

Dr. Iosif Petrakis N. Köpp

Sommersemester 18 28.06.2018

Gewöhnliche Differentialgleichungen Blatt 11

Aufgabe 1. Let a > 0 and let $u : [0, a] \to [0, +\infty)$ be continuous. If $L \ge 0$ such that for every $t \in [0, a]$

$$u(t) \le \int_0^t Lu(s) ds,$$

show that for every $t \in [0, a]$ we have that

u(t) = 0.

Aufgabe 2. Let $f : \mathbf{S} \to \mathbb{R}^n$ be C^1 . Show that for every $x_0 \in \mathbf{S}$, there is a maximum open interval (α, β) , where $\alpha, \beta \in \mathbb{R} \cup \{-\infty, +\infty\}$, such that the following hold: (i) $0 \in (\alpha, \beta)$, and

(ii) there is a solution $x: (\alpha, \beta) \to \mathbf{S}$ of the ode $\dot{x} = f(x)$ such that $x(0) = x_0$.

Aufgabe 3. Let $K \subseteq S$ be compact, $x_0 \in K$, and let $f : S \to \mathbb{R}^n$ be C^1 . Suppose that every solution $x : [0, \beta] \to S$ with $x(0) = x_0$ satisfies the property

 $\forall_{t \in [0,\beta]} \big(x(t) \in K \big).$

Show that there is a solution $x^*: [0, +\infty) \to \mathbf{S}$ with $x^*(0) = x_0$ and

 $\forall_{t\geq 0} \big(x^*(t) \in K \big).$

Aufgabe 4. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be continuous such that $\forall_{x \in \mathbb{R}^n} (|f(x)| \leq M)$, and let $x_0 \in \mathbb{R}^n$. Moreover, let $(x_n)_{n=0}^{\infty}$ be a sequence of functions from [0, 1] to \mathbb{R}^n such that (i) x_n is a solution of the ode $\dot{x} = f(x)$, for every $n \in \mathbb{N}$, and (ii) $\lim_{n\to\infty} x_n(0) = x_0$. Show that there is a subsequence of $(x_n)_{n=0}^{\infty}$ that converges uniformly on [0, 1] to a solution of

 $\dot{x} = f(x).$

Abgabe. Donnerstag, 05. Juli 2018 in der Vorlesung.

Besprechung. Montag, 09. Juli 2018, in der Übung.