

Dr. Iosif Petrakis
Sommersemester 18
N. Köpp
29.05.2018

Gewöhnliche Differentialgleichungen

Blatt 7

Aufgabe 1. (i) Show that $\left(\mathbb{R}^{n}\right)_{\mathbb{C}}=\mathbb{C}^{n}$.
(ii) Let F be the complex subspace of \mathbb{C}^{2} defined as the following linear span:

$$
F:=<\{(1, i)\}>_{\mathbb{C}} .
$$

Find $F_{\mathbb{R}}$ and $\left(F_{\mathbb{R}}\right)_{\mathbb{C}}$.
(iii) Find a complex subspace of \mathbb{C}^{2018}, which is not ${ }^{*}$-invariant.

Aufgabe 2. If E is a real subspace of $\mathbb{R}^{n}, \mathcal{B}=\left\{e_{1}, \ldots, e_{m}\right\}$ is a basis for $E, T \in L(E)$, and $\lambda \in \mathbb{C}$, show the following:
(i) \mathcal{B} is a basis for $E_{\mathbb{C}}$.
(ii) The definition of the complexification $T_{\mathbb{C}}$ of T is independent from the choice of representation of $w \in E_{\mathbb{C}}$.
(iii) If $B \in M_{m}(\mathbb{R})$ is the matrix of T with respect to \mathcal{B}, then B is the matrix of $T_{\mathbb{C}}$ with respect to \mathcal{B}.
(iv) $p_{T}(\lambda)=p_{T_{\mathbb{C}}}(\lambda)$.
(v) λ is an eigenvalue of T iff λ is an eigenvalue of $T_{\mathbb{C}}$.

Aufgabe 3. Show the following:
(i) A complex subspace F of \mathbb{C}^{n} is decomplexifiable iff F is ${ }^{*}$-invariant.
(ii) If E is a real subspace of \mathbb{R}^{n} and $S \in L\left(E_{\mathbb{C}}\right)$, then S is decomplexifiable iff S is ${ }^{*}$-preserving.

Aufgabe 4. Let the matrix

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 2 & -3 \\
1 & 3 & 2
\end{array}\right]
$$

Using the operator $\mathcal{T}_{A} \in L\left(\mathbb{R}^{3}\right)$, find complex subspaces F_{r}, F_{c} of \mathbb{C}^{3} such that $\mathbb{C}^{3}=F_{r} \oplus F_{c}$.

Abgabe. Donnerstag, 07. Juni 2018 in der Vorlesung.
Besprechung. Montag, 11. Juni 2018, in der Übung.

