

Dr. Iosif Petrakis
Sommersemester 18
N. Köpp
12.04.2018

Gewöhnliche Differentialgleichungen

Blatt 1

Aufgabe 1. (i) Determine for which $a \in \mathbb{R}$ the function

$$
d_{a}(x, y):=|x-y|^{a}
$$

is a metric on \mathbb{R}.
(ii) Let $(X,\langle\langle\cdot, \cdot\rangle\rangle)$ be an inner product space and let $\|$.$\| be the norm on X$ induced by $\langle\langle\cdot, \cdot\rangle\rangle$. If $x, y \in X$, the following hold:
(a)

$$
|\langle\langle x, y\rangle\rangle| \leq\|x\|\|y\| .
$$

(b)

$$
|\langle\langle x, y\rangle\rangle|=\|x\|\|y\| \Leftrightarrow\langle\langle y, y\rangle\rangle x=\langle\langle x, y\rangle\rangle y .
$$

(c)

$$
\|x+y\|=\|x\|+\|y\| \Leftrightarrow\|y\| x=\|x\| y
$$

Aufgabe 2. Complete the proof of Theorem 1.1.6.

Aufgabe 3. Let $(X,\|\mid\|)$ be a normed space.
(i) The norm $\|$.$\| is a convex function, which is not strictly convex.$
(ii) If the norm $\|$.$\| is induced by some inner product \langle\langle\cdot, \cdot\rangle\rangle$ on X, then $(X,\|\cdot\|)$ is a strictly convex normed space.
(iii) Give an example of norm that is not induced by some inner product.
(iv) If ||.|| is induced by some inner product, then the function $\|. \mid\|^{2}$ is a strictly convex function.

Aufgabe 4. Let ($X,\| \| . \|$) be a normed space. If $f: X \rightarrow \mathbb{R}$ is linear and $f \neq 0$, then f maps open sets of X onto open sets of \mathbb{R}.

Abgabe. Donnerstag, 19. April 2018 in der Vorlesung.
Besprechung. Montag, 23. April 2018, in der Übung.

