

Dr. Iosif Petrakis

Gewöhnliche Differentialgleichungen Blatt 4

Aufgabe 1. Let P be a planet moving in the Newtonian gravitational field (of the sun placed at the origin) on $U_{0}^{(2)}$. If the angular momentum h along a solution curve $s(t)$ of $\ddot{x}(t)=m^{-1} F(x(t))$ is non-zero, then the angular momentum h, the total energy E and the mass of P satisfy

$$
E \geq-\frac{m}{2 h^{2}}
$$

Aufgabe 2. Let $a \in \mathbb{R}$ and $x: J \rightarrow \mathbb{R}$ be a differentiable function in the ode

$$
\begin{equation*}
\dot{x}(t)=a x(t) . \tag{1}
\end{equation*}
$$

(i) The set of solutions of (1) is the set

$$
\left\{s: J \rightarrow \mathbb{R} \mid \exists_{C \in \mathbb{R}} \forall_{t \in J}\left(s(t)=C e^{a t}\right)\right\} .
$$

(ii) There is a unique solution of (1) satisfying the initial condition $s\left(t_{0}\right)=s_{0}$, where $t_{0} \in J$.
(iii) If s_{1}, s_{2} are solutions of (1) and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, then $\lambda_{1} s_{1}+\lambda_{2} s_{2}$ is a solution of (1).
(iv) What is the dimension of the vector space of the solutions of (1)?

Aufgabe 3. (i) Define the vector field associated to the ode

$$
\begin{equation*}
\dot{x}(t)=-\frac{1}{2} x(t) \tag{2}
\end{equation*}
$$

and describe it geometrically.
(ii) Define the dynamical system ϕ on the state space \mathbb{R} that is generated by equation (2) and the history function ϕ_{s} of some $s \in \mathbb{R}$.
(iii) What can you say about the future of s when time goes to $+\infty$?

Aufgabe 4. Let the system of odes

$$
\begin{align*}
& \dot{x}_{1}(t)=a_{1} x_{1}(t), \\
& \dot{x}_{2}(t)=a_{2} x_{2}(t) \tag{3}
\end{align*}
$$

and let ϕ be the dynamical system generated by (3) i.e.,

$$
\begin{align*}
& \phi: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \phi(t, u):=\left(u_{1} e^{a_{1} t}, u_{2} e^{a_{2} t}\right) \tag{4}
\end{align*}
$$

for every $t \in \mathbb{R}$ and every $u \in \mathbb{R}^{2}$.
Show the following.
(i) ϕ is C^{1}.
(ii) If $t \in \mathbb{R}$, the function $\phi_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by

$$
\phi_{t}(u):=\phi(t, u),
$$

for every $u \in \mathbb{R}^{2}$, is linear.
(iii) If $t=0$, then $\phi_{0}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the identity function on \mathbb{R}^{2}.
(iv) If $s, t \in \mathbb{R}$, then $\phi_{s} \circ \phi_{t}=\phi_{s+t}$.

Abgabe. Donnerstag, 17. Mai 2018 in der Vorlesung.
Besprechung. Montag, 28. Mai 2018, in der Übung.

