

Dr. Iosif Petrakis
Sommersemester 18
N. Köpp
19.04.2018

Gewöhnliche Differentialgleichungen

Blatt 2

Aufgabe 1. Let U be a bounded, non-empty, open, and convex subset of \mathbb{R}^{n}, such that $-u \in U$, if $u \in U$. The following hold:
(i) $0 \in U$.
(ii) If $x \in \mathbb{R}^{n}$, and

$$
\tau_{U}(x):=\left\{\lambda>0 \left\lvert\, \frac{x}{\lambda} \in U\right.\right\}
$$

then $\inf \tau_{U}(x)$ exists.
(iii) The function

$$
\|x\|_{U}:=\inf \tau_{U}(x)
$$

is a norm on \mathbb{R}^{n}.
(iv) $U \subseteq \mathcal{B}_{\| \| \|_{U}}(0,1]$.

Aufgabe 2. (i) Let $\|$.$\| and \|.\|^{\prime}$ be norms on \mathbb{R}^{n}, and let $\|.\|_{*}$ and $\|.\|_{*}^{\prime}$ be norms on \mathbb{R}^{m}. If $X \subseteq \mathbb{R}^{n}$ and $f: X \rightarrow \mathbb{R}^{m}$, then f is Lipschitz with respect to $\|$.$\| and \|.\|_{*}$ iff f is Lipschitz with respect to $\|\cdot\| \|^{\prime}$ and $\|\cdot\|_{*}^{\prime}$.
(ii) Find the largest $A>0$ and the smallest $B>0$ such that for every $x \in \mathbb{R}^{n}$

$$
A|x| \leq|x|_{\text {sum }} \leq B|x| .
$$

(iii) Let E be a normed space. If $T: \mathbb{R}^{n} \rightarrow E$ is linear, then f is Lipschitz.

Aufgabe 3. Let $x, y \in \mathbb{R}^{n}$ such that $|y-x|>0$.
(i) The function $\gamma_{x, y}:[0,|y-x|] \rightarrow \mathbb{R}^{n}$, defined by

$$
\gamma_{x, y}(t):=x+t \frac{y-x}{|y-x|},
$$

for every $t \in[0,|y-x|]$ is a C^{∞} path from x to y, which is an isometry i.e., for every $s, t \in$ $[0,|y-x|]$

$$
\left|\gamma_{x, y}(s)-\gamma_{x, y}(t)\right|=|s-t| .
$$

(ii) If $\delta_{x, y}:[0,|y-x|] \rightarrow \mathbb{R}^{n}$ is a path from x to y that is an isometry, then $\delta_{x, y}$ is equal to $\gamma_{x, y}$.

Aufgabe 4. (i) An inner product $\langle\langle\cdot, \cdot\rangle\rangle$ on \mathbb{R}^{n} is a continuous function.
(ii) Let I be an interval in \mathbb{R} and let $f, g: I \rightarrow \mathbb{R}^{n}$ be C^{1}.
(a) If $\langle\langle f, g\rangle\rangle: I \rightarrow \mathbb{R}$ is defined for every $t \in I$ by

$$
\langle\langle f, g\rangle\rangle(t):=\langle\langle f(t), g(t)\rangle\rangle,
$$

then, for every $t \in I$ we have that

$$
\langle\langle f, g\rangle\rangle^{\prime}(t)=\left\langle\left\langle f^{\prime}(t), g(t)\right\rangle\right\rangle+\left\langle\left\langle f(t), g^{\prime}(t)\right\rangle\right\rangle .
$$

(b) For every $t \in I$ we have that

$$
\left\langle\left\langle f^{\prime}(t), f(t)\right\rangle\right\rangle=\frac{1}{2}\left(\|f(t)\|^{2}\right)^{\prime} .
$$

Abgabe. Donnerstag, 26. April 2018 in der Vorlesung.
Besprechung. Montag, 30. April 2018, in der Übung.

