MATHEMATISCHES InSTITUT

Dr. Iosif Petrakis
Sommersemester 18
N. Köpp
01.07.2018

Gewöhnliche Differentialgleichungen

Blatt 12 (Probeklausur)

Aufgabe 1. Find the general solution to the following system of odes:

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{1}(t)+x_{3}(t), \\
& \dot{x}_{2}(t)=x_{2}(t)-x_{3}(t), \\
& \dot{x}_{3}(t)=x_{1}(t)+x_{3}(t) .
\end{aligned}
$$

Aufgabe 2. Find the general solution to the following system of odes:

$$
\begin{aligned}
& \dot{x}_{1}(t)=-x_{1}(t)+2 x_{3}(t), \\
& \dot{x}_{2}(t)=x_{2}(t)+x_{3}(t), \\
& \dot{x}_{3}(t)=-2 x_{1}(t)+x_{3}(t) .
\end{aligned}
$$

Aufgabe 3. If $L\left(\mathbb{R}^{n}\right)^{-1}$ is the set of all invertible operators in $L\left(\mathbb{R}^{n}\right)$, and if $T \in L\left(\mathbb{R}^{n}\right)$ such that $\|T\|<1$, we know that
(a) the series $\sum_{k=0}^{\infty} T^{k}$ converges,
(b) $I_{n}-T \in \mathrm{~L}\left(\mathbb{R}^{\mathrm{n}}\right)^{-1}$, and

$$
\sum_{k=0}^{\infty} T^{k}=\frac{1}{I_{n}-T}
$$

Let the function ${ }^{-1}: L\left(\mathbb{R}^{n}\right)^{-1} \rightarrow L\left(\mathbb{R}^{n}\right)^{-1}$ be defined by

$$
T \mapsto T^{-1} .
$$

Show the following:
(i) The function ${ }^{-1}$ is continuous at I_{n}.
(i) The function ${ }^{-1}$ is continuous on $L\left(\mathbb{R}^{n}\right)^{-1}$.

Aufgabe 4. Find the general solution of the ode

$$
x^{(3)}(t)+4 \ddot{x}(t)+5 \dot{x}(t)+2 x(t)=0 .
$$

Aufgabe 5. The Picard method of solving an ode is the method of proof of the fundamental local theorem. Use the Picard method to solve the ode

$$
\dot{x}=x+2 ; \quad x(0)=2
$$

and determine the domain of the solution.

Aufgabe 6. Let $b>0$ and let $u:[0, b] \rightarrow[0,+\infty)$ and $v:[0, b] \rightarrow[0,+\infty)$ be continuous functions. If $C>0$ such that for every $t \in[0, b]$

$$
u(t) \leq C+\int_{0}^{t} u(s) v(s) d s
$$

and if

$$
V(t)=\int_{0}^{t} v(s) d s
$$

show that for every $t \in[0, b]$ we have that

$$
u(t) \leq C e^{V(t)}
$$

Besprechung. Dienstag, 10. Juli 2018, in der Vorlesung.

