

Sommersemester 18
Dr. Iosif Petrakis 26.04.2018

Gewöhnliche Differentialgleichungen

Blatt 3

Aufgabe 1. Let $x, y \in \mathbb{S}^{2}$ such that $y \neq x$ and $y \neq-x$.
(i) If $u \in \mathbb{S}^{2}$ is orthogonal to x, then the path $\sigma_{x, u}: \mathbb{R} \rightarrow \mathbb{S}^{2}$ parametrises the great circle $\langle\{x, u\}\rangle \cap \mathbb{S}^{2}$, where $\langle\{x, u\}\rangle$ is the linear span of x and u.
(ii) There is a C^{∞} path $\sigma_{x, y}:[0,|y-x|] \rightarrow \mathbb{S}^{2}$ that parametrises the arc of the unique great circle from x to y.
Hint: For (ii) use the vector

$$
u:=\frac{y-\langle y, x\rangle x}{|y-\langle y, x\rangle x|} .
$$

Aufgabe 2. Let $U \subseteq \mathbb{R}^{n}$ be path-connected and open, and let $F: U \rightarrow \mathbb{R}^{n}$ be a continuous vector field on U. The following are equivalent.
(i) F is conservative.
(ii) The path integral of F between any two points of U is independent of the path connecting them.
(iii) The path integral of F along any loop in U is equal to 0 .

Aufgabe 3. Complete the proof of the implication (i) \Rightarrow (iii) of Proposition 1.2.15.
Aufgabe 4. Let $s(t)$ be a solution curve of $\ddot{x}(t)=m^{-1} F(x(t))$, where $F(x)$ is the Newtonian gravitational field on $U_{0}^{(2)}$, and h is non-zero along $s(t)$.
(i) The kinetic energy T along $s(t)$ satisfies the following formula:

$$
T=\frac{1}{2} \frac{h^{2}}{m}\left[\left(\frac{d u}{d \theta}\right)^{2}+u^{2}\right] .
$$

(ii) Along $s(t)$ the functions u, θ and E satisfy the following ode:

$$
\left(\frac{d u}{d \theta}\right)^{2}+u^{2}=\frac{2 m}{h^{2}}(E+u)
$$

(iii) Along $s(t)$ the functions u and θ satisfy the following ode:

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{m}{h^{2}}
$$

Abgabe. Donnerstag, 03. Mai 2018 in der Vorlesung.
Besprechung. Montag, 28. Mai 2018, in der Übung.

