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CHAPTER 1

Basic ideas of ODEs

1.1. Review of topology in Rn

In this section we review the basic facts of the topology in Rn that we are going
to use subsequently.

Definition 1.1.1. Let X be a vector space over R. A real inner product on X
is a mapping 〈〈·, ·〉〉 : X × X → R such that for every x, y, z ∈ X and λ ∈ R the
following hold:

(i) 〈〈x, x〉〉 ≥ 0 (positivity).
(ii) 〈〈x, x〉〉 = 0⇒ x = 0 (definiteness).
(iii) 〈〈x, y〉〉 = 〈〈y, x〉〉 (symmetry).
(iv) 〈〈x+ y, z〉〉 = 〈〈x, z〉〉+ 〈〈y, z〉〉 (left additivity).
(v) 〈〈λx, y〉〉 = λ〈〈x, y〉〉 (left homogeneous)

If 〈〈·, ·〉〉 is a real inner product on X, the pair (X, 〈〈·, ·〉〉) is called a real inner
product space. A real norm on X is a mapping ||.|| : X → R such that for every
x, y ∈ X and λ ∈ R the following hold:

(i) ||x|| ≥ 0 (positivity).
(ii) ||x|| = 0⇒ x = 0 (definiteness).
(iii) ||x+ y|| ≤ ||x||+ ||y|| (triangle inequality).
(iv) ||λx|| = |λ|||x||.
If ||.|| is a real norm on X, the pair (X, ||.||) is called a real normed space. Unless
stated otherwise, an inner product (space) means here a real inner product (space),
and a norm(ed space) means here a real norm(ed space). We use the notation
X∗ := X \ {0}.

Because of symmetry an inner product is bilinear (i.e., it is also right additive
and right homogeneous). Next we show that an inner product is determined by its
diagonal entries.

Proposition 1.1.2. Let (X, 〈〈·, ·〉〉) be an inner product space and x, y ∈ X.

(i) (Polarization identity ) 〈〈x, y〉〉 = 1
4

(
〈〈x+ y, x+ y〉〉 − 〈〈x− y, x− y〉〉

)
.

(ii) x = 0⇔ ∀z∈X
(
〈〈x, z〉〉 = 0

)
.

(iii) ∀z∈X
(
〈〈x, z〉〉 = 〈〈y, z〉〉

)
⇒ x = y.

1



2 1. BASIC IDEAS OF ODES

Proof. (i) Clearly, 〈〈x+ y, x+ y〉〉 − 〈〈x− y, x− y〉〉 = 4〈〈x, y〉〉.
(ii) If x = 0, then 〈〈x, z〉〉 = 〈〈0, z〉〉 = 〈〈0 + 0, z〉〉 = 〈〈0, z〉〉 + 〈〈0, z〉〉. Hence
〈〈0, z〉〉 = 0. For the converse, if ∀z∈X

(
〈〈x, z〉〉 = 0

)
, then 〈〈x, x〉〉 = 0, hence x = 0.

(iii) By the hypothesis we get ∀z∈X
(
〈〈x− y, z〉〉 = 0

)
, hence by (ii) x = y. �

If x = 0, then ||x|| = 0. Moreover, if x = 0, or y = 0, or y = λx, for some
λ > 0, then equality holds in the triangle inequality.

Definition 1.1.3. If x = (x1, . . . , xn) and y = (y1, . . . , yn) are in Rn, their
Euclidean inner product is defined by

〈x, y〉 :=

n∑
i=1

xiyi.

It is immediate to see that the Euclidean inner product is an inner product on
Rn. If we define the Minkowski product (·, ·) on R4 by(

(x, s), (y, t)
)

:=

3∑
i=1

xiyi − st,

for every (x, s), (y, t) ∈ R4, we get a function, which is symmetric, left additive and
left homogeneous, but does not satisfy positivity and definiteness. Hence, positivity
and definiteness are independent from the rest properties of an inner product. The
pair (R4, (·, ·)) is called the Minkowski space, and it is very important in the special
theory of relativity. If we identify space with all pairs (x, 0), then

(
(x, 0), (x, 0)

)
≥ 0,

and if we identify time with all pairs (0, s), then
(
(0, s), (0, s)

)
≤ 0. For this reason

we say that an element (x, s) of the Minkowski space is space-like, if
(
(x, s), (x, s)

)
≥

0, and we say that it is time-like, if
(
(x, s), (x, s)

)
≤ 0.

Definition 1.1.4. If x ∈ Rn, the Euclidean norm |x| of x is defined by

|x| :=
( n∑
i=1

x2
i

) 1
2

.

To show that the Euclidean norm is a norm we need the following.

Proposition 1.1.5 (Inequality of Cauchy). If x, y ∈ Rn, then

|〈x, y〉| ≤ |x||y|.

Proof. (Bishop) By definition we need to show∣∣∣∣ n∑
i=1

xiyi

∣∣∣∣ ≤ ( n∑
i=1

x2
i

) 1
2
( n∑
i=1

y2
i

) 1
2

,

which is equivalent to

A :=

( n∑
i=1

xiyi

)2

≤
( n∑
i=1

x2
i

)( n∑
i=1

y2
i

)
=: B.
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This we get as follows:

B −A =

n∑
i=1

x2
i

n∑
j=1

y2
j −

n∑
i=1

xiyi

n∑
j=1

xjyj

=
1

2

n∑
i=1

x2
i

n∑
j=1

y2
j +

1

2

n∑
j=1

x2
j

n∑
i=1

y2
i −

n∑
i=1

xiyi

n∑
j=1

xjyj

=

n∑
i,j=1

1

2

(
x2
i y

2
j + x2

jy
2
i − 2xiyixjyj

)
=

n∑
i,j=1

1

2

(
xiyj − xjyi

)2
≥ 0.

�

An inner product on X induces a norm on X defined by

||x|| = 〈〈x, x〉〉 1
2 .

To show that ||.|| is a norm on X we need the inequality∣∣〈〈x, y〉〉∣∣ ≤ ||x|| ||y||,
which generalizes the inequality of Cauchy. Clearly, the Euclidean norm is the norm
induced by the Euclidean inner product. Geometrically, if x ∈ Rn, then |x| is the
length of the vector x and

〈x, y〉 = |x| |y| cos θ(x, y),

where θ is the angle between x and y, which for x 6= 0 and y 6= 0 is defined by

θ(x, y) := arccos
〈x, y〉
|x||y|

.

If 〈x, y〉 = 0, we say that x (y) is orthogonal to y (x).
If (X, ||.||) is a normed space, the triangle inequality implies the reverse triangle

inequality1 ∣∣||x|| − ||y||∣∣ ≤ ||x− y||,
for every x, y ∈ X. If we replace y by −y, we get

||x|| − ||y|| ≤
∣∣||x|| − ||y||∣∣ ≤ ||x+ y||.

The next theorem is a sharp version of the triangle inequality. If a, b ∈ R, we
use the notations a ∧ b := min{a, b} and a ∨ b := max{a, b}.

1The reverse triangle inequality implies that ||.|| is 1-Lipschitz on X with respect to ||.||.
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Theorem 1.1.6 (Sharp triangle inequality). If (X, ||.||) is a normed space and
x, y ∈ X∗, the following hold:

(1.1) ||x+ y|| ≤ ||x||+ ||y|| −

(
2−

∣∣∣∣∣∣∣∣ x||x|| +
y

||y||

∣∣∣∣∣∣∣∣
)(
||x|| ∧ ||y||

)
.

(1.2) ||x+ y|| ≥ ||x||+ ||y|| −

(
2−

∣∣∣∣∣∣∣∣ x||x|| +
y

||y||

∣∣∣∣∣∣∣∣
)(
||x|| ∨ ||y||

)
.

Moreover, if either ||x|| = ||y|| or y = λx, for some λ > 0, then equality holds in
both (1.1) and (1.2).

Proof. (Maligranda) Without loss of generality we assume that ||x|| ≤ ||y||,
hence ||x|| ∧ ||y|| = ||x||. Using the triangle inequality we have that

||x+ y|| =
∣∣∣∣∣∣∣∣ ||x||||x||x+

||x||
||y||

y +

(
1− ||x||
||y||

)
y

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ ||x||||x||x+
||x||
||y||

y +
||y|| − ||x||
||y||

y

∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣ ||x||||x||x+

||x||
||y||

y

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ ||y|| − ||x||||y||
y

∣∣∣∣∣∣∣∣
= ||x||

∣∣∣∣∣∣∣∣ x||x|| +
y

||y||

∣∣∣∣∣∣∣∣+ ||y|| − ||x||

= ||y||+ ||x||

(∣∣∣∣∣∣∣∣ x||x|| +
y

||y||

∣∣∣∣∣∣∣∣− 1

)

= ||x||+ ||y|| −

(
2−

∣∣∣∣∣∣∣∣ x||x|| +
y

||y||

∣∣∣∣∣∣∣∣
)
||x||.

The rest of the proof is an exercise. �

Theorem 1.1.7 (Jordan, von Neumann). Let (X, ||.||) be a normed space. The
following are equivalent.

(i) The norm ||.|| is induced by some inner product 〈〈·, ·〉〉 on X.
(ii) The norm ||.|| satisfies the parallelogram law i.e., for every x, y ∈ X

||x+ y||2 + ||x− y||2 = 2
(
||x||2 + ||y||2

)
.

Proof. (i) ⇒ (ii) It follows from a simple calculation.
(ii) ⇒ (i) Due to the polarization identity it is natural to define

(1.3) 〈〈x, y〉〉 :=
1

4

(
||x+ y||2 − ||x− y||2

)
.
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Positivity, definiteness and symmetry of 〈〈x, y〉〉 follow immediately. It is also
straightforward to see that

(1.4) 〈〈−x, y〉〉 = −〈〈x, y〉〉.

In order to show left additivity we have from the parallelogram law and the defini-
tion of 〈〈x, y〉〉 that

4〈〈x+ z, y〉〉 = ||x+ z + y||2 − ||x+ z − y||2

=

∣∣∣∣∣∣∣∣(x+
y

2

)
+

(
z +

y

2

)∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣(x− y

2

)
+

(
z − y

2

)∣∣∣∣∣∣∣∣2
= 2

∣∣∣∣∣∣∣∣x+
y

2

∣∣∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣∣∣z +
y

2

∣∣∣∣∣∣∣∣2 − ||x− z||2−
−
(

2

∣∣∣∣∣∣∣∣x− y

2

∣∣∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣∣∣z − y

2

∣∣∣∣∣∣∣∣2 − ||x− z||2)
= 2

(∣∣∣∣∣∣∣∣x+
y

2

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣x− y

2

∣∣∣∣∣∣∣∣2
)

+ 2

(∣∣∣∣∣∣∣∣z +
y

2

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣z − y

2

∣∣∣∣∣∣∣∣2
)

= 8〈〈x, y
2
〉〉+ 8〈〈z, y

2
〉〉.

Hence we get

(1.5) 〈〈x+ z, y〉〉 = 2

(
〈〈x, y

2
〉〉+ 〈〈z, y

2
〉〉
)
.

If in (1.5) we set z = 0, we get for every x, y ∈ X

(1.6) 〈〈x, y〉〉 = 2〈〈x, y
2
〉〉.

Consequently, (1.5) becomes

〈〈x+ z, y〉〉 = 2

(
〈〈x, y

2
〉〉+ 〈〈z, y

2
〉〉
)

= 〈〈x, y〉〉+ 〈〈z, y〉〉.

The rest of the proof is an exercise. �

Note that in [1] one can find about 350 characterizations of a normed space
induced by an inner product!

It is often convenient to work with norms on Rn other than the Euclidean norm.
It is easy to show that the following mappings are norms on Rn

|x|sum :=

n∑
i=1

|xi| =:
∑
i

|xi|,

|x|max := max{|xi| | i ∈ {1, . . . , n}} =: max
i
|xi|.
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If n = 1 and x ∈ R, then |x|sum = |x| = |x|max. The unit sphere of a normed space
(X, ||.||) is the set

S1
||.|| := {x ∈ X | ||x|| = 1}.

The unit spheres S1
|.|,S

1
|.|max

and S1
|.|sum

of R2 are pictured as follows:

S1
|.|

S1
|.|max

S1
|.|sum

Especially for Rn we define the n-sphere Sn, for n ≥ 1, as follows:

Sn := {x ∈ Rn+1 | |x| = 1}.
If B = {f1, . . . , fn} is any basis for Rn, there are B-versions of the aforementioned
norms on Rn: if x ∈ Rn and

x =
∑
i

tifi,

then e.g., the B-Euclidean norm and the B-max norm are defined, respectively, as
follows:

|x|B :=

(∑
i

t2i

) 1
2

|x|B,max := max
i
|ti|.

Definition 1.1.8. Let (X, ||.||) be a normed space and f : X → R.
We say that f is convex, if

∀x,y∈X∀t∈(0,1)

(
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

)
,

and we say that f is strictly convex, if

∀x,y∈X
(
x 6= y ⇒ ∀t∈(0,1)(f(tx+ (1− t)y) < tf(x) + (1− t)f(y))

)
.

The normed space (X, ||.||) is called strictly convex, if

∀x,y∈X
(
x 6= y ∧ ||x|| = 1 = ||y|| ⇒

∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ < 1

)
.

The identity function idR on R is convex, but not strictly convex function. If
a normed space is strictly convex, its unit sphere S1

||.|| includes no line segment, as

the middle points are not in S1
||.||. The normed space (R2, |.|) is strictly convex. A

normed space generated by some inner product is always strictly convex.
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x
y

x+y
2

Proposition 1.1.9. Let (X, ||.||) be a normed space.

(i) The norm ||.|| is a convex function, which is not strictly convex.
(iii) If the norm ||.|| is induced by some inner product 〈〈·, ·〉〉 on X, then (X, ||.||)
is a strictly convex normed space.

Proof. Exercise. �

Using Proposition 1.1.9(iii) we can find norms that are not induced by some
inner product (exercise).

Proposition 1.1.10. Let (X, 〈〈·, ·〉〉) be an inner product space and let ||.|| be
the norm on X induced by 〈〈·, ·〉〉.
(i) If x, y ∈ X, the following hold:

|〈〈x, y〉〉| = ||x|| ||y|| ⇔ 〈〈y, y〉〉x = 〈〈x, y〉〉y,
||x+ y|| = ||x||+ ||y|| ⇔ ||y||x = ||x||y.

(ii) The function ||.||2 is a strictly convex function.

Proof. Exercise. �

Definition 1.1.11. A metric on some set X is a mapping d : X×X → R such
that for every x, y, z ∈ X the following hold:

(i) d(x, y) ≥ 0.
(ii) d(x, y) = 0⇔ x = y.
(iii) d(x, y) = d(y, x).
(iv) d(x, y) ≤ d(x, z) + d(z, y).
If d is a metric on X, the pair (X, d) is called a metric space.

A norm ||.|| on the real vector space X induces a metric on X defined by

d(x, y) := ||x− y||.

Definition 1.1.12. The Euclidean metric ε on Rn is the metric induced by
the Euclidean norm on Rn i.e., ε(x, y) := |x− y|, for every x, y ∈ Rn.
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Proposition 1.1.13. Let X be a real vector space and let d be a metric on X.
The following are equivalent:

(i) There is a norm ||.|| on X that induces d.
(ii) If x, y, z ∈ X and λ ∈ R, then d satisfies the following:
(a) d(x, y) = d(x+ z, y + z).
(b) d(λx, λy) = |λ|d(x, y).

Proof. Exercise. �

Using Proposition 1.1.13 we can find a metric on any real vector space X that
is not induced by some norm on X.

Definition 1.1.14. If x ∈ Rn and ε > 0, the ε-neighborhood of x is the set

B(x, ε) := {y ∈ Rn | |y − x| < ε}.
The ε-ball around x is the set

B(x, ε] := {y ∈ Rn | |y − x| ≤ ε}.
The 1-ball around 0 is called the unit ball. Let X ⊆ Rn. X is convex, if for every
x, y ∈ X the line segment between x and y

{tx+ (1− t)y | t ∈ (0, 1)}
is included in X. We say that X is a neighborhood of x, if there is some ε > 0 such
that B(x, ε) ⊆ X, and we call X open, if X is a neighborhood of every x ∈ X. X
is bounded, if there is ε > 0 such that X ⊆ B(0, ε). The convergence of a sequence
(xn)∞n=1 in Rn to the limit x ∈ Rn is defined by

xn
n−→ x := lim

n→∞
xn = x :⇔ ∀ε>0∃n(ε)∈N∀n≥n(ε)

(
|xn − x| < ε

)
.

A sequence (xn)∞n=1 in Rn is a Cauchy sequence, if

∀ε>0∃n(ε)∈N∀m,n≥n(ε)

(
|xm − xn| < ε

)
.

X is closed, if every convergent sequence in X has its limit in X, and X is compact,
if every sequence in X has a convergent subsequence in X.

All concepts found in Definition 1.1.14 and Definition 1.1.19 are generalized to
arbitrary metric spaces. Note that the above notions of ε-neighborhood, neighbor-
hood, open set, closed set, of convergence and the various continuity concepts are
defined with respect to the Euclidean norm on Rn. Usually we refer to them as
a Euclidean neighborhood, a Euclidean open set and so on. Soon we will see that
this is not a loss of generality. Convexity of sets is generalized to arbitrary normed
spaces, and it is the necessary property of the domain of a convex function.

It is easy to see that the ε-neighborhoods and the ε-balls of a normed space are
convex sets. This is not generally the case for the ε-neighborhoods and the ε-balls

Bd(x, ε) := {y ∈ X | d(y, x) < ε},
Bd(x, ε] := {y ∈ X | d(y, x) ≤ ε}
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of a metric space (X, d). E.g., let the metric σ on R2 be defined by

σ(x, y) :=
√
|x1 − y1|+

√
|x2 − y2|,

for every x, y ∈ R2. If x ∈ R2 and ε > 0, we show that Bσ(x, ε) is not convex. If

λ ∈ ( ε
2

2 , ε), then
√
λ < ε and ε

2 <
√

λ
2 . If y = (x1 + λ, x2) and z = (x1, x2 + λ),

then σ(x, y) =
√
λ = σ(x, z) i.e., y, z ∈ Bσ(x, ε). Hence,

σ

(
x,

1

2
x+

1

2
y

)
= σ

(
(x1, x2), (x1 +

λ

2
, x2 +

λ

2
)

)
=

√
λ

2
+

√
λ

2

>
ε

2
+
ε

2
= ε

i.e., 1
2x+ 1

2y /∈ Bσ(x, ε). The non-convex unit ball of σ looks as follows:

(1, 0)(-1, 0)

(0, 1)

(0, -1)

Definition 1.1.15. If X is a vector space and d is a metric on X, then X has
convex ε-neighborhoods, if for every x ∈ X and ε > 0 the set Bσ(x, ε) is convex.

From now on we write “iff” instead of “if and only if”.

Proposition 1.1.16. If X is a vector space and d is a metric on X, then X
has convex ε-neighborhoods iff

∀x,y,z∈X∀t∈(0,1)

(
d(x, ty + (1− t)z) ≤ d(x, y) ∨ d(x, z)

)
.
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Proof. Suppose first that the condition holds and let x, y, z ∈ X such that
y, z ∈ Bd(x, ε). If t ∈ (0, 1), then d

(
x, ty + (1− t)z

)
≤ d(x, y) ∨ d(x, z) < ε. For the

converse suppose that there are x, y, z ∈ X and t ∈ (0, 1) such that d
(
x, ty + (1 −

t)z
)
> d(x, y) ∨ d(x, z). If we take ε ∈ R such that

d(x, y) ∨ d(x, z) < ε < d
(
x, ty + (1− t)z

)
,

then y, z ∈ Bd(x, ε) and ty + (1− t)z /∈ Bd(x, ε), which contradicts the convexity of
Bd(x, ε). �

It is easy to see that the set T of open sets of a normed (metric) space X are
closed under arbitrary unions and finite intersections, and that X and ∅ are in T ,
the so-called topology of X. We denote by T c the set of the closed sets of X. If
A ⊆ X, the interior Å of A and the closure Ā of A are defined by

Å :=
⋃
{G ⊆ X | G ⊆ A ∧G ∈ T },

Ā :=
⋂
{F ⊆ X | F ⊇ A ∧ F ∈ T c}.

Clearly, Å is the largest open set included in A and Ā is the smallest closed set that
includes A. Moreover, A is open iff Å = A, and A is closed iff Ā = A. If A,B ⊆ X
and λ ∈ R, we use the following notations“

A+B := {a+ b | a ∈ A, b ∈ B},

λA := {λa | a ∈ A}.

Proposition 1.1.17. Let (X, ||.||) be a normed space and A,B ⊆ X.

(i) If A is open, then A+B is open.
(ii) If A is open and t > 0, then tA is open.
(iii) If A is convex, then Å is convex and Ā is convex.
(iv) If A is a subspace of X, then A 6= X ⇔ Å = ∅.
(v) If f : X → R is linear and f 6= 0, then f is open i.e., it maps open sets of X
onto open sets of R.

Proof. (i) If a ∈ A and ε > 0 such that B(x, ε) ⊆ A, and if b ∈ B, then

B(x+ y, ε) = B(x, ε) + {b} ⊆ A+ {b}

i.e., A+ {b} is open. Since,

A+B =
⋃
{A+ {b} | b ∈ B},

we have that A+B is open as a union of open sets.
(ii) Exercise.
(iii) Since Å is open, by (ii) we get tÅ is open, hence by (i) we have that tÅ+(1−t)Å
is open. Since A is convex, tA + (1 − t)A ⊆ A, and since Å ⊆ A, we conclude
that tÅ + (1 − t)Å ⊆ Å. Since Å is the largest open set included in A, we get
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tÅ + (1 − t)Å ⊆ Å i.e., Å is convex. If x, y ∈ Ā, there are sequences (xn)∞n=1 ⊆ A

and (yn)∞n=1 ⊆ A such that xn
n−→ x and yn

n−→ y. Since

txn + (1− t)yn
n−→ tx+ (1− t)y,

and txn + (1− t)yn ∈ A, by the convexity of A, we get tx+ (1− t)y ∈ Ā.
(iv) and (v) Exercises. �

Proposition 1.1.18. Let X ⊆ Rn.
(i) If xk = (xk1, . . . , xkn) ∈ Rn, for every k ∈ N, and y ∈ Rn, then

lim
k→∞

xk = y ⇔ lim
k→∞

xki = yi, for every i ∈ {1, . . . , n}.

(ii) A sequence in Rn converges to a limit iff it is a Cauchy sequence.
(iii) X is closed iff its complement Rn \X is open.
(iv)(Bolzano-Weierstrass) X is compact iff X is closed and bounded.
(v) If n = 1, and X 6= ∅ and compact, then X has a maximum and a minimum
element.

Proof. Left to the reader. See also [4] and [12]. �

Definition 1.1.19. Let X ⊆ Rn and f : X → Rm. We say that f is continuous
at x0 ∈ Rn, if

∀ε>0∃δ>0∀x∈X
(
|x− x0| < δ ⇒ |f(x)− f(x0)| < ε

)
,

and f is continuous on X, if it is continuous at every element of X. We say that
f is sequentially continuous on X, if for every (xn)∞n=1 in X and every x ∈ X

lim
n→∞

xn = x⇒ lim
n→∞

f(xn) = f(x).

We say that f is uniformly continuous on X, if

∀ε>0∃δ>0∀x,y∈X
(
|x− y| < δ ⇒ |f(x)− f(y)| < ε

)
,

and f is σ-Lipschitz on X, where σ ≥ 0, if

∀x,y∈X
(
|f(x)− f(y)| ≤ σ|x− y|

)
.

Proposition 1.1.20. Let X ⊆ Rn and f : X → Rm.
(i) f is continuous on X iff f is sequentially continuous on X.
(ii) If f is σ-Lipschitz on X, it is uniformly continuous on X.
(iii) If f is uniformly continuous on X, it is continuous on X.
(iv) If X is compact and if f is continuous on X, then f is uniformly continuous
and f(X) is compact.
(v) If m = 1, and X 6= ∅ and compact, and if f is continuous on X, then f has a
maximum and a minimum value.

Proof. Left to the reader. See also [4] and [12]. �
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One can show that x 7→ x2 is continuous on R, but not uniformly continuous
on R, and x 7→

√
|x| is uniformly continuous on R, but not σ-Lipschitz, for every

σ > 0, If x ∈ Rn, then (
max
i
|xi|
)2 ≤∑

i

x2
i ≤ n

(
max
i
|xi|
)2
,

and taking square roots we get

|x|max ≤ |x| ≤
√
n |x|max,

or
1√
n
|x| ≤ |x|max ≤ |x|.

Since |x|sum ≤ n |x|max ≤ n |x|, we also have that

1

n
|x|sum ≤ |x| ≤ |x|sum.

Such inequalities hold for every norm on Rn.

Lemma 1.1.21. A norm ||.|| on Rn is an (Mn)-Lipschitz function, where

M := max
i
||ei||,

and {e1, . . . , en} is the standard basis for Rn.

Proof. Let x ∈ Rn and let x =
∑
i xiei. Then

||x|| =
∣∣∣∣∣∣∣∣∑

i

xiei

∣∣∣∣∣∣∣∣ ≤∑
i

||xiei|| =
∑
i

|xi|||ei|| ≤M
∑
i

|xi| = M |x|sum ≤Mn|x|.

Hence, if x, y ∈ Rn, we get∣∣||x|| − ||y||∣∣ ≤ ||x− y|| ≤Mn|x− y|.
�

Proposition 1.1.22 (Equivalence of norms). Let ||.||, ||.||∗ be norms on Rn.

(i) There are A > 0 and B > 0 such that for every x ∈ Rn we have that

A|x| ≤ ||x|| ≤ B|x|.
(ii) There are A′ > 0 and B′ > 0 such that for every x ∈ Rn we have that

A′||x|| ≤ ||x||∗ ≤ B′||x||.

Proof. (i) Since the unit sphere S1
|.| is non-empty, closed and bounded subset

of Rn, and since by Lemma 1.1.21 ||.|| is continuous on Rn, its restriction to S1
|.|

is continuous on S1
|.|. By Proposition 1.1.20(v) we have that ||.|| has a maximum

value B and a minimum value A on S1
|.| i.e., for every x ∈ Rn

|x| = 1⇒ A ≤ ||x|| ≤ B.
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If x = 0, the inequalities A|0| ≤ ||0|| ≤ B|0| hold trivially. If x 6= 0, then |x| > 0
and

∣∣ x
|x|
∣∣ = 1. Hence

A ≤
∣∣∣∣∣∣∣∣ x|x|

∣∣∣∣∣∣∣∣ ≤ B ⇔ A|x| ≤ ||x|| ≤ B|x|.

(ii) Exercise. �

Two norms satisfying the inequalities of Proposition 1.1.22(ii) are called equiv-
alent. Hence, any two norms on Rn are equivalent. Two equivalent norms generate
the same topology i.e., the same set of open sets, and “behave equivalently” in
the sense of the next proposition. Of course, we have already seen that there are
geometric properties, like the strict convexity of the resulting normed space, that
are not shared by equivalent norms.

Proposition 1.1.23. Let ||.||, ||.||∗ be norms on Rn, X ⊆ Rn, (xn)∞n=1 ⊂ Rn,
and x ∈ Rn.

(i) X is open with respect to ||.|| iff X is open with respect to ||.||∗.
(ii) X is closed with respect to ||.|| iff X is closed with respect to ||.||∗.
(iii) X is bounded with respect to ||.|| iff X is bounded with respect to ||.||∗.
(iv) limn→∞(xn) = x with respect to ||.|| iff limn→∞(xn) = x with respect to ||.||∗.
(v) (xn)∞n=1 is Cauchy with respect to ||.|| iff (xn)∞n=1 is Cauchy with respect to ||.||∗.
(vi) X is compact with respect to ||.|| iff X is compact with respect to ||.||∗.
(vii) The unit ball and the unit sphere with respect to ||.|| are compact sets.

Proof. (i) Let A′ > 0 and B′ > 0 such that A′||x|| ≤ ||x||∗ ≤ B′||x||, for every
x ∈ Rn. Let X be open with respect to ||.|| i.e., if x ∈ X, there is ε > 0 such that

B||.||(x, ε) = {y ∈ Rn | ||y − x|| < ε} ⊆ X.
If y ∈ Rn such that ||y − x||∗ < εA′, then, since A′||y − x|| ≤ ||y − x||∗ < εA′, we
get ||y − x|| < ε. Consequently,

x ∈ B||.||∗(x, εA
′) ⊆ B||.||(x, ε) ⊆ X.

If X is open with respect to ||.||∗, then working similarly we get

x ∈ B||.||(x,
ε

B′
) ⊆ B||.||∗(x, ε) ⊆ X.

(ii)− (vi) Immediately by (i) and the corresponding definitions.
(vii) The unit ball and the unit sphere with respect to the Euclidean norm are closed
and bounded, hence compact. Then we use (vi) and Proposition 1.1.22(i). �

Definition 1.1.24. Let ||.|| be a norm on Rn and ||.||∗ a norm on Rm. If
X ⊆ Rn and f : X → Rm, we call f Lipschitz, if there is σ ≥ 0 such that f is
σ-Lipschitz i.e.,

∀x,y∈X
(
||f(x)− f(y)||∗ ≤ σ||x− y||

)
.

The Lipschitz-property does not depend on the choice of norms on Rn and Rm
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Corollary 1.1.25. Let ||.|| and ||.||′ be norms on Rn, and let ||.||∗ and ||.||′∗
be norms on Rm. If X ⊆ Rn and f : X → Rm, then f is Lipschitz with respect to
||.|| and ||.||∗ iff f is Lipschitz with respect to ||.||′ and ||.||′∗.

Proof. Exercise. �

Proposition 1.1.26. Let (X, ||.||) and (Y, ||.||∗) be normed spaces and f : X →
Y linear. The following are equivalent:
(i) f is continuous at x0 ∈ X.
(ii) f is continuous at 0.
(iii) There is σ > 0 such that for all x ∈ X we have that ||f(x)||∗ ≤ σ||x||.

Proof. (i) ⇒ (ii) If xn
n−→ 0, then xn + x0

n−→ x0, hence f(xn) + f(x0)
n−→

f(x0), which implies that f(xn)
n−→ 0 = f(0).

(ii) Let δ(1) > 0 such that ||x|| < δ(1)⇒ ||f(x)||∗ < 1, for every x ∈ X. If x0 ∈ X
such that x0 6= 0, then ∣∣∣∣∣∣∣∣δ(1)x0

2||x0||

∣∣∣∣∣∣∣∣ =
δ(1)

2
< δ(1),

hence ∣∣∣∣∣∣∣∣f(δ(1)x0

2||x0||

)∣∣∣∣∣∣∣∣
∗
< 1⇔ δ(1)

2||x0||
||f(x0)||∗ < 1⇔ ||f(x0)||∗ < σ||x0||,

where σ := 2
δ(1) . If x0 = 0, then the inequality ||f(0)||∗ ≤ σ||0|| holds trivially.

The implication (iii) ⇒ (i) follows from Proposition 1.1.20(iii). �

If X = Rn we can show that a linear function on Rn is always continuous.

Proposition 1.1.27. Let E be a normed space. If f : Rn → E is linear, then
f is Lipschitz.

Proof. Exercise. �

The Lipschitz functions between metric spaces are defined as in Definition 1.1.24.
A major difference between uniformly continuous functions and Lipschitz functions
is that the latter send bounded subsets of their domain to bounded subsets of their
codomain, as, for example,

||f(x)|| ≤ ||f(x)− f(0)||+ ||f(0)||
≤ σ||x− 0||+ ||f(0)||
= σM + ||f(0)||,

while the former do not preserve, in general, boundedness; the identity idN : N →
R, where N is equipped with the discrete metric2, is uniformly continuous, but
idN(N) = N is not bounded in R.

2The discrete metric on a set X is defined by ρ(x, y) = 0⇔ x = y and ρ(x, y) = 1, otherwise.
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Proposition 1.1.28. Let E be a subspace of Rn.
(i) If ||.|| is a norm on Rn, then its restriction ||.|||E to E is a norm on E.
(ii) If ||.||E is a norm on E, there is a norm ||.|| on Rn such that ||.||E = ||.|||E.
(iii) All norms on E are equivalent.
(iv) If ||.||E is a norm on E, the unit ball and the unit sphere with respect to ||.||E
are compact sets.

Proof. The proof of (i) is immediate. For (ii) we write Rn as the direct sum
Rn = E + F ; take a basis {e1, . . . , en} for Rn such that {e1, . . . , em} is a basis
for E, where m < n (if m = n, what we want to show follows trivially). Then
F =< {em+1, . . . , en} >, the span of {em+1, . . . , en}. Since an element x of Rn is
written as

x = y + z, y ∈ E, z ∈ F,
we define the function

||x|| := ||y||E + |z|.
It is immediate to see that ||.|| is a norm on Rn. Also, ||y|| = ||y||E , for every y ∈ E.

(iii) If |.||E , and ||.||′E are two norms on E, let ||.|| and ||.||′ be their induced norms
on Rn. Since the latter are equivalent, the former are also equivalent.
(iv) The unit ball B(0, 1] = {x ∈ E | ||x||E ≤ 1} is bounded with respect to
the extension norm ||.|| of ||.||E to Rn, hence by Proposition 1.1.23(iii) it is also
bounded in Rn (with respect to the Euclidean norm). By the continuity of ||.|| and
the implied continuity of its restriction ||.||E , we have that B(0, 1] is closed with
respect to ||.||E . Hence, by Proposition 1.1.23(ii) it is also closed with respect to
the Euclidean norm. �

Definition 1.1.29. If (xn)∞n=0 ⊂ Rn, the sequence of partial sums (sk)∞k=0 of
(xn)∞n=1 is defined by

sk :=

k∑
i=0

xi,

and it is often denoted by an infinite series
∞∑
k=0

xk, or
∑
k

xk.

If limk→∞ sk = x, for some x ∈ Rn, we write
∞∑
k=0

xk = x, or
∑
k

xk = x.

If ||.|| is a norm on Rn, a series
∑
k xk is absolutely convergent, if the series

∞∑
k=0

||xk||

is convergent in R.



16 1. BASIC IDEAS OF ODES

If a series is absolutely convergent with respect to some norm ||.|| on Rn, then
it is absolutely convergent with respect to any other norm ||.||∗ on Rn. For this let

σk :=
∑k
i=0 ||xi|| and τk :=

∑k
i=0 ||xi||∗. By the equivalence of norms there is some

C > 0 such that if n > m,

|τn − τm| =
∣∣∣∣ n∑
i=m+1

||xi||∗
∣∣∣∣ =

n∑
i=m+1

||xi||∗ ≤ C
n∑

i=m+1

||xi|| = C|σn − σm|.

Hence, absolute convergence of a series is independent of the norm on Rn, and we
speak of absolute convergence of a series in Rn without reference to some norm.

Proposition 1.1.30 (Comparison test). Let ||.|| be a norm on Rn and let the
series

∑
k xk in Rn. If there is a series

∑
k ak in R such that:

(i) ak ≥ 0, for every k;
(ii) ||xk|| ≤ ak, for every k;
(iii)

∑
k ak converges in R,

then the series
∑
k xk converges absolutely.

Proof. If τk :=
∑k
i=0 ||xi|| and σk =

∑k
i=0 ai, for every k, and since for n > m

|τn − τm| =
n∑

i=m+1

||xi|| ≤
n∑

i=m+1

ai =

∣∣∣∣ n∑
i=m+1

ai

∣∣∣∣ = |σk − σm|,

we use the Cauchy criterion for convergence. �

1.2. The Newtonian gravitational field and the method of integrals

The field of ordinary differential equations (ODEs) is closely related to physics.
In this section we discuss Newton’s second law that connects the physical concept
of force field and the mathematical concept of differential equation, and lies at the
root of classical mechanics. We shall be working with a particle moving in a field
of force. We represent mathematically the notion of trajectory of a moving particle
in Rn (usually n ≤ 3) by a path in Rn.

Definition 1.2.1. Let U ⊆ Rn. A path in U is a continuous function γ : I → U ,
where I is an interval of R. If γ is differentiable on I (i.e., each projection function
γi is differentiable), the derivative of γ defines a function γ′ : I → Rn. If γ′ is
continuous, we say that γ is C1, or continuously differentiable. If γ′ is C1, we say
that γ is C2. Inductively one defines a function γ to be Cn, where n > 0. Moreover,
γ is called C∞, if it is Cn, for every n > 0. The set U is called path-connected, if
for every x, y ∈ U there is some path γ : [a, b] → U from x to y i.e., γ(a) = x and
γ(b) = y. Similarly, U is Ci path-connected, if there is a Ci path connecting any
two points of U , where i ∈ N+ ∪ {∞}. A path from x to x in U is called a closed
path, or a loop in U .
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A convex subset of Rn is path-connected, but the converse is not generally true.

U

γ(t)

γ(a)

γ(b)

The space Rn is C∞ path-connected in the following special way.

Proposition 1.2.2. Let x, y ∈ Rn such that |y − x| > 0.

(i) The function γx,y : [0, |y − x|]→ Rn, defined by

γx,y(t) := x+ t
y − x
|y − x|

,

γx,y(t)

x

y

for every t ∈ [0, |y − x|] is a C∞ path from x to y, which is an isometry i.e., for
every s, t ∈ [0, |y − x|]

|γx,y(s)− γx,y(t)| = |s− t|.

(ii) If δx,y : [0, |y− x|]→ Rn is a path from x to y that is an isometry, then δx,y is
equal to γx,y.

Proof. Exercise. �
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Proposition 1.2.3. Let x, y ∈ S2 such that y 6= x and y 6= −x.

(i) If u ∈ S2 is orthogonal to x, then the path σx,u : R→ S2, defined by

σx,u(t) := x cos t+ u sin t,

x

y

u

for every t ∈ R, parametrizes the great circle 〈{x, u}〉 ∩ S2, where 〈{x, u}〉 is the
linear span of x and u, which, since x, u are linearly independent, 〈{x, u}〉 is a
plane.
(ii) There is a C∞ path σx,y : [0, |y − x|] → S2 that parametrizes the arc of the
unique great circle from x to y.

Proof. Exercise. For (ii) use the vector

u :=
y − 〈y, x〉x
|y − 〈y, x〉x|

.

�

Remark 1.2.4. (i) An inner product 〈〈·, ·〉〉 on Rn is a continuous function.
(ii) Let I be an interval of R and let f, g : I → Rn be C1.
(a) If 〈〈f, g〉〉 : I → R is defined for every t ∈ I by

〈〈f, g〉〉(t) := 〈〈f(t), g(t)〉〉,

then, for every t ∈ I we have that

〈〈f, g〉〉′(t) = 〈〈f ′(t), g(t)〉〉+ 〈〈f(t), g′(t)〉〉.

(b) For every t ∈ I we have that

〈〈f ′(t), f(t)〉〉 =
1

2

(
||f(t)||2

)′.
Proof. Exercise. �
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Differentiability of a function f on an open subset of Rn means that locally f
is well-approximated by some linear, therefore continuous, function on Rn. First
we consider a function f that takes values in R.

Definition 1.2.5. Let U be an open subset of Rn, x0 ∈ U and f : U → R. We
say that f is differentiable at x0, if there are A ∈ Rn and a function ψ defined for
all sufficiently small h ∈ Rn such that

lim
h→0

ψ(x) = 0,

and

f(x0 + h) = f(x0) + 〈A, h〉+ |h|ψ(x0).

Equivalently, we may write these two conditions in one as follows:

f(x0 + h) = f(x0) + 〈A, h〉+ o(x0).

We say that f is differentiable on U , if it is differentiable at every point of U . We
define the gradient of f at any point x at which all partial derivatives exist to be
the vector

gradf(x) :=
(
D1f(x), . . . , Dnf(x)

)
=

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
.

One should write (gradf)(x) but we omit the parentheses for simplicity.

Clearly, the differentiability of f at x0 implies the continuity of f at x0. If f, g
are differentiable on U , and if λ ∈ R, it is immediate to see that

grad(f + g) = gradf + gradg, and grad(λf) = λgradf.

Proposition 1.2.6. Let U be an open subset of Rn, x0 ∈ U and f : U → R.
(i) If f is differentiable at x0, and if A ∈ Rn such that

f(x0 + h) = f(x0) + 〈A, h〉+ o(x0),

then all partial derivatives of f at x0 exist, and

A = gradf(x0).

(ii) If all partial derivatives of f exist in U and for each i the function

U 3 x 7→ ∂f

∂xi
(x)

is continuous3, then f is differentiable at x0.

Proof. See [7], p.322. �

Proposition 1.2.7 (Chain rule). Let I be an interval of R, and φ : I → Rn
differentiable on I such that φ(I) ⊆ U , where U is an open subset of Rn

3In this case f is called C1. As in Definition 1.2.1, one defines Cn functions for every n > 0.



20 1. BASIC IDEAS OF ODES

I U ⊆ Rn

R.

φ

f ◦ φ f

If f : U → R is differentiable, f ◦ φ : I → R is differentiable and for every t ∈ I
(f ◦ φ)′(t) =

〈
gradf(φ(t)), φ′(t)

〉
.

Proof. See [7], pp.324-325. �

Unfolding the chain rule we get

(f ◦ φ)′(t) =

〈(
∂f

∂x1
(φ(t)), . . . ,

∂f

∂xn
(φ(t))

)
, φ′(t)

〉
=

n∑
i=1

∂f

∂x1
(φ(t))φi

′(t)

=:
∑
i

∂f

∂xi
(φ(t))

dφi
dt

(t).

An immediate consequence of the chain rule is that if f : U → R is differentiable,
and U ⊆ Rn is path connected, then

gradf = 0⇒ f is constant.

If x ∈ U , and u ∈ Rn is a fixed vector with |u| = 1, the directional derivative
Duf(x) of f : U → R at x in the direction u is defined by

Duf(x) :=
(
f(x+ tu)

)′(0) = g′(0),

where g(t) := f(x + tu), for every t ∈ J , for some open interval J in R. Since
g′(t) = 〈gradf(x+ tu), u〉 and g′(0) = 〈gradf(x), u〉, if gradf(x) 6= 0, then Duf(x)
becomes maximal precisely when u has the direction of gradf(x) i.e., gradf(x)
points in the direction of the maximal increase of f at x. Moreover, from the
implicit function theorem one can deduce that gradf(x) is perpendicular to the
tangent plane of the level hypersurface Sa(f) at x of level a = f(x), where

Sa(f) := {x ∈ U | f(x) = a}.
Definition 1.2.8. Let U be an open subset of Rn. A vector field on U is a

function F : U → Rn. If F is represented by its coordinate functions i.e.,

F = (f1, . . . , fn),

F is continuous (differentiable), if each fi : U → R is continuous (differentiable).
F is called conservative, if there is a differentiable function V : U → R such that4

F = −gradV.

4The negative sign is only traditional, and it can be avoided.
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In this case V is called a potential energy function for F .

If V is a potential energy function for F and c ∈ R some constant, then V +c is
also a potential energy function for F . If f is a differentiable function on U , then,
because of Proposition 1.2.6(i), we get the vector field on U defined by

U 3 x 7→ gradf(x).

Definition 1.2.9. Let U ⊆ Rn be open, γ : [a, b]→ U a C1 path and F : U →
Rn a continuous vector field. The path integral of F along γ is defined by∫

γ

F :=

∫ b

a

〈
F (γ(t)), γ′(t)

〉
dt.

Note that by Remark 1.2.4(i) and our hypotheses on γ and F the function in
the integral is continuous, hence Riemann-integrable.

Proposition 1.2.10. Let U ⊆ Rn be path-connected and open, and let F : U →
Rn be a continuous vector field on U . The following are equivalent.

(i) F is conservative.
(ii) The path integral of F between any two points of U is independent of the path
connecting them.
(iii) The path integral of F along any loop in U is equal to 0.

Proof. Exercise. �

Definition 1.2.11. Let U be an open subset of R3. A force field on U is a
vector field F : U → R3, where the vector F (x) assigned to x is interpreted as a
force acting on a particle placed at x. A position function of a particle in U is a
function x : J → U that is C2, where J is an open interval in R. The vector x(t)
is interpreted as the position of the particle at time t.

U

x(t)

F (x(t))

If x is a position function of a particle in U and F is a force field on U , we may also
say that the particle is moving in F . We use the term force field also for vector
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fields with values in R or in R2. If the mass of the particle is m > 0, the kinetic
energy of the particle is the function T : J → R defined by5

T (t) :=
1

2
m
∣∣ẋ(t)

∣∣2.
If F is conservative and V is a potential energy function for F , the total energy of
the particle is the function E : J → R defined by

E(t) := T (t) + V (x(t)).

If γ is a path in U from x0 to x1 in U and F is a force field on U , the path integral∫
γ
F of F along γ is the work done in moving a particle along this path.

If x(t) is a position function of some particle with mass m, and F is a force
field, Newton’s second law

F = ma

asserts that a particle in a force field moves in such a way that the force vector
at the location of the particle, at any instant, equals the acceleration vector of the
particle times its mass. If we write the law as the equation

F (x(t)) = mẍ(t),

and rewrite it in the form

ẍ(t) =
1

m
F (x(t)),

we get a differential equation of second order i.e., an equation the solution of which
is a function and involves the derivatives of this function. From now on, ode means
ordinary differential equation. The order of an ode is the order of the highest
derivative that occurs explicitly in it. If we write Newton’s second law as

F (x(t)) = mv̇(t),

where v(t) = ẋ(t), we get a first order ode in terms of x(t) and v(t). The term
ordinary is used to distinguish these equations from differential equations involving
partial derivatives of functions, which are called partial differential equations. In
the next sections of this chapter we’ll study linear odes i.e., equations of the form

a0(x)f(x) + a1(x)f ′(x) + . . .+ an(x)f (n)(x) + b(x) = 0,

where a0(x), . . . , an(x) and b(x) are differentiable functions. It is easy to see that
if we consider the linear ode

(1.7)

n∑
i=0

ai(x)f (i)(x) = 0,

where f (i)(x) denotes the i-th derivative of f at x, and g, h are solutions of equa-
tion (1.7), then λg + µh are also solutions. Note that Newton’s second law, in its

5A standard way in physics texts to write the first and the second derivative of x(t) with

respect to time (only) is through the symbols ẋ(t) and ẍ(t), respectively.
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full generality, is a non-linear ode and its solutions do not form a vector space. In
special cases though, it is reduced to a linear ode.

E.g., if we consider a particle of mass m attached to a wall by means of a
spring, and x : J → R is its position function, where 0 ∈ J , such that x(t) is the
displacement of the particle from the equilibrium position x(0), then according to
Hooke’s law F (x(t)) = −Kx(t), where K > 0 is Hooke’s constant. If we assume no
friction, Newton’s second law becomes the linear ode

(1.8) ẍ(t) + p2x(t) = 0,

where p =
√

K
m . The equation (1.8) is the equation of the harmonic oscillator in

one dimension, that has as solutions the functions

(1.9) x(t) = A cos(pt) +B sin(pt), A,B ∈ R.

One can show that (1.9) is the only solution of (1.8) satisfying the initial conditions

x(0) = A and ẋ(0) = pB.

Using the formula cos(φ+ θ) = cosφ cos θ− sinφ sin θ, solution (1.9) takes the form

(1.10) x(t) = a cos(pt+ t0),

where

a :=
√
A2 +B2, and cos t0 =

A√
A2 +B2

.

In the proof of Theorem 1.2.20 we will consider the equation

(1.11) ẍ(t) + p2x(t) = C,

where K represents a constant disturbing force, and has solutions of the form

(1.12) x(t) = A cos(pt) +B sin(pt) +
C

p2
, A,B ∈ R,

which can take the form

(1.13) x(t) = a cos(pt+ t0) +
C

p2
.

The two-dimensional version of the harmonic oscillator concerns a function x :
J → R2 and a force field F on R2 defined by F (x(t)) = −Kx(t), for some k > 0.
Newton’s second law takes again the form

(1.14) ẍ(t) + p2x(t) = 0,

and has solutions of the form

(1.15) x1(t) = A cos(pt) +B sin(pt), x2(t) = C cos(pt) +D sin(pt).

Theorem 1.2.12 (Conservation of energy). Let U ⊆ R3 be open. If x(t) is the
position function in U of a particle of mass m moving in a conservative force field
F on U , then its total energy E is constant.
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Proof. Let V : U → R a potential energy function for F . By the definition of
a position function of a particle in U and the chain rule on V ◦ x : J → R we get

(V ◦ x)′(t) =
〈
gradV (x(t)), ẋ(t)

〉
=
〈
− F (x(t)), ẋ(t)

〉
= −

〈
F (x(t)), ẋ(t)

〉
.

By Remark 1.2.4(ii)(b) and Newton’s second law we have that

E′(t) = T ′(t) + (V ◦ x)′(t)

= m
〈
ẍ(t), ẋ(t)

〉
−
〈
F (x(t)), ẋ(t)

〉
=
〈
mẍ(t), ẋ(t)

〉
−
〈
mẍ(t), ẋ(t)

〉
=
〈
0, ẋ(t)

〉
= 0.

Hence the function E is constant on the interval J . �

The previous proof is independent from the choice of V , since any potential energy
function V ′ for F has the property gradV ′(x(t)) = −F (x(t)), for every t ∈ R.

Definition 1.2.13. A force field F on an open subset U of R3 is called central,
if there is µ : U → R such that for every x ∈ U

F (x) = µ(x)x.

According to Newton’s law of gravitation, a body of mass m1 exerts a force
Fm1

on a body of mass m2 such that its magnitude is

gm1m2

r2
,

where r is the distance of their centers of gravity and g is a constant, and the
direction of Fm1

is from m2 to m1.

m1 m2Fm2
Fm1

r

If m1 is placed at the origin of R3 and m2 at x ∈ R3, we have that

Fm1
:=

(
− gm1m2

|x|3

)
x.
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The force Fm2
of m2 on m1 is −Fm1

. If m1 is much larger than m2, and since

a1 =
1

m1
Fm2

=

(
gm2

|x|3

)
x,

we may assume that m1 does not move. In the case of planetary motion, where
e.g., the sun has mass m1 and a much smaller object of mass m2 is considered, the
assumption is natural. If we want to avoid this simplification, we may consider the
center of mass of the sun at the origin.

S

P

FP

FS

Definition 1.2.14. If we place the sun S at the origin of R3, the Newtonian
gravitational force field to a much smaller planet P of mass m placed at

x ∈ R3 \ {(0, 0, 0)} =: U
(3)
0

is given by

F (x) =

(
− C

|x|3

)
x.

If we use the notation |U (3)
0 | := {|x| | x ∈ U

(3)
0 }, then

F (x) = f(|x|)x,

where, f : |U (3)
0 | → R is defined by f(t) := −C

t3 , for every t ∈ |U (3)
0 | = (0,+∞),

and C is the obviously defined constant. Clearly, F is a central force field on U
(3)
0 ,

and it is conservative, since a simple calculation shows that(
C

|x|3

)
x = gradV (x),

where

V (x) := − C

|x|
= g(|x|),

where g : |U (3)
0 | → R is defined by g(t) := −Ct , for every t ∈ |U (3)

0 |. As we show
next, this situation is standard for conservative force fields that are central.
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Proposition 1.2.15. If F is a conservative force field on U
(3)
0 and V : U

(3)
0 →

R is a potential energy function for F , the following are equivalent:

(i) F is central.

(ii) There is f : |U (3)
0 | → R such that for every x ∈ U (3)

0 we have F (x) = f(|x|)x.

(iii) There is a function g : |U (3)
0 | → R such that g ◦ x is differentiable, for every

position function x(t) on U
(3)
0 , and for every x ∈ U (3)

0 we have V (x) = g(|x|).

Proof. (iii)⇒ (ii): If we see x ∈ U (3)
0 as x(t) for some differentiable position

function x : J → U
(3)
0 , then by the chain rule we have

(V ◦ x)′(t) =

3∑
i=1

∂V

∂xi
(x(t))

dxi
dt

(t).

Moreover,

(V ◦ x)′(t) = (g ◦ |x|)′(t)
= g′(|x(t)|)|x|′(t)

= g′(|x(t)|)1

2

(
x2

1(t) + x2
2(t) + x2

3(t)
)− 1

2
(
x2

1(t) + x2
2(t) + x2

3(t)
)′

= g′(|x(t)|)1

2

(
|x(t)|2

)− 1
2

(
2x1(t)

dx1

dt
(t) + 2x2(t)

dx2

dt
(t) + 2x3(t)

dx3

dt
(t)

)
=

3∑
i=1

(
g′(|x(t)|)
|x(t)|

xi(t)

)
dxi
dt

(t).

Note that this is well-defined, since 0 /∈ U (3)
0 . Hence, for each i ∈ {1, 2, 3} we have

∂V

∂xi
(x(t)) =

g′(|x(t)|)
|x(t)|

xi(t).

Since F (x) = −gradV (x), we get

F (x(t)) = −
(
∂V

∂x1
(x(t)),

∂V

∂x2
(x(t)),

∂V

∂x3
(x(t))

)
= −g

′(|x(t)|)
|x(t)|

(
x1(t), x2(t), x3(t)

)
= −g

′(|x(t)|)
|x(t)|

x(t).

Hence we define f : |U (3)
0 | → R by

f(|x|) := −g
′(|x|)
|x|

.
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(ii)⇒ (i): We define µ : U
(3)
0 → R by µ(x) := f(|x|), for every x ∈ U (3)

0 .
(i)⇒ (iii): It suffices to show that V is constant on each non-trivial sphere

Sr = {x ∈ R3 | |x| = r} ⊂ U (3)
0 ,

where r > 0. Since then, for every r > 0

x, y ∈ Sr ⇒ V (x) = V (y),

the function g : |U (3)
0 | → R, defined by g(|x|) = V (x), is well-defined. The rest of

the proof is an exercise. �

Next follows a remarkable consequence of the centrality of a force field.

Proposition 1.2.16. If F is a central force field on an open U ⊆ U
(3)
0 , a

particle moving in F moves in a fixed plane.

Proof. Let x : J → U the position function of a particle moving in F . We fix
some t0 ∈ J and let

Pt0 = P
(
x(t0), v(t0)

)
the unique plane in R3 containing the position vector of the particle at t0, the
corresponding velocity vector and the origin. Since F (x) = µ(x)x, for some µ :
U → R, the force vector F (x(t0)) also lies in Pt0 . We show that the particle is
moving in this plane i.e.,

∀t∈R
(
x(t) ∈ Pt0

)
.

Using the Leibniz product rule for the cross product of R3-vector-valued differen-
tiable functions u,w on R

d(u× w)

dt
(t) =

(
u̇(t)× w(t)

)
+
(
u(t)× ẇ(t)

)
,

where (u× w)(t) := u(t)× w(t), we have

d(x× ẋ)

dt
(t) =

(
ẋ(t)× ẋ(t)

)
+
(
x(t)× ẍ(t)

)
= x(t)× ẍ(t)

= x(t)×
[

1

m
µ(x(t))

]
x(t)

= 0.

Hence the function x× ẋ is constant, and let x(t)× ẋ(t) = c ∈ R3, for every t ∈ J .
If c 6= 0, then for every t ∈ J the vectors x(t) and ẋ(t) lie in the plane orthogonal

to the vector c, and this is the fixed plane in which the particle moves in. Since c
is orthogonal to x(0) and ẋ(0), this plane is Pt0

If c = 0, the equality x(t)× ẋ(t) = 0 implies that there is some g : J → R such
that for every t ∈ J

ẋ(t) = g(t)x(t).
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Hence, F (x) and v(t) are always directed along the line through the origin and the
position x(t) of the particle. Actually, in this case the particle always moves along
the same line through the origin i.e.,

∀t∈J
(
x(t) ∈

〈
{x(t0)}

〉)
,

hence trivially it moves in Pt0 , which is just a line. To show this we work as follows.
If x(t) = (x1(t), x2(t), x3(t)), then

dxi
dt

(t) = g(t)xi(t),

for each i ∈ {1, 2, 3}. Since U does not contain the origin, we have

h(t) :=

∫ t

t0

g(s)ds

=

∫ t

t0

1

xi(s)

dxi
ds

(s)ds

=

∫ t

t0

(
lnxi(s)

)′ds
= lnxi(t)− lnxi(t0).

Since then lnxi(t) = h(t) + lnxi(t0), we get

xi(t) = eh(t)xi(t0).

Since this is the case for each i, the vector x(t) is a scalar multiple of x(t0). �

Because of Proposition 1.2.16 we can assume without loss of generality that

our central force field of study is defined on an open subset of U
(2)
0 := R2 \ {(0, 0)}.

Definition 1.2.17. The angular momentum of a moving particle with position
function x : J → R2 is the function h : J → R defined by

h(t) := mr2(t)
dθ

dt
(t) =: mr2θ̇,

where (r(t), θ(t)) are the polar coordinates of x(t).

Theorem 1.2.18 (Conservation of angular momentum). The angular momen-

tum of a particle moving in a central force field on an open U ⊆ U (2)
0 is constant.

Proof. Let x : J → U the position function of the particle, and let ι(θ(t)) be
the unit vector in the direction x(t) i.e., for every t ∈ J

x(t) = r(t)ι(θ(t)).

Let η(θ(t)) be the unit vector such the angle from ι(θ(t)) to η(θ(t)) is π
2 .
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x(t)

ι(t)

η(t)

Since cos(θ + π
2 ) = − sin θ and sin(θ + π

2 ) = cos θ we have

ι(θ(t)) :=
(

cos θ(t), sin θ(t)
)
, and η(θ(t)) :=

(
− sin θ(t), cos θ(t)

)
,

hence taking the derivatives with respect to time we get

ι̇ = ηθ̇, and η̇ = −ιθ̇.
E.g., for the first equality we have (ι ◦ θ)′(t) = ι′(θ(t))θ′(t) = η(θ(t))θ′(t). Hence,

(1.16) ẋ = ṙι(θ(t)) + rη(θ(t))θ̇,

and since U does not contain the origin we have

ẍ = r̈ι(θ(t)) + ṙη(θ(t))θ̇ + ṙη(θ(t))θ̇ + r(−ι(θ(t))θ̇2 + rη(θ(t))θ̈

= (r̈ − rθ̇2)ι+
(
2ṙθ̇ + rθ̈

)
η

= (r̈ − rθ̇2)ι+
1

r

(
(2rṙθ̇ + r2θ̈

)
η

= (r̈ − rθ̇2)ι+

[
1

r

d

dt

(
r2θ̇
)]
η.

Since ẍ = m−1F (x) = m−1µ(x)x, for some µ : U → R, the vector ẍ(t) has zero
component perpendicular to x(t). Hence

d

dt

(
r2θ̇
)

= 0,

and this implies ḣ = 0, hence h is constant on J . �

Because of Proposition 1.2.16 we study the motion of a planet in the Newtonian

gravitational field (of the sun placed at the origin) on U
(2)
0 , which is defined by

F (x) := − x

|x|3
,

where the constant C in Definition 1.2.14 is avoided with appropriate change of
the units. Let s(t) be a solution curve of ẍ(t) = m−1F (x(t)). By Theorems 1.2.12
and 1.2.18 the total energy E and the angular momentum h are constant at all
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points of the curve s(t). If h = 0, then θ̇ = 0, hence θ is constant i.e., the planet
moves along a straight line toward or away from the sun. Therefore, we assume
that h 6= 0. If s(t) =

(
r(t), θ(t)

)
, and since r2θ̇ is a non-zero constant function of

time, the sign of θ̇ is constant along s(t), hence θ(t) is either an increasing or a
decreasing function of time. In order to have constant h along s(t) we need to have
r as a function of θ along the curve s(t) i.e., r = r(θ). We define

u(t) :=
1

r(t)

i.e.,

u(t) = −V (s(t)),

where V (x) = − 1
|x| . Note that since r = r(θ), we also get u = u(θ).

Lemma 1.2.19. Let s(t) be a solution curve of ẍ(t) = m−1F (x(t)), where F (x)

is the Newtonian gravitational field on U
(2)
0 , and h is non-zero along s(t).

(i) The kinetic energy T along s(t) satisfies the following formula:

(1.17) T =
1

2

h2

m

[(
du

dθ

)2

+ u2

]
.

(ii) Along s(t) the functions u, θ and E satisfy the following ode:

(1.18)

(
du

dθ

)2

+ u2 =
2m

h2

(
E + u

)
.

(iii) Along s(t) the functions u and θ satisfy the following ode:

(1.19)
d2u

dθ2
+ u =

m

h2
.

Proof. Exercise. �

Theorem 1.2.20. Let P be a planet moving in the Newtonian gravitational

field (of the sun placed at the origin) on U
(2)
0 . If the angular momentum h along a

solution curve s(t) of ẍ(t) = m−1F (x(t)) is non-zero, then P moves along a conic
of eccentricity

ε =

(
1 +

2Eh2

m

) 1
2

.

Proof. Equation (1.19) has the form of equation (1.11), where p = 1 and
C = m

h2 , hence it has a solution of the form

(1.20) u(θ) = a cos(θ + θ0) +
m

h2
,

where a, θ0 ∈ R. Hence

(1.21)
du

dθ
= −a sin(θ + θ0).
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Substituting equations (1.20) and (1.21) in (1.18) we get

a = ± 1

h2

(
2mh2E +m2

) 1
2 .

Hence (1.20) becomes

u(θ) = ± 1

h2

√
2mh2E +m2 cos(θ + θ0) +

m

h2

=
m

h2
± 1

h2

√
2Em2h2

m
+m2 cos(θ + θ0)

=
m

h2
± m

h2

√
2Eh2

m
+ 1 cos(θ + θ0)

=
m

h2

[
1±

√(
1 +

2Eh2

m

)
cos(θ + θ0)

]
.

Since cos(θ + θ0 + π) = − cos(θ + θ0), and θ0 is arbitrary, hence it can be written
as φ+ π, we can use only one sign in the last equation. Hence we get

(1.22) u(θ) =
m

h2

[
1 +

√(
1 +

2Eh2

m

)
cos(θ + θ0)

]
.

If we change the variable θ to θ′ = θ − θ0, then

(1.23) u(θ′) = u(θ − θ0) =
m

h2

[
1 +

√(
1 +

2Eh2

m

)
cos θ

]
.

Since the equation of a conic in polar coordinates is

u =
1

r
, u =

1

l
(1 + ε cos θ),

where l is the latus rectum and ε ≥ 0 is the eccentricity of the conic, we get

l =
h2

m
, ε =

√(
1 +

2Eh2

m

)
.

�

In the equation of a conic in polar coordinates, if ε > 1, then conic is a hyper-
bola, if ε = 1, then conic is a parabola, and if ε < 1, then conic is an ellipse. The
special case ε = 0 corresponds to a circle. Hence, if E > 0, the orbit of the planet
around the sun is a hyperbola, if E = 0, the orbit of the planet around the sun is
a parabola, and if E < 0, the orbit of the planet is an ellipse.

Corollary 1.2.21 (Kepler’s first law). Let P be a planet moving in the New-

tonian gravitational field (of the sun placed at the origin) on U
(2)
0 . If the angular

momentum h along a solution curve s(t) of ẍ(t) = m−1F (x(t)) is non-zero, then
P moves along an ellipse.
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Proof. The quantity u = 1
r is always positive. Hence by equation (1.23)√(
1 +

2Eh2

m

)
cos θ > −1.

Since for planets like the earth cos θ = −1 has been observed at least once a year,
and since E is constant, we get√(

1 +
2Eh2

m

)
< 1,

which implies E < 0. �

While in the planetary model of Copernicus the speed of the planet in orbit
around the sun is constant, for Kepler neither the velocity nor the angular velocity
is constant, but the areal velocity is.

Corollary 1.2.22. If a particle moves in a central force field on some open

U ⊆ U (2)
0 , it sweeps out equal areas in equal intervals of time.

Proof. Let A(t) be the area swept out by the moving particle x(t) in the time
from t0 to t. In polar coordinates we get dA = 1

2r
2dθ and we define

Ȧ :=
1

2
r2θ̇.

By Theorem 1.2.18 we have that Ȧ is constant. �

In the case of the Newtonian gravitational field Corollary 1.2.22 becomes Ke-
pler’s second law.

Corollary 1.2.23 (Kepler’s second law). A line segment joining a planet and
the sun sweeps out equal areas in equal intervals of time.

Intuitively, a state of a physical system is information characterizing it at a
given time. E.g., a state for the harmonic oscillator in one dimension is a pair of
vectors (x(t), v(t)) and in this case the space of states of the harmonic oscillator is
the open set R3 × R3. Since Newton’s second law can be written as the ode

mv̇(t) = F (x(t)),

a solution to it is a curve s(t) = (x(t), v(t)) in the state space R3 × R3 such that

ẋ(t) = v(t), and v̇(t) =
1

m
F (x(t)),

for every t ∈ J . Trivially, if x(t) is a solution to the 2nd-order ode of Newton’s
second law, we get a solution of the 1st-order version of it by setting v(t) = ẋ(t).
The other direction is also trivial. Moreover, the function

A : R3 × R3 → R3 × R3,



1.3. THE SIMPLEST ODE, BUT ONE OF THE MOST IMPORTANT 33

A
(
x(t), v(t)

)
:=
(
v(t),

1

m
F (x(t))

)
is a vector field on the space of states

S := R3 × R3

that defines the 1st-order ode of Newton’s second law. A solution curve s(t) =
(x(t), v(t)) describes the evolution of the state of the system in time. We can view
the total energy of a particle as the function

E : S → R,

E(x(t), v(t)) :=
1

2
m|v(t)|2 + V (x(t)),

and when we say that the total energy is an integral we mean that the composition

J S

R

s

E ◦ s E

is constant, or E is constant on the solution curve in the state space. According
to Theorem 1.2.18, the angular momentum is also an integral for mv̇(t) = F (x(t)).
In the nineteenth century the solution of an ode was related to the construction
of appropriate integrals. This method of integrals, which uses results from basic
calculus, does not suffice though, for the solution of more general odes, for the
solution of which we need to employ tools and results from more abstract theories.

1.3. The simplest ode, but one of the most important

If a ∈ R and x : J → R is differentiable, one can show (exercise) that the ode

(1.24) ẋ(t) = ax(t)

has as set of solutions the set

Solutions(1.24) =
{
s : J → R | ∃C∈R∀t∈J

(
s(t) = Ceat

)}
.

Equation (1.24) is the simplest ode. If s ∈ Solutions(1.24), then s(0) = C.
Conversely, there is a unique function s ∈ Solutions(1.24) such that s(0) = C.
This is a special case of the existence of a unique s ∈ Solutions(1.24) satisfying
the initial condition s(t0) = s0, where t0 ∈ J .

The parameter a in (1.24) influences dramatically the way the solution curve s
looks like. If a > 0, then we have the following three cases:
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a > 0 C > 0

C < 0

C = 0

If C > 0, then limt−→+∞ Ceat = +∞, and if C < 0, then limt−→+∞ Ceat = −∞.
If a = 0, the solution curves are constant functions

a = 0
C > 0

C < 0

C = 0

If a < 0, we have the following three cases:

a < 0C > 0

C < 0

C = 0

In this case, if C 6= 0, then

lim
t−→+∞

Ceat = C lim
t−→+∞

e−|a|t = C lim
t−→+∞

1

e|a|t
= 0.

The above graphs reflect the qualitative behavior of the solution curves. If a 6= 0,
equation (1.24) is stable in the following sense: If a is replaced by some a′ sufficiently
close to a, the qualitative behavior of the solution curves does not change. E.g., we
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have that
|a′ − a| < |a| ⇒ sign(a′) = sign(a),

since, if a > 0, then |a′ − a| < a⇔ −a < a′ − a < a⇒ 0 < a′ < 2a, while, if a < 0,
then |a′ − a| < −a ⇔ a < a′ − a < −a ⇒ 2a < a′ < 0. If a = 0, equation (1.24)
is unstable, since the slightest change in the value of a implies a big change in the
qualitative behavior of the solution curves. For this reason we say that a = 0 is a
bifurcation point in the one-parameter family of equations(

ẋ(t) = ax(t)

)
a∈R

.

Let the following system of two odes in two unknown functions:

(1.25)
ẋ1(t) = a1x1(t),

ẋ2(t) = a2x2(t).

Since there is no relation between x1(t) and x2(t), we have that

Solutions(1.25) =

{
s : J → R2 | ∃C1,C2∈R∀t∈J

(
s(t) =

(
C1e

a1t, C2e
a2t
))}

.

If s1(t) = C1e
a1t and s2(t) = C2e

a2t, we get C1 = s1(0) and C2 = s2(0). Equa-
tion (1.25) can be written as

(1.26) ẋ(t) = Ax(t),

where
A : R2 → R2,

A(x1, x2) := (a1x1, a2, x2)

is a vector field on R2, which geometrically we understand that it assigns to each
vector x ∈ R2 the directed line segment from x to x+Ax.

x

x(t)

Ax(t)

x(t) +Ax(t)

We can write equation (1.25) using matrices as follows

(1.27)

[
ẋ1(t)
ẋ2(t)

]
=

[
a1 0
0 a2

] [
x1(t)
x2(t)

]
.

A dynamical system is a way of describing the passage in time of all states s in
the space of states S of a physical system. Here S will be an open subset of Rn,
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and a dynamical system on S tells us for every s ∈ S the history of s i.e., its future
and past positions in time. A dynamical system on S is an appropriately defined6

function of type
φ : R× S → S,

such that for every s ∈ S, the function

φs : R→ S,

φs(t) := φ(t, s)

represents the history of the state s.
The ode (1.25) generates a dynamical system. If we consider S := R2, the

dynamical system on R2 generated by (1.25) is the function

(1.28)
φ : R× R2 → R2

φ(t, u) :=
(
u1e

a1t, u2e
a2t
)
.

We can visualize a dynamical system on R2 as particles placed at each point of R2

and moving simultaneously, like dust particles under a steady wind. In order to
prove some properties of the aforementioned dynamical system on R2, it is useful
to recall the following definitions and facts.

Definition 1.3.1. Let L(Rn,Rm) denote the space of (continuous) linear maps
from Rn to Rm. If T ∈ L(Rn,Rm) we define the norm

||T || := inf
{
σ > 0 | ∀x∈Rn

(
|T (x)| ≤ σ|x|

)}
.

Proposition 1.3.2. If T ∈ L(Rn,Rm), then

||T || = sup

{
|T (x)|
|x|

| x ∈ Rn and |x| > 0

}
= sup

{
|T (x)| | x ∈ Rn and |x| ≤ 1

}
= sup

{
|T (x)| | x ∈ Rn and |x| = 1

}
.

Proof. Exercise. �

By Proposition 1.1.18(ii) the Euclidean normed space (Rn, |.|) is a Banach space
i.e., a normed space where every Cauchy sequence in it is convergent.

Theorem 1.3.3. The normed space (L(Rn,Rm), ||.||) is a Banach space.

Proof. Exercise. �

Definition 1.3.4. Let U be an open subset of Rn, x0 ∈ U and f : U → Rm.
We say that f is differentiable at x0, if there is a linear map λx0 : Rn → Rm and a
function ψ defined for all sufficiently small h ∈ Rn such that

lim
h→0

ψ(x) = 0,

6We will define and study dynamical systems later in this course.
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and

f(x0 + h) = f(x0) + λx0(h) + |h|ψ(h).

We say that f is differentiable on U , if it is differentiable at every point of U . In
that case, the derivative f ′ is a map

f ′ : U → L(Rn,Rm),

x0 7→ λx0 =: f ′(x0).

We say that f is C1, if f is differentiable on U and the derivative f ′ is continuous,
where the space L(Rn,Rm) is equipped with the norm in Definition 1.3.1.

In many cases, to show that some f : U → Rm is C1 we use the following.

Proposition 1.3.5. Let U be an open subset of Rn, and f : U → Rm. The
following are equivalent.
(i) f is C1.

(ii) The partial derivatives ∂fi
∂xj

: U → R, where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},
exist and are continuous functions.

Proof. See [7], p.371. �

Proposition 1.3.6. Let φ be the dynamical system defined by equation (1.28).

(i) φ is C1.
(ii) If t ∈ R, the function φt : R2 → R2, defined by

φt(u) := φ(t, u),

for every u ∈ R2, is linear.
(iii) If t = 0, the function φ0 : R2 → R2 is the identity function on R2.
(iv) If s, t ∈ R, then φs ◦ φt = φs+t.

Proof. Exercise. �

The above result is a special case of a general fact that we will prove later,
namely that an arbitrary ode generates a dynamical system φ. As we will see later,
the converse also holds i.e., a dynamical system φ on a state space S generates an
ode by differentiating φt with respect to time t.

The equations in the system (1.25) are in uncoupled, or diagonal form, as the
matrix corresponding to it is diagonal. Usually, in a system of odes the equations
are coupled, as e.g., in the system

(1.29)
ẋ1(t) = 5x1(t) + 3x2(t),

ẋ2(t) = −6x1(t)− 4x2(t).

In the next section we will explain why we can choose to define

y1(t) = 2x1(t) + x2(t),

y2(t) = x1(t) + x2(t),
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and hence we get

(1.30)
x1(t) = y1(t)− y2(t),

x2(t) = −y1(t) + 2y2(t).

Since

ẏ1(t) = 2ẋ1(t) + ẋ2(t),

ẏ2(t) = ẋ1(t) + ẋ2(t),

we get by 1.30 the system

ẏ1(t) = 2y1(t),

ẏ2(t) = −y2(t),

where its equations are in a diagonal form. Hence, if y(t) = (y1(t), y2(t)) is its
solution with initial value (y1(0), y2(0)) = (u1, u2) i.e.,

y1(t) = u1e
2t,

y2(t) = u2e
−t,

we can solve the original system (1.29) by substituting these solutions to the sys-
tem (1.30). Finally we get

x1(t) = (2u1 + u2)e2t − (u1 + u2)e−t,

x2(t) = −(2u1 + u2)e2t + 2(u1 + u2)e−t.

1.4. Linear systems with constant coefficients & real eigenvalues

If x1, . . . , xn : J → R are differentiable functions, and aij ∈ R, for every
i, j ∈ {1, . . . , n}, the following generalization of the system (1.29) is formed

(1.31)

ẋ1(t) = a11x1(t) + . . .+ a1nxn(t),

...
...

...

ẋi(t) = ai1x1(t) + . . .+ ainxn(t),

...
...

...

ẋn(t) = an1x1(t) + . . .+ annxn(t).

We can write equation (1.31) using matrices as follows

(1.32)



ẋ1(t)
...

ẋi(t)
...

ẋn(t)

 =



a11 . . . a1n

...
...

...
ai1 . . . ain
...

...
...

an1 . . . ann





x1(t)
...

xi(t)
...

xn(t)

 ,
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or, generalizing the simplest ode, we can write it in the form

(1.33) ẋ(t) = Ax(t),

where

(1.34) A :=



a11 . . . a1n

...
...

...
ai1 . . . ain
...

...
...

an1 . . . ann

 =: [aij ].

The right-hand side of equation (1.33) is a linear map from Rn to Rn. Next
we investigate the use of matrices and linear maps in the study of the system of
odes given by equation (1.33). The aim of this section is to prove the fundamental
theorem of linear odes with constant coefficients and real eigenvalues.

Definition 1.4.1. The set L(Rn,Rn) is denoted by L(Rn) and an element T of
L(Rn) is called an operator. Usually7, we write Tx instead of T (x). The constant
zero operator in L(Rn) is denoted by On, and the identity operator in L(Rn) is
denoted by In. The norm ||.|| on L(Rn) defined in Definition 1.3.1 is called the
operator norm. If T ∈ L(Rn) and m ∈ N, we define

Tm :=

{
In , if m = 0
T ◦ Tm−1 , if m > 0.

The set of n ×m matrices with entries in R is denoted by Mn,m(R), and the set
Mn,n(R) is denoted by Mn(R). A diagonal matrix in Mn(R) is written as follows

λ1

λ2

. . .

λn

 :=


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 =: Diag(λ1, . . . , λn).

We also denote by In the unit matrix in Mn(R) i.e.,

In :=


1

1
. . .

1

 =: [δij ],

where

δij :=

{
1 , if i = j
0 , otherwise

The zero matrix in Mn(R) is also denoted by On. If A,B ∈ Mn(R) such that
A = [aij ] and B = [bij ], then the algebra operations on Mn(R) are defined as

7This is due to Proposition 1.4.3.
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follows: A + B := [cij ], λA := [eij ], and AB := [dij ], where cij := aij + bij ,
eij := λaij and dij :=

∑n
k=1 aikbkj . An A ∈ Mn(R) is called invertible, if there is

B ∈ Mn(R) such that AB = BA = In. A T ∈ L(Rn) is called invertible, if there
is S ∈ L(Rn) such that S ◦ T = T ◦ S = In. Since B and S are unique, we write
B = A−1 and S = T−1, respectively.

Proposition 1.4.2. Let S, T ∈ L(Rn), x ∈ Rn and m ∈ N.

(i) |Tx| ≤ ||T |||x|.
(ii) ||S ◦ T || ≤ ||S|| · ||T ||.
(iii) ||In|| = 1.
(iv) ||Tm|| ≤ ||T ||m.
(v) If T is invertible, then ||T || · ||T−1|| ≥ 1.

Proof. Exercise. �

By Proposition 1.4.2(ii)-(iii) and Theorem 1.3.3, L(Rn) is a Banach algebra.

Proposition 1.4.3. There is a mapping T : Mn(R)→ L(Rn)

A 7→ TA := T (A),

where, if A = [aij ], the mapping TA : Rn → Rn is defined by

TA(x) :=

( n∑
j=1

a1jxj , . . . ,

n∑
j=1

aijxj , . . . ,

n∑
j=1

anjxj

)
,

or in matrix form

(1.35)



TA(x)1

...
TA(x)i

...
TA(x)n

 =



a11 . . . a1n

...
...

...
ai1 . . . ain
...

...
...

an1 . . . ann





x1

...
xi
...
xn

 ,

for every x ∈ Rn. There is a function A : L(Rn)→Mn(R)

T 7→ AT := A(T ),

where, if T ∈  L(Rn) {e1, . . . , en} is the standard basis for Rn, the matrix AT ∈
Mn(R) is defined by

(1.36) AT :=



T (e1)1 . . . T (en)1

...
...

...
T (e1)i . . . T (en)i

...
...

...
T (e1)n . . . T (en)n

 =:
[
T (ej)i

]
.

The mappings T and A satisfy the following conditions:
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(i) A ◦ T = idMn(R) and T ◦ A = idL(Rn)

Mn(R) L(Rn) Mn(R) L(Rn)
T A T

idMn(R)

idL(Rn)

(ii) TAB = TA ◦ TB.
(iii) TIn = In and TOn = On.
(iv) TA+B = TA + TB.
(v) TλA = λTA.
(vi) If A is invertible, then TA is invertible and T −1

A = TA−1 .
(vii) AS◦T = ASAT .
(viii) AIn = In and AOn = On.
(ix) AS+T = AS +AT .
(x) TλT = λTA.
(xi) If T is invertible, then AT is invertible and A−1

T = AT−1 .

Proof. Left to the reader. �

Corollary 1.4.4. If A ∈Mn(R), we define

||A|| := ||TA||.
(i) ||.|| is a norm on Mn(R).
(ii) The mappings T and A are norm-preserving.

Proof. (i) ||A|| = 0 ⇔ ||TA|| = 0 ⇔ TA = 0 ⇔ A = 0, where the implication
TA = 0⇒ A = 0 is shown as follows: By Proposition 1.4.3(i) we have thatATA = A,
and by definition ATA = [TA(ej)i] = On. The rest properties of the norm follow
easily from Proposition 1.4.3(iv)-(v).
(ii) ||A(T )|| = ||AT || = ||TAT || = ||T ||. �

According to the equality

(1.37)
[
TA(x)

]
i

=
n∑
j=1

aijxj

the i-row of A expresses the i-coordinate of TA(x). Since

(1.38) TA(ej) = Aej =

n∑
i=1

aijei

the j-column of A gives the j-coordinate of TA(ej). If x =
∑n
i=1 xiei, with respect

to the standard basis, the coordinate functions pri : Rn → R, are defined by

x 7→ xi := pri(x),
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and equation (1.37) is written as

pri ◦ TA =

n∑
j=1

aijprj .

Rn Rn

R.

TA

pri ◦ TA pri

We also have that Tx = ATx, since

ATx =



T (e1)1 . . . T (en)1

...
...

...
T (e1)i . . . T (en)i

...
...

...
T (e1)n . . . T (en)n





x1

...
xi
...
xn


=

( n∑
i=1

T (ei)1xi, . . . ,

n∑
i=1

T (ei)nxi

)

=

(
T

( n∑
i=1

xiei

)
1

, . . . , T

( n∑
i=1

xiei

)
n

)
=
(
T (x)1, . . . , T (x)n

)
.

= Tx.

Proposition 1.4.5. Let T ∈ L(Rn) and B = {f1, . . . , fn} a basis for Rn. If B
is the matrix of T with respect to B, there is an invertible matrix Q ∈Mn(R) such
that B = QATQ−1.

Proof. If

fi =

n∑
j=1

pijej ,

and P := [pij ], it is easy to see that P t := [pji], the transpose of P , is invertible,
and if we define

Q =
[
P t
]−1

,

the coordinates xi and yi of some z ∈ Rn with respect to the standard basis and
B, respectively, satisfy

y = Qx, and x = Q−1y.

The corresponding coordinates ATx and By of the image T (z) satisfy

By = QATx = QATQ−1y,
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for every y ∈ Rn, hence B = QATQ
−1. �

Matrices that are related as B and AT are called similar, and it is easy to see
the converse of Proposition 1.4.5 is also the case. Namely, if two matrices in Mn(R)
are similar, they represent the same operator with respect to different bases of Rn.

Definition 1.4.6. We call a property P on Mn(R) an operator property, if P
is preserved under similarity i.e.,

P (A)⇒ P (QAQ−1),

for every A ∈Mn(R) and every invertible Q ∈Mn(R).

Note that if P is an operator property on Mn(R), the converse implication
P (QAQ−1)⇒ P (A) also holds. Clearly, an operator property on Mn(R) defines a
property P on L(Rn), since its validity is independent from the choice of the matrix
representing an operator. Recall that there is a unique mapping

Det : Mn(R)→ R

satisfying the following conditions:

(D1) Det(AB) = Det(A)Det(B),
(D2) Det(In) = 1,
(D3) Det(A) 6= 0 iff A is invertible.

If B is invertible, then it is immediate to see that

(D4) Det(B−1) = Det(B)−1,
(D5) Det(BAB−1) = Det(A).

Because of (D5), the property Pλ(A) := (Det(A) = λ) is an operator property, and
we can define the determinant Det(T ) of an operator T to be the determinant of
any matrix representing T .

Proposition 1.4.7. If T ∈ L(Rn), the following are equivalent:

(i) Det(T ) 6= 0.
(ii) Ker(T ) := {x ∈ Rn | Tx = 0} = {0}.
(iii) T is an injection.
(iv) T is a surjection.
(v) T is invertible.

Proof. For (i) ⇒ (ii) we use (D3). The rest is left to the reader. �

Consequently, Det(T ) = 0 iff Tx = 0, for some x 6= 0. The trace Tr(A) of a
matrix A = [aij ] ∈Mn(R) is defined by

Tr(A) :=

n∑
i

aii,



44 1. BASIC IDEAS OF ODES

and since
Tr(AB) = Tr(BA),

if B ∈Mn(R) is invertible, we get

Tr(BAB−1) = Tr(B−1BA) = Tr(A)

i.e., Tr(A) = λ is an operator property on Mn(R). Hence we define the trace
Tr(T ) of an operator T ∈ L(Rn) to be the trace of any matrix representing T .
The correspondence between matrices and operators facilitates also the transfer of
concepts from operators to matrices, other than the norm. If A ∈Mn(R) the rank
Rank(A) of A is defined as the Rank(TA), which is dim(Im(TA)). If S, T ∈ L(Rn),
we say that they are similar, if there is invertible R ∈ L(Rn) such that

S = R ◦ T ◦R−1.

By Proposition 1.4.3 we get that if S, T are similar operators, then AS ,AT are
similar matrices, and if A,B are similar matrices, then TA, TB are similar opera-
tors. Note that the concept of an operator property on Mn(R) does not have its
counterpart for properties on L(Rn), since the definition of TA does not depend on
a basis for Rn.

Definition 1.4.8. Let E1, . . . , Ek be subspaces of Rn. We say that Rn is the
direct sum of E1, . . . , Ek, if

∀x∈Rn∃!x1∈E1,...xk∈Ek

(
x =

k∑
i=1

xi

)
.

In this case we write

Rn = E1 ⊕ . . .⊕ Ek =:

k⊕
i=1

Ei.

If T ∈ L(Rn) and Ti : Ei → Ei are operators, we say that T is the direct sum of

T1, . . . , Tk, if Rn =
⊕k

i=1Ei and Ty = Tiy, for every y ∈ Ei and every i ∈ {1, . . . , k}
In this case we write

T = T1 ⊕ . . .⊕ Tk =:

k⊕
i=1

Ti.

If Ai is the matrix of Ti with respect to some basis Bi for Ei, then

A :=


A1

A2

. . .

Ak

 =: Diag(A1, . . . , Ak)

is a matrix of T with respect to the basis

B =

k⋃
i=1

Bi
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for Rn. We also have that

Det

( k⊕
i=1

Ti

)
=

k∏
i=1

Det(Ti),

since

Det
(
Diag(A1, . . . Ak)

)
=

k∏
i=1

Det(Aj),

and we have that

Tr

( k⊕
i=1

Ti

)
=

k∑
i=1

Tr(Ti),

since

Tr
(
Diag(A1, . . . Ak)

)
=

k∑
i=1

Tr(Ai).

Definition 1.4.9. If T ∈ L(Rn), a vector x ∈ Rn \ {0} is a (real) eigenvector
of T , if there is λ ∈ R such that Tx = λx. In this case λ is a real eigenvalue of T ,
and we also say that x belongs to λ. The subspace Ker(T −λIn) of Rn is called the
λ-eigenspace of T . Similar notions are defined for an operator T on a subspace X
of Rn, where in this case the λ-eigenspace of T : X → X is Ker(T − λIX), and IX
is the identity on X.

Clearly, λ is an eigenvalue of T iff Ker(T − λIn) 6= {0}, and Ker(T − λIn) is
the set of all eigenvectors belonging to λ, together with 0. By Proposition 1.4.7

Ker(T − λIn) 6= {0} ⇔ Det(T − λIn) = 0,

hence to find the eigenvalues of T we solve the polynomial p(λ) generated by the
equation

Det(A− λIn) = 0,

where A is any matrix that represents T with respect to some basis for Rn. If
B is some other matrix of T , then by Proposition 1.4.5 there is some invertible
Q ∈Mn(R) such that B = QAQ−1, hence by the properties of Det we get

Det(B − λIn) = Det(QAQ−1 − λIn)

= Det
(
Q(A− λIn)Q−1

)
= Det(Q)Det(A− λIn)Det(Q)−1

= Det(A− λIn).

Since Pλ(A) := Det(A − λIn) = 0 is an operator property on Mn(R), we can call
p(λ) the characteristic polynomial of T . A complex root of p(λ) is called a complex
eigenvalue of T . If λ is a real eigenvalue of T and A is a matrix of T , we determine
the λ-eigenspace of T by solving the equation

(A− λIn)x = 0.
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Now we can explain why we chose the new coordinates

y1(t) = 2x1(t) + x2(t),

y2(t) = x1(t) + x2(t),

for the solution of the coupled system of odes (1.29). The matrix of this system is

A =

[
5 3
−6 −4

]
,

and the characteristic polynomial of TA is p(λ) = (λ− 2)(λ+ 1) i.e., its eigenvalues
are λ1 = 2 and λ2 = −1. If we solve the equation (A − 2I2)x = 0, we find that 2-
eigenspace of TA is the one-dimensional space {(t,−t) | t ∈ R} and let f1 = (1,−1)
form a basis for it. Working similarly, we find that the (−1)-eigenspace of TA is
the one-dimensional space {(t,−2t) | t ∈ R} and let f2 = (−1, 2) form a basis for
it. From the proof of Proposition 1.4.5 we find that the matrix of TA with respect
to the basis {f1, f2} for R2 is the diagonal matrix

B =

[
2 0
0 −1

]
,

hence

(x1, x2) = (y1 − y2,−y1 + 2y2).

Definition 1.4.10. An operator T ∈ L(Rn) is called diagonalizable, if its
matrix with respect to some basis B = {f1, . . . , fn} for Rn is diagonal.

Remark 1.4.11. Let T ∈ L(Rn). If B = {f1, . . . , fn} is a basis for Rn such
that f1, . . . , fn are eigenvectors of T , and if λ1, . . . , λn are the corresponding eigen-
values of T , then the matrix of T with respect to B is Diag(λ1, . . . , λn), hence T is
diagonalizable.

Proof. Just note that if x = (x1, . . . , xn) with respect to B, then Tx =
(λ1x1, . . . , λnxn) with respect to B. �

Theorem 1.4.12 (Criterion of diagonalizability). Let T ∈ L(Rn). If the char-
acteristic polynomial p(λ) of T has n distinct real roots λ1, . . . , λn and f1, . . . , fn
are corresponding eigenvectors, then their set B = {f1, . . . , fn} is a basis for Rn,
and T is diagonalizable.

Proof. We show that B is a basis for Rn, hence by Remark 1.4.11 we have that
T is diagonalizable. Suppose that B is not a basis for Rn, and let the elements of B
be ordered such that there is m < n with the property {f1, . . . , fm} is a maximal
independent subset of {f1, . . . , fn}. Clearly, m ≥ 1, and

en =

m∑
j=1

ajfj
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for some a1, . . . , am ∈ R. Since fn belongs to λn, we have that

0 = (T − λnIn)fn

= Tfn − λnfn

= T

( m∑
j=1

ajfj

)
− λn

m∑
j=1

ajfj

=

m∑
j=1

ajTfj −
m∑
j=1

ajλnfj

=

m∑
j=1

aj(Tfj − λnfj)

=

m∑
j=1

aj(λjfj − λnfj)

=

m∑
j=1

aj(λj − λn)fj .

Since the vectors f1, . . . , fm are linearly independent, we get

aj(λj − λn) = 0, j ∈ {1, . . . ,m}.

Since λ1, . . . , λn are distinct, we get

aj = 0, j ∈ {1, . . . ,m},

hence fn = 0, which contradicts the hypothesis that fn is an eigenvector of T . �

Corollary 1.4.13. If A ∈ Mn(R) such that Det(A− λIn) has n distinct real
roots λ1, . . . , λn, then there exists an invertible Q ∈Mn(R) such that

QAQ−1 = Diag(λ1, . . . , λn).

Proof. By Theorem 1.4.12 there is a basis B = {f1, . . . , fn} for Rn with
f1, . . . , fn eigenvectors that correspond to the eigenvalues λ1, . . . , λn of the operator
TA. Since A is the matrix of TA with respect to the standard basis for Rn, the
matrix B of TA with respect to B is by Proposition 1.4.5 equal to QAQ−1, for some
invertible Q ∈Mn(R). Moreover B = Diag(λ1, . . . , λn), by Remark 1.4.11. �

Remark 1.4.14. Let T ∈ L(R2) with matrix A ∈M2(R), and let

∆(A) := Tr(A)2 − 4Det(A).

(i) If ∆(A) > 0, then T has two distinct real eigenvalues and it is diagonalizable.
(ii) If ∆(A) < 0, then T has two non-real complex eigenvalues.
(iii) If ∆(A) = 0, then T has two equal real eigenvalues. In this case, every matrix
of T is diagonal, or no matrix of T is diagonal.
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Proof. If A = AT and

A =

[
a b
c d

]
,

then

pT (λ) = Det(A− λI2)

= (a− λ)(d− λ)− bd
= λ2 − (a+ d)λ+ ad− bc
= λ2 − Tr(A)λ+ Det(A).

Hence,

λ1,2 =
Tr(A)±

√
∆(A)

2
,

and (i)-(ii) follow immediately. For case (ii) we work as follows. If T is diagonaliz-
able, then it has a matrix of the form[

λ 0
0 λ

]
,

hence every matrix representing T is diagonal (why?). If T is not diagonalizable,
then by definition no matrix of T is diagonal. �

Remark 1.4.15. If x1, . . . , xn, y1, . . . , yn : J → R are differentiable functions
and A ∈Mn(R) such that y(t) = Ax(t), then ẏ(t) = Aẋ(t).

Proof. By hypothesis yi(t) =
∑n
j=1 aijxj(t), hence ẏi(t) =

∑n
j=1 aij ẋj(t). �

Remark 1.4.16. If A = Diag(λ1, . . . , λn), for some λ1, . . . , λn ∈ R, and u ∈ Rn,
then the system of linear odes

ẋ(t) = Ax(t) ; x(0) = u

has a unique solution x(t) =
(
x1(t), . . . , xn(t)

)
, where for each i ∈ {1, . . . , n}

xi(t) = uie
λit.

Proof. The systemẋ1(t)
...

ẋn(t)

 =

λ1

. . .

λn


x1(t)

...
xn(t)


with initial condition x(0) = u is equivalent to the system of odes ẋi(t) = λixi(t)
with initial condition xi(0) = ui, for each i, hence we get the above solutions. �

In the previous remark λ1, . . . , λn need not be distinct.
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Theorem 1.4.17 (Fundamental theorem of linear odes with constant coeffi-
cients and real, distinct eigenvalues). If A ∈Mn(R) with n distinct, real eigenvalues
λ1, . . . , λn, and u ∈ Rn, then the system of linear odes

ẋ(t) = Ax(t) ; x(0) = u

has a unique solution x(t) =
(
x1(t), . . . , xn(t)

)
, where for each i ∈ {1, . . . , n}

xi(t) =

n∑
j=1

dije
λjt,

for unique constants dij that depend on u.

Proof. By Corollary 1.4.13 there exists an invertible Q ∈Mn(R) such that

QAQ−1 = Diag(λ1, . . . , λn).

With the following matrix equation we introduce the new coordinates

y = Qx, hence x = Q−1y.

By Remark 1.4.15 we have

ẏ(t) = Qẋ(t) = QAx(t) = QAQ−1y(t),

hence

ẏ(t) = Diag(λ1, . . . , λn)y(t).

By Remark 1.4.16 this system together with the initial condition

y(0) = Qu

has as unique solutions the curve

y(t) =
(
y1(t), . . . , yn(t)

)
=

(
(Qu)1e

λ1t, . . . , (Qu)ne
λnt

)
.

We show that the function x(t) =
(
x1(t), . . . , xn(t)

)
defined by

(1.39)



x1(t)
...

xi(t)
...

xn(t)

 = Q−1



y1

...
yi
...
yn

 ,

is the unique solution of the initial system. By Remark 1.4.15 we have that

ẋ(t) = Q−1ẏ(t)

= Q−1QAQ−1y(t)

= AQ−1y(t)

= Ax(t).
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Moreover,
x(0) = Q−1y(0) = Q−1Qu = u.

The uniqueness of this solution follows from the uniqueness of the solution of the
system ẏ = Diag(λ1, . . . , λn)y with initial condition y(0) = Qu. If x(t) is a solution
of ẋ(t) = Ax(t) with initial condition x(0) = u, then y(t) = Qx(t) is a solution for
ẏ = Diag(λ1, . . . , λn)y, since

ẏ(t) = Qẋ(t)

= QAx(t)

= QAQ−1y(t)

= Diag(λ1, . . . , λn)y(t),

and
y(0) = Qx(0) = Qu.

If Q−1 = [qij
′], equation 1.39 gives us

xi(t) =

n∑
j=1

qij
′(Qu)je

λjt

=

n∑
j=1

dije
λjt,

where each term
dij := qij

′(Qu)j

depends on u. The uniqueness of the terms dij follows from the fact that the
functions eλ1t, . . . , eλnt are linearly independent, since λ1, . . . , λn are distinct8. �

One can show (exercise) that if λ1, . . . , λn are distinct, the solution of the system
in Remark 1.4.16 is a special case of the solution of the system in Theorem 1.4.17.

The direct algorithm of finding the solution of the system

ẋ(t) = Ax(t) ; x(0) = u

that is extracted from the proof of Theorem 1.4.17 is the following:

Step 1: Find the eigenvalues λ1, . . . , λn of A i.e., the roots of Det(A− λIn). This
can be difficult.

Step 2: For each eigenvalue λi find an eigenvector fi that belongs to λi i.e., solve
the system (A− λiIn)fi = 0. This is mechanical.

Step 3: Find P = [pij ], by fi =
∑n
j=1 pijej and x = P ty, or equivalently

xj =

n∑
i=1

pijyi,

8The proof of this standard fact makes use of the Vandermonde determinant.
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for every j ∈ {1, . . . , n}.

Step 4: The system in the new coordinates is ẏ(t) = Diag(λ1, . . . , λn)y(t) and

yi(t) = aie
λit, ai = yi(0).

The general solution to the original system, where j ∈ {1, . . . , n}, is given by

xj(t) =

n∑
i=1

pijaie
λit.

If one is interested in a specific u, it is easier to solve the equations

uj =

n∑
i=1

pijaj

than to invert P t and solve

a = (P t)−1u.

A second algorithm is extracted from the form of solutions and not from the
proof of Theorem 1.4.17. We rewrite the equation ẋ(t) = Ax(t) as

(1.40)



∑n
j=1 λjd1je

λjt

...∑n
j=1 λjdije

λjt

...∑n
j=1 λjdnje

λjt

 = A



∑n
j=1 d1je

λjt

...∑n
j=1 dije

λjt

...∑n
j=1 dnje

λjt

 ,

and we solve (1.40) with respect to dij . E.g., using this algorithm the system

ẋ1(t) = x1(t),

ẋ2(t) = x1(t) + 2x2(t),

ẋ3(t) = x1(t)− x3(t).

with initial condition x(0) = (1, 0, 0) has as solution the curve

x(t) =
(
et,−et + e2t,

1

2
et − 1

2
e−t
)
.

Remark 1.4.18. Theorem 1.4.17 doesn’t hold if some of the real eigenvalues
of A are equal.

Proof. Let

A =

[
1 0
1 1

]
,

with eigenvalues λ1 = λ2 = 1, and let the system

ẋ1(t) = x1(t),

ẋ2(t) = x1(t) + x2(t)
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with x1(0) = a and x2(0) = b. If a 6= 0, then this system cannot be solved according
to Theorem 1.4.17. If it could be, then

x1(t) = d11e
t + d12e

t = (d11 + d12)et = aet

x2(t) = d21e
t + d22e

t = (d21 + d22)et = bet.

But then the second equation of the original system becomes

bet = aet + bet ⇔ aet = 0⇔ a = 0.

�

One can show (exercise) that the unique solution to the above system is

x(t) =
(
aet, et(at+ b)

)
.

Theorem 1.4.19 (Lipschitz continuity of solutions in initial conditions). Let
A ∈Mn(R) with n distinct, real eigenvalues. We define the function

φA : R× Rn → Rn

φA(t, u) = x(t),

where x(t) is the unique solution of the system

ẋ(t) = Ax(t) ; x(0) = u.

Let t ∈ R be fixed. We define

φA,t : Rn → Rn

φA,t(u) = φA(t, u).

Then there are constants C ≥ 0 and k ∈ R such that for every u,w ∈ Rn

|φA,t(u)− φA,t(w)| ≤ σ|u− w|,

where

σ := Cekt.

Proof. Using the form of solutions in Theorem 1.4.17 (exercise). �

Note that Theorem 2.1.15 implies trivially the continuity of solutions in initial
conditions i.e., the property

lim
u→u0

φA,t(u) = φA,t(u0),

which can be shown (exercise) without using the form of solutions in Theorem 1.4.17.
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1.5. Linear systems with constant coefficients & complex eigenvalues

Definition 1.5.1. If a, b ∈ R and b 6= 0, we define the matrix

Aa,b =

[
a −b
b a

]
,

and Ta,b is the operator in L(R2) that is represented by Aa,b.

The eigenvalues of Aa,b are λ1 = a+ bi and λ2 = a− bi in C \ R.

Proposition 1.5.2. If b 6= 0, the operator Ta,b is the composition of a stretching
or shrinking and a rotation.

Proof. Let a = r cos θ and b = r sin θ, where r =
√
a2 + b2. We have that

Aa,b =

[
r cos θ −r sin θ
r sin θ r cos θ

]
=

[
r 0
0 r

] [
cos θ − sin θ
sin θ cos θ

]
,

hence
Ta,b = r ◦Rθ,

where Rθ(x) is the θ-counterclockwise rotation of the vector x, and we use for
simplicity the symbol r for the mapping x 7→ rx, which is the stretching or shrinking
of x by the factor r. �

If we identify R2 with C, and if z = x+ iy, then

Ta,bz = Aa,b

[
x
y

]
=

[
ax− by
bx+ ay

]
,

hence

(1.41) Ta,bz = z(a+ bi)

i.e., algebraically speaking, Ta,b is multiplication by a + bi. The identification
between R2 and C can be used to solve the system of odes

ẋ(t) = ax(t)− by(t),

ẏ(t) = bx(t) + ay(t),
(1.42)

which is also written

(1.43) ż(t) = Aa,bz = Ta,bz = (a+ bi)z.

Therefore, for some C = u+ iv the solution of (1.43) is

z(t) = Ce(a+bi)t = (u+ iv)eateibt.

Since
eibt = cos(bt) + i sin(bt),

we get

x(t) = ueat cos(bt)− veat sin(bt)

y(t) = ueat sin(bt) + veat cos(bt).
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In this section we explain how one can reduce different linear systems with constant
coefficients and non-real, complex eigenvalues to a system like the above.

Definition 1.5.3. A vector space over C is called a complex vector space. The
complex Cartesian space Cn is a complex vector space where

(z1, . . . , zn) + (w1, . . . , wn) := (z1 + w1, . . . , zn + wn),

λ(z1, . . . , zn) := (λz1, . . . , λzn) ; λ ∈ C.

A subset F of Cn is a complex subspace, if it is closed in Cn under addition and
complex multiplication. We denote the set of operators T : F → F by L(F ). An
eigenvalue of T ∈ L(F ) is some λ ∈ C such that Tv = λv, for some v ∈ F \ {0}.
In this case v is an eigenvector of T that “belongs to” λ. If Mn(C) is the set of
n × n matrices with entries in C, an isomorphism between the complex algebras
L(Cn) and Mn(C) can be established, as in the real case. The polynomial with
complex coefficients pT (λ) = Det(T − λIF ) is the characteristic polynomial of T .
An operator T ∈ L(F ) is called diagonalizable, if it has a matrix in diagonal form.

Note that an element g ∈ Cn can be written as

Cn 3 g = (z1, . . . , zn)

= (a1 + b1, . . . , an + ibn)

= (a1, . . . , an) + i(b1, . . . , bn)

= u+ iv, u, v ∈ Rn.

If g, g′ ∈ Cn such that g = u+ iv and g′ = u′ + iv′, where u, v, u′, v′ ∈ Rn, then

g = g′ ⇔ u = u′ and v = v′.

Theorem 1.5.4 (Criterion of diagonalizability). Let F be a complex subspace
of Cn and T ∈ L(F ). If the characteristic polynomial pT (λ) of T has distinct roots
λ1, . . . , λm, where m = dim(F ), and f1, . . . , fm are corresponding eigenvectors,
then their set B = {f1, . . . , fm} is a basis for F , and T is diagonalizable.

Proof. Similar to the proof of Theorem 1.4.12. �

Definition 1.5.5. If F is a complex subspace of Cn, the space of real vectors
FR in F is defined by

FR := F ∩ Rn.

If E is a real subspace of Rn, the complexification EC of E is defined by

EC :=

{
w ∈ Cn | w =

k∑
i=1

λiwi, k ∈ N+, w1, . . . , wk ∈ E, λ1, . . . , λk ∈ C
}
.

We say that F is decomplexifiable, if there is E such that F = EC.
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Remark 1.5.6. If F is a complex subspace of Cn and E is a real subspace of
Rn, the following hold:

(i) FR is a real vector space such that FR ⊆ F .
(ii) EC is a complex vector space such that E ⊆ EC.
(iii) (EC)R = E.
(iv) (FR)C ⊆ F .

Proof. Left to the reader. �

Definition 1.5.7. If A is a complex algebra, an involution on A is a function
∗ : A→ A that satisfies the following conditions:

(I1) (x+ y)∗ = x∗ + y∗.
(I2) (λx)∗ = λ̄x∗, where λ̄ is the conjugate of λ.
(I3) (xy)∗ = y∗x∗

(I4) (x∗)∗ = x.

The pair (A,∗ ) is called a ∗-algebra. The fixed points of ∗ is the set {a ∈ A | a∗ = a}.
A subspace B of A is called ∗-invariant, if B∗ := {b∗ | b ∈ B} ⊆ B. If (A,∗ ) and
(B,~ ) are ∗-algebras, a function ϕ : A→ B is called ∗-preserving, if for every x ∈ A

ϕ(x∗) = ϕ(x)~.

The conjugate function z 7→ z̄ is an involution on C with R as the set of its
fixed points. We can also define the function ∗ : Cn → Cn defined by

(z1, . . . , zn)∗ := (z̄1, . . . , z̄n)

on the vector space Cn, which has Rn as the set of its fixed points.

Proposition 1.5.8. A complex subspace F of Cn is decomplexifiable iff F is
∗-invariant.

Proof. Exercise. �

Definition 1.5.9. Let E be a real subspace of Rn and T ∈ L(E). The com-
plexification TC of T is the linear operator

TC : EC → EC

defined by

TC(w) = TC

( k∑
i=1

λiwi

)
:=

k∑
i=1

λiT (wi).

An S ∈ L(EC) is called decomplexifiable, if there is T ∈ L(E) such that S = TC.

Note that if u ∈ E, then by definition we have that TC(u) = T (u).

Remark 1.5.10. Let E be a real subspace of Rn, B = {e1, . . . , em} a basis for
E, T ∈ L(E), and λ ∈ C. The following hold:

(i) B is a basis for EC.
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(ii) The definition of the complexification TC of T is independent from the choice
of representation of w ∈ EC.
(iii) If B ∈Mm(R) is the matrix of T with respect to B (as a basis for E), then B
is the matrix of TC with respect to B (as a basis for EC).
(iv) pT (λ) = pTC(λ).
(v) λ is an eigenvalue of T iff λ is an eigenvalue of TC.

Proof. Exercise. �

Proposition 1.5.11. 2 If E is a real subspace of Rn and S ∈ L(EC), then S
is decomplexifiable iff S is ∗-preserving.

Proof. Exercise. �

Corollary 1.5.12. Let E be a real vector subspace of Rn, T ∈ L(E), and
λ ∈ C. If λ is an eigenvalue of T , then λ̄ is an eigenvalue of T .

Proof. By Remark 1.5.10(v) λ is an eigenvalue of TC i.e., there is some non-
zero w ∈ EC such that TC(w) = λw. Since TC is trivially decomplexifiable, by
Proposition 1.5.8(ii) TC is ∗-preserving, hence

TC(w∗) =
(
TC(w)

)∗
= (λw)∗ = λ̄w∗,

and λ̄ is an eigenvalue of TC with w∗ as a vector in Cn belonging to λ̄. By Re-
mark 1.5.10(v) we conclude that λ̄ is an eigenvalue of T . �

By Corollary 1.5.12 the eigenvalues of some T ∈ L(E) can be listed as

λ1, . . . , λk ∈ R,
µ1, µ̄1, . . . , µl, µ̄l ∈ C \ R.

Definition 1.5.13. Let X be a vector space, Y, Y1, . . . , Yl subspaces of X and
T ∈ L(X). We say that Y is T -invariant, if TY := {Ty | y ∈ Y } ⊆ Y . If X is
the direct sum of Y1, . . . , Yl, we say that Y1, . . . , Yl form a T -invariant direct sum
decomposition for X, if Yj is T -invariant, for every j ∈ {1, . . . , l}.

If T ∈ L(X), the subspaces X and {0} are T -invariant, and every subspace is
idX -invariant. Since R0 = idR2 , every subspace of R2 is R0-invariant, and since an
one-dimensional subspace of R2 is a line through the origin, every subspace of R2

is also Rπ-invariant. Note also that Rπ = −idR2 .

Theorem 1.5.14 (Direct sum decomposition for an operator with distinct
eigenvalues). Let E be a real vector subspace of Rn and T ∈ L(E). If all eigen-
values of T are distinct, then there are subspaces Er, Ec of E and operators Tr ∈
L(Er), Tc ∈ L(Ec) such that:

(i) E = Er ⊕ Ec;
(ii) T = Tr ⊕ Tc;
(iii) Tr has real eigenvalues and Tc has non-real, complex eigenvalues.
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Proof. Let λ1, . . . , λk ∈ R, and µ1, µ̄1, . . . , µl, µ̄l ∈ C \ R be the distinct
eigenvalues of T , and let e1, . . . , ek, d1, d1

′, . . . , dl, dl
′ the corresponding eigenvectors

of T . By Remark 1.5.10(v) these are exactly the eigenvalues of its complexification
TC ∈ L(EC). By Theorem 1.5.4 the set

B := {f1, . . . , fk, g1, g
∗
1 , . . . , gl, g

∗
l }

is a basis for EC, where its elements are eigenvectors of TC that belong to the
corresponding eigenvalues of TC. Let

Fr := <{f1, . . . , fk}>C,

Fc := <{g1, g
∗
1 , . . . , gl, g

∗
l }>C

be the complex linear span of f1, . . . , fk and g1, g
∗
1 , . . . , gl, g

∗
l , respectively. The sets

Fr, Fc are complex subspaces of EC that are TC-invariant, since they are generated
by eigenvectors of TC. By the definition of B we get

EC = Fr ⊕ Fc.
We define the following subspaces of E:

Er := E ∩ Fr, and Ec := E ∩ Fc.
By Proposition 1.5.8 we have that Fr and Fc are ∗-invariant, since

Fr = (Er)C, and Fc = (Ec)C

i.e., they are decomplexifiable. We show only the first equality, and for the second
we work similarly. By the corresponding definitions we get

Er =

{
u ∈ E | ∃k∈N+,σ1,...,σk∈C

(
u =

k∑
i=1

σifi

)}
,

(Er)C =

{
w ∈ Cn | w =

m∑
j=1

τjuj , m ∈ N+, u1, . . . , um ∈ Er, τ1, . . . , τm ∈ C
}
.

Clearly, (Er)C ⊆ Fr. For the converse inclusion it suffices to show that f1, . . . , fk ∈
(Er)C. Since e1, . . . , ek belong to λ1, . . . , λk, and since E ⊆ EC, for every ν ∈
{1, . . . , k}, we have that

eν =

k∑
i=1

ρifi +

l∑
j=1

σjgj +

l∑
j=1

τjg
∗
j ,

for some ρ1, . . . , ρk, σ1, . . . , σl, τ1, . . . , τl ∈ C. Since TC(eν) = T (eν) = λνeν , we get

TC(eν) =

k∑
i=1

ρiTCfi +

l∑
j=1

σjTCgj +

l∑
j=1

τjTCg
∗
j

=

k∑
i=1

ρiλifi +

l∑
j=1

σjµjgj +

l∑
j=1

τj µ̄jg
∗
j
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= λνeν

=

k∑
i=1

ρiλνfi +

l∑
j=1

σjλνgj +

l∑
j=1

τjλνg
∗
j .

Hence, for each i ∈ {1, . . . , k} and j ∈ {1, . . . , l} we have that

ρiλi = ρiλν ⇔ ρi(λi − λν) = 0,

σjµj = σjλν ⇔ σj(µj − λν) = 0,

τjµ̄j = τjλν ⇔ τj(µ̄j − λν) = 0.

Since all eigenvalues are distinct, we get ρi = 0, if i 6= ν, and σj = 0 = τj , for every
j ∈ {1, . . . , l}. Consequently,

eν = ρνfν ,

for some ρν 6= 0, since eν is an eigenvector, and eν ∈ Er. Hence

fν =
1

ρν
eν ,

1

ρν
∈ C, eν ∈ Er

i.e., fν ∈ (Er)C. Since eν = eν + 0 ∈ Er ⊕ Ec, and since similarly we have that
dj , dj

′ ∈ Er ⊕ Ec, for every j ∈ {1, . . . , l}, we get E ⊆ Er ⊕ Ec. The converse
inclusion Er ⊕ Ec ⊆ E holds trivially. Hence

E = Er ⊕ Ec.
We define Tr ∈ L(Er) and Tc ∈ L(Ec) by Tr := T|Er and Tc := T|Ec , respectively.

These are well-defined mappings, since if e.g., u =
∑k
i=1 µifi ∈ Er, then

Tu = TCu

= TC

k∑
i=1

µifi

=

k∑
i=1

µiTCfi

=

k∑
i=1

µiλifi ∈ Er.

Clearly, Tr has real eigenvalues and Tc has non-real, complex eigenvalues. �

Corollary 1.5.15. Let E be a real vector subspace of Rn and T ∈ L(E). If
all eigenvalues of T are distinct, then then the system of linear odes

ẋ(t) = Tx(t),

is rewritten as
ẋr(t) = Trxr(t), ẋc(t) = Tcxc(t),

where x(t) = xr(t) + xc(t) ∈ E = Er ⊕ Ec and T = Tr ⊕ Tc.
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Proof. By Theorem 1.5.14, we have that let Br := {e1, . . . , ek} and Bc :=
{d1, d1

′, . . . , dl, dl
′} are the bases for Er and Ec, respectively. If Ar is the matrix of

Tr with respect to Br, and if Ac is the matrix of Tc with respect to Bc, then, by the
comment following Definition 1.4.8, the matrix of T with respect to B = Br ∪Bc is

A =

[
Ar 0
0 Ac

]
= Diag(Ar, Ac),

and the original system is written[
ẋr(t)
ẋc(t)

]
=

[
Ar 0
0 Ac

] [
xr(t)
xc(t)

]
.

�

Next follows the direct sum decomposition for the operator Tc.

Theorem 1.5.16 (Direct sum decomposition for an operator with distinct,
non-real eigenvalues). Let E be a real vector subspace of Rn and T ∈ L(E). If all
eigenvalues of T are the distinct, non-real complex numbers µ1, µ̄1, . . . , µl, µ̄l, there
are subspaces E1, . . . El of E and operators T1 ∈ L(E1), . . . , Tl ∈ L(El) such that:

(i) E1, . . . , El are two-dimensional;

(ii) T1 has eigenvalues µ1, µ̄1, . . . , Tl has eigenvalues µl, µ̄l;

(iii) E = E1 ⊕ . . .⊕ El is a T -invariant direct sum decomposition for E;

(iv) T = T1 ⊕ . . .⊕ Tl.

Proof. Let g1, g
∗
1 , . . . , gl, g

∗
l be the corresponding eigenvectors of TC. For every

j ∈ {1, . . . , l} we define the complex subspace

Fj :=< {gj , g∗j } >C,

of EC. If Ej := Fj ∩ E, we work as in the proof of Theorem 1.5.14. �

Because of Theorem 1.5.14 the study of an operator T ∈ L(E) with distinct
eigenvalues is reduced to the study of Tr and Tc. For the operator Tr we use
Theorem 1.4.17, while the study of Tc is reduced by Theorem 1.5.16 to the study
of an operator T ′ ∈ L(E′), where E′ is a two-dimensional real subspace of Rn and
T ′ has non-real, complex eigenvalues.

Theorem 1.5.17. Let E be a two-dimensional real vector subspace of Rn and
T ∈ L(E) with eigenvalues µ = a+ ib and µ̄ = a− ib, where b 6= 0. Then the matrix

Aab =

[
a −b
b a

]
is the matrix of T with respect to some basis for E.
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Proof. The complexification TC ∈ L(EC) of T has eigenvectors g, g∗ that
belong to µ and µ̄, respectively. By the remark following Definition 1.5.3 there are
u, v ∈ Rn such that g = u+ iv. Hence g∗ = u− iv, and

u =
1

2
(g + g∗), v =

1

2i
(g − g∗) =

i

2
(g∗ − g).

The linear independence of g, g∗ implies the linear independence of u, v. If x, y ∈ R,

xu+ yv = 0⇒ x
1

2
(g + g∗) + y

i

2
(g∗ − g) = 0

⇒
(
x

2
− yi

2

)
g +

(
x

2
+
yi

2

)
g∗ = 0

⇒ (x− yi) = 0 = (x+ yi)

⇔ x = 0 = y.

Hence B := {v, u} is a basis for E. If e = (x, y) with respect to B i.e., e = xv+ yu,
then from the equalities

TCg = µg

= (a+ ib)(u+ iv)

= (au− bv) + i(bu+ av),

and
TCg = TC(u+ iv) = TCu+ TC(iv) = Tu+ iTv

we get Tu = au− bv and Tv = bu+ av. Hence

Te = TCe

= TC(xv + yu)

= xTCv + yTCu

= xTv + yTu

= x(bu+ av) + y(au− bv)

= (xa− yb)v + (xb+ ya)u,

or in matrix form [
xa− yb
xb+ ya

]
=

[
a −b
b a

] [
x
y

]
.

�

Corollary 1.5.18. Let E be a two-dimensional real vector subspace of Rn and
T ∈ L(E) with eigenvalues µ = a + ib and µ̄ = a − ib, where b 6= 0. If g is an
eigenvector of the complexification TC ∈ L(EC) of T that belongs to µ, such that

g = u+ iv, u, v ∈ Rn,
then B := {v, u} is a basis for E, and the matrix of T with respect to B is Aab.

Proof. By inspection of the proof of Theorem 1.5.17. �
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Note that if we had used as basis for E the set B′ := {u, v}, then working as
above we see that the matrix of T with respect to B′ is Aa(−b).

Let for example the following system of odes

ẋ1(t) = −2x2(t),

ẋ2(t) = x1(t) + 2x2(t),

with matrix

A =

[
0 −2
1 2

]
.

The eigenvalues of A are λ = 1 + i and λ̄ = 1 − i. We find a non-real, complex
eigenvector w ∈ C2 that belongs to λ by solving the equation(

A− (i+ i)I2
)
w = 0⇔

[
−1− i −2

1 1− i

] [
w1

w2

]
= 0

⇔ (−1− i)w1 − 2w2 = 0 and w1 + (1− i)w2 = 0.

Since by multiplying the equation w1 +(1−i)w2 = 0 by (−1−i) we get the equation
(−1− i)w1 − 2w2 = 0, the two equations are equivalent. Since

w1 = (−1 + i)w2,

we can choose w2 = −i and w1 = 1 + i. Hence

w = (1 + i,−i) =
(
1 + i1, 0 + i(−1)

)
= (1, 0) + i(1,−1) = u+ iv,

u := (1, 0), v := (1,−1).

Let B := {v, u} the new basis for R2. By Corollary 1.5.18 the matrix of A with
respect to the new basis is

A11 =

[
1 −1
1 1

]
.

If x(t) is a solution curve to the system, and if x(t) = Py(t), where y(t) are the
coordinates of the solution curve with respect to B, we get y(t) = P−1x(t), therefore

ẏ(t) = P−1ẋ(t)

= P−1Ax(t)

= P−1APy(t)

= A11y(t).

Since, as we already know, the system (1.42) has solutions the curves

x(t) = K1e
at cos(bt)−K2e

at sin(bt)

y(t) = K1e
at sin(bt) +K1e

at cos(bt),

we get

y1(t) = K1e
t cos t−K2e

t sin t

y2(t) = K1e
t sin t+K2e

t cos t.
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Since

x = (x1, x2)

= y1v + y2u

= y1(1,−1) + y2(1, 0)

= (y1 + y2,−y1),

we get

x1 = y1 + y2

x2 = −y1.

Hence the solution curve of the original system is

x1(t) = (K1 +K2)et cos t+ (K1 −K2)et sin t,

x2(t) = −K1e
t cos t+K2e

t sin t.

1.6. Exponentials of operators and homogeneous linear systems

The aim of this section is to solve the system of linear odes

ẋ(t) = Ax(t),

where A ∈ Mn(R), without supposing that the eigenvalues of A are distinct. In
order to do this we use the concept of the exponential of an operators, a generaliza-
tion of the exponential function on reals. Recall that exp : R→ R+ can be defined
through the power series

exp(x) =: ex :=

∞∑
k=0

xk

k!
.

Definition 1.6.1. If T ∈ L(Rn), its exponential operator exp(T ), or eT , is
defined through its exponential series in L(Rn):

exp(T ) =: eT :=

∞∑
k=0

T k

k!
.

Recall that the operator T k, where k ∈ N, is defined in Definition 1.4.1, and
all concepts defined in Definition 1.1.29 extend to a general normed space.

Proposition 1.6.2. The exponential series of eT is absolutely convergent.

Proof. We show that the series
∞∑
k=0

∣∣∣∣∣∣∣∣T kk!

∣∣∣∣∣∣∣∣
is convergent. By Proposition 1.4.2(iv) we get for every k ∈ N∣∣∣∣∣∣∣∣T kk!

∣∣∣∣∣∣∣∣ ≤ ||T ||kk!
,
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and since
∞∑
k=0

||T ||k

k!
= e||T ||,

by the comparison test we get the required convergence. �

Remark 1.6.3. If T ∈ L(Rn), then eT ∈ L(Rn) and

||eT || ≤ e||T ||.

Proof. If x ∈ Rn, then

eT (x) =

∞∑
k=0

T k(x)

k!
,

and the linearity of eT follows immediately from the linearity of each T k and the
properties of infinite series. If ||x|| = 1, then by Proposition 1.4.2(i) and (iii)
|T k(x)| ≤ ||T k|| |x| ≤ ||T ||k, hence

|eT (x)| =
∣∣∣∣ ∞∑
k=0

T k(x)

k!

∣∣∣∣ ≤ ∞∑
k=0

∣∣∣∣T k(x)

k!

∣∣∣∣ ≤ ∞∑
k=0

||T ||k

k!
= e||T ||,

hence by Proposition 1.3.2 we get ||eT || ≤ e||T ||. �

Note that if (Tn)∞n=0 is an absolutely convergent sequence in L(Rn), then it is
also convergent in L(Rn) i.e.,

∞∑
n=0

||Tn|| <∞ =⇒
∞∑
n=0

Tn converges in L(Rn).

If τn is the n-th partial sum of the series
∑∞
n=0 Tn, σn is the n-th partial sum of

the series
∑∞
n=0 ||Tn||, and n > m, then

||τn − τm|| =
∣∣∣∣∣∣∣∣ n∑
i=m+1

Ti

∣∣∣∣∣∣∣∣ ≤ n∑
i=m+1

||Ti|| = |σn − σm|,

and we use the fact that L(Rn) is a Banach space (Theorem 1.3.3). Note that when
absolutely convergence of a series in a normed space X implies its convergence in
X, then X is a Banach space (left to the reader).

Lemma 1.6.4. If R =
∑∞
j=0Rj and S =

∑∞
k=0 Sk are absolutely convergent

series in L(Rn), then

R ◦ S =: T =

∞∑
l=0

Tl,

Tl :=
∑
j+k=l

Rj ◦ Sk.
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Proof. Let the sequences of the partial sums

ρn :=

n∑
j=0

Rj , σn :=

n∑
k=0

Sk, τn :=

n∑
l=0

Tl.

We have that

R ◦ S = lim
n→∞

(ρn ◦ σn)⇔ ||R ◦ S − (ρn ◦ σn)|| n−→ 0,

since

||R ◦ S − (ρn ◦ σn)|| = ||R ◦ S − ρn ◦ S + ρn ◦ S − ρn ◦ σn||
≤ ||R ◦ S − ρn ◦ S||+ ||ρn ◦ S − ρn ◦ σn||
= ||(R− ρn) ◦ S||+ ||ρn ◦ (S − σn)||
≤ ||R|| · ||R− ρn||+ ||ρn|| · ||S − σn||.

Since ||R − ρn||
n−→ 0 and ||S − σn||

n−→ 0, and since the sequence (||ρn||)∞n=1 is
bounded (for each n ∈ N we have that ||ρn|| ≤

∑n
j=0 ||Rj || ≤

∑∞
j=0 ||Rj || <∞), we

conclude that

||R ◦ S − (ρn ◦ σn)|| n−→ 0.

By hypothesis we have that

T = lim
n→∞

τ2n ⇔ ||T − τ2n||
n−→ 0.

We also have that

ρn ◦ σn =

( n∑
j=0

Rj

)
◦
( n∑
k=0

Sk

)
= R0 ◦ S0 + (R0 ◦ S1 +R1 ◦ S0) + . . .+

+ (Rn−1 ◦ Sn +Rn ◦ Sn−1) +Rn ◦ Sn

=
∑

j+k≤2n, 0≤j≤n,0≤k≤n

Rj ◦ Sk.

Since

τ2n =

2n∑
l=0

∑
j+k=l

Rj ◦ Sk,

we have that

τ2n = ρn ◦ σn +

+
∑

j+k≤2n, 0≤j≤n,n+1≤k≤2n

Rj ◦ Sk

+
∑

j+k≤2n, n+1≤j≤2n,0≤k≤n

Rj ◦ Sk.
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By the hypothesis of the absolute convergence of the series we get

||τ2n − ρn ◦ σn|| =
∣∣∣∣∣∣∣∣ ∑
j+k≤2n, 0≤j≤n,n+1≤k≤2n

Rj ◦ Sk +

+
∑

j+k≤2n, n+1≤j≤2n,0≤k≤n

Rj ◦ Sk
∣∣∣∣∣∣∣∣

≤
∑

j+k≤2n, 0≤j≤n,n+1≤k≤2n

||Rj || · ||Sk|| +

+
∑

j+k≤2n, n+1≤j≤2n,0≤k≤n

||Rj || · ||Sk||

≤
( ∞∑
j=0

||Rj ||
)( 2n∑

k=n+1

||Sk||
)

+

+

( ∞∑
k=0

||Sk||
)( 2n∑

j=n+1

||Rj ||
)
.

Since
∑2n
k=n+1 ||Sk||

n−→ 0 and
∑2n
j=n+1 ||Rj ||

n−→ 0, we get that

||τ2n − ρn ◦ σn||
n−→ 0.

Since

||R ◦ S − τ2n|| = ||R ◦ S − ρn ◦ σn + ρn ◦ σn − τ2n||
≤ ||R ◦ S − ρn ◦ σn||+ ||ρn ◦ σn − τ2n||,

we conclude that ||R ◦ S − τ2n||
n−→ 0. �

Remark 1.6.5. Let S, T ∈ L(Rn), and (Tn)∞n=1 ⊆ L(Rn), such that Tn
n−→ T .

(i) S ◦ Tn
n−→ S ◦ T .

(ii) Tn ◦ S
n−→ T ◦ S.

Proof. Left to the reader. �

Proposition 1.6.6. Let R,S, T ∈ L(Rn), and a, b ∈ R.

(i) If R is invertible, then eR◦S◦R
−1

= R ◦ eS ◦R−1.

(ii) If S ◦ T = T ◦ S, then eS+T = eS ◦ eT .

(iii) e−S = (eS)−1.

(iv) If n = 2 and the matrix of T is [
a −b
b a

]
,
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then the matrix of eT is

ea
[
cos b − sin b
sin b cos b

]
.

Proof. (i) It is easy to show by induction on N that for every k ∈ N

(R ◦ S ◦R−1)k = R ◦ Sk ◦R−1.

Since

R ◦
( n∑
k=0

Sk

k!

)
◦R−1 =

n∑
k=0

R ◦ Sk ◦R−1

k!
=

n∑
k=0

(R ◦ S ◦R−1)k

k!
,

by Remark 1.6.5 we have that

eR◦S◦R
−1

=

∞∑
k=0

(R ◦ S ◦R−1)k

k!

= lim
n→∞

n∑
k=0

(R ◦ S ◦R−1)k

k!

= lim
n→∞

R ◦
( n∑
k=0

Sk

k!

)
◦R−1

= R ◦
(

lim
n→∞

n∑
k=0

Sk

k!

)
◦R−1

= R ◦ eS ◦R−1.

(ii) Using the binomial expansion we get

(S + T )n =

n∑
k=0

(
n
k

)
Sn−k ◦ T k

=

n∑
k=0

n!

(n− k)! k!
Sn−k ◦ T k

= n!
∑

j+k=n

(
Sj

j!

)
◦
(
T k

k!

)
.

Hence by Lemma 1.6.4 we get

eS+T =

∞∑
n=0

(S + T )n

n!

=

∞∑
n=0

( ∑
j+k=n

(
Sj

j!

)
◦
(
T k

k!

))



1.6. EXPONENTIALS OF OPERATORS AND HOMOGENEOUS LINEAR SYSTEMS 67

=

( ∞∑
j=0

Sj

j!

)
◦
( ∞∑
k=0

T k

k!

)
= eS ◦ eT .

(iii) First we observe that

e0 =

∞∑
k=0

0k

k!
= In + 01 +

02

2!
+ . . . = In.

Since S ◦ (−S) = (−S) ◦ S, by case (ii) we get that eS+(−S) = e0 = eS ◦ e−S , and
similarly e−S+S = e0 = e−S ◦ eS .
(iv) If x1, x2 ∈ R, then [

a −b
b a

] [
x1

x2

]
=

[
ax1 − bx2

bx1 + ax2

]
,

hence, identifying R2 with C and viewing (x1, x2) as x1 + ix2 = z, we get

Tz = (a+ ib)z.

Since for every k ∈ N we get then T kz = (a+ ib)kz, we have that

eT (z) =

∞∑
k=0

(a+ ib)kz

k!

= z

∞∑
k=0

(a+ ib)k

k!

= zea+ib

= zeaeib

= (x1 + ix2)ea(cos b+ i sin b)

= ea
(
x1 cos b− x2 sin b+ i(x2 cos b+ x1 sin b)

)
,

hence using matrices we get[
ea(x1 cos b− x2 sin b)
ea(x2 cos b+ x1 sin b)

]
= ea

[
cos b − sin b
sin b cos b

] [
x1

x2

]
.

�

Proposition 1.6.7. If L(Rn)−1 is the set of all invertible operators in L(Rn),
the following hold:
(i) The function exp : L(Rn) → L(Rn), defined by T 7→ eT , is a function from
L(Rn) to L(Rn)−1.

(ii) The function exp is continuous.

(iii) If T ∈ L(Rn) such that ||T || < 1, then

(a) the series
∑∞
k=0 T

k converges,
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(b) In − T ∈ L(Rn)−1, and
∞∑
k=0

T k =
1

In − T
.

(iv) The set L(Rn)−1 is an open subset of L(Rn).

Proof. Exercise. �

Proposition 1.6.8. Let T ∈ L(Rn), λ ∈ R, x ∈ Rn, and E a subspace of Rn.

(i) If λ is an eigenvalue of T and x is an eigenvector of T that belongs to λ, then
x is an eigenvector of eT that belongs to eλ.

(ii) If E is T -invariant, then E is eT -invariant.

Proof. Exercise. �

Note that if λ ∈ R, then

eλIn =

∞∑
k=0

(λIn)k

k!
=

∞∑
k=0

λkIkn
k!

=

( ∞∑
k=0

λk

k!

)
In = eλIn.

Proposition 1.6.9. If

A =

[
a 0
b a

]
= a

[
1 0
0 1

] [
0 0
b 0

]
=: aI2 +B,

then the matrix of eTA is

ea
[
1 0
b 1

]
.

Proof. Since aI2 ·B = B · aI2, we get aI2 ◦ TB = TB ◦ aI2, hence by Proposi-
tion 1.6.6(ii) and the previous remark we have that

eTA = eaI2+TB = eaI2 ◦ eTB = (eaI2) ◦ eTB = ea(I2 ◦ eTB ) = eaeTB .

Since

TBx =

[
0 0
b 0

] [
x1

x2

]
=

[
0
bx1

]
,

we have that

TB(TBx) =

[
0 0
b 0

] [
0
bx1

]
=

[
0
0

]
,

and similarly (TB)k = 0, for every k > 1. Hence

eTB =

∞∑
k=0

T kB
k!

= I2 + TB + 0 + +0 . . . = I2 + TB ,

and eTA = ea(I2 + TB). Therefore the matrix of eTA is ea(I2 +B). �
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Proposition 1.6.10. Let S, T ∈ L(Rn) such that S ◦ T = T ◦ S.

(i) eS ◦ eT = eT ◦ eS.

(ii) eS ◦ T = T ◦ eS.

Proof. Exercise. �

Definition 1.6.11. If T ∈ L(Rn), the map expT : R→ L(Rn)−1 is defined by

t 7→ expT := etT .

If A ∈Mn(R), we write for simplicity expA(t) = etA instead of expTA(t) = etTA .

Since L(Rn) can be identified with Mn(R), and hence with Rn2

, it is meaningful
to study the differentiability of expA. In the rest we identify TA with A.

Proposition 1.6.12. If A ∈Mn(R), the function expA is differentiable and

˙expA(t) = A ◦ expA(t) = expA(t) ◦A.

Proof. If h, t ∈ R, then tA ◦ hA = hA ◦ tA, and Proposition 1.6.6(ii) gives

˙expA(t) = lim
h→0

expA(t+ h)− expA(t)

h

= lim
h→0

e(t+h)A − etA

h

= lim
h→0

etA ◦ ehA − etA

h

= lim
h→0

etA ◦ (ehA − In)

h

= lim
h→0

(
etA ◦

(
ehA − In

h

))
= etA ◦ lim

h→0

(
ehA − In

h

)
= etA ◦A,

where the last equality is justified as follows. By definition of ehA we get

ehA − In
h

=

(
In + hA+ h2A2

2 + . . .
)
− In

h

=
hA+ h2A2

2 + h3A3

3! + . . .

h

= A+ h

(
A2

2
+ h

A3

3!
+ . . .

)
=: A+ hB,
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hence by Proposition 1.6.2, and since |h| → 0, we get∣∣∣∣∣∣∣∣ehA − Inh
−A

∣∣∣∣∣∣∣∣ = ||hB||

= |h| ||B||

≤ |h|
(∣∣∣∣∣∣∣∣A2

2

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣hA3

3!

∣∣∣∣∣∣∣∣+ . . .

)
≤ |h|

(∣∣∣∣∣∣∣∣A2

2

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣A3

3!

∣∣∣∣∣∣∣∣+ . . .

)
≤ |h|

∞∑
k=0

∣∣∣∣∣∣∣∣Akk!

∣∣∣∣∣∣∣∣.
Since A ◦ (tA) = (tA) ◦A, by Proposition 1.6.10(ii) A ◦ expA(t) = expA(t) ◦A. �

Theorem 1.6.13 (Fundamental theorem of linear odes with constant coeffi-
cients). If A ∈Mn(R), the system of linear odes

ẋ(t) = Ax(t); x(0) = K ∈ Rn

has as unique solution the function

x(t) = (expA(t))(K) = etAK.

Proof. First we show that x(t) is a solution. By Proposition 1.6.12 we get9

ẋ(t) = lim
h→0

e(t+h)AK − etAK

h

= lim
h→0

e(t+h)A − etA

h
K

=

[
lim
h→0

e(t+h)A − etA

h

]
K

= ˙expA(t)K

= (A ◦ expA(t))K

= AetAK

= Ax(t).

Moreover, x(t) satisfies the given initial condition, since

x(0) = e0AK = e0K = InK = K.

For the uniqueness of the solution of the system we work as in the case of the proof
of uniqueness of solution to the simplest ode. If x(t) is a solution of the system and

9We freely pass from an expression like (A◦expA(t))K, which is understood as a formula be-

tween operators, to an expression like AetAK, which is understood as a formula between matrices.
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y(t) = (expA(−t))(x(t)) = e−tAx(t), then by Proposition 1.6.12 we have that

ẏ(t) =

(
d

dt
e−tA

)
x(t) + e−tAẋ(t)

= −Ae−tAx(t) + e−tAAx(t)

= e−tA(−A+A)x(t)

= 0,

hence y(t) is constant with value y(0) = e0x(0) = Inx(0) = x(0) = K. Hence
K = e−tAx(t), therefore etAK = etAe−tAx(t) = e0x(t) = Inx(t) = x(t). �

Note that if n = 1, the general solution to the system

ẋ(t) = Ax(t); x(0) = K ∈ R
is x(t) = etaK, and since

eta = eta,

we get the known unique solution of the simplest ode. If we consider the system

ẋ1(t) = ax1(t); x1(0) = K1 ∈ R,
ẋ2(t) = bx1(t) + ax2(t); x2(0) = K2 ∈ R,

(1.44)

with matrix

A =

[
a 0
b a

]
,

then by Proposition 1.6.9 we know that

tA =

[
ta 0
tb ta

]
=⇒ etA = eta

[
1 0
tb 1

]
.

By Theorem 1.6.13 the unique solution of the system is[
x1(t)
x2(t)

]
= eta

[
1 0
tb 1

] [
K1

K2

]
=

[
etaK1

eta(tbK1 +K2)

]
.

If A ∈Mn(R), the dynamical system that is generated by the system of odes

ẋ(t) = Ax(t)

is the function φA : R× Rn → Rn

φA(t, u) := x(t),

where x(t) is the unique solution of the system

ẋ(t) = Ax(t) ; x(0) = u ∈ Rn.
By Theorem 1.6.13 we get

φA(t, u) = etAu.

Let t ∈ R be fixed. The function

φA,t : Rn → Rn
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φA,t(u) := φA(t, u) = etAu

is linear. The family of maps

(φt)t∈R

is called the flow that corresponds to the above system of odes. This flow is linear,
as the maps φt are linear, for every t ∈ R. If s, t ∈ R, the flow satisfies the
fundamental property

φA,s ◦ φA,t = φA,s+t,

since for every u ∈ Rn we have that

(φA,s ◦ φA,t)(u) = φA,s(φA,tu)

= φA,s
(
etAu

)
= esAetAu

= e(s+t)Au

= φA,s+t(u).

The Lipschitz continuity of solutions in initial conditions (see Theorem 2.1.15)
follows in this case easily, since

|φA,t(u)− φA,t(w)| = |etAu− etAw|
= |etA(u− w)|
≤ ||etA|| · |u− w|

≤ e||tA|| · |u− w|

= e|t|·||A|| · |u− w|.

If A ∈ M2(R), one can show that there is invertible P ∈ M2(R) such that
B = PAP−1 has one of the following forms:[

λ 0
0 µ

]
;

[
a −b
b a

]
;

[
λ 0
1 λ

]
.

Correspondingly, the exponential eB has one of the following forms:[
eλ 0
0 eµ

]
; ea

[
cos b − sin b
sin b cos b

]
; eλ

[
1 0
1 1

]
.

The firs case is an exercise, while the third follows from the solution of the sys-
tem (1.44) for t = 1 = b. By Proposition 1.6.6(i) we get

eA = eP
−1BP = P−1eBP

i.e., we can can compute eA, for every A ∈M2(R). Consequently, we can explicitly
solve the system ẋ(t) = Ax(t), for every A ∈ M2(R). We consider the following
cases:
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(I) A has eigenvalues λ, µ ∈ R such that λ · µ < 0 (saddle): By Corollary 1.4.13

B = Diag(λ, µ) =

[
λ 0
0 µ

]
.

(II) All eigenvalues have negative real part (sink): one can show that every solution
x(t) of the corresponding system satisfies

lim
t→∞

x(t) = 0.

E.g., if λ = a+ ib and µ = a− ib and a < 0, by Corollary 1.5.18 after changing the
system of coordinates we get the equivalent system ẏ(t) = By(t), where B = Aab.
Since

etB = eta
[
cos(tb) − sin(tb)
sin(tb) cos(tb)

]
,

the solutions are[
y1(t)
y2(t)

]
= eta

[
cos(tb) − sin(tb)
sin(tb) cos(tb)

] [
K1

K2

]
=

[
eta
(
K1 cos(tb)−K2 sin(tb)

)
eta
(
K1 sin(tb) +K2 cos(tb)

)] .
Since | cos(tb)| ≤ 1 and | sin(tb)| ≤ 1, and since a < 0, we get limt→∞ y(t) = 0, and
since x(t) = Py(t), we conclude that limt→∞ x(t) = 0.

(III) All eigenvalues have positive real part (source): one can show as in case (II)
that every solution x(t) of the corresponding system satisfies

lim
t→∞

|x(t)| =∞, lim
t→−∞

|x(t)| = 0.

(IV) All eigenvalues are pure imaginary (center): one can show (exercise) that all
solutions are periodic with the same period i.e., there is some p > 0 such that

∀t∈R
(
x(t+ p) = x(t)

)
.

1.7. Variation of constants

Definition 1.7.1. If A ∈Mn(R) and B : R→ Rn is continuous, the system of
odes

(1.45) ẋ(t) = Ax(t) +B(t)

is called a non-homogeneous, non-autonomous system of odes.

Equation (1.45) is called non-homogeneous because the term B(t) prevents it
from being linear, and it is called non-autonomous, since ẋ(t) depends explicitly on
the time parameter t.

Theorem 1.7.2. (i) Equation (1.45) has as a solution the function

(1.46) x(t) = etA
[ ∫ t

0

e−sAB(s)ds+K

]
, K ∈ Rn,

and every solution of equation (1.45) is of this form.
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(ii) A solution of equation (1.45) has the form

x(t) = u(t) + v(t),

where u(t) is a solution of equation (1.45) and v(t) is a solution of the homogeneous
equation ẋ(t) = Ax(t).

(iii) The sum of a solution of equation (1.45) and of the homogeneous equation
ẋ(t) = Ax(t) is a solution to equation (1.45).

Proof. (i) We suppose that the solution of equation (1.45) has the form

(1.47) x(t) = etAf(t),

for some differentiable function f : R → Rn, and we determine the exact form of
f(t). Note that if B(t) = 0, for every t ∈ R, then by Theorem 1.6.13 f(t) = K,
for every T ∈ R and for some K ∈ Rn (that is why this method of solution of
equation (1.45) is called variation of constants). By Proposition 1.6.12 we get

Ax(t) +B(t) = ẋ(t)

= (etA)′f(t) + etAf ′(t)

=
(
AetA

)
f(t) + etAf ′(t)

= A
(
etAf(t)

)
+ etAf ′(t)

= Ax(t) + etAf ′(t),

hence

f ′(t) = e−tAB(t).

By integration we get

f(t) =

∫ t

0

e−sAB(s)ds+K,

for some K ∈ Rn. Note that the function g : R→ Rn, defined by

g(s) := e−sAB(s)

is continuous, hence it is integrable, and∫ t

0

g(s)ds =

(∫ t

0

g1(s)ds, . . . ,

∫ t

0

gn(s)ds

)
∈ Rn.

First we show that equation (1.47) is indeed a solution to equation (1.45):

ẋ(t) =
(
etA
)′[ ∫ t

0

e−sAB(s)ds+K

]
+ etA

[ ∫ t

0

e−sAB(s)ds+K

]
′

= AetA
[ ∫ t

0

e−sAB(s)ds+K

]
+ etAe−tAB(t)

= Ax(t) +B(t).
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Next we show that a solution y : R → Rn of equation (1.45) is of this form. Since
ẏ(t) = Ay(t) +B(t), we get

˙(x− y)(t) = ẋ(t)− ẏ(t) = A
(
x(t)− y(t)

)
,

hence by Theorem 1.6.13 there is some Λ ∈ Rn such that x(t)− y(t) = etAΛ, hence

y(t) = x(t)− etAΛ

= etA
[ ∫ t

0

e−sAB(s)ds+K

]
− etAΛ

= etA
[ ∫ t

0

e−sAB(s)ds+ (K − Λ)

]
= etA

[ ∫ t

0

e−sAB(s)ds+K ′
]
,

where K ′ := K − Λ ∈ Rn.
(ii) The general solution of equation (1.45) is written as

x(t) = u(t) + etAK,

where

u(t) := etA
∫ t

0

e−sAB(s)ds

is also a solution of equation (1.45).
(iii) Let u(t) be a solution of equation (1.45) and v(t) be a solution of ẋ(t) = Ax(t).
Then x(t) = u(t) + v(t) is a solution of equation (1.45), since

ẋ(t) = u̇(t) + v̇(t)

= Au(t) +B(t) +Av(t)

= A
(
u(t) + v(t)

)
+B(t)

= Ax(t) +B(t).

�

If B(t) is of non-trivial complexity, it is hard to compute the integral in (1.47).
If B(t) is simple, we calculate x(t) following the obvious steps:

(i) We determine the matrices A and B(t).

(ii) We calculate the matrices e−sA and etA.

(iii) We calculate the (n×1)-matrix that corresponds to the integral
∫ t

0
e−sAB(s)ds.

(iv) We find the product of the matrix etA and the (n×1)-matrix
∫ t

0
e−sAB(s)ds+K.
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1.8. Higher order linear odes

An ode of higher order is a a linear ode with constant coefficients that involves
derivatives higher than the first.

Definition 1.8.1. If n ≥ 2, s : R → R is an n-differentiable function and
a1, . . . , an ∈ R, the ode

(1.48) s(n)(t) + a1s
(n−1)(t) + . . .+ an−1ṡ(t) + ans(t) = 0

is an ode of higher order n. If n = 2, equation (1.48) becomes

(1.49) s̈(t) + a1ṡ(t) + a2s(t) = 0.

If we introduce new variables, equation (1.49) is reduced to a linear system of
odes with constant coefficients. Namely, if x1 = s and x2 = ẋ1 = ṡ, equation (1.49)
becomes ẋ2 + a1x2 + a2x1 = 0, hence we get the following system of odes:

ẋ1 = x2,

ẋ2 = −a2x1 − a1x2.
(1.50)

If (x1, x2) is a solution of the system (1.50), then s = x1 is a solution of equa-
tion (1.49), and if s is a solution of equation (1.49), then (s, ṡ) is a solution of the
system (1.50). The matrix of the system (1.50) is

A2 =

[
0 1
−a2 −a1

]
,

with characteristic polynomial

pA2(λ) = Det(A2 − λI2) = λ2 + a1λ+ a2.

Similarly, equation (1.48) is reduced to a linear system of odes with constant co-
efficients. If we define x1 = s, x2 = ẋ1 = ṡ, . . . xn = ẋn−1, we get the following
system of odes:

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn,

ẋn = −anx1 − an−1x2 − . . .− a1xn.

(1.51)

The matrix of the system (1.51) is

An =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 . . . 0 1
−an −an−1 . . . −a2 −a1

 .
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Proposition 1.8.2. If n ≥ 2, the characteristic polynomial of An is given by

pAn(λ) = λn + a1λ
n−1 + . . .+ an−1λ+ an.

Proof. By induction on n ≥ 2. Case n = 2 is shown above, and the inductive
case is straightforward (the details are left to the reader). �

Theorem 1.8.3. Let λ1, λ2 be the roots of the characteristic polynomial pA2 of
A2. For the solution s(t) of the ode (1.49) the following hold:

(i) If λ1, λ2 ∈ R are distinct, there are C1, C2 ∈ R such that

s(t) = C1e
λ1t + C2e

λ2t.

(ii) If λ1 = λ2 = λ ∈ R, there are C1, C2 ∈ R such that

s(t) = C1e
λt + C2te

λt.

(iii) If λ1, λ2 ∈ C \ R, and λ1 = u+ iv, there are C1, C2 ∈ R such that

s(t) = eut
(
C1 cos(vt) + C2 sin(vt)

)
.

Proof. (i) By Theorem 1.4.17 there are K1,K2 ∈ R such that for the di-
agonalizing system of coordinates

(
y1(t), y2(t)

)
we have that y1(t) = K1e

λ1t and

y2(t) = K2e
λ2t. For the original system

(
x1(t), x2(t)

)
we have that[

x1(t)
x2(t)

]
=

[
p11 p12

p21 p22

] [
y1(t)
y2(t)

]
,

hence s(t) = x1(t) = p11K1e
λ1t + p12K2e

λ2t.
(ii) One can show that in this case A2 is similar to a matrix B of the form

B =

[
λ 0
β λ

]
; β 6= 0.

As we have seen already in the solution of system (1.44), the solutions of the system
ẏ(t) = By(t) are

y1(t) = K1e
λt,

y2(t) = K2e
λt +K1βte

λt,

where K1,K2 ∈ R. As in the previous case, the solutions x1(t) and x2(t) of the
original system are linear combinations of y1(t) and y2(t).
(iii) By Corollary 1.5.18 and since we know the solutions of system (1.42), the
solutions of the system

ẏ(t) = Auvy(t)

are

y1(t) = K1e
ut cos(vt)−K2e

ut sin(vt) = eut
(
K1 cos(vt)−K2 sin(vt)

)
,

y2(t) = K1e
ut sin(vt) +K2e

ut cos(vt) = eut
(
K1 sin(vt) +K2 cos(vt)

)
.

Since the solutions x1(t) and x2(t) of the original system are linear combinations
of y1(t) and y2(t), the result follows. �
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Proposition 1.8.4. Let S(a1, . . . , an) be the set of solutions of the higher ode

s(n)(t) + a1s
(n−1)(t) + . . .+ an−1ṡ(t) + ans(t) = 0.

(i) Equipped with pointwise addition and multiplication by reals the set S(a1, . . . , an)
is a real vector space.
(ii) If f ∈ S(a1, . . . , an), then f is (n+ 1)-differentiable and ḟ ∈ S(a1, . . . , an).

Proof. (i) Straightforward and left to the reader.

(ii) If f ∈ S(a1, . . . , an), then x = (f, ḟ , . . . , f (n−1)) is a solution to the sys-
tem (1.51). By Theorem 1.6.13 x(t) has derivatives of all orders (i.e., it is infinitely

differentiable), hence f is (n + 1)-differentiable. To get ḟ ∈ S(a1, . . . , an) we take
the derivatives on both sides of the higher ode. �

Proposition 1.8.5. If C∞(R) is the set of infinitely differentiable functions of
type R→ R, the following hold:
(i) The constant functions Const(R) is a subset of C∞(R).
(ii) Equipped with pointwise addition and multiplication by reals the set C∞(R) is
a real vector space.
(iii) The solutions S(a1, . . . , an) of the higher ode (1.48) is a subspace of C∞(R).
(iv) The differentiation operator D : C∞(R)→ C∞(R) defined by

Df := ḟ ,

for every f ∈ C∞(R), is in L
(
C∞(R)

)
.

(v) For every λ ∈ R, the mapping Mλ : C∞(R)→ C∞(R) defined by

Mλf := λf,

for every f ∈ C∞(R), is in L
(
C∞(R)

)
. Moreover, M1 = idC∞(R) and M0 = 0̄, the

zero operator in L
(
C∞(R)

)
.

(vi) The mapping MidR : C∞(R)→ C∞(R) defined by

MidRf := idR · f,

for every f ∈ C∞(R), is in L
(
C∞(R)

)
.

(vii) If Dn is the n-th application of D to itself, and if

p(t) = tn + a1t
n−1 + . . .+ an−1t+ an ∈ R[t],

the mapping p(D) : C∞(R)→ C∞(R) defined by

p(D) := Dn + a1D
n−1 + . . .+ an−1D + anIC∞(R),

i.e.,

p(D)f = f (n) + a1f
(n−1) + . . .+ an−1ḟ + anf,

for every f ∈ C∞(R), is in L
(
C∞(R)

)
.

Proof. Straightforward and left to the reader. �
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Clearly, if p(t) is the polynomial corresponding to equation (1.48), and f ∈
Ker(p(D)), then f is a solution to equation (1.48). Hence the problem of solv-
ing (1.48) is reduced to the problem of finding elements of Ker(p(D)).

Proposition 1.8.6. If p(t), q(t), r(t) ∈ R[t] such that p(t) = q(t) · r(t), the
following hold:
(i) Ker(r(D)) ⊆ Ker(p(D)) and Ker(q(D)) ⊆ Ker(p(D)).
(ii) If f ∈ Ker(q(D)) and g ∈ Ker(r(D)), then f + g ∈ Ker(p(D)).

Proof. The proof of (i) is straightforward, while if q(D)f = 0 = r(D)g, then
by case (i) p(D)f = 0 = p(D)g, hence p(D)(f + g) = p(D)f + p(D)g = 0. �

From now on we denote MidR by Mt and MidkR
by Mtk i.e.,

Mtf := tf, and Mtkf := tkf.

Lemma 1.8.7. If λ ∈ R, then for every k ≥ 1 we have that

(D −Mλ) ◦Mtk −Mtk ◦ (D −Mλ) = kMtk−1 .

Proof. By induction on k ≥ 1. If k = 1, we show that

(D −Mλ) ◦Mt −Mt ◦ (D −Mλ) = M1 = idC∞(R).

First we observe that
D ◦Mt −Mt ◦D = M1,

since by the Leibniz rule we get[
D ◦Mt −Mt ◦D

]
f = D(tf)− tDf = ṫf + tDf − tDf = f.

Since (Mλ ◦Mt)f = λMtf = λtf = t(λf) = (Mt ◦Mλ)f , we get

(D −Mλ) ◦Mt −Mt ◦ (D −Mλ) = D ◦Mt −Mλ ◦Mt −Mt ◦D +Mt ◦Mλ

= D ◦Mt −Mt ◦D
= M1.

For the inductive step we observe first that

(D −Mλ) ◦Mtk+1 −Mtk+1 ◦ (D −Mλ) = D ◦Mtk+1 −Mλ ◦Mtk+1−
−Mtk+1 ◦D +Mtk+1 ◦Mλ

= D ◦Mtk+1 −Mtk+1 ◦D,
and we reach our conclusion by the following equalities:[

D ◦Mtk+1 −Mtk+1 ◦D
]
f = D(tk+1f)− tk+1Df

= (k + 1)tkf + tk+1Df − tk+1Df

= (k + 1)tkf

= (k + 1)Mtkf.

�
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Proposition 1.8.8. If m ∈ N+, λ ∈ R, and p(t) ∈ R[t], then

(t− λ)m | p(t) =⇒ ∀k∈{0,...,m−1}

(
tkeλt ∈ Ker(p(D))

)
.

Proof. It suffices to show that

∀k∈N
(

(D −Mλ)k+1tkeλt = 0

)
,

since then we get all required cases:

(D −Mλ)eλt = 0,

(D −Mλ)2teλt = 0,

...

(D −Mλ)mtm−1eλt = 0,

since, if σ(t) := t − λ, and by hypothesis σj(t) | p(t), for every j ∈ {1, . . . ,m}, we
get that tjeλt ∈ Ker(σj(D)), hence by Proposition 1.8.6(i) tjeλt ∈ Ker(p(D)).

If k = 0, the equality Deλt = λeλt is written as (D − Mλ)eλt = 0 By
Lemma 1.8.7, and since (D −Mλ)eλt = 0, we get

(D −Mλ)k+1tkeλt = (D −Mλ)k+1
(
Mtke

λt
)

= (D −Mλ)k
[(

(D −Mλ) ◦Mtk

)
eλt
]

= (D −Mλ)k
[(
Mtk ◦ (D −Mλ) + kMtk−1

)
eλt
]

= (D −Mλ)k
[
tk(D −Mλ)eλt + ktk−1eλt

]
= (D −Mλ)kktk−1eλt

= k(D −Mλ)ktk−1eλt

= 0,

since by the inductive hypothesis (D −Mλ)ktk−1eλt = 0. �

Everything we said in this section so far works also for C instead of R. Recall10

that a polynomial p(t) ∈ C[t] of degree ≥ 1 has a factorization

p(t) = cp1(t) . . . ps(t),

where p1(t) . . . ps(t) ∈ C[t] are irreducible, with leading coefficient 1, c ∈ C, and
this factorization is unique up to permutation. This factorization holds for the
polynomials in R[t] too, since if K is a field, the integral domain K[t] is a principal
ideal domain, hence a unique factorization domain. The use of C[t] though, is

10See [8], Chapter XI, section 3.
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crucial in the form of the irreducible polynomials occurring in the factorization
of p(t). Namely, a monic polynomial p(t) ∈ C[t], i.e., a polynomial with leading
coefficient 1, is written as

p(t) = (t− λ1)m1 · . . . · (t− λr)mr ,
where mj is the multiplicity of (t− λj) in p(t), or the multiplicity of λj in p(t) for
every j ∈ {1, . . . , r}.

Corollary 1.8.9. The following n functions belong to the set S(a1, . . . , an) of
solutions of the higher ode (1.48):
(i) The functions

f(t) = tkeλt,

where λ is any of the distinct real roots of the polynomial11 of p(t) that corresponds
to (1.48), and k ∈ N is between 0 and the multiplicity of λ in p(t).
(ii) The functions

g(t) = tkeat cos(bt), h(t) = tkeat sin(bt),

where λ = a+ ib is any of the non-real, complex roots of p(t) with b > 0 and k ∈ N
is between 0 and the multiplicity of λ in p(t).

Proof. (i) It follows from the above factorization of p(t) and Proposition 1.8.8.
If m is the multiplicity of λ, then the following m functions are in S(a1, . . . , an):

eλt, teλt, . . . , tm−1eλt.

(ii) Since p(D) has real coefficients, we have that

p(D)if = ip(D)f,

for every n-differentiable function f : R→ R, hence by the generalization of Propo-
sition 1.8.8 to λ ∈ C and p(t) ∈ C[t] we get

0 = p(D)tkeλt

= p(D)tke(a+ib)t

= p(D)tk
(

cos(bt) + i sin(bt)
)

= p(D)tkeat cos(bt) + ip(D)tkeat sin(bt),

therefore p(D)tkeat cos(bt) = 0 = p(D)tkeat sin(bt). �

Note that a non-real, complex root of p(t) of the form a − ib generates the
functions g(t) and −h(t), hence it adds no new functions to the linear span of the
functions mentioned in Corollary 1.8.9. Next we show that these functions not only
belong to S(a1, . . . , an), but also form a basis for it. For the proof of this fact we
need some preparation.

11Note that by Proposition 1.8.2 the polynomial p(t) is the characteristic polynomial of the

matrix of the system (1.51) that corresponds to equation (1.48).
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First we note that the definition in Proposition 1.8.5(vii) is generalized to any
complex vector space X and T ∈ L(X) i.e, if p(t)tn + a1t + . . . an−1t + an ∈ C[t],
then p(T ) ∈ L(X) is defined by

p(T ) := Tn + a1T
n−1 + . . .+ an−1T + anIX .

Hence every p(t) ∈ C[t] determines the function

p(·) : L(X)→ L(X)

T 7→ p(T ),

and consequently we get the mapping

(·) : C[t]→
(
L(X)→ L(X)

)
p 7→ p(·).

It is immediate to see that if 1 is the constant polynomial 1 in C[t], then

1(T ) = IX

i.e., 1(·) is the constant mapping IX on L(X). Moreover, if p(t), q(t) ∈ C[t], then

p(T ) ◦ q(T ) = (p · q)(T ) = (q · p)(T ) = q(T ) ◦ p(T ).

For simplicity we may write p(T )q(T ) instead of p(T ) ◦ q(T ).

Proposition 1.8.10. If X be a complex vector space, T ∈ L(X), and p(t) ∈ C[t]
such that p(t) = q(t)r(t), for some q(t), r(t) ∈ C[t] with degree ≥ 1 and greatest
common divisor equal to 1, and p(T ) = 0, then

X = Y1 ⊕ Y2,

where Y1 = Ker
(
q(T )

)
and Y2 = Ker

(
r(T )

)
.

Proof. Let σ(t), τ(t) ∈ C[t] such that σ(t)q(t) + τ(t)r(t) = 1. Hence

σ(T )q(T ) + τ(T )r(T ) = IX ,

and

x = IXx =
[
σ(T )q(T ) + τ(T )r(T )

]
x = σ(T )q(T )x+ τ(T )r(T )x.

Since

r(T )σ(T )q(T )x = σ(T )r(T )q(T )x

= σ(T )q(T )r(T )x

= σ(T )p(T )x

= σ(T )0x

= 0,

we get σ(T )q(T )x ∈ Y2. Similarly we get τ(T )r(T )x ∈ Y1, hence X = Y1 + Y2. If
x = y1 + y2, where y1 ∈ Y1 and y2 ∈ Y2, then

σ(T )q(T )x = σ(T )q(T )(y1 + y2)



1.8. HIGHER ORDER LINEAR ODES 83

= σ(T )q(T )y1 + σ(T )q(T )y2

= 0 + σ(T )q(T )y2

= σ(T )q(T )y2.

Hence we get

y2 = IXy2

=
[
σ(T )q(T ) + τ(T )r(T )

]
y2

= σ(T )q(T )y2 + τ(T )r(T )y2

= σ(T )q(T )y2 + 0

= σ(T )q(T )y2

= σ(T )q(T )x.

Similarly we get y1 = τ(X)r(T )x i.e., y1, y2 are uniquely determined. �

Lemma 1.8.11. Let X be a complex vector space and T ∈ L(X). If p(t) ∈ C[t],
then Ker

(
p(T )

)
is T -invariant.

Proof. If x ∈ Ker
(
p(T )

)
, we show that Tx ∈ Ker

(
p(T )

)
. Since p(t)·t = t·p(t),

p(T ) ◦ T = T ◦ p(T ),

hence p(T )Tx = Tp(T )x = T0 = 0. �

Theorem 1.8.12. Let r ≥ 2. If X is a complex vector space, T ∈ L(X), and
p(t) ∈ C[t] such that p(t) = (t− λ1)m1 · . . . · (t− λr)mr , for distinct λ1, . . . , λr ∈ C,
and p(T ) = 0, then

X = Y1 ⊕ . . .⊕ Yr,
where Y1 = Ker

(
(T − λ1IX)m1)

)
, . . . , Yr = Ker

(
(T − λrIX)mr )

)
.

Proof. If T = λiIX , for some i ∈ {1, . . . , r}, then Ker
(
(T−λiIX)mi

)
= X and

Ker
(
(T −λjIX)mj

)
= {0}, for every j ∈ {1, . . . , r}\{i}. Hence we get immediately

what we want to show. Suppose next that T 6= λiIX , for every i ∈ {1, . . . , r}. We
prove what we want by induction on r ≥ 2. The case r = 2 follows immediately
from Proposition 1.8.10. If r > 2, let

Z := Ker

(
(T − λ2IX)m2 ◦ . . . ◦ (T − λrIX)mr

)
.

Since λ1, . . . , λr are distinct, in the factorization

p(t) = (t− λ1)m1

[
(t− λ2)m2 · . . . · (t− λr)mr

]
of p(t) the polynomials q(t) := (t − λ1)m1 and s(t) := (t − λ2)m2 · . . . · (t − λr)mr
have greatest common divisor equal to 1. Hence by Proposition 1.8.10 we get

X = Y1 ⊕ Z.
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If T ′ = T|Z , then T ′ is linear, and by Lemma 1.8.11 we have that if z ∈ Ker
(
s(T )

)
,

then T ′z = Tz ∈ Ker
(
s(T )

)
, therefore T ′ ∈ L(Z). By definition of Z we have that,

if z ∈ Z, then s(T ′)z = 0 i.e., s(T ′) is the zero element of L(Z). Hence by the
inductive hypothesis on r − 1 for Z, T ′, and s(t) we get

Z = Z2 ⊕ . . .⊕ Zr,
Z2 := Ker

(
(T − λ2IZ)m2)

)
, . . . , Zr := Ker

(
(T − λrIZ)mr )

)
.

It suffices to show that for every j ∈ {2, . . . , r}
Zj = Ker

(
(T − λjIX)mj )

)
.

For this it suffices to show that

Zj ⊇ Ker
(
(T − λjIX)mj )

)
.

Since
X = Y1 ⊕ Z2 ⊕ . . .⊕ Zr,

if x ∈ Ker
(
(T −λjIX)mj )

)
, there are unique y1 ∈ Y1, z2 ∈ Z2, . . . , zr ∈ Zr such that

x = y1 + z2 + . . .+ zr.

Since the polynomials in the factorization of s(t) commute, the compositions of the
corresponding operators also commute, and since (T − λjIX)mjx = 0, we also get[

(T − λ2IX)m2 ◦ . . . ◦ (T − λrIX)mr
]
x = 0

i.e., x ∈ Z. Consequently, y1 = 0 and x = zj ∈ Zj . �

Corollary 1.8.13. Let p(t) ∈ C[t] and λ1, . . . , λr ∈ C are distinct such that

p(t) = tn + a1t
n−1 + . . .+ an−1t+ an

= (t− λ1)m1 · . . . · (t− λr)mr .

If S(a1, . . . , an) is the complex vector space of the solutions of the ode

s(n) + a1s
(n−1) + . . .+ an−1ṡ+ ans = 0,

then
S(a1, . . . , an) = Y1 ⊕ . . .⊕ Yr,

where Yj is the space of solutions of the ode(
D − λjIS(a1,...,an)

)mj
s = 0,

for every j ∈ {1, . . . , r}.

Proof. Immediately by Theorem 1.8.12 forX = S(a1, . . . , an) and T = D. �

Lemma 1.8.14. Let the space S(a1, . . . , an) be as in Corollary 1.8.13, and let
s ∈ S(a1, . . . , an). If m ≥ 1, then for every λ ∈ C

(D − λIS(a1,...,an))
ms = eλtDm

(
e−λts

)
.
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Proof. Exercise. �

Theorem 1.8.15. Let λ ∈ C and m ≥ 1. If Sλ is the set of solutions of the ode

(t− λ)m(D)s = 0,

then the m functions
eλt, teλt, . . . , tm−1eλt

form a basis for Sλ.

Proof. By Lemma 1.8.14 we have that

s ∈ Ker
(
(D − λISλ)m

)
⇔ Dm

(
e−λts

)
= 0.

The only functions the m-derivative of which is constant 0 are the polynomials of
degree ≤ m− 1. Hence there are b0, . . . , bm−1 ∈ C such that

e−λts = b0 ∨ . . . ∨ e−λts = bm−1t
m−1.

Hence
s = b0e

λt ∨ . . . ∨ s = bm−1t
m−1eλt

i.e., the functions eλt, teλt, . . . , tm−1eλt generate the space Sλ. The fact that these
functions are linearly independent is an exercise. �





CHAPTER 2

Fundamental theorems of ODEs

2.1. The fundamental local theorem of odes

A dynamical system is a mathematical description of the passage in time of the
points in some space S, which is usually understood as the space of states of some
physical system. From now on S denotes an open subset of Rn.

Definition 2.1.1. A dynamical system on S is a C1 function φ : R× S → S

(t, u) 7→ φ(t, u),

such that if for every t ∈ R we define the function φt : S → S

u 7→ φt(u) := φ(t, u),

the following properties are satisfied:
(i) φ0 = idS .
(ii) ∀s,t∈R(φs ◦ φt = φs+t).

Remark 2.1.2. If φ is a dynamical system on S, the following hold:

(i) ∀t∈R(φt is C1).
(ii) ∀t∈R(φt has a C1 inverse).

Proof. Left to the reader. �

Definition 2.1.3. The vector field f on S generated by a dynamical system
φ on S is given by

(2.1) f(x) :=
d

dt
φt(x)

∣∣∣∣
t=0

i.e., f(x) is a vector in Rn, which is tangent to the curve x : J → S, defined by
t 7→ x(t) := φt(x), at t = 0. We rewrite equation (2.1) as the initial value problem

(2.2) ẋ = f(x)

and x(0) = φ0(x) = x

As we have already seen, the linear ode ẋ(t) = Ax(t) generates the dynamical
system φA : R→ Rn → Rn defined by

φA(t, u) = etAu.

87
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Next we generalize this fact. Given an ode of the form (2.2) we associate to it an
object that would be a dynamical system if it were definable in R.

Definition 2.1.4. Let f : S → Rn be continuous. A solution of the ode

(2.3) ẋ = f(x)

is a differentiable function
u : J → S,

where, if a, b ∈ R and a < b, J is an interval that has one of the following forms1

(a, b), (a, b], [a, b), [a, b], (−∞, b), (−∞, b], (a,∞), [a,∞), (−∞,∞),

such that for all t ∈ J
u̇(t) = f(u(t)).

From the geometric point of view a solution u to equation (2.3) is a curve in S
whose tangent vector u̇(t) is the vector f(u(t)).

u(t)

S

x0 = u(t0)

f(x0)

Generally, there are more than one solutions of the ode (2.3). E.g., the ode

ẋ = 3x
2
3 ,

where S = R, has both u0(t) = 0, for every t ∈ R, and u1(t) = t3, for every t ∈ R,
as solutions. As we will show, we get uniqueness, if f is C1, while for existence
continuity of f suffices. As we saw in the previous example, continuity of f does
not imply uniqueness of solutions to (2.3).

Definition 2.1.5. If (X, ||.||), (Y, ||.||′) are normed spaces, a function f : X →
Y is called locally Lipschitz, if for every x ∈ X there is a neighborhood Vx of x such
that the restriction f|Vx of f to Vx is Lipschitz i.e., there is some K > 0, which
depends on x and Vx, such that for all y, z ∈ Vx

||f(y)− f(z)||′ ≤ K||y − z||.

1I.e., J does not have the form [−∞, b], [−∞, b), or [a,∞], (a,∞].
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Lemma 2.1.6. If f : S → Rn is C1, then f is locally Lipschitz.

Proof. Let x0 ∈ S. Since S is open, there is some ε0 > 0 such that

Vx0
:= B(x0, ε0] = {y ∈ Rn | |y − x0| ≤ ε0} ⊆ S.

By Definition 1.3.4 the function Df : S → L(Rn), where Df(x) ∈ L(Rn) satisfies

Df(x)u = lim
h→0

f(x+ hu)− f(x)

h
,

is continuous. Since Vx0 is closed and bounded, hence by Proposition 1.1.18(iv) it
is compact, the composition ||.|| ◦Df has a maximum on Vx0 . Let

K := max{||Df(y)|| | y ∈ Vx0
}.

We could have also taken K to be any bound of ||.|| ◦ Df on Vx0
. Since Vx0

is a
closed ball, it is also a convex set. Let y, z ∈ Vx0 , and let

u := z − y.
If s ∈ [0, 1], then y + su ∈ Vx0

, since y + su = y + s(z − y) = (1 − s)y + sz. Let
θ : [0, 1]→ Vx0 defined by θ(s) := y + su, and let

φ := f|Vx0
◦ θ : [0, 1]→ Rn

φ(s) = f(y + su).

Applying the chain rule to the coordinate functions

[0, 1] Vx0
⊆ S ⊆ Rn

R

θ

φi fi

we get

φ̇i(s) =

n∑
j=1

∂fi
∂xj

(θ(s))
dθj
ds

(s)

=

n∑
j=1

∂fi
∂xj

(θ(s))
d(yj + suj)

ds
(s)

=

n∑
j=1

∂fi
∂xj

(y + su)uj .

Since

Df(y + su)u =


∂f1

∂x1
(y + su) . . . ∂f1

∂xn
(y + su)

...
...

...
∂fn
∂x1

(y + su) . . . ∂fn
∂xn

(y + su)


u1

...
un

 ,



90 2. FUNDAMENTAL THEOREMS OF ODES

we conclude that

φ̇(s) = Df(y + su)u.

Since θ(0) = y and θ(1) = y + u = y + (z − y) = z, we get

f(z)− f(y) = f(θ(1))− f(θ(0))

= φ(1)− φ(0)

=

∫ 1

0

φ̇(s)ds

=

∫ 1

0

Df(y + su)uds.

Hence we get

|f(z)− f(y)| =
∣∣∣∣ ∫ 1

0

Df(y + su)uds

∣∣∣∣
≤
∫ 1

0

∣∣Df(y + su)u
∣∣ds

≤
∫ 1

0

||Df(y + su)|| · |u|ds

≤
∫ 1

0

K|u|ds

= K|u|
∫ 1

0

ds

= K|u|
= K|z − y|.

�

One can use Lemma 2.1.6 to find locally Lipschitz functions that are not Lipschitz.

Corollary 2.1.7. If f : S → Rn is C1, and V ⊆ S is convex such that
||Df(x)|| ≤ K, for some K > 0 and for every x ∈ V , then K is a Lipschitz
constant for f|V .

Proof. It follows immediately by inspection of the proof of Lemma 2.1.6. �

Lemma 2.1.8. Let J be an open interval of R such that 0 ∈ J , x0 ∈ S, and
x : J → S is differentiable. The following are equivalent:

(i) ẋ(t) = f(x(t)) and x(0) = x0.

(ii) x(t) = x0 +
∫ t

0
f(x(s))ds.

Proof. Exercise. �
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Lemma 2.1.9 (Cauchy criterion of uniform convergence). Let (fn)∞n=0 a se-
quence of continuous functions from a closed interval [a, b] to Rn. If

∀ε>0∃N>0∀m,n>N∀t∈[a,b]

(
|fm(t)− fn(t)| < ε

)
,

then there is a continuous f : [a, b]→ Rn such that

∀ε>0∃N>0∀n>N∀t∈[a,b]

(
|fn(t)− f(t)| < ε

)
.

Proof. This is a standard result, and the proof is left to the reader. �

The conclusion of the previous lemma is usually formulated by the expression
“f is the uniform limit of (fn)∞n=0”.

Lemma 2.1.10. Let (fn)∞n=0 be a sequence of continuous functions from [a, b]
to K ⊆ Rn compact, f : [a, b] → Rn, and g : K → Rm uniformly continuous. If f
is the uniform limit of (fn)∞n=0, then the following hold:

(i) f is integrable on [a, b], and

lim
n→∞

∫ b

a

fn =

∫ b

a

lim
n→∞

fn =

∫ b

a

f.

(ii) g ◦ f is the uniform limit of (g ◦ fn)∞n=0.

Proof. This is a standard result, and the proof is left to the reader. �

Theorem 2.1.11 (Fundamental local theorem of odes). If f : S → Rn is C1,
and x0 ∈ S, then there is a > 0 and a unique solution x : (−a, a) → S of the ode
ẋ = f(x) that satisfies the initial condition x(0) = x0.

Proof. By Lemma 2.1.6 f is locally Lipschitz on Vx0
= B(x0, ε0], for some

ε0 > 0, and has Lipschitz constant on Vx0
. Since Vx0

is compact, the continuous
function |f | is bounded on Vx0 . Let M > 0 such that

∀y∈Vx0
(|f(y)| ≤M).

Moreover, let

(2.4) 0 < a < min

{
ε0
M
,

1

K

}
,

J := [−a, a].

Next we define a sequence (un)∞n=0 of continuous functions from J to Vx0 as follows:

u0(t) := x0, t ∈ J,
and if we suppose that un(t), where has been defined such that it satisfies

(2.5) |un(t)− x0| ≤ ε0, t ∈ J,
a condition that holds trivially for n = 0, we define

(2.6) un+1(t) := x0 +

∫ t

0

f(un(s))ds, t ∈ J.
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If we suppose that un is continuous, then the composition f ◦un is also continuous,
hence integrable. Clearly, un is C1, for every n. We show that if un : J → Vx0

,
then un+1 : J → Vx0 i.e.,

∀t∈J(|un+1(t)− x0| ≤ ε0).

If t ∈ J , then

|un+1(t)− x0| =
∣∣∣∣ ∫ t

0

f(un(s))ds

∣∣∣∣
≤
∫ t

0

∣∣f(un(s))
∣∣ds

≤
∫ t

0

Mds

= Mt

≤Ma

< M
ε0
M

= ε0.

Next we show that the sequence (un)∞n=0 satisfies the hypothesis of Lemma 2.1.9.
First we need to show a useful inequality. Let

L := max{|u1(t)− u0(t)| | t ∈ J}.

We show that for all n ∈ N and t ∈ J we have that

(2.7) |un+1(t)− un(t)| ≤ (Ka)nL.

The case n = 0 holds by definition. For the inductive step we have that

|un+1(t)− un(t)| =
∣∣∣∣ ∫ t

0

(
f(un(s))− f(un−1(s))

)
ds

∣∣∣∣
≤
∫ t

0

∣∣f(un(s))− f(un−1(s))
∣∣ds

≤
∫ t

0

K|un(s)− un−1(s)|ds

≤ K(Ka)n−1Lt

≤ (Ka)nL.

If we fix some ε > 0, we can find N > 0 such that for all m,n > N , and without
loss of generality let m > n, and for all t ∈ J we have that

|um(t)− un(t)| ≤
∞∑
k=N

|uk+1(t)− uk(t)|
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≤
∞∑
k=N

(Ka)kL

≤ L
∞∑
k=N

(Ka)k

≤ ε,

since by (2.4) we have that Ka < 1. Hence there is continuous x : J → Rn, which
is the uniform limit of (un)∞n=0. One can show (exercise) that actually x : J → Vx0 .

Taking limits in the equality (2.6) and using Lemma 2.1.10 we get

x(t) = x0 + lim
n→∞

∫ t

0

f(un(s))ds

= x0 +

∫ t

0

[
lim
n→∞

f(un(s))
]
ds

= x0 +

∫ t

0

f(x(s))ds,

hence by Lemma 2.1.8 x(t) is a solution of the ode ẋ = f(x) and satisfies x(0) = x0

To show the uniqueness of the solution we suppose that there are x : J → Vx0 and
y : J → Vx0 such that ẋ = f(x) and ẏ = f(y) and x(0) = x0 = y(0). Note that we
can take without loss of generality J to be the same closed interval around 0. We
show that x(t) = y(t), for every t ∈ J . We define

Λ := max{|x(t)− y(t)| | t ∈ J},

and let tΛ ∈ J such that |x(t)− y(t)| attains Λ at tΛ. If Λ > 0, we have that

Λ = |x(tΛ)− y(tΛ)|

=

∣∣∣∣ ∫ tΛ

0

ẋ(s)ds−
∫ tΛ

0

ẏ(s)

∣∣∣∣
=

∣∣∣∣ ∫ tΛ

0

(
ẋ(s)− ẏ(s)

)
ds

∣∣∣∣
=

∣∣∣∣ ∫ tΛ

0

(
f(x(s))− f(y(s))

)
ds

∣∣∣∣
≤
∫ tΛ

0

∣∣f(x(s))− f(y(s))
∣∣ds

≤
∫ tΛ

0

K|x(s)− y(s)|ds

≤ KΛtΛ

≤ aKΛ

< Λ,
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since Ka < 1 and the hypothesis Λ > 0 implies KaΛ < Λ. Since we reached a
contradiction, we conclude that Λ = 0, and consequently x = y. �

Corollary 2.1.12. Let Vx0
:= B(x0, ε0] ⊆ S, for some ε0 > 0, M,K > 0, and

0 < a < min

{
ε0
M
,

1

K

}
.

If f : S → Rn satisfies the conditions:

(i) max{|f(x)| | x ∈ Vx0
} ≤M , and

(ii) f|Vx0
is K-Lipschitz,

there is a unique solution x : (−a, a) → S of the ode ẋ = f(x) that satisfies the
initial condition x(0) = x0.

Proof. It follows by inspection of the proof of Theorem 2.1.11. �

Corollary 2.1.13. Let f : S → Rn be C1, and x0 ∈ S. Suppose that u : I →
S and v : J → S are solutions of the ode ẋ = f(x) that satisfy u(t0) = v(s0), for
some t0 ∈ I and s0 ∈ J . Then there is some subinterval I ′ of I around t0 and a
subinterval J ′ of J around s0 such that u(I ′) = v(J ′).

Proof. Suppose that u(t0) = v(s0) is a crossing point, as it is indicated in the
following figure:

f(u(t0)) = f(v(s0))
u(t0)

v(s0)

u(t)

v(t)

We define x : I → S by

x(t) := v(s0 − t0 + t), t ∈ I.

Since ẋ(t) = v̇(s0 − t0 + t) = f(v(s0 − t0 + t)) = f(x(t)), and since x(t0) = v(s0) =
u(t0), by the uniqueness of the solution around t0, there is an interval I0 around t0
such that u|I0 = x|I0 . If t is close to t0, then s0 − t0 + t is close to s0, hence u and
v meet again. �

Proposition 2.1.14. Let a > 0 and let u : [0, a] → [0,+∞) be continuous. If
C ≥ 0 and L ≥ 0 such that for every t ∈ [0, a]

u(t) ≤ C +

∫ t

0

Lu(s)ds,
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then for every t ∈ [0, a] we have that

u(t) ≤ CeLt.

Proof. Suppose first that C > 0. We define U : [0, a]→ [0,+∞) by

U(t) := C +

∫ t

0

Lu(s)ds.

Since C > 0 and Lu(s) ≥ 0, we get that U(t) > 0, for every t ∈ [0, a]. By our
hypothesis we have that for every t ∈ [0, a]

u(t) ≤ U(t).

Since U̇(t) = Lu(t), we get

U̇(t)

U(t)
=
Lu(t)

U(t)
≤ L,

or equivalently
d

dt

[
log(U(t))

]
≤ L.

hence ∫ t

0

d

ds

[
log(U(s))

]
ds ≤

∫ t

0

Lds⇔ log(U(t))− log(U(0)) ≤ Lt

⇔ log(U(t)) ≤ log(U(0)) + Lt

⇔ log(U(t)) ≤ log(C) + Lt

⇒ elog(U(t)) ≤ elog(C)+Lt

⇔ U(t) ≤ elog(C)eLt

⇔ U(t) ≤ CeLt.
The proof for case C = 0 is an exercise. �

Theorem 2.1.15 (Continuity of solutions in initial conditions for Lipschitz
function f). Suppose that the C1 function f : S → Rn has Lipschitz constant
σ > 0. If y : [t0, t1] → S and z : [t0, t1] → S are solutions of the ode ẋ = f(x) on
[t0, t1], then for every t ∈ [t0, t1]

|y(t)− z(t)| ≤ |y(t0)− z(t0)|eσ(t−t0).

Proof. For every t ∈ [t0, t1] we define

w(t) := |y(t)− z(t)|.
Since

y(t)− z(t) = y(t0) +

∫ t

t0

f(y(s))ds− z(t0)−
∫ t

t0

f(z(s))ds

=
(
y(t0)− z(t0)

)
+

∫ t

t0

[
f(y(s))− f(z(s))

]
ds,
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we get

w(t) ≤
∣∣y(t0)− z(t0)

∣∣+

∣∣∣∣ ∫ t

t0

[
f(y(s))− f(z(s))

]
ds

∣∣∣∣
≤ w(t0) +

∫ t

t0

∣∣f(y(s))− f(z(s))
∣∣ds

≤ w(t0) +

∫ t

t0

σ
∣∣y(s)− z(s)

∣∣ds
≤ w(t0) +

∫ t

t0

σw(s)ds.

If a := t1− t0 > 0, then for the continuous function u : [0, a]→ [0,+∞), defined by

u(r) := w(r + t0),

then w(t0) = u(0), and w(t) = u(t− t0). Moreover, if g(r) := r + t0, we have that∫ t

t0

σw(s)ds =

∫ g(t−t0)

g(0)

σw(s)ds =

∫ t−t0

0

σw(g(r))ġ(r)dr =

∫ t−t0

0

σw(g(r))dr.

Hence the inequality

w(t) ≤ w(t0) +

∫ t

t0

σw(s)ds

is written as

u(t− t0) ≤ u(0) +

∫ t−t0

0

σw(g(r))dr.

By Proposition 2.1.14 we get

u(t− t0) ≤ u(0)eσ(t−t0) ⇔ w(t) ≤ w(t0)eσ(t−t0)

⇔ |y(t)− z(t)| ≤ |y(t0)− z(t0)|eσ(t−t0).

�

Definition 2.1.16. A sequence of continuous functions (fn)∞n=0 from [a, b] →
Rn is called uniformly bounded, if there is M > 0 such that

∀n∈N∀t∈[a,b]

(
|fn(x)| ≤M

)
,

and it is called equicontinuous, if

∀ε>0∃δ>0∀s,t∈[a,b]∀n∈N
(
|s− t| < δ ⇒ |fn(s)− fn(t)| < ε

)
.

Theorem 2.1.17 (Arzela-Ascoli). If (fn)∞n=0 is a sequence of continuous func-
tions from [a, b] to Rn, which is uniformly bounded and equicontinuous, then (fn)∞n=0

has a subsequence (fkn)∞n=0 that converges uniformly on [a, b].
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Proposition 2.1.18. Let f : Rn → Rn be continuous such that ∀x∈Rn
(
|f(x)| ≤

M
)
, and let x0 ∈ Rn. Moreover, let (xn)∞n=0 be a sequence of functions from [0, 1]

to Rn such that

(i) xn is a solution of the ode ẋ = f(x), for every n ∈ N, and
(ii) limn→∞ xn(0) = x0.

Then there is a subsequence of (xn)∞n=0 that converges uniformly on [0, 1] to a
solution of ẋ = f(x).

Proof. Exercise. �

Lemma 2.1.19. Let f : S → Rn be C1, and u : I → S, v : I → S solutions of
the ode ẋ = f(x) such that u(t0) = v(t0), where t0 ∈ I. Then u(t) = v(t), for every
t ∈ I.

Proof. By Theorem 2.1.11 there is an open subinterval J0 of I such that
t0 ∈ J0 and u|J0

= v|J0
. Hence

I :=
{
J ⊆ I | t0 ∈ J ∧ u|J = v|J ∧ J open interval

}
6= ∅.

Since the union of intervals with a common point is an interval, the set

I∗ :=
⋃

I = {t | ∃J∈I(t ∈ J)}

is an open interval. By its definition I∗ is the largest open subinterval of I that
contains t0 and the restrictions of u and v to it are equal. If tl, tr are the endpoints
of I∗, we show that

I ⊆ I∗ = (tl, tr).

Suppose that this is not the case. Then at least one of the endpoints of I∗ has to be
in I. Let tr ∈ I, and if tl ∈ I, we work similarly. Since u|I∗ = v|I∗ , and since (tl, tr)
is dense in (tl, tr], by the continuity of u and v on (tl, tr] we get u(tr) = v(tr).
By Theorem 2.1.11 there is an open subinterval Jr of I such that tr ∈ Jr and
u|Jr = v|Jr . Hence u|I∗∪Jr = v|I∗∪Jr , and

I∗ ( I∗ ∪ Jr ∈ I,

which is a contradiction. The equality I∗ = I implies what we want to show. �

A solution x(t) to an ode ẋ = f(x) is not always extendable to R. E.g., the
ode ẋ = 1 + x2 has a s solution the curve x(t) = tan(t− c), with

(
c− π

2 , c+ π
2

)
as

the largest interval of definition.

Proposition 2.1.20. Let f : S → Rn be C1. For every x0 ∈ S, there is a
maximum open interval (α, β), where α, β ∈ R∪{−∞,+∞}, such that the following
hold:

(i) 0 ∈ (α, β), and
(ii) there is a solution x : (α, β)→ S of the ode ẋ = f(x) such that x(0) = x0.

Proof. Exercise. �
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Next we see how a solution curve y(t) behaves close to the limits of its domain.
We include only the result for the right endpoint of the interval of definition of y(t).
As we will show, if the domain of y(t) cannot be extended, then y(t) “leaves” any
compact set in S.

Theorem 2.1.21. Let f : S → Rn be C1 and β ∈ R. If y : (α, β) → S is a
solution of ẋ = f(x) on the maximal open interval (α, β), then for every compact
K ⊆ S, there is t ∈ (α, β) such that y(t) /∈ K.

S
K

y(t)

Proof. We fix some compact subset K of S, and we suppose that

∀t∈(α,β)

(
y(t) ∈ K

)
.

Since f|K is continuous, there is some M > 0 such that ∀x∈K
(
|f(x)| ≤ M

)
. Next

we show that y is Lipschitz with Lipschitz constant M . If s, t ∈ (α, β) such that
s < t, then

|y(s)− y(t)| =
∣∣∣∣ ∫ t

s

ẏ(z)dz

∣∣∣∣
≤
∫ t

s

∣∣ẏ(z)
∣∣dz

=

∫ t

s

∣∣f(y(z))
∣∣dz

≤M(t− s)
= M |t− s|.

Since y is uniformly continuous, and (α, β) is dense in (α, β], y can be extended2

to a uniformly continuous function y∗ : (α, β] → Rn. Actually, we have that3

2Here we use the following standard fact: If D is a dense subset of a metric space X, and
f : D → Y is a uniformly continuous function from D to a complete metric space Y , then f is

extended to a uniformly continuous function f∗ : X → Y .
3This follows from the above result, if we take y : (α, β) → K, where K is complete, as a

closed subset of the complete space Rn.
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y∗ : (α, β] → K. Next we show that y∗ is differentiable at β. If γ ∈ (α, β), then
taking the limit t→ β on both sides of the equation

y(t) = y(γ) +

∫ t

γ

ẏ(z)dz,

and since y(α, β) ⊆ K ⊆ S, we get

y∗(β) = y(γ) + lim
t→β

∫ t

γ

ẏ(z)dz

= y(γ) + lim
t→β

∫ t

γ

f(y(z))dz

= y(γ) +

∫ β

γ

f(y(z))dz.

hence for every t ∈ [γ, β] we have that

y∗(t) = y(γ) +

∫ t

γ

f(y(z))dz.

Hence y∗ is differentiable also at β and (y∗)′(β) = f(y(β)). Therefore, y∗ is a
solution on [γ, β]. Since by Theorem 2.1.11 there is a solution on an interval around
β, there is a solution on some interval [β, δ), where δ > β. But then we can extend
y to the interval (α, δ), which contradicts the maximality of (α, β). �

By Theorem 2.1.21 we have that when t approaches β, then y(t) approaches
the boundary of S, or |y(t)| tends to +∞.

S K1

K2
K3 y(t)

Corollary 2.1.22. Let K ⊆ S be compact, x0 ∈ K, and let f : S → Rn be
C1. Suppose that every solution x : [0, β]→ S with x(0) = x0 satisfies the property

∀t∈[0,β]

(
x(t) ∈ K

)
.

Then there is a solution x∗ : [0,+∞)→ S with x∗(0) = x0 and

∀t≥0

(
x∗(t) ∈ K

)
.
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Proof. Exercise. �

2.2. The fundamental global theorem of odes

Lemma 2.2.1. If f : S → Rn is locally Lipschitz and K ⊆ S is compact, then
f|K is Lipschitz.

Proof. Since f is locally Lipschitz, f is continuous. Let M > 0 such that

∀x∈K
(
|f(x)| ≤M

)
.

Suppose that f|K is not Lipschitz i.e., for every σ > 0 there are x, y ∈ K such that

|f(x)− f(y)| > σ|x− y|.
Consequently, for every n > 0 there are xn, yn ∈ K such that

|f(xn)− f(yn)| > n|xn − yn|.
By compactness of K there is a subsequence (xkn)∞n=1 of (xn)∞n=1 and some x′ ∈
K such that xkn

n−→ x′. If we consider the sequence (ykn)∞n=1 in K, there is

a subsequence (yλkn )∞n=1 of (ykn)∞n=1 and some y′ ∈ K such that yλkn
n−→ y′.

Clearly, xλkn
n−→ x′ too. We define

xn
′ := xλkn , yn

′ := yλkn , n > 0.

Hence

|xn′ − yn′| =
∣∣xλkn − yλkn ∣∣

<
1

λ(k(n))

∣∣f(xλkn )− f(yλkn )
∣∣

<
1

n

∣∣f(xn
′)− f(yn

′)
∣∣.

Taking limits we have that

0 ≤ lim
n→∞

|xn′ − yn′|

≤ lim
n→∞

(
1

n

∣∣f(xn
′)− f(yn

′)
∣∣)

≤ lim
n→∞

(
1

n

(
|f(xn

′)|+ |f(yn
′)|
))

≤ lim
n→∞

2M

n
= 0.

Since

0 ≤
∣∣|xn′ − yn′| − |x′ − y′|∣∣

≤ |(xn′ − yn′)− (x′ − y′)|
≤ |xn′ − x′|+ |yn′ − y′|,
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we get |x′ − y′| = limn→∞ |xn′ − yn′| = 0 i.e., x′ = y′. Since f is locally Lipschitz,
there is some neighborhood Vx′ of x′ in S such that f|V

x′
has Lipschitz constant σ.

Since xn
′ n−→ x′ and yn

′ n−→ x′, there is some n0 ∈ N+ such that for every n > n0

|f(xn
′)− f(yn

′)| ≤ σ|xn′ − yn′|. If n > σ, hence λ(k(n)) > σ, we get

σ
∣∣xλkn − yλkn ∣∣ < λ(k(n))

∣∣xλkn − yλkn ∣∣
<
∣∣f(xλkn )− f(yλkn )

∣∣
≤ σ

∣∣xλkn − yλkn ∣∣,
which is a contradiction.

�

Lemma 2.2.2. Let y : [t0, t1]→ S be continuous.

(i) There exists ε0 > 0 such that for every x ∈ Rn the following implication holds

∃t∈[t0,t1]

(
|x− y(t)| ≤ ε0

)
⇒ x ∈ S.

(ii) If for this ε0 we define the set

Kε0 :=
{
x ∈ Rn | ∃t∈[t0,t1]

(
|x− y(t)| ≤ ε0

)}
,

then Kε0 is a compact subset of S.

Proof. (i) If t ∈ [t0, t1], y(t) ∈ S, and since S is open, there is εt > 0 with
B
(
y(t), εt

)
⊆ S. Since y is continuous, y−1

[
B
(
y(t), εt2

)]
is open in [t0, t1]. Clearly,

[t0, t1] =
⋃

t∈[t0,t1]

y−1

[
B
(
y(t),

εt
2

)]
.

By the compactness4 of the closed interval [t0, t1] there are s1, . . . , sN ∈ [t0, t1], for
some N ∈ N+, such that

S

y0

y1

s1

sN

4Here we use the theorem of Heine-Borel, according to which, a subset K of Rn is compact if

and only if every open covering of K has a finite subcover. In the figure y0 = y(t0) and y1 = y(t1).
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[t0, t1] =

n⋃
j=1

y−1

[
B
(
y(sj),

εsj
2

)]
.

We define

ε0 := min

{
εs1
2
, . . . ,

εsN
2

}
.

Let x ∈ Rn and t ∈ [t0, t1] such that |x − y(t)| ≤ ε0. For this t there is some
j ∈ {1, . . . , N} such that

t ∈ y−1

[
B
(
y(sj),

εsj
2

)]
⇔ y(t) ∈ B

(
y(sj),

εsj
2

)
⇔ |y(t)− y(sj)| <

εsj
2
.

Hence

|x− y(sj)| ≤ |x− y(t)|+ |y(t)− y(sj)|

< ε0 +
εsj
2

≤
εsj
2

+
εsj
2

= εsj ,

i.e., x ∈ B
(
y(sj), εsj

)
⊆ S.

(ii) By case (i) we get Kε0 ⊆ S. Next we show that Kε0 is bounded. Let M > 0
such that |y(t)| ≤ M , for every t ∈ [t0, t1]. If x, x′ ∈ Kε0 , there are t, t′ ∈ [t0, t1]
such that |x− y(t)| ≤ ε0 and |x′ − y(t′)| ≤ ε0. Hence

|x− x′| ≤ |x− y(t)|+ |y(t)− y(t′)|+ |y(t′)− x′|
≤ ε0 + |y(t)− y(t′)|+ ε0

≤ ε0 + 2M + ε0.

Next we show that Kε0 is closed. If x0 ∈ Kε0 , where Kε0 is the closure of Kε0 , we
show that x0 ∈ Kε0 . If ε > 0, there is some x ∈ Kε0 such that |x − x0| < ε. If
t ∈ [t0, t1] such that |x− y(t)| ≤ ε0, we get

|x0 − y(t)| ≤ |x0 − x|+ |x− y(t)| ≤ ε+ ε0

i.e., we showed that

∀ε>0∃t∈[t0,t1]

(
|x0 − y(t)| ≤ ε+ ε0

)
.

Suppose that x0 /∈ Kε0 i.e.,

∀t∈[t0,t1]

(
|x0 − y(t)| > ε0

)
.

We define the function ρ : [t0, t1]→ (0,+∞) by

ρ(t) := |x0 − y(t)| − ε0.
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Since ρ is continuous, it attains its minimum value µ at some point s ∈ [t0, t1] i.e.,

ρ(t) ≥ ρ(s) = |x0 − y(s)| − ε0 = µ > 0.

Since µ > 0, there is some t′ ∈ [t0, t1] such that |x0 − y(t′)| ≤ µ
2 + ε0, hence

ρ(t′) = |x0 − y(t′)| − ε0 ≤
µ

2
< µ = ρ(s),

which is a contradiction. Hence x0 ∈ Kε0 . �

Next follows a stronger form of the continuity of solutions in initial conditions.
While in Theorem 2.1.15 both solutions were assumed to be defined on the same
interval [t0, t1], in the theorem that follows the solutions starting at nearby points
will be shown that they are defined on the same interval [t0, t1] and remain close
to each other in [t0, t1]. Moreover, f is not assumed to be Lipschitz.

Theorem 2.2.3 (Fundamental global theorem of odes). Let f : S → Rn be C1

and y : [t0, t1]→ S a solution of ẋ = f(x) with y(t0) = y0. There is a neighborhood
Vy0
⊆ S of y0 and there is a constant σ > 0 such that for every z0 ∈ Vy0

there is a
unique solution z : [t0, t1]→ S of ẋ = f(x) with z(t0) = z0 and

∀t∈[t0,t1]

(
|y(t)− z(t) ≤ |y0 − z0|eσ(t−t0)

)
.

SKε0

ε0

y(t1)
z0

z(t1)

y0

Proof. Since y : [t0, t1]→ S is continuous, let ε0 and Kε0 as in Lemma 2.2.2.
By the definition of Kε0 we get immediately that ∀t∈[t0,t1]

(
y(t) ∈ Kε0

)
. Since Kε0

is a compact subset of S, by Lemma 2.2.1 the function f|Kε0
has Lipschitz constant

σ, for some σ > 0. There is δ > 0 such that

δ ≤ ε0 and δeσ(t1−t0) ≤ ε0.

We define

Vy0
:= B(y0, δ),
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and we show that if z0 ∈ Vy0
, there is a unique solution z : [t0, t1]→ S of ẋ = f(x)

with z(t0) = z0. Since

|z0 − y0| = |z0 − y(t0)| < δ ≤ ε0,
we get z0 ∈ Kε0 , hence

Vy0
⊆ Kε0 ⊆ S.

By Theorem 2.1.11 there is a solution z(t) through z0 defined on a maximal interval
[t0, β), for some β ∈ R ∪ {+∞}. We show that β > t1, where > is here the
ordering of the extended reals. Suppose that β ≤ t1, and let t ∈ [t0, β). Then by
Theorem 2.1.15 on f

Vy0
, which is σ-Lipschitz, and on the solutions y and z defined

on the common interval [t0, s], where t < s < β, we get

|z(t)− y(t)| ≤ |z0 − y0|eσ(t−t0)

≤ δeσ(t−t0)

≤ ε0.

Hence z(t) lies in Kε0 . By Theorem 2.1.21 the interval [t0, β) cannot be a maximal
solution domain, which contradicts our hypothesis. Therefore, β > t1. Since now
z : [t0, β) → S and [t0, t1] ⊂ [t0, β), we conclude that z is defined on [t0, t1]. The
inequality

|y(t)− z(t) ≤ |y0 − z0|eσ(t−t0)

for every t ∈ [t0, t1] follows from Theorem 2.1.15, and the uniqueness of the solution
z on [t0, t1] follows from Lemma 2.1.19. �

Hence, if f : S → Rn is C1 and y : [t0, t1] → S is a solution of ẋ = f(x), then
for all z0 sufficiently close to y0 = y(t0) there is a unique solution on [t0, t1] starting
at z0. If we write

z(t) = φ(t, z0), y(t) = φ(t, y0),

then z0 = φ(0, z0) and y0 = φ(0, y0), and by Theorem 2.2.3

lim
z0→y0

φ(t, z0) = φ(t, y0)

uniformly on [t0, t1] i.e., the solution through z0 “depends continuously” on z0.

2.3. The flow of an ode

Definition 2.3.1. If f : S → Rn is C1, and since for every u ∈ S there is a
unique solution xu : J(u) → S of the ode ẋ = f(x) such that xu(0) = u and J(u)
is the maximal open interval of u, we define the set

Ω :=
{

(t, u) ∈ R× S | t ∈ J(u), u ∈ S
}
,

and the function φ : Ω→ S,

φ(t, u) := xu(t) =: φt(u),

for every (t, u) ∈ Ω, which is called the flow of the ode ẋ = f(x).
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Note that since 0 ∈ J(u), for every u ∈ S, we have that {0} × S ⊂ Ω, and

φ(0, u) = xu(0) = u.

Proposition 2.3.2. Let s, t ∈ R, u ∈ S and φ the flow of ẋ = f(x), for some
C1 function f : S → Rn. The following hold:

(i) If t ∈ J(u) and s ∈ J(φt(u)), then s+ t ∈ J(u) and φs+t(u) = φs(φt(u)).

(ii) If s+ t ∈ J(u), then t ∈ J(u), s ∈ J(φt(u)) and φs+t(u) = φs(φt(u)).

Proof. We show only (i), and we consider the case s, t > 0. The other cases
are shown similarly. Let J(u) = (α, β) and let t ∈ J(u) i.e. α < t < β, where < is
the ordering of the extended reals. We show that s + t ∈ J(u) ⇔ α < s + t < β.
Since t > 0, α < s + t, hence it remains to show that s + t < β. We define the
function y : (α, s+ t]→ S by

y(r) :=

{
φ(r, u) , if α < r ≤ t
φ(r − t, φt(u)) , if t ≤ r ≤ s+ t.

Note that y is continuous at t, since φ(t− t, φt(u)) = φ(0, φt(u)) = φt(u), hence y is
continuous on (α, s+ t]. Moreover, u is a solution curve on (α, s+ t]. If α < r ≤ t,
then

ẏ(r) = φ̇(r, u) = ẋu(r) = f(x0(r)) = f(φ(r, u)) = f(y(r)).

If t ≤ r ≤ s+ t, and s(r) := r − t, then

ẏ(r) =
d

dr

[
φ(r − t, φt(u))

]
=

d

dr

[
xφt(u)(r − t)

]
=

d

ds

[
xφt(u)(s)

]ds
dr

=
d

ds

[
xφt(u)(s)

]
= f

(
xφt(u)(s)

)
= f

(
xφt(u)(r − t)

)
= f(y(r)).

Since 0 ∈ (α, β) and α < 0 < t, by our hypothesis on t, then by the definition of y,
we get

y(0) = φ(0, u) = xu(0) = u.

Hence the maximal open interval J(u) must include (α, s + t], i.e., s + t < β. By
the uniqueness of solutions on (α, s+ t] that agree on 0 ∈ (α, s+ t] (Lemma 2.1.19)
and the definition of y we get

φs+t(u) = φ(s+ t, u)

= xu(s+ t)
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= y(s+ t)

= φ((s− t)− t, φt(u))

= φ(s, φt(u))

= φs(φt(u)).

�

Theorem 2.3.3. If Ω and φ are as in Definition 2.3.1, then

(i) Ω is an open subset of R× S, and
(ii) φ is continuous.

Proof. Left to the reader. �
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