

Dr. Iosif Petrakis N. Köpp

Sommersemester 18 29.05.2018

Gewöhnliche Differentialgleichungen Blatt 7

Aufgabe 1. (i) Show that $(\mathbb{R}^n)_{\mathbb{C}} = \mathbb{C}^n$.

(ii) Let F be the complex subspace of \mathbb{C}^2 defined as the following linear span:

$$F := < \{(1, i)\} >_{\mathbb{C}}$$

Find $F_{\mathbb{R}}$ and $(F_{\mathbb{R}})_{\mathbb{C}}$.

(iii) Find a complex subspace of \mathbb{C}^{2018} , which is not *-invariant.

Aufgabe 2. If *E* is a real subspace of \mathbb{R}^n , $\mathcal{B} = \{e_1, \ldots, e_m\}$ is a basis for *E*, $T \in L(E)$, and $\lambda \in \mathbb{C}$, show the following:

(i) \mathcal{B} is a basis for $E_{\mathbb{C}}$.

(ii) The definition of the complexification $T_{\mathbb{C}}$ of T is independent from the choice of representation of $w \in E_{\mathbb{C}}$.

(iii) If $B \in M_m(\mathbb{R})$ is the matrix of T with respect to \mathcal{B} , then B is the matrix of $T_{\mathbb{C}}$ with respect to \mathcal{B} .

(iv) $p_T(\lambda) = p_{T_{\mathbb{C}}}(\lambda)$.

(v) λ is an eigenvalue of T iff λ is an eigenvalue of $T_{\mathbb{C}}$.

Aufgabe 3. Show the following:

(i) A complex subspace F of \mathbb{C}^n is decomplexifiable iff F is *-invariant.

(ii) If E is a real subspace of \mathbb{R}^n and $S \in L(E_{\mathbb{C}})$, then S is decomplexifiable iff S is *-preserving.

Aufgabe 4. Let the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -3 \\ 1 & 3 & 2 \end{bmatrix}.$$

Using the operator $\mathcal{T}_A \in L(\mathbb{R}^3)$, find complex subspaces F_r, F_c of \mathbb{C}^3 such that $\mathbb{C}^3 = F_r \oplus F_c$.

Abgabe. Donnerstag, 07. Juni 2018 in der Vorlesung. Besprechung. Montag, 11. Juni 2018, in der Übung.