Dj

ϑ

c′jcj

#

commute. That is, such that cj = c′j ◦ ϑ for all j ∈ J. Thus, we have an evident
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category

Cone(D)

of cones to D.

Definition 2.27. Let J and C be categories and D : J → C a functor. The
category of cones, written,

Cone(D)

is defined as follows.

(i) Objects: cones (c, (cj)j∈J) to a diagram D : J→ C

(ii) Arrows: morphism of cones

(iii) If (c, (cj : c → Dj)j∈J), (c′, (c′j : c′ → Dj)j∈J) cones to D and if ϑ :
(c, (cj)j∈J)→ (c′, (c′j)j∈J), ϕ : (c′, (c′j)j∈J)→ (c′′, (c′′j )j∈J) arrows inCone(D),
then

ϕ ◦ ϑ : (c, (cj)j∈J)→ (c′′, (c′′j )j∈J)

is also an arrow in Cone(D), since

ϕ ◦ ϑ : c→ c′′

is an arrow in C and

c′′j ◦ (ϕ ◦ ϑ) = (c′′j ◦ ϕ) ◦ ϑ (21)

= c′j ◦ ϑ (22)

= cj . (23)

(iv) For every cone (c, (cj : c→ Dj)j∈J) in Cone(D), there is an identity arrow

1c : (c, (cj)j∈J)→ (c, (cj)j∈J)

in Cone(D), since 1c : c→ c is the identity arrow in J and

cj ◦ 1c = cj . (24)

In (21) we used the associativity of the category C and in equations (22),
(23) we used that ϕ, ϑ are arrows in Cone(D). In equation (24) we used
that 1c is identity arrow in CWe need to show that the following conditions
are satisfied:
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(a) Unit: If ϑ : (c, (cj)j∈J)→ (c′′, (c′′j )j∈J) in Cone(D), then

c′j ◦ (ϑ ◦ 1c) = (c′j ◦ ϑ) ◦ 1c
= cj ◦ 1c
= cj

and

c′j ◦ (1c′ ◦ ϑ) = (c′j ◦ 1c′) ◦ ϑ

= c′j ◦ ϑ

= cj .

(b) Associativity: If ϑ : (c, (cj)j∈J) → (c′, (c′j)j∈J), ϕ : (c′, (c′j)j∈J) →
(c′′, (c′′j )j∈J), ψ : (c′′, (c′′j )j∈J)→ (c′′′, (c′′′j )j∈J)

c′′′j ◦ (ψ ◦ (ϕ ◦ ϑ)) = c′′′j ◦ ((ψ ◦ ϕ) ◦ ϑ) (25)

= (c′′′j ◦ (ψ ◦ ϕ)) ◦ ϑ (26)

= c′j ◦ ϑ (27)

= cj (28)

and

c′′′j ◦ ((ψ ◦ ϕ) ◦ ϑ) = c′′′j ◦ (ψ ◦ (ϕ ◦ ϑ)) (29)

= (c′′′j ◦ ψ) ◦ (ϕ ◦ ϑ)

= c′′j ◦ (ϕ ◦ ϑ) (30)

= cj . (31)

Therefore,

(ψ ◦ (ϕ ◦ ϑ)) = ((ψ ◦ ϕ) ◦ ϑ).

In equations (27), (30), (28), (31) we used that ψ ◦ ϕ, ϕ ◦ ϑ, ϑ and ϕ are arrows
in Cone(D). In equations (25), (26) , (29) and (25) we used the associativity in
C.

Definition 2.28. A limit for a diagram D : J → C is a terminal object in
Cone(D). We often denote a limit in the form

pi : lim←−−
j∈J

Dj → Di.
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The definition of a limit therefore says: given any cone (c, (cj)j∈J) to D, there is
a unique arrow u : c→ lim←−−

j∈J
Dj such that for all j in J,

pj ◦ u = cj .

Thus, the limiting cone (lim←−−
j∈J

Dj , (pj)j∈J) can be thought of as the “closest” cone

to the diagram D, and indeed any other cone (c, (cj)j∈J) comes from it just by
composing with an arrow at the vertex, namely u : C → lim←−−

j∈J
Dj .

c lim←−−
j∈J

Dj

Di Dj

u

ci pi

Dα

cj
pi

A finite limit is a limit for a diagram on a finite index category J.

Let us consider an examples of a limit.

Example 2.29. Take J to be the following category:

i j
β

α

A diagram D of type J in C looks like

Di Dj
Dβ

Dα

and a cone (c, (cj)j∈J) to the diagram D consists of an object c in C and arrows

ci : c→ Di and cj : c→ Dj

in C, such that for α, β : i→ j in J the following triangle commutes:

c Dj

Di

ci

cj

Dα

Dβ

i.e.

Dα ◦ ci = cj and Dβ ◦ ci = cj . (32)
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Thus,

Dα ◦ ci = Dβ ◦ ci.

A limit of a diagram D : J → C is a terminal object in Cone(D). So, a limit is
a cone

(lim←−−
j∈J

Dj , (pj)j∈J),

consisting of an object lim←−−
j∈J

Dj in C and arrows pi : lim←−−
j∈J

Dj → Di, pj : lim←−−
j∈J

Dj → Dj

in C such that

Dα ◦ pi = pj and Dβ ◦ pi = pj , (33)

that has the following property: given any cone (c, (cj)j∈J) to D, there is a unique
u : c→ lim←−−

j∈J
Dj such that

pi ◦ u = ci and pj ◦ u = cj . (34)

We can show, that a limit for D is an equalizer of Dα and Dβ. An equalizer of
Dα, Dβ consists of an object eq in C and an arrow pi : eq → Di in C, universal
such that

Dα ◦ pi = Dβ ◦ pi. (35)

That is, given any ci : c→ Di with

Dα ◦ ci = Dβ ◦ ci, (36)

there is a unique u : c→ eq with pi ◦ u = ci. C is a category and therefore there
exist composite arrows

Dα ◦ pi : eq → pj and Dβ ◦ pi : eq → pj .

Because of (35) and the fact that Pj : eq → Dj . is an arrow in C, we have

pj = Dα ◦ pi and pj = Dβ ◦ pi. (37)

Therefore, (33) is satisfied in the definition of a limit. So, eq together with arrows
pi : c→ Di, pj : c→ Dj , satisfying (37) is a cone, and therefore an object in the
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category Cone(D). Because of (37) and since

pj ◦ u = Dα ◦ pj ◦ u (38)

= Dα ◦ ci
= cj , (39)

it follows that also the property (34) of a limit is satisfied. In (38) we used (37)
and in (39) we use the property (32) of the given cone (c, (cj)j∈J). Because of
(34), (c, (pi, pj)j∈J) is a cone. So, (eq, (pj)j∈J) is a terminal object in Cone(D)
and therefore eq ∼= lim←−−

j∈J
Dj . A limit for D : C → C in this example is therefore

an equalizer for Dα, Dβ.

c eq

Di Dj
Dβ

Dα

ci
cj

pjpi

u

2.8.1 Colimits

The dual to the idea of limits is the notion of colimits.

Definition 2.30. Let J and C be categories and D : J→ C a functor.
A cocone (c, (cj)j∈J) from the base D consists of an object c in C and a family of
arrows in C

(cj : Dj → c)j∈J,

such that for all α : i→ j in J,

cj ◦D(α) = ci.

A morphism of cocones f : (c, (cj)) → (c′, (c′j)) is an arrow f : c → c′ in C such
that

f ◦ cj = c′j

for all j ∈ J.

This is illustrated in simplified form below:
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J i j

Di Dj

C C C ′

D

α

ci cj

D(α)

c′1 c′j

f

# #
#

Definition 2.31. The category of cocones, written,

Cocone(D)

denote the category which has following data:

(i) Objects: cocones from the base D,

(ii) Arrows: morphism of cocones.

Definition 2.32. A colimit for a diagram D : J → C is an initial object in the
category Cocone(D). An initial cocone is a cocone that maps uniquely to any
other cocone from D. We write such a colimit in the form

pi : Di → lim−−→
j∈J

Dj .

The definition of a colimit explicitly says: given any cocone (c, (cj)j∈J) from the
base D, there is a unique arrow u : lim−−→

j∈J
Dj → c such that for all j in J,

u ◦ pj = cj .

Di Dj

c lim−−→
j∈J

Dj

ci

pi

Dα

cj
pj

u

2.8.2 Preservation of limits

Definition 2.33. A functor F : C → D is said to preserve limits of type J if,
whenever pj : L→ Dj is a limit for a diagram D : J→ C; the cone

Fpj : F (L)→ F (Dj)
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is then a limit for the diagram F (D) : J→ D. Briefly,

F (lim←−−
j∈J

Dj) ∼= lim←−−
j∈J

F (Dj).

A functor that preserves all limits is said to be continuous.

Proposition 2.34. A category has all finite limits iff it has finite products and
equalizers.

Proof. This proof is not given here. The proof can be found in chapter 5 in
Category Theory by Awodey.

Proposition 2.35. The representable functors Hom(c,−) : C → Set preserve
all finite limits.

Proof. Since limits in C can be constructed from products and equalizers, it
suffices to show that Hom(c,−) preserves products and equalizers.

• Consider a terminal object 1 in C, then for any c ∈ C0

α : c→ 1

is unique. Therefore,

Hom(c, 1) = {α}

is a singleton set, and according to example 2.19 Hom(c, 1) is a terminal
object. Thus,

Hom(c, 1) ∼= 1.

• Consider a binary product x×y in C, there is a unique arrow f : c→ x×y
with

prx ◦ f = c1 and pry ◦ f = c2. (40)
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C c

x x× y y

Hom(c, c)

Set Hom(c, x) Hom(c, x× y) Hom(c, y)

Hom(c,−)

c1
f

c2

prx pry

Hom(c,c1)
Hom(c,f)

Hom(c,c2)

Hom(c,pry)Hom(c,prx)

Since f is unique we have that

Hom(c, x× y) = {f}

is a singleton set. Therefore, according to example 2.19, Hom(c, x× y) is a
terminal object. So, Hom(c, f) is an unique arrow. For any k : c → c, we
have that

([Hom(c, prx)]1 ◦ [Hom(c, f)]1)(k) = [Hom(c, prx)]1([Hom(c, f)]1(k))

= [Hom(c, prx)]1(f ◦ k) (41)

= prx ◦ (f ◦ k)

= (prx ◦ f) ◦ k (42)

= c1 ◦ k (43)

= [Hom(c, c1)]1(k).

Thus,

[Hom(c, prx)]1 ◦ [Hom(c, f)]1 = [Hom(c, c1)]1.

In equation (41) we used (11), in (42) we used the associativity in C and
in equation (43) we used (40). With similar arguments we have that

[Hom(c, pry)]1 ◦ [Hom(c, f)]1 = [Hom(c, c2)]1.

Therefore, Hom(c, x × y) is a Product of Hom(c, x) and Hom(c, y) and we
can write

Hom(c, x× y) ∼= Hom(c, x)×Hom(c, y).
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For arbitrary products ∏
i∈I

xi, one has analogously

Hom(c,
∏
i∈I

xi) ∼=
∏
i∈I

Hom(c, xi).

• Given an equalizer of f and g in C,

eq x y

c

e
f

u
h

g

consider the resulting diagram:

Hom(c, eq) Hom(c, x) Hom(c, y)

Hom(c, c)

[Hom(c,e)]1 [Hom(c,f)]1

[Hom(c,g)]1

[Hom(c,u)]1 [Hom(c,h)]1

To show that this is an equalizer in Set, let h : c→ x ∈ Hom(c, x) with

[Hom(c, f)]1(h) = [Hom(c, g)]1(h).

Then by (11), we have that

f ◦ h = g ◦ h.

So, by definition of an equalizer there is a unique u : c→ eq such that

e ◦ u = h. (44)

We have that

[Hom(c, f)]1 ◦ [Hom(c, e)]1 = [Hom(c, g)]1 ◦ [Hom(c, e)]1,
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since

([Hom(c, f)]1 ◦ [Hom(c, e)]1)(u) = [Hom(c, f)]1([Hom(c, e)]1(u))

= [Hom(c, f)]1(e ◦ u)

= f ◦ (e ◦ u)

= (f ◦ e) ◦ u

= (g ◦ e) ◦ u (45)

= g ◦ (e ◦ u)

= [Hom(c, g)]1(e ◦ u)

= [Hom(c, g)]1([Hom(c, e)]1(u))

= ([Hom(c, g)]1 ◦ [Hom(c, e)]1)(u).

In equation (45) we used the property of the equalizer of f and g in C.
There is given an arrow [Hom(c, h)]1 : Hom(c, c)→ Hom(c, x) with

[Hom(c, f)]1 ◦ [Hom(c, h)]1 = [Hom(c, g)]1 ◦ [Hom(c, h)]1,

since for any k : c→ c we have that

[Hom(c, f)]1([Hom(c, h)]1(k)) = [Hom(c, f)]1(h ◦ k)

= f ◦ (h ◦ k)

= (f ◦ h) ◦ k

= (g ◦ h) ◦ k

= g ◦ (h ◦ k)

= [Hom(c, g)]1([Hom(c, h)]1(k)).

Since u : c→ eq is unique, we have that

Hom(c, eq) = {u}

is a singleton set. Therefore, according to example 2.19, Hom(c, eq) is a
terminal object. Since Hom(c, eq) is terminal, [Hom(c, u)]1 is unique.
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For any k : c→ c, we have

([Hom(c, e)]1 ◦ [Hom(c, u)]1)(k) = [Hom(c, e)]1([Hom(c, u)]1(k))

= [Hom(c, e)]1(u ◦ k)

= e ◦ (u ◦ k)

= (e ◦ u) ◦ k

= h ◦ k (46)

= [Hom(c, h)]1(k).

In equation (46) we used (44). So, there is an unique arrow [Hom(c, u)]1 :
Hom(c, c)→ Hom(c, eq) with

[Hom(c, u)]1 ◦ [Hom(c, h)]1 = [Hom(c, e)]1.

Therefore, [Hom(c, e)]1 : Hom(c, eq)→ Hom(c, x) is indeed the equalizer of
Hom(f, x) and Hom(g, x).

In general, it can be shown that the representable functors Hom(c,−) : C→ Set
preserve all limits.
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3 The Yoneda lemma

One of the central results dealing with category theory is the Yoneda lemma.

Definition 3.1 (Embeddings). A functor F : C → D is called an embedding if
it is full, faithful and injective on objects.

Definition 3.2. [The Yoneda Embedding] The Yoneda embedding is the functor3

y : C→ SetCop , taking a ∈ C0 to the contravariant representable functor,

y0(a) = ya = Hom(−, a) : Cop → Set

and taking f : a→ b in C1 to the natural transformation,

y1(f) = Hom(−, f) : Hom(−, a)︸ ︷︷ ︸
ya

⇒ Hom(−, b)︸ ︷︷ ︸
yb

.

For any c ∈ C0 :

[y1(f)]c : Hom(c, a)→ Hom(c, b)
(g : c→ a) 7→ (f ◦ g : c→ b)

Thus,

[y1(f)]c (g) = f ◦ g. (47)

It is not immediately obvious, that the Yoneda embedding is actually an embed-
ding, but we will show in section 4.1 that this is the case.

Now we will show that y is indeed a covariant functor. Therefore we still need to
show the properties 2.3 (a) and (b).

Proof. We need to show that for any a ∈ C0,

y1(1a) = 1Hom(a,−)︸ ︷︷ ︸
y0(a)

and that if f : a→ b and h : b→ b′, then

y1(h ◦ f) = y1(h) ◦ y1(f).

Taking an argument g : c→ a, we have for any c ∈ C0,
3In the literature one can find different equivalent notations for

F un(Cop, Set) = SetCop

= [Cop, Set] .
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[y1(1a)]c (g) = 1a ◦ g

= g (48)

= 1Hom(c,a)(g)

= 1[Hom(−,a)]c(g)

and if f : a→ b, h : b→ b′ we get

[y1(h ◦ f)]c (g) = (h ◦ f) ◦ g

= h ◦ (f ◦ g) (49)

= h ◦ ([y1(f)]c (g)] (50)

= [y1(h)]c ([y1(f)]c (g))

= [y1(h)]c ◦ [y1(f)]c (g). (51)

Since c ∈ C0 is arbitrary we showed the desired properties.
In equations (48), (49) we used 2.1(a), (b), in equation (50) we used (47) and in
equation (51) we used that y1(h) ∈ Set1 is a function.

Next we show that y1(f) is a is a natural transformation.

Proof. Therefore, we need to show that for any h : c→ c′ we have

[Hom(−, b)]1 (h)︸ ︷︷ ︸
[Hom(h,b)]1

◦ [y1(f)]c′ = [y1(f)]c ◦ [Hom(−, a)]1 (h)︸ ︷︷ ︸
[Hom(h,a)]1

. (52)

We proof equation (52) by taking any arrow g′ : c′ → a, then

[Hom(h, b)]1 ([y1(f)]c′ (g′)) = [Hom(h, b)]1 (f ◦ g′)

= (f ◦ g′) ◦ h

= f ◦ (g′ ◦ h)

= ([y1(f)]c (g′ ◦ h)

= ([y1(f)]c ([Hom(h, a)]1 (g′)).

3.1 The contravariant Yoneda lemma

If C is a locally small category then we already know from example 2.5 that each
a ∈ C0 gives rise to a natural functor to Set

ya︷ ︸︸ ︷
Hom(−, a) : Cop → Set,
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called contravariant representable functor. Now we are asking, if F : Cop → Set
is another functor from Cop to Set, what are the “maps” ya ⇒ F? So we are
asking what natural transformations

Cop Set

ya

F

there are? We call the set of such natural transformations

Hom(ya, F ).

Given the same preconditions, is there any other way to describe this set? [Leinster, 2014,
chapter 4.2] The following lemma gives an answer to this question and is called
the Yoneda lemma.

Lemma 3.3 (Yoneda). Let C be locally small. For any object a in C and functor
F: Cop → Set, there is an isomorphism

eFa : Hom(ya, F ) ∼= F0(a)

where,

Hom(ya, F ) = [Fun(Cop,Set)]1 (ya, F ) = {η : ya ⇒ F}

such that eFa is natural in F and in a.

Hom(ya, F ) and F0(a) are not only isomorphic for every a and F , but also, this
isomorphism is in particular natural in F and in a. What naturality in F and in
a means, is defined next in 3.4.

Hom(ya, ϑ)

Definition 3.4. If F,G : Cop → Set functors.

• eFa is Natural in F means that, given ϑ : F ⇒ G the following diagram
commutes:

Hom(ya, F ) F0(a)

Hom(ya, G) G0(a)

Hom(ya,ϑ)

eFa

eGa

ϑa

where,

Hom(ya, ϑ) : Hom(ya, F )→ Hom(ya, G)
(η : ya ⇒ F ) 7→ (ϑ ◦ η : ya ⇒ G)

ya F Gϑη

ϑ ◦ η
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Thus,

[Hom(ya, ϑ)] (η) := ϑ ◦ η.

• eFa is Natural in a means that, given any h : a → b in C1, the following
diagram commutes:

Hom(ya, F ) F0(a)

Hom(yb, F ) F0(b)

Hom(y1(h),F )

eFa

eFb

F1(h)

where,

Hom(y1(h), F ) : Hom(yb, F )→ Hom(ya, G)
(η : yb ⇒ F ) 7→ (η ◦ (y1(h)) : ya ⇒ F )

ya yb F
ηy1(h)

η ◦ (y1(h))

Thus,

[Hom(y1(h), F )] (η) := η ◦ (y1(h)). (53)

We will proof the Yoneda lemma in the following 3 steps:

I) We define eFa and show that eFa is a bijection

II) We show eFa natural in F

III) We show eFa natural in a

Proof. I) First we define eFa and show that eFa is a bijection:

To define the isomorphism,

eFa : Hom(ya, F ) ∼= F0(a)

take η : ya ⇒ F and let

eFa (η) := ηa(1a),

where ηa : ya(a)→ F0(a) and therefore ηa(1a) ∈ F0(a).
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Now we show that eFa is a bijection:

jFa : F0(a)→ Hom(ya, F )

x 7→ ηx : ya ⇒ F (54)

ηxc : Hom(c, a)→ F0(c)

For any g : c→ a, [
jFa (x)

]
c
(g) = ηxc (g)

:= [F1(g)] (x). (55)

jFa is well defined: if h : c→ d

Hom(d, a) Hom(c, a)

F0(d) F0(c)

ηxd

[Hom(−,a)]1(h)

F1(h)

ηxc

Let g : d→ a,

ηxc ([Hom(h, a)]1 (g)) = ηxc (g ◦ h)

= [F1(g ◦ h)] (x)

= [F1(h) ◦ F1(g)] (x) (56)

= [F1(h)] ([F1(g)] (x)) (57)

= [F1(h)] (ηxd (g)).

In equation (56) we used (6) and in equation (57) we used that
F1(h), F1(h) ∈ Set1 are functions.

Now, we show that

F0(a) Hom(ya, F ) F0(a) Hom(ya, F )jFa eFa jFa

eFa ◦ jFa

jFa ◦ eFa

eFa ◦ fFa = 1F0(a) (58)
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and

jFa ◦ eFa = 1Hom(ya,F ). (59)

We show (58), by taking any x ∈ F0(a) and ηx : ya ⇒ F, so we have

eFa (jFa (x)) = eFa (ηx)

= (ηxa)(1a)

= [F1(1a)] (x) (60)

= 1F0(a)(x) (61)

= idF0(a)(x)

and we show (59), by taking any η : ya ⇒ F and c ∈ C0, then we have[
jFa (eFa (η))

]
c

=
[
jFa (ηa(1a))

]
c

(62)

= ηηa(1a)
c

= ηc. (63)

Since c ∈ C0 was chosen arbitrarily, we have

jFa (eFa (η)) = η

= 1Hom(ya,F )(η).

In equations (60), (62) we used (1), we used (5) in equation (61) and the
equation above (66) gives us (63).

Let η : ya ⇒ F , then

ηηa(1a)
c (g) = [F1(g)]] (ηa(1a))

= (F1(g) ◦ ηa)(1a)

= (ηc ◦ [Hom(g, a)]1)(1a) (64)

= ηc([Hom(g, a)]1 (1a)) (65)

= ηc(1a ◦ g)

= ηc(g). (66)

In equation (64) we used that ηc, [Hom(−, a)]1 are functions and in equation
(65) we used (67).

If η : ya ⇒ F , then by definition of a natural transformation holds that for
any g : c→ a following diagram commutes:
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Hom(a, a) Hom(c, a)

F0(a) F0(c)

ηa

[Hom(−,a)]1(g)

F1(g)

ηc

Thus,

ηc ◦ ([Hom(−, a)]1 (g)) = F1(g) ◦ ηa. (67)

II) We need to show, that eFa is natural in F:
Let F, F ′ : Cop → Set and φ : F ⇒ F ′. We need to show, that the following
diagram commutes i.e.,

Hom(ya, F ) F0(a)

Hom(ya, F ′) F ′0(a)

Hom(ya,φ)

eFa

eF
′

a

φa

φa ◦ eFa = eF
′

a ◦ [Hom(ya, φ)] .

Let η : ya ⇒ F and φ ◦ η : ya ⇒ F ′, then

φa ◦ eFa (η) = φa(eFa (η)) (68)

= φa(ηa(1a))

= φa ◦ ηa(1a)

= (φ ◦ η)a(1a) (69)

= eF
′

a (φ ◦ η)

= eF
′

a ([Hom(ya, φ)] (η)) (70)

= eF
′

a ◦ [Hom(ya, φ)] (η). (71)

In equations (68), (71) we used that φ, eFa , ya are functions, in equation (69)
we used (8) and in equation (70) we used (53).

III) In the last part of the proof we show, that eFa is natural in a: we need to
show that for any f : a′ → a ∈ C1 the following diagram commutes,

Hom(ya′ , F ) F0(a′)

Hom(ya, F ) F0(a),

Hom(y1(f),F )

eF
a′

eFa

F1(f)
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i.e.,

eFa′ ◦Hom(y1(f), F ) = F1(f) ◦ eFa .

If f : a′ → a, η : ya ⇒ F and y1(f) : ya′ ⇒ ya then we have

eFa′ ◦Hom(y1(f), F )(ϑ) = eFa′(Hom(y1(f), F )(ϑ))

= eFa′(ϑ ◦ y1(f))

= [ϑ ◦ y1(f)]a′ (1a′)

= ϑa′ ◦ [y1(f)]a′ (1a′)

= ϑa′([y1(f)]a′ (1a′)) (72)

= ϑa′(f ◦ 1a′)

= ϑa′(f)

= ϑa′(1a ◦ f)

= ϑa′([Hom(f, a)]1 (1a)) (73)

= F1(f)(ϑa(1a)) (74)

= F1(f)(eFa (ϑ))

= F1(f) ◦ eFa (ϑ). (75)

In equations (72), (75) we used that y1(f), ϑ and F1(f), eFa are functions.
In equation (73) we used (14) and in equation (74) we used (76).

If ϑ : ya ⇒ F , by definition of a natural transformation the following
diagram commutes,

Hom(a, a) Hom(a′, a)

F0(a) F0(a′)

ϑa

[Hom(−,a)]1(f)

F1(f)

ϑa′

that means

F1(f) ◦ ϑa = ϑa′ ◦ [Hom(−, a)]1 (f). (76)

Remark 3.5. If X, Y are sets, we define

F(X,Y ) = {f | f : X → Y }.

If X and Y are sets, then
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X × Y = {(x, y) | x ∈ X, y ∈ Y } and P(X × Y ) are sets.

Since F(X,Y ) ⊆ P(X × Y ), we have that

F(X,Y ) is a set. (77)

Given functors F,G : Cop → Set, a natural transformation η : F ⇒ G is family
or arrows in Set of the form

(ηa : F0(a)→ G0(a))a∈C0 ,

satisfying (7). We have that

ηa ∈ F(F0(a), G0(a)).

Since F0(a), G0(a) are sets, then by (77) { F(F0(a), G0(a)) | a ∈ C0} is a set, and

Hom(F,G)︸ ︷︷ ︸
{η:F⇒G}

⊆
⋃
a∈C0

F(F0(a), G0(a)). (78)

For functors F, ya : Cop → Set and any a ∈ C0, notice that:

• If C is small, that means C0 is a set and C1(a, b) = {f ∈ C1 | dom(f) = a,

cod(f) = b} is a set, then by (77) we have that

F(ya, F0(a))

is a set and since C0 is a set,

⋃
a∈C0

F(ya, F0(a))

is a set. Hence, Hom(ya, F ) in SetCop is a set, because of (78).

• If C is locally small, then C0 is not a set, therefore

⋃
a∈C0

F(ya, F0(a))

is not a set. In this case, we can apply the Yoneda lemma, that tells us
that Hom(ya, F ) is always a set. In particular, the Yoneda Lemma shows
that the natural transformations between the functors ya and F form a set,
since the class of natural transformations between ya and F is bijectively
related to a set, namely F(a), and therefore form itself a set.

• If C is not locally small, then y → SetCop will not even be defined, so the
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Yoneda lemma does not apply.

3.2 The covariant Yoneda lemma

Lemma 3.6 (Yoneda). Let C be locally small. For any object a ∈ C0 and
functor F: C → Set there is an isomorphism

F
a e : Hom(ay, F ) ∼= F0(a)

Hom(ay, F ) = [Fun(Cop,Set)]1 (ay, F ) = {η : ay ⇒ F}

such that Fa e is natural in F and in a.

We proof the covaraint Yoneda lemma in the same 5 steps similar to the proof of
the contravariant Yoneda lemma.

Proof. i) Let C be a locally small category. We begin the proof by showing that
that y : Cop → SetC is a contravariant functor, taking any object a ∈ C0 to the
covariant representable functor,

y0(a) = ay = Hom(a,−) : C→ Set

and taking any f : a→ b in C1 to the natural transformation,

y1(f) = Hom(f,−) : Hom(b,−)︸ ︷︷ ︸
by

⇒ Hom(a,−)︸ ︷︷ ︸
ay

i.e. for any c ∈ C0,

[y1(f)]c : Hom(b, c)→ Hom(a, c)
(g : b→ c) 7→ (g ◦ f : a→ c).

Thus,

[y1(f)]c (g) = g ◦ f. (79)

Therefore, we need to show that

y1(1a) = 1Hom(a,−)

and that

y1(g ◦ f) = y1(f) ◦ y1(g).
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For any c ∈ C0, taking an argument g : c→ a, we have

[y1(1a)]c (g) = g ◦ 1a
= g

= 1Hom(a,c)(g)

= [1[Hom(a,−)]]c(g)

and if f : a→ b , h : b→ b′ we get

[y1(h ◦ f)]c (g) = g ◦ (h ◦ f)

= (g ◦ h) ◦ f

= [y1(f)]c (g ◦ h)

= [y1(f)]c ([y1(h)]c (g))

= [y1(f)]c ◦ [y1(h)]c (g).

Since c ∈ C0 is arbitrary we showed the desired properties.

ii) y1(f) is a natural transformation similar to equation (52).

iii) The isomorphism is given by F
a e := η(1a).

iv) Fa e is natural in F.

v) Fa e is natural in a.

The proof of iv) and v) is similar to the proof of iv) and v) of the covariant
Yoneda lemma. Therefore the proof will not be repeated at this point.
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4 Applications of the Yoneda lemma

4.1 The Yoneda theorem

The next theorem tells us that y is an embedding, which we will prove with the
help of the Yoneda lemma.

Theorem 4.1 (Yoneda theorem). For C locally small, y : C→ SetCop is injec-
tive on objects, full and faithful.

Proof. First we show that y : C→ SetCop is injective on objects:
we need to show, that for ya, yb : C→ SetCop following holds:

ya = yb ⇒ a = b,

where (ya)0 (a) = Hom(a, a) and (yb)0 (a) = Hom(a, b).

Hom(a, a) = Hom(a, b)⇒
(
1a ∈ Hom(a, a)⇒ 1a ∈ Hom(a, b)

)
⇔ a = dom(1a) = b

⇒ a = b

Next, we show that y : C→ SetCop is full and faithful:

If a, b ∈ C0, we show that

yab : HomC(a, b)→ Hom(ya, yb)(
f : a→ b

)
7→
(
y1(f) : ya ⇒ yb

)
Thus, for any c ∈ C0 and g : c→ a :

[yab(f)]c (g) = [y1(f)]c (g) = f ◦ g.

We know from the Yoneda lemma that

jyba : yb(a)︸ ︷︷ ︸
Hom(a,b)

→ Hom(ya, yb)

is a bijection, and we can show that yab = jyba :

[jyba (f)]c (g) = ηf (g)
= [Hom(c, f)]1 (g)
= f ◦ g
= [y1(f)]c (g)
= [yab(f)]c (g)
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⇒ [jyba (f)]c = [yab(f)]c
⇒ jyba (f) = yab(f)
⇒ jyba = yab.

We showed that yab is injective and surjective and therefore y is full and faithful.

Theorem 4.2 (Co-Yoneda theorem). For a locally small category C, the con-
travariant functor y : Cop → SetsC is an embedding.

Proof. The co-Yoneda theorem can be proven analogously to the Yoneda theorem
in 4.1.

Corollary 4.3. If F: C→ D is full and faithful, then for any objects a, b in C

F0(a) ∼= F0(b) ⇔ a ∼= b.

Proof. Suppose F0(a) ∼= F0(b) i.e., for any arrow p : F0(a)→ F0(b) there exist an arrow q :
F0(b)→ F0(a), such that

p ◦ q = 1F0(b) and q ◦ p = 1F0(a).

Because F is full, there is an arrow f : a→ b so that F1(f) = p. Similarly, there
is an arrow g : b→ a so that F1(g) = q. Then

1F0(a) = q ◦ p

= F1(g) ◦ F1(f)

= F (g ◦ f). (80)

But also

F1(1a) = 1F0(a). (81)

Since F is faithful,

F1(g ◦ f) = F1(1a) implies g ◦ f = 1a.

In equation (80) we used the property (4) and in (81) we used the property (3).

A similar argument shows that g ◦ f = idb and therefore f is an isomorphism.
The other direction follows because F is a functor: if a and b are isomorphic,
then so are F0(a) and F0(b).
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4.2 The Yoneda principle

Corollary 4.4 (Yoneda principle). Given objects a and b in any locally small
category C,

ya ∼= yb ⇔ a ∼= b.

Remark 4.5. Since functors always preserve isomorphism, the power of this
statement lies in the implication

ya ∼= yb ⇒ a ∼= b.

In other words, if Hom(x, a) ∼= Hom(x, b) naturaly in x, then a ∼= b.

Proof. Since the Yoneda embedding y is full and faithful by theorem 4.1, the
proof follows immediately from corollary 4.3.

Corollary 4.6. Given objects a, b and c in a cartesian closed category C,

(ab)c ∼= a(b×c).

Proof. Because of corollary 4.4, it is sufficient to proof that the following isos are
natural in x:

Hom(x, (ab)c) ∼= Hom(x× c, ab) (82)
∼= Hom((x× c)× b, a) (83)
∼= Hom(x× (c× b), a) (84)
∼= Hom(x× (b× c), a) (85)
∼= Hom(x, ab×c). (86)

First we show that lines (82)-(86) are indeed isomorphic. The isomorphisms in
(82), (83) and (86) follow from (20). Now, we show the isomorphism in (84):

hx : Hom((x× c)× b, a)→ Hom(x× (c× b), a)

( g : (x× c)× b→ a) 7→ ( g̃ : x× (c× b)→ a)

hx(g) = g̃ , (87)

where g̃ is defined in the following way: given any g : (x× c)× b→ a

x× (c× b)

(x× c)× b ag

g̃
( ˜ )x
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and an unique arrow

( g̃ )x : x× (c× b)→ (x× c)× b,

we have that

g ◦ ( g̃ )x = g̃

is unique.

h−1
x : Hom(x× (c× b), a)→ Hom((x× c)× b, a)

( k̃ : x× (c× b)→ a) 7→ ( k : (x× c)× b→ a)

h−1
x (k)̃ = k, (88)

where k is defined in the following way: given any k̃ : x× (c× b)→ a

x× (c× b)

(x× c)× b a
k

k̃

( ˜ )−1
x

and an unique arrow

( g̃ )−1
x : (x× c)× b→ x× (c× b),

we have that

k = k̃ ◦ ( k̃ )−1
x

is unique.

To show that hx is an isomorphism, we show that

(hx ◦ h−1
x )(k)̃ = (hx(h−1

x ((k)̃) (89)

= hx(k) (90)

= k̃ (91)

= 1Hom(x×(c×b),a)(k)̃
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and

(h−1
x ◦ hx)(g) = h−1

x (hx(g)) (92)

= h−1
x (g)̃ (93)

= g (94)

= 1Hom((x×c)×b,a)(g).

In equations (89),(92) we used that hx, h−1
x ∈ Set1. Furthermore in equations

(90),(94) we used (88) and in equations (91),(93) we used (87).

⇒ hx ◦ h−1
x = 1Hom(x×(c×b),a) and h−1

x ◦ hx = 1Hom((x×c)×b,a).

⇒ hx is an iso.

⇒ Hom((x× c)× b, a) ∼= Hom(x× (c× b), a).

Now, we show the isomorphism in (85). We define

tx : Hom(x× (c× b), a)→ Hom(x× (b× c), a)

(g : x× (c× b))→ a) 7→ (g∗ : x× (b× c)→ a)

tx(g) = g∗, (95)

where g∗ is defined in the following way: given any g : x× (c× b)→ a,

x× (b× c)

x× (c× b) ag

g∗
( ∗ )x

and an unique

( ∗ )x : x× (b× c)→ x× (c× b),

we have that

g∗ = g ◦ ( ∗ )x

is unique.
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t−1
x : Hom(x× (b× c), a)→ Hom(x× (c× b), a)

(k∗ : x× (b× c)→ a) 7→ (k : x× (c× b)→ a)

t−1
x (k∗) = k, (96)

where k is defined in the following way: given any k∗ : x× (b× c)→ a,

x× (b× c)

x× (c× b) a
k

k∗
( ∗ ) −1

x

and an unique arrow

( ∗ )−1
x : x× (c× b)→ x× (b× c),

we have that

k = k∗ ◦ ( ∗ )−1
x

is unique.

To show that tx is an isomorphism, we show that

(tx ◦ t−1
x )(k∗) = tx(t−1

x (k∗)) (97)

= tx(k) (98)

= k∗ (99)

= 1Hom(x×(b×c),a)(k∗)

and

(t−1
x ◦ tx)(g) = t−1

x (tx(g)) (100)

= t−1
x (g∗) (101)

= g (102)

= 1Hom(x×(c×b),a)(g).

In equations (97), (100) we used that tx, t−1
x ∈ Set1. Furthermore in equations
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(99), (101) we used (95) and in (98),(102) we used (96).

⇒ tx ◦ t−1
x = 1Hom(x×(b×c),a) and t−1

x ◦ tx = 1Hom(x×(c×b),a).

⇒ tx is an iso.

⇒ Hom(x× (c× b), a) ∼= Hom(x× (b× c), a).

So, we showed that lines (82)-(86) are isomorphic. It is also necessary to check
that these isomorphisms are natural in x. Therefore, in (82) we need to show
that, Hom(−, (ab)c)⇒ Hom(−×c, (ab)) is a natural transformation. That means,
we need to show that for every f : x′ → x in C1 the following diagram commutes,

Hom(x, (ab)c) Hom(x× c, ab)

Hom(x′, (ab)c) Hom(x′ × c, ab)

( ¯ )x

[Hom(f,(ab)c)]1

( ¯ )x′

[Hom(f×1c,(ab)c)]1

i.e.

[Hom(f × 1c, (ab)c)]1 ◦ (¯)x = (¯)x′ ◦ [Hom(f, (ab)c)]1,

where the symbol ¯ denotes the transposition defined in (18).
Similar to (14) any arrow f : x′ → x in C1 induces a function

[Hom(f, (ab)c)]1 : Hom(x, (ab)c)→ Hom(x′, (ab)c)

(g : x→ (ab)c) 7→ (g ◦ f : x′ → (ab)c)

Thus,

[Hom(f, (ab)c)]1(g) = g ◦ f, (103)

and f × 1c : x′ × c→ x× c in C1 induces a function

Hom(f × 1c, (ab)c)]1 : Hom(x× c, ab)→ Hom(x′ × c, ab)

(ḡ : x× c→ ab) 7→ (ḡ ◦ (f × 1c) : x′ × c→ ab)

[Hom(f × 1c, (ab)c)]1(ḡ) = ḡ ◦ (f × 1c). (104)

Therefore we need to show that,

[Hom(f × 1c, (ab)c)]1(ḡ)x = ([Hom(f, (ab)c)]1(g))x′ .
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Because of (103), (104) this is equivalent to

ḡ ◦ (f × 1c) = g ◦ f.

The situation is as follows,

(ab)c (ab)c × c ab

x x× c

x′ x′ × c.

g

f

g◦f

f×1c

g×1c

(g◦f)×1c

eval
c,ab

ḡ

g◦f

From the statement in (19) follows that g ◦ f is an unique arrow and since C is
a category the composition

ḡ ◦ (f × 1c) = g ◦ f.

So we showed that Hom(−, (ab)c)⇒ Hom(−×c, (ab)) is a natural transformation.

In a similar way, we can show that Hom(− × c, ab) ⇒ Hom((− × x) × b, a) and
Hom((− × (b × c), a) ⇒ Hom(−, ab×c) is a natural transformation . Therefore,
the isomorphisms in (83) and (86) are natural in x.

In equation (84) we need to show that, Hom((−×c)×b, a)⇒ Hom(−×(c×b), a)
are natural transformations. Suppose we have f : x′ → x. We need to show, that
the following diagram commutes,

Hom((x× c)× b, a) Hom(x× (c× b), a)

Hom((x′ × c)× b, a) Hom(x′ × (c× b), a)

hx

hx′

[Hom((f×1c)×1b,a)]1 [Hom(f×(1c×1b),a)]1

i.e.

hx′ ◦ [Hom((f × 1c)× 1b, a)]1 = [Hom(f × (1c × 1b), a)]1 ◦ hx. (105)

Similar to (14) any arrow (f × 1c)× 1b : (x′ × c)× b→ (x× c)× b in C1 induces
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a function

[Hom((f × 1c)× 1b, a)]1 : Hom((x× c)× b, a)→ Hom((x′ × c)× b, a)

(g : (x× c)× b→ a) 7→ (g ◦ ((f × 1c)× 1b) : (x′ × c)× b→ a)

[Hom((f × 1c)× 1b, a)]1(g) = g ◦ ((f × 1c)× 1b) (106)

and any arrow f × (1c × 1b) : x′ × (c× b)→ x× (c× b) induces a function

[Hom(f × (1c × 1b), a)]1 : Hom(x× (c× b), a)→ Hom(x′ × (c× b), a)

( g̃ : x× (c× b)→ a) 7→ ( g̃ ◦ (f × (1c × 1b)) : x′ × (c× b)→ a)

[Hom(f × (1c × 1b), a)]1( g̃ ) = g̃ ◦ (f × (1c × 1b)). (107)

Now, we show equation (105): given any g : (x× c)× b→ a

(hx′ ◦ [Hom((f × 1c)× 1b, a)]1)(g) = hx′([Hom((f × 1c)× 1b, a)]1(g)) (108)

= hx′(g ◦ ((f × 1c)× 1b)) (109)

= g ◦ ((f × 1c)× 1b)
:

(110)

= g̃ ◦ ((f × 1c)× 1b)
:

(111)

= g̃ ◦ (f × (1c × 1b)) (112)

= [Hom(f × (1c × 1b), a)]1( g̃ ) (113)

= [Hom(f × (1c × 1b), a)]1(hx(g)) (114)

= ([Hom(f × (1c × 1b), a)]1 ◦ hx)(g) (115)

In equation (109) we used (106), in equations (110), (114) we used (87), in (111)
we used that

g ◦ ((f × 1c)× 1b)
:

: x′ × (c× b)→ a

is unique. Furthermore, in equation (112) we used the uniqueness of the arrow

(f × 1c)× 1b)
:

: x′ × (c× b)→ x× (c× b).

and in (113) we used (107). In equations (108), (115) we used that hx, [Hom((f×
1c)× 1b, a)]1 ∈ Set1.

Last we show in (83) that the iso, Hom(x × (c × b), a) ∼= Hom(x × (b × c), a), is
natural in x. Therefore, we show that Hom(−×(c×b), a)⇒ Hom(−×(b×c), a) is
a natural transformation. That means we need to show that for every f : x′ → x

in C1 the following diagram commutes,
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Hom(x× (c× b), a) Hom(x× (b× c), a)

Hom(x′ × (c× b), a) Hom(x′ × (b× c), a)

tx

tx′

[Hom(f×(1c×1b),a)]1 [Hom(f×(1b×1c),a)]1

i.e.

tx′ ◦ [Hom(f × (1c × 1b), a)]1 = [Hom(f × (1b × 1c), a)]1 ◦ tx. (116)

Similar to (14) any arrow f × (1c × 1b) : x′ × (c× b)→ x× (c× b) in C induces
a function

[Hom(f × (1c × 1b), a)]1 : Hom(x× (c× b), a)→ Hom(x′ × (c× b), a),

so that for any g : x× (c× b)→ a

[Hom(f × (1c × 1b), a)]1(g) = g ◦ (f × (1c × 1b))

and any arrow f × (1b × 1c) : x′ × (b× c)→ x× (b× c)

[Hom(f × (1b × 1c), a)]1 : Hom(x× (b× c), a)→ Hom(x′ × (b× c), a)

for any g∗ : x× (b× c)→ a

[Hom(f × (1b × 1c), a)]1(g∗) = g∗ ◦ (f × (1b × 1c).

Since the function tx is already defined in (95), we can now show (116): given
any g : x× (c× b)→ a and with similar arguments to those in equations (108) -
(115) we have that

(tx′ ◦ [Hom(f × (1c × 1b), a)]1)(g) = tx′([Hom(f × (1c × 1b), a)]1(g))

= tx′(g ◦ (f × (1c × 1b)))

= (g ◦ (f × (1c × 1b)))∗

= g∗ ◦ (f × (1c × 1b))∗

= g∗ ◦ (f × (1b × 1c))

= [Hom(f × (1b × 1c), a)]1(g∗)

= [Hom(f × (1b × 1c), a)]1(tx(g)).

= ([Hom(f × (1b × 1c), a)]1 ◦ tx)(g)
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4.3 Limits and colimits in categories of diagrams

Definition 4.7. A category E is said to be complete if it has all small limits; that
is, for any small category J and functor F : J → E, there is a limit L = lim←−−

j∈J
Fj

in E and a “cone” η : ∆L → F in EJ , universal among arrows from constant
functors ∆E. Here, the constant functor ∆ : E → EJ is the transposed projection
E × J → E .

Proposition 4.8. For any locally small category C, the functor category SetCop

is complete. Moreover, for every object c ∈ C, the evaluation functor

evc : SetCop

→ Set

preserves all limits.

Proof. Suppose we have a small category J and a functor F : J → SetCop . The
limit of F , if it exists, is an object in SetCop , hence is a functor,

(lim←−−
j∈J

Fj) : Cop → Set.

By the Yoneda lemma, if we had such a functor, then for each object c ∈ C0 we
would have a natural isomorphism,

(lim←−−
j∈J

Fj)(c) ∼= Hom(yc, lim←−−
j∈J

Fj).

But then it would be the case that

Hom(yc, lim←−−
j∈J

Fj) ∼= lim←−−
j∈J

Hom(yc, Fj) in Set
∼= lim←−−

j∈J
(Fj(c)) in Set,

where we used in the first isomorphism that representable functors preserve limits
(proposition 2.35), and in the second isomorphism we used the Yoneda lemma
again. Thus, we are led to define the limit lim←−−

j∈J
Fj to be

(lim←−−
j∈J

Fj)(c) = lim←−−
j∈J

(Fj(c)) (117)

that is, the pointwise limit of the functors Fj . The functor lim←−−
j∈J

Fj acts on

C-arrows in the following way: for any f : c→ c′ in C we define

(lim←−−
j∈J

Fj)(f) = lim←−−
j∈J

(Fj(f)), (118)
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such that the following diagram commutes,

lim←−−
j∈J

(Fj(c′)) lim←−−
j∈J

(Fj(c))

Fj(c′) Fj(c)

lim←−−
j∈J

(Fj(f))

Fj(f)

[ϑj ]c′ [ϑj ]c

#

i.e.

[ϑj ]c ◦ lim←−−
j∈J

(Fj(f)) = Fj(f) ◦ [ϑj ]c′ . (119)

Defining the functor lim←−−
j∈J

Fj as above, we can prove that

(lim←−−
j∈J

Fj , (ϑj : lim←−−
j∈J

Fj → Fj)j∈J)

is indeed a limit in SetCop .

J i j

z lim←−−
j∈J

Fj

SetCop

Fi Fj

F

α

q∗

qi
ϑi ϑj

Fα

qj

Therefore, we need to show

i) (lim←−−
j∈J

Fj , (ϑj)j∈J) ∈ Cone0(F ), i.e. Fα ◦ ϑi = ϑj ,

ii) q∗ : z ⇒ lim←−−
j∈J

Fj is an arrow in SetCop ,

iii) given any cone (z, (qj : z → Fj)j∈J), we have ϑj ◦ q∗ = qj for all j ∈ J,

iv) q∗ : z ⇒ lim←−−
j∈J

Fj is unique.

To show i) we need to show, that for arbitrary c ∈ C0

[Fα ◦ ϑi]c = [ϑj ]c. (120)
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Because of (8), this is equivalent to

[Fα]c ◦ [ϑi]c = [ϑj ]c. (121)

Therefore, we need to show that the following diagram in Set commutes,

(lim←−−
j∈J

Fj)(c)

Fi(c) Fj(c).

[ϑi]c [ϑj ]c

[Fα]c

#

Since

(lim←−−
j∈J

Fj)(c) = lim←−−
j∈J

(Fj(c)),

and (
lim←−−
j∈J

(Fj(c)) , ([ϑj ]c : lim←−−
j∈J

Fj(c)→ Fj(c))j∈J
)

is a limit in Set, equation (121) follows by definition of a limit.
For ii), we show that q∗ : z ⇒ lim←−−

j∈J
Fj is arrow in SetCop , i.e. q∗ is a natural

transformation. Therefore, we need to show, that there is a family of arrows in
Set of the form [q∗]c : z(c) → lim←−−

j∈J
Fj(c), such that for every c in C0, and every

f : c→ c′ in C1 the following diagram commutes

z(c′) z(c)

(lim←−−
j∈J

Fj)(c′) (lim←−−
j∈J

Fj)(c).

z(f)

(lim←−−
j∈J

Fj)(f)

[q∗]c′ [q∗]c

We have that

[ϑj ]c ◦ lim←−−
j∈J

(Fj(f)) ◦ [q∗]c′ = Fj(f) ◦ [ϑj ]c′ ◦ [q∗]c′ (122)

= Fj(f) ◦ [qj ]c′ (123)

= [qj ]c ◦ z(f) (124)

= [ϑj ]c ◦ [q∗]c ◦ z(f). (125)
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Therefore

[q∗]c ◦ z(f) =

(lim←−−
j∈J

Fj)(f)︷ ︸︸ ︷
lim←−−
j∈J

(Fj(f)) ◦[q∗]c′ .

In equation (122) we used (119), equations (123) and (125) follows because
(lim←−−
j∈J

(Fj(c)), ([ϑj ]c)j∈J) is a limit in Set . In equation (124) we used that qj :

z ⇒ Fj is a natural transformation, i.e. the following diagram commutes,

z(c′) z(c)

Fj(c′) Fj(c).

z(f)

Fj(f)

[qj ]c′ [qj ]c

#

For iii), let (z, (qj : z → Fj)j∈J) be a cone to the diagram F in SetCop . For each
c ∈ C0, we have a cone (

z(c) , ([qj ]c : z(c)→ Fj(c))j∈J
)

in Set.

z(c) lim←−−
j∈J

(Fj(c))

Fi(c) Fj(c)

[qi]c

[qj ]c

[Fα]c

[ϑi]c
[ϑj ]c

[q∗]c

Since (lim←−−
j∈J

(Fj(c)), ([ϑj ]c)j∈J) is a limit in Set, there is a unique arrow

[q∗]c : z(c)→ lim←−−
j∈J

(Fj(c))

in Set such that for all j in J

[ϑj ]c ◦ [q∗]c = [qj ]c.

Therefore, for any j ∈ J we have

ϑj ◦ q∗ = qj .
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For iv), we need to show the uniqueness of q∗ : z ⇒ lim←−−
j∈J

Fj . Given any τ : z ⇒

lim←−−
j∈J

Fj in SetCop such that for any j ∈ J

ϑj ◦ τ = qj ,

we have that

ϑj ◦ τ = qj = ϑj ◦ q∗. (126)

In equation (126) we used iii). Therefore,

τ = q∗.

Finally, the preservation of limits by evaluation functors is stated by (118), since

evc(lim←−−
j∈J

Fj) = (lim←−−
j∈J

Fj)(c)

= lim←−−
j∈J

(Fj(c))

= lim←−−
j∈J

(evc(Fj)).

Theorem 4.9 (Density theorem). For any small category C, every object P in
the functor category SetCop is a colimit of representable functors,

lim−−→
j∈J

y(cj) ∼= P.

More precisely, there is a canonical choice of an index category I and a functor
π : I→ C such that there is a natural isomorphism lim−−→

j∈J
y ◦ π ∼= P.

Proof. Given P : Cop → Set, the index category I we need is the so-called
category of elements of P , written,

Groth(C, P) 4

and defined as follows.

(i) Objects : pairs (a, x) where a ∈ C and x ∈ P0(a).

(ii) Arrows : an f : (a, x)→ (b, y) is an arrow f : a→ b in C such that

[P1(f)](y) = x. (127)

Actually, the arrows are triples of the form (f, (a, x), (b, y)) satisfying (127).
4The category Groth(C, P) is named after the mathematician Alexander Grothendieck. This

category is sometimes also written as
∑
C

P or
∫
C

P .
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To show that Groth(C, P) is indeed a category, we need to show:

(iii) if g : (c, z)→ (a, x), f : (a, x)→ (b, y) arrows in Groth(C,P), then

f ◦ g : (c, z)→ (b, y)

is an arrow in Groth(C,P). Since C is a category, and g : c→ a,

f : a→ b are arrows in C, then also

f ◦ g : c→ b

is an arrow in C, such that

[P1(f ◦ g)](y) = [P1(g) ◦ P1(f)](y) (128)

= [P1(g)](P1(f)(y)) (129)

= [P1(g)](x) (130)

= z. (131)

In equation (128) we used (6), in equation (129) we used that P (g), P (f)
are functions Set1, in equations (130) and (131) we used that f and g are
arrows in Groth(C,P).

(iv) For every (a, x) ∈ Groth(C,P), the identity arrow

1a : (a, x)→ (a, x)

is an arrow in Groth(C,P). Since the identity arrow

1a : a→ a

is an arrow in C and

[P1(1a)](x) = [1P0(a)](x) (132)

= 1P0(a)(x)

= x. (133)

In equation (132) we used (5) and equation (133) follows because 1P0(a) is
the identity function on P0(a) and x ∈ P0(a).

Furthermore, we need to show that the following conditions are satisfied:

(a) Unit: If f : (a, x)→ (b, y) and 1b : (b, y)→ (b, y) in Groth(C,P)1, we
have that 1b ◦ f : a→ b is an arrow in C, such that for any y ∈ P0(b)
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[P1(1b ◦ f)](y) = [P1(f) ◦ P1(1b)](y) (134)

= [P1(f)]([P1(1b)](y)) (135)

= [P1(f)](y) (136)

= x. (137)

Therefore,

1b ◦ f = f.

In equation (134) we used (6), in (135) we used that P1(f), P1(1b) ∈
Set1, in equations (136), (137) we used that 1b, f are arrows in Groth(C,P).

If f : (a, x)→ (b, y), 1a : (a, x)→ (a, x) in Groth(C,P)1 we need also
to show that

f ◦ 1a = f.

This follows with similar arguments: since f ◦ 1a : a → b is an arrow
in C, such that for any y ∈ P0(b)

[P1(f ◦ 1a)](y) = [P1(1a) ◦ P1(f)](y)

= [P1(1a)]([P1(f)](y))

= [P1(1a)](x)

= x.

(b) Associativity: If h : (d, s) → (c, z), g : (c, z) → (a, x), f : (a, x) →
(b, y) in Groth(C,P)1 we have that f ◦ (g ◦ h) : d → b is an arrow in
C, such that for any y ∈ P0(b)

[P1(f ◦ (g ◦ h))](y) = [P (g ◦ h) ◦ P (f)](y) (138)

= [P1(g ◦ h)]([P1(f)](y)) (139)

= [P1(g ◦ h)](x) (140)

= [P1(h) ◦ P1(g)](x) (141)

= [P1(h)]([P1(g)](x)) (142)

= [P1(h)](z) (143)

= d. (144)

In equations (138), (141) we used (6), in (139), (142) we used that

58



P (g ◦ h), P (f), P (g), P (h) ∈ Set1 and in equations (143), (144) and
(140) we used that f, g and h are arrows in Groth(C,P).

With similar arguments we have that (f ◦ g) ◦ h : d→ b is an arrow in
C, such that for any y ∈ P0(b)

[P1((f ◦ g) ◦ h)](y) = [P1(h) ◦ P1(f ◦ g)](y)

= [P1(h)]([P1(f ◦ g)](y))

= [P1(h)]([P1(g) ◦ P1(f)](y))

= [P1(h)]([P1(g)]([P1(f)](y)))

= [P1(h)]([P1(g)](x))

= [P1(h)](z)

= d.

Therefore for any h : (d, s)→ (c, z), g : (c, z)→ (a, x),
f : (a, x)→ (b, y) in Groth(C,P)1 we have that

f ◦ (g ◦ h) = (f ◦ g) ◦ h.

So, we showed that Groth(C,P) is a category, and since C is small, Groth(C,P)
is a small category. There is a “projection” functor

π : Groth(C,P)→ C,

defined in following way:

(i) For any object (a, x) in Groth(C,P),

π0(a, x) = a,

(ii) for any arrow f : (a, x)→ (b, y) in Groth(C,P), written in the form of the
triple (f, (a, x), (b, y)),

π1((f, (a, x), (b, y))) = f. (145)

In order to be a functor we require π to satisfy the following conditions:

(a) For any (a, x) ∈ Groth(C,P)

π1((1a, (a, x), (a, x))) = 1a
= 1π0 (a,x),
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and that

(b) if g : (c, z)→ (a, x), f : (a, x)→ (b, y), then

π1(((f ◦ g), (c, z), (b, y))) = f ◦ g

= π1((f, (a, x), (b, y))) ◦ π1((g, (c, z), (a, x))).

Given a functor P : Cop → Set, for the index Category I we choose the category
I = Groth(C,P), that is defined above. Again we refer to y : C→ SetCop as the
Yoneda embedding, defined in definition 3.2, and π : Groth(C,P)→ C denotes
the “projection” functor, defined above. So, y ◦ π : Groth(C,P) → SetCop is a
diagram of type Groth(C,P) in SetCop

.

To proof proposition 4.9, we need to show that P is an initial object in the category
Cocone(y ◦π). Therefore, we need to show that P is an object in Cocone(y ◦π)
and that there is a unique arrow to any other cocone from the base (y ◦ π).

First, we show that P : Cop → Set is an object in Cocone(y ◦ π) , i.e. that P
can be written as a cocone P ∗ to y ◦ π.

To define the cocone P ∗ we use the following results:

(i) first we use that

(y ◦ π)(a,x) = (y ◦ π)(a, x)

= (y(π(a, x))

= y(a)

= ya,

(ii) then we use that

(y ◦ π)((f, (a, x), (b, y))) = y(π((f, (a, x), (b, y)))

= y1(f),

where y1(f) is defined as in (3.2). For any c ∈ C0 and g : c→ a in C1,

[(y ◦ π)((f, (a, x), (b, y))]c(g) = [y(π((f, (a, x), (b, y)))]c(g) (146)

= [y1(f)]c(g) (147)

= f ◦ g. (148)

In equation (148) we used (47), in (147) we used (145) and in (146) we used
the functor composition.
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A cocone P ∗ to y ◦ π : Groth(C,P)→ SetCop is, a pair

P ∗ :=
(
P , (ϑ(a,x) : (y ◦ π)(a,x) ⇒ F )(a,x)∈Groth(C,P)0

)
)

=
(
P , (ϑ(a,x) : ya ⇒ P )(a,x)∈Groth(C,P)0

)
that consists of an object P : Cop → Set in SetCop and a family of arrows in
SetCop

ϑ(a,x) : ya ⇒ P

one for each object (a, x) ∈ Groth(C,P)0 , such that for each arrow

f : (a, x)→ (b, y) in Groth(C,P)1

the following triangle commutes,

ya yb

P

y1(f)

ϑ(a,x) ϑ(b,y)

#

i.e.

ϑ(b,y) ◦ y1(f) = ϑ(a,x), (149)

where ϑ(a,x) : ya ⇒ P is defined in the following way: since x ∈ P0(a) and because
of (54) we define

ϑ(a,x) := ηx, (150)

where

[ηx]c : Hom(c, a)→ P0(c)

and because of (55), for any g : c→ a in C1, we have

[ηx]c(g) = [P1(g)](x).

Thus,

[ϑ(a,x)]c(g) = [ηx]c(g) (151)

= [P1(g)](x). (152)
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To show equation (149), it is enough to show that

[ϑ(b,y)]c ◦ [y1(f)]c = [ϑ(a,x)]c, (153)

for arbitrary c ∈ C0.
Equation (153) follows since for any g : c→ a in C1, we have that

([ϑ(b,y)]c ◦ [y1(f)]c)(g) = [ϑ(b,y)]c([y1(f)]c(g))

= [ϑ(b,y)]c(f ◦ g) (154)

= [ηy]c(f ◦ g) (155)

= [P1(f ◦ g)](y) (156)

= [P1(g) ◦ P1(f)](y) (157)

= [P1(g)]([P1(f)](y)) (158)

= [P1(g)](x) (159)

= [ηx]c(g) (160)

= [ϑ(b,x)]c(g). (161)

In equation (154) we used (148), in equations (155), (161) we used (151), in
equations (156), (160) we used (152). Furthermore, in equation (157) we used
(6), in equation (158) we used that P1(f), P1(g) are functions and in (159) we
used that f : (a, x)→ (b, y) ∈ Groth(C,P)1.

Now, we show the initiality of P ∗ in Cocone(y ◦ π), i.e. given any other cocone
F ∗ =

(
F, (ϕ(a,x) : ya ⇒ F )(a,x)∈Groth(C,P)0

)
in Cocone(y◦π) there exist a unique

arrow σ : P ∗ → F ∗ in Cocone(y ◦ π). Therefore, we need to show that there is
an unique arrow σ : P ⇒ F in SetCop , such that for all (a, x) ∈ Groth(C,P) the
following triangle commutes,

F

ya

P

ϑ(a,x)

ϕ(a,x)

σ

#

i.e.

σ ◦ ϑ(a,x) = ϕ(a,x),

for any object (a, x) ∈ Groth(C,P).
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So, for the initiality of P ∗ there are 3 conditions to show:

(i) σ : P ⇒ F is an arrow in SetCop , i.e. σ is natural transformation from P
to F,

(ii) σ ◦ ϑ(a,x) = ϕ(a,x),

(iii) σ : P ⇒ F is unique.

We need first to define

σc : P0(c)→ F0(c)

for any component c ∈ C0. We already know, that

ϕ(c,z) : yc︸︷︷︸
Hom(−,c)

⇒ F

and for any c ∈ C0 we have

[ϕ(c,z)]c : Hom(c, c)→ F0(c).

For 1c ∈ Hom(c, c), we have that

[ϕ(c,z)]c(1c) ∈ F0(c),

and for z ∈ P0(c)

σc(z) ∈ F0(c).

Therefore, we define

σc(z) := [ϕ(c,z)]c(1c). (162)

Now we show (i), i.e. σ : P ⇒ F is a natural transformation. Therefore, we need
to show that there is a family of arrows in Set of the form σc : P0(c) → F0(c),
such that for every c ∈ C0, and every h : c → c′ in C1, the following diagram
commutes,

P0(c′) P0(c)

F0(c′) F0(c),

P1(h)

F1(h)

σc′ σc#
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i.e.

σc ◦ P1(h) = F1(h) ◦ σc′ . (163)

To prove equation (163), we use the following properties:

(a) Given a cocone F ∗ =
(
F , (ϕ(c,z) : yc ⇒ F )(c,z)∈Groth(C,P)0

)
, for any

h : c→ c′ ∈ C1 the following triangle in SetCop commutes,

yc yc′

F.

ϕ(c,z) ϕ(c′,z′)

y1(h)

#

Therefore, for any c ∈ C0, the following triangle in Set commutes

yc(c) yc′(c)

F (c),

[ϕ(c,z)]c [ϕ(c′,z′)]c

[y1(h)]c

#

i.e.

[ϕ(c′, z′)]c ◦ [y1(h)]c = [ϕ(c,z)]c. (164)

(b) Since ϕ(c′,z′) : yc′ ⇒ F is a natural transformation, for any h : c→ c′ in C1,
the following diagram in Set commutes,

yc′(c′) yc′(c)

F0(c′) F0(c),

[y1(h)]c′

F1(h)

[ϕ(c′,z′)]c′ [ϕ(c′,z′)]c

#

i.e.

[ϕ(c′,z′)]c ◦ [y1(h)]c′ = F1(h) ◦ [ϕ(c′,z′)]c′ . (165)
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Now, we prove equation (163). For any z′ ∈ P0(c′) and h : c→ c′, we have

(F1(h) ◦ σc′)(z′) = F1(h)(σc′(z′))

= F1(h)([ϕ(c′,z′)]c′(1c′)) (166)

= [ϕ(c′,z′)]c([y1(h)]c′(1c′)) (167)

= [ϕ(c′,z′)]c(1c′ ◦ h) (168)

= [ϕ(c′,z′)]c(h)

= [ϕ(c′,z′)]c(h ◦ 1c)

= [ϕ(c′,z′)]c([y1(h)]c(1c)) (169)

= [ϕ(c,z)]c(1c) (170)

= σc(z). (171)

In equations (166) and (171) we used (162). In equation (167) we used (165).
In equation (168) we used (79) and in equation (169) we used (47). In equation
(170) we used (164).

Now, we show (ii) i.e.

σ ◦ ϑ(a,x) = ϕ(a,x).

Because of (150), this is equivalent to

σ ◦ ηx = ϕ(a,x). (172)

To show equation (172) it is enough to show

[σ ◦ ηx]c = [ϕ(a,x)]c,

for arbitrary c ∈ C0. This follows, since for any c ∈ C0 and g : c→ a in C1

[σ ◦ ηx]c(g) = (σc ◦ [ηx]c)(g) (173)

= σc([ηx]c)(g))

= σc([P1(g)](x))

= σc(z)

= [ϕ(c,z)]c(1c) (174)

= ([ϕ(a,x)]c ◦ [y1(g)]c)(1c) (175)

= [ϕ(a,x)]c([y1(g)]c)(1c))

= [ϕ(a,x)]c(g ◦ 1c) (176)

= [ϕ(a,x)]c(g).
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In equation (173) we used (8), in equation (176) we used (47) and in equation
(174) we used (162). Equation (175) follows from the fact that

(F , (ϕ(c,z) : yc ⇒ F )(c,z)∈Groth(C,P))0
)

is a cocone, so for any g : c→ a in C1 the following triangle in SetCop commutes

yc ya

F,

ϕ(c,z) ϕ(a,x)

y1(g)

#

and therefore, for any c ∈ C0 the following triangle in Set commutes,

yc(c) ya(c)

F (c),

[ϕ(c,z)]c [ϕ(a,x)]c

[y1(g)]c

#

i.e.

[ϕ(a, x)]c ◦ [y1(g)]c = [ϕ(c,z)]c. (177)

In equation (175) we used (177).
Now, we show the uniqueness of σ in (iii). Given any τ : P ∗ → F ∗ in
Cocone(y ◦ π) that is, an arrow τ : P ⇒ F in SetCop such that

τ ◦ ϑ(a,x) = ϕ(a,x),

i.e. the following triangle commutes for any such τ , and with property (ii) it also
commutes for σ,

ya

P F,

ϑ(a,x)

σ

ϕ(a,x)

τ

#

for all (a, x) ∈ Groth(C,P)0 . It follows that for any c ∈ C0 the following triangle
in Set commutes,
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ya(c)

P (c) F (c),

[ϑ(a,x)]c

σc

[ϕ(a,x)]c

τc

#

for all (a, x) ∈ Groth(C,P)0 , i.e.,

τc ◦ [ϑ(a,x)]c = [ϕ(a,x)]c and σc ◦ [ϑ(a,x)]c = [ϕ(a,x)]c.

Therefore,

τc ◦ [ϑ(a,x)]c = σc ◦ [ϑ(a,x)]c. (178)

We have that

(τc ◦ [ϑ(a,x)]c)(g) = τc([ϑ(a,x)]c(g))

= τc(ηxc (g)) (179)

= τc([P1(g)](x)) (180)

= τc(x). (181)

In equation (179) we used (150), in (180) we used (152) and in equation (181) we
used that g : (c, z)→ (a, x) is arrow in Groth(C,P). With similar arguments we
have

(σc ◦ [ϑ(a,x)]c)(g) = σc([ϑ(a,x)]c(g))

= σc(ηxc (g))

= σc([P1(g)](x))

= σc(x).

Because of (178), we have that

τc(x) = σc(x).

Since x ∈ P0(a) was chosen arbitrary,

τc = σc.

for arbitrary c ∈ C0. Therefore,

τ = σ.
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5 Conclusion

To summarize the central statement of the Yoneda lemma, we take up the ques-
tion raised in the introduction: how can the set Hom(ya, F ) = {ya ⇒ F} be
described? The Yoneda lemma says that the natural transformations from ya to
F are in one-to-one correspondence with the elements of the set F0(a). In other
words, Hom(ya, F ) ∼= F0(a). This correspondence turns out to be an isomorphism
which is natural in a and F .

The Yoneda lemma has many applications. Selected applications of the Yoneda
lemma were discussed in the context of this thesis, for example the Yoneda the-
orem in 4.1, which tells us that y : C → SetCop is an embedding. The Yoneda
theorem is proven with the help of the Yoneda lemma. Therefore, the Yoneda
lemma allows the embedding of any locally small category C into the functor
category SetCop

.

From the Yoneda theorem and corollary 4.3 follows the Yoneda principle in 4.4,
that states that if Hom(−, a), i.e., the arrows to a, and Hom(−, b), i.e., the ar-
rows to b, are the same, then a and b are the same. This statement is very useful
because one often understands Hom(−, a), Hom(−, b) better than the objects a,
b themselves.
In the proof of proposition 4.8 the Yoneda lemma is included in defining the
limit of the functors Fj in the functor category SetCop , that is defined pointwise.
With this definition, we showed that the functor category SetCop is complete and
consequently that the evaluation functor from SetCop to Set preserves all limits.
The last application discussed in this thesis is the density theorem in 4.9, that
tells us that every functor P : Cop → Set is really “built up” from representable
functors ya = Hom(−, a). Formally, every such functor P is a colimit of certain
representable functors in a canonical way.
More applications can be found in Category theory in context by Emily Riehl.
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