

Dr. Iosif Petrakis N. Köpp





Sommersemester 18 26.04.2018

## Gewöhnliche Differentialgleichungen Blatt 3

**Aufgabe 1.** Let  $x, y \in \mathbb{S}^2$  such that  $y \neq x$  and  $y \neq -x$ .

(i) If  $u \in \mathbb{S}^2$  is orthogonal to x, then the path  $\sigma_{x,u} : \mathbb{R} \to \mathbb{S}^2$  parametrises the great circle  $\langle \{x, u\} \rangle \cap \mathbb{S}^2$ , where  $\langle \{x, u\} \rangle$  is the linear span of x and u.

(ii) There is a  $C^{\infty}$  path  $\sigma_{x,y} : [0, |y - x|] \to \mathbb{S}^2$  that parametrises the arc of the unique great circle from x to y.

Hint: For (ii) use the vector

$$u := \frac{y - \langle y, x \rangle x}{|y - \langle y, x \rangle x|}.$$

**Aufgabe 2.** Let  $U \subseteq \mathbb{R}^n$  be path-connected and open, and let  $F : U \to \mathbb{R}^n$  be a continuous vector field on U. The following are equivalent.

(i) F is conservative.

(ii) The path integral of F between any two points of U is independent of the path connecting them.

(iii) The path integral of F along any loop in U is equal to 0.

Aufgabe 3. Complete the proof of the implication (i)  $\Rightarrow$  (iii) of Proposition 1.2.15.

**Aufgabe 4.** Let s(t) be a solution curve of  $\ddot{x}(t) = m^{-1}F(x(t))$ , where F(x) is the Newtonian gravitational field on  $U_0^{(2)}$ , and h is non-zero along s(t).

(i) The kinetic energy T along s(t) satisfies the following formula:

$$T = \frac{1}{2} \frac{h^2}{m} \left[ \left( \frac{du}{d\theta} \right)^2 + u^2 \right].$$

(ii) Along s(t) the functions  $u, \theta$  and E satisfy the following ode:

$$\left(\frac{du}{d\theta}\right)^2 + u^2 = \frac{2m}{h^2}(E+u).$$

(iii) Along s(t) the functions u and  $\theta$  satisfy the following ode:

$$\frac{d^2u}{d\theta^2} + u = \frac{m}{h^2}$$

Abgabe. Donnerstag, 03. Mai 2018 in der Vorlesung.

Besprechung. Montag, 28. Mai 2018, in der Übung.