
Master thesis supervised by

Priv.-Doz. Dr. Iosif Petrakis

Categorical aspects of
complemented subsets

Anne Michaelis

28 October 2021

Mathematisches Institut

Ludwig-Maximilians-Universität

München





Contents

1 Introduction 2

2 Complemented subsets 4

2.1 Sets and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Subsets of a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Partial functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Complemented subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Complemented subsets and 2-valued partial functions . . . . . . . . . . . . . . . . 18

3 Categorical aspects 22

3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 The category of complemented subsets . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 The Chu category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 A Chu-representation of the category of subsets . . . . . . . . . . . . . . . . 27

3.3.2 A Chu-representation of the category of complemented subsets . . . . . . . 30

3.4 The generalized Chu construction over a cartesian closed category C and an endo-

functor on C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 A generalized Chu-representation of the category of predicates . . . . . . . 33

3.4.2 A generalized Chu-representation of the category of complemented predicates 37

4 Apartness relations in categories 40

4.1 Binary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Equality relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Local equality relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Global equality relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Apartness relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Local apartness relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusion 64

1





1 Introduction

Regarding the fundamental differences between set and category theory, the translation of ideas and

concepts from Bishop set theory into category theory is an especially interesting topic. Bishop’s

theory of sets underlying Bishop-style constructive mathematics, or constructive analysis to be

precise, was first developed in chapter 3 of Bishop’s seminal book Foundations of Constructive

Analysis and in chapter 3 of the book Constructive Analysis, where he co-authored with Bridges.

Bishop’s aim was to create a constructive framework for advanced mathematics to be done within.

However, set theory was only briefly treated in both books. Bishop set theory (BST), developed in

[9], is Petrakis’ account of an informal, constructive theory of totalities and assignment routines,

serving as a reconstruction of Bishop’s theory of sets and functions. BST makes a clear distinction

between sets and classes, e.g. the powerset of a set X is treated as a class.

While set theory is based on sets and functions, category theory is a formalization of mathemat-

ical structures. Categories are an abstract representation of mathematical concepts, consisting of

objects and arrows. Our aim is to appropriately translate set-theoretic terms, within Bishop-style

constructive mathematics, to categorical notions.

Bishop describes a subset of a set X as a pair consisting of a set A and an embedding of A into

X. Bishop’s definition of a subset of a set is related to the notion of a subobject of an object in

category theory, as described by Awodey on p.89 in his book Category Theory, where a subobject

of an object x is defined as a monomorphism into x. To avoid the use of negation in basic set

theory, which may cause some problems in constructive analysis, Bishop introduced the notion of

a complemented (sub)set, which avoids the negative definition of the complement of a subset. This

gives us a positively defined notion of disjointness of subsets. In BST a complemented subset of

a set (X,=X , 6=X) with an equality and inequality is a pair of subsets of X that are disjoint with

respect to 6=X . In terms of Bishop-style constructive mathematics, an equality =X and inequality

6=X , or apartness relation, on a set X were defined through some formula. In set theory, a relation

between two sets X and Y is defined as a subset R of their cartesian product X × Y , which

one can translate into the theory of categories. In order to translate the notion of a subset and

complemented subset to the language of categories, we need to capture equality and apartness

categorically. To do so we first need to define what a relation is within category theory. Following

Klein [4] we present the categorical notion of a binary relation.

Following Petrakis’ work [8] with the categorical translations of equality and apartness we

can then translate the notion of a complemented subset into category theory as the notion of a

complemented subobject with respect to a given pair of equality and apartness of some object x

in a category C. This allows us to define the category of complemented subobjects of an object

in a category, which can be seen as the categorical translation of the category of complemented

subsets.

Before we can work on translating the set-theoretic concepts to category theory we will first

need to revisit Bishop’s set theory and introduce the basic notions. This thesis has the following
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structure:

(i) Following Petrakis’ work [9] we introduce the basic notions of Bishop set theory. Especially

focusing on complemented subsets, we prove various properties.

(ii) After having introduced complemented subsets and partial functions, we give a full proof

of the existence of class functions between the the class of complemented subsets PKJ(X)

and the class of strongly extensional partial functions F se(X,2). This proposition was first

proved in [7].

(iii) We present the basic notions of category theory based on Awodey’s book [1] and turn to

the categorical aspects of complemented subsets. Following Petrakis’ work [6] we present

the category of complemented subsets PKJ(X) and show its full embedding into the the Chu

category Chu(Set, X ×X).

(iv) Based on [4], we present the categorical notion of a binary relation between two objects x and

y. Based on [8] we use this notion to define an equality relation, where we distinguish local

equality from global equality and show that every global equality implies a local equality.

We also define the notion of a local apartness relation.

(v) Finally, we define the category of complemented subobjects of an object of a category.

The notion of a global apartness relation is not treated in this thesis, however we give a brief

outlook on which further research still needs to be done and what open task could be worked on

in the future.
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2 Complemented subsets

Before we can talk about the categorical aspects of complemented subsets, we will first present

the fundamental notions of Bishop set theory. In this chapter we will follow [9] to introduce the

basic elements of BST and prove some properties about subsets of a set, partial functions and

complemented subsets.

2.1 Sets and functions

We have a primitive notion of a totality. Any totality X is defined through a membership condition

x ∈ X, i.e. by describing what must be done to construct an element of X. For a totality X, we

introduce the notion of an equality x =X y defined for any x, y ∈ X, satisfying the properties of

an equivalence relation, i.e. reflexive, symmetric and transitive.

Definition 2.1.1. For a totality X and an equality =X we call the pair (X,=X) a set. We will

only write X, if the equality =X is clear from the context.

We denote by V0 the totality of sets, which contains the primitive set N and all defined sets.

V0 itself is not a set but a class. We clearly distinguish classes from sets. A class is a totality

defined through a membership condition in which a quantification over V0 occurs. Particularly,

the powerset P(X) of a set X, the totality PKJ(X) of complemented subsets of a set X and the

totality F (X,Y ) of partial functions from a set X to a set Y are classes.

Definition 2.1.2. If X,Y are sets, their product X × Y is the totality defined by

z ∈ X × Y :⇔ ∃x∈X∃y∈Y
(
z := (x, y)

)
with the equality

z =X×Y z′ :⇔ (x, y) =X×Y (x′, y′) :⇔ x =X x′ & y =Y y′

Definition 2.1.3. A bounded formula on a set X is called an extensional property on X, if

∀x,y∈X
(
[x =X y & P (x)]⇒ P (y)

)
.

Definition 2.1.4. Let X be a set. An inequality on X, or an apartness relation on X, is a relation

x 6=X y such that the following conditions are satisfied:

(i) ∀x,y∈X(x =X y & x 6=X y ⇒ ⊥)

(ii) ∀x,y∈X(x 6=X y ⇒ y 6=X x)

(iii) ∀x,y∈X
(
x 6=X y ⇒ ∀z∈X(z 6=X x ∨ z 6=X y)

)
We write (X,=X , 6=X) to denote the equality-inequality structure of a set X, and for simplicity

we refer to the set (X,=X , 6=X).

Remark 2.1.5. Let (X,=X , 6=X) and (Y,=Y , 6=Y ) be sets.

(i) An inequality relation x 6=X y is extensional on X ×X.

(ii) The canonical inequality on X × Y induced by 6=X and 6=Y , which is defined by
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(x, y) 6=X×Y (x′, y′) :⇔ x 6=X x′ ∨ y 6=Y y′,

for every (x, y) and (x′, y′) ∈ X × Y , is an inequality on X × Y .

Proof. (i) Let x 6=X y and let x′, y′ ∈ X with x = x′ and y = y′. By property (iii) in the definition

of an inequality, we have that x 6= x′ or x′ 6=X y. Since the former is excluded definitionally, it

holds that x′ 6=X y. Again by (iii), x′ 6=X y od y′ 6=X y, which is again excluded. Hence x′ 6=X y′.

(ii) We show that the three conditions for an inequality are satisfied. Let (x, y), (x′, y′) ∈ X × Y
with (x, y) 6=X×Y (x′, y′). If (x, y) =X×Y (x′, y′), then we have x =X x ∧ x 6=X x′ ⇒ ⊥ or

y =Y y′ ∧ y 6=Y y′ ⇒ ⊥. Obviously (x, y) 6=X×Y (x′, y′)⇒ (x′, y′) 6=X×Y (x, y). If (z, z′) ∈ X×Y ,

then z 6=X x ∨ z 6=X x′ and z′ 6=Y y ∨ z′ 6=Y y′. Hence (z, z′) 6=X×Y (x, y) or (z, z′) 6=X×Y (x′, y′).

So 6=X×Y is an inequality.

Definition 2.1.6.

(i) Let X,Y be totalities. A non-dependent assignement routine f : X  Y from X to Y assigns

to each element x ∈ X an element f(x) := y ∈ Y .

(ii) If (X,=X) and (Y,=Y ) are sets, a function f : X → Y is an assignement routine from X to Y

that respects equality, i.e.

∀x,x′∈X
(
x =X x′ ⇒ f(x) =Y f(x′)

)
.

(iii) A function f : X → Y is called an embedding, in symbols f : X ↪→ Y , if

∀x,x′∈X
(
f(x) =Y f(x′)⇒ x =X x′

)
.

If X is a set, the identity map idX on X is the function idX : X  X, defined by idX(x) := x,

for every x ∈ X. We denote the totality of all functions from X to Y by F(X,Y ).

Definition 2.1.7. Let (X,=X , 6=X) and (Y,=Y , 6=Y ) be sets. A function f : X → Y is called

strongly extensional, if

∀x,x′∈X
(
f(x) 6=Y f(x′)⇒ x 6=X x′

)
.

2.2 Subsets of a set

Definition 2.2.1. Let X be a set. A subset of X is a pair (A, iXA ), where A is a set and iXA : A ↪→ X

is an embedding of A into X. If (A, iXA ) and (B, iXB ) are subsets of X, then A is a subset of B,

in symbols (A, iXA ) ⊆ (B, iXB ), if there is a function f : A → B such that the following diagram

commutes

A B

X

iXA

f

iXB

In this case we use the notion f : A ⊆ B. Usualy we write A instead of (A, iXA ). The totalitiy of

the subsets of X is the powerset P(X) of X and it is equipped with the equality

(A, iXA ) =P(X) (B, iXB ) :⇔ A ⊆ B & B ⊆ A

If f : A ⊆ B and g : B ⊆ A, we write (f, g) : A =P(X) B.
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Definition 2.2.2. If (A, iXA ), (B, iXB ) ⊆ X, their union A ∪B is the totality defined by

z ∈ A ∪B :⇔ z ∈ A ∨ z ∈ B,

equipped with the non-dependent assignement routine iXA∪B : A ∪B  X

iXA∪B(z) :=

{
iXA (z) , z ∈ A
iXB (z) , z ∈ B

Definition 2.2.3. If (A, iXA ), (B, iXB ) ⊆ X, their intersection A ∩ B is the totality defined by

seperation on A×B as follows:

A ∩B :=
{

(a, b) ∈ A×B | iXA (a) =X iXB (b)
}

.

Let the non-dependent assignement routine iXA∩B : A∩B  X, defined by iXA∩B(a, b) := iXA (a), for

every (a, b) ∈ A ∩B. If (a, b) and (a′, b′) are in A ∩B, let

(a, b) =A∩B (a′, b′) :⇔ iXA∩B(a, b) =X iXA∩B(a′, b′) :⇔ iXA (a) =X iXA (a′).

We write A()B to denote that the intersection A ∩B is inhabited, i.e. ∃x∈A∩B(x =A∩B x).

Proposition 2.2.4. Let A,B and C be subsets of the set X.

(i) A ∪B =P(X) B ∪A and A ∩B =P(X) B ∩A.

(ii) A ∪ (B ∪ C) =P(X) (A ∪B) ∪ C and A ∩ (B ∩ C) =P(X) (A ∩B) ∩ C.

(iii) A ∩ (B ∪ C) =P(X) (A ∩B) ∪ (A ∩ C) and A ∪ (B ∩ C) =P(X) (A ∪B) ∩ (A ∪ C).

Proof. The proofs of (i) and (ii) are straightforward. We will only show the first statement of (iii),

the other one follows similarly.

A ∩ (B ∪ C) :=
{

(a, x) ∈ A× (B ∪ C) | iXA (a) =X iXB∪C(z)
}

:=
{

(a, b) ∈ A×B ∨ (a, c) ∈ A× C | iXA (a) =X iXB (b) ∨ iXA (a) =X iXC (c)
}

=P(X)

{
(a, b) ∈ A×B | iXA (a) =X iXB (b)

}
∪
{

(a, c) ∈ A× C | iXA (a) =X iXC (c)
}

:= (A ∩B) ∪ (A ∩ C)

Definition 2.2.5. Let X,Y be sets, (A, iXA ), (C, iXC ) ⊆ X, e : (A, iXA ) ⊆ (C, iXC ), f : C → Y and

(B, iXB ) ⊆ Y . The restriction f|A of f to A is the function fA := f ◦ e

A C Y.e

f|A

f

The image f(A) of A under f is the pair f(A) := (A, fA), where A is equipped with the equality

a =f(A) a
′ :⇔ f|A(a) =Y f|A(a′), for every a, a′ ∈ A. We denote f(A) := {f(a) | a ∈ A}. The

pre-image f−1(B) of B under f is the set

f−1(B) :=
{

(c, b) ∈ C ×B | f(c) =Y iYB(b)
}

.

Let if−1(B) : f−1 ↪→ C, defined by if−1(B)(c, b) := c, for every (c, b) ∈ f−1(B). The equality of the

extensional subset f−1(B) of C ×B is inherited from the equality of C ×B.
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Proposition 2.2.6. Let X,Y be sets, A,B subsets of X, C,D subsets of Y and f : X → Y . Then

(i) f−1(C ∪D) =P(X) f
−1(C) ∪ f−1(D).

(ii) f−1(C ∩D) =P(X) f
−1(C) ∩ f−1(D).

(iii) f(A ∪B) =P(Y ) f(A) ∪ f(B).

(iv) f(A ∩B) =P(Y ) f(A) ∩ f(B).

(v) A ⊆ f−1
(
f(A)

)
.

(vi) f
(
f−1(C) ∩A

)
=P(Y ) C ∩ f(A) and f

(
f−1(C)

)
=P(Y ) C ∩ f(X).

Proof.

(i) f−1(C ∪D) :=
{

(x, y) ∈ X × (C ∪D) | f(x) =Y iYC∪D(y)
}

:=
{

(x, y) ∈ X × C ∨ (x, y) ∈ X ×D | f(x) =Y iYC (y) ∨ f(x) =Y iYD(y)
}

=P(X)

{
(x, y) ∈ X × C | f(x) =Y iYC (y)

}
∪
{

(x, y) ∈ X ×D | f(x) =Y iYD(y)
}

:= f−1(C) ∪ f−1(D)

(ii) f−1(C ∩D) :=
{

(x, y) ∈ X × (C ∩D) | f(x) =Y iYC∩D(y)
}

:=
{

(x, (c, d)) ∈ X × (C ×D) | f(x) =Y iYC∩D(c, d) := iYC (c) and iYC (c) =Y iYD(d)
}

=P(X)

{
(x, c) ∈ X × C | f(x) =Y iYC (y)

}
∩
{

(x, d) ∈ X ×D | f(x) =Y iYD(y)
}

:= f−1(C) ∩ f−1(D)

(iii) f(A ∪B) := {f(x) | x ∈ A ∪B}
:= {f(x) | x ∈ A ∨ x ∈ B}
=P(Y ) {f(x) | x ∈ A} ∪ {f(x) | x ∈ B}
:= f(A) ∪ f(B)

(iv) f(A ∩B) := {f(x) | x ∈ A ∩B}
:= {f(x) | x = (a, b) ∈ A×B}
=P(Y ) {f(a) | a ∈ A} ∩ {f(b) | b ∈ B}
:= f(A) ∩ f(B)

(v) Let a ∈ A, then f(a) ∈ f(A). Since

f−1
(
f(A)

)
:=
{(
x, f(a)

)
∈ X × f(A) | f(x) = f(a)

}
,

we have
(
a, f(a)

)
∈ f−1

(
f(A)

)
for every a ∈ A.

So A ⊆ f−1(f(A)).

(vi) f
(
f−1(C) ∩A

)
:= f

({(
(x, c), a

)
∈ (X × C)×A | f(x) =Y iYC (c), iXf−1(C)(x, c) := x =X iXA (a)

})
=P(Y )

{(
(f(x), c), f(a)

)
∈ (f(X)× C)× f(A) | f(x) =Y iYC (c), f(x) =Y f(a)

}
=P(Y )

{(
c, f(a)

)
∈ C × f(A) | f(a) =Y iYC (c)

}
:= C ∩ f(A)

The second equation is a special case of the one that we just proved. Since f−1(C) ⊆ X, we have
f
(
f−1(C) ∩X

)
= f

(
f−1(C)

)
=P(Y ) C ∩ f(X).
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Proposition 2.2.7. Let (A, iXA ), (B, iXB ), (A′, i′XA ), (B′, i′XB ) ⊆ X, such that A =P(X) A′ and

B =P(X) B
′. Let also (C, iYC ), (C ′, i′YC ), (D, iYD) ⊆ Y , such that C =P(X) C

′ and let f : X → Y .

(i) A ∩B =P(X) A
′ ∩B′ and A ∪B =P(X) A

′ ∪B.

(ii) f(A) =P(Y ) f(A′) and f−1(C) =P(X) f
−1(C ′).

(iii) (A× C, iXA × iYC ) ⊆ X × Y , where the map iXA × iYC : A× C ↪→ X × Y is defined by

(iXA × iYC )(a, c) :=
(
iXA (a), iYC (c)

)
, (a, c) ∈ A× C.

(iv) A× C =P(X×Y ) A
′ × C ′.

(v) A× (C ∪D) =P(X×Y ) (A× C) ∪ (A×D).

(vi) A× (S ∩D) =P(X×Y ) (A× C) ∩ (A ∩D).

Proof. We will show (i)-(iv). Let A =P(X) A
′ and B =P(X) B

′, i.e. A ⊆ A′ & A′ ⊆ A and B ⊆ B′

& B′ ⊆ B.

(i) A ∪B = {z | z ∈ A ∨ z ∈ B} =P(X) {z | z ∈ A′ ∨ z ∈ B′} := A′ ∪B′

A ∩B :=
{

(a, b) ∈ A×B | iXA (a) =X iXB (b)
}

=P(X)

{
(a, b) ∈ A′ ×B′ | i′XA (a) =X i′YB (b)

}
:= A′ ∩B′

(ii) f(A) : =
{
f(a) | a ∈ A} =P(Y ) {f(a) | a ∈ A′

}
:= f(A′)

f−1(C) :=
{

(x, c) ∈ X × C | f(x) =Y iXC (b)
}

=P(X)

{
(x, c) ∈ X × C ′ | f(x) =Y iXC′(c)

}
:= f−1(C ′)

(iii) Let (a, c) ∈ A× C. Since A ⊆ X, iXA : A ↪→ X and C ⊆ Y , iYC : C ↪→ Y , we have

(iXA × iYC )(a, c) :=
(
ixA(a), iYC (c)

)
∈ X × Y, (a, c) ∈ A× C

(iv) A× C =
{

(a, c) | a ∈ A, c ∈ C
}

=P(X×Y )

{
(a, c) | a ∈ A′, c ∈ C ′

}
:= A′ × C ′

2.3 Partial functions

Definition 2.3.1. Let X,Y be sets. A partial function from X to Y is a triplet (A, iXA , f
Y
A ), where

(A, iXA ) ⊆ X and fYA ∈ F(A, Y ). We will sometimes use the notation fYA instead of the triplet

(A, iXA , f
Y
A ) and we write fYA : X ⇀ Y . If (A, iXA , f

Y
A ) and (B, iXB , f

Y
B ) are partial functions from X

to Y , we call fYA a subfunction of fYB , in symbols (A, iXA , f
Y
A ) ≤ (B, iXB , f

Y
B ), or fYA ≤ fYB , if there

is eAB : A→ B such that the following inner diagrams commute

A B

X

Y

iXA

fYA

eAB

iXB

fYb
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In this case we use the notation eAB : fYA ≤ fYB . The totality of partial functions from X to Y is

the partial function space F (X,Y ) and it is equipped with the equality

(A, iXA , f
Y
A ) =F(X,Y ) (B, iXB , f

Y
B ) :⇔ fYA ≤ fYB & fYB ≤ fYA .

If eAB : fYA ≤ fYB and eBA : fYB ≤ fYA , we write (eAB , eBA) : fYA =F(X,Y ) f
Y
B .

Since the membership condition for F (X,Y ) requires quantification over V0, the totality

F (X,Y ) is not a set, but a class. We denote by F (X,2) the totality of partial functions from the

set X to the Booleans 2 := {0, 1}.

Definition 2.3.2. Let the operation of multiplication on 2 := {0, 1} be defined by 0 · 1 := 1 · 0 :=

0 · 0 := 0 and 1 · 1 := 1. If (A, iXA , f
2

A), (B, iXB , g
2

B) ∈ F (X,2), let

fA · gB :=
(
A ∩B, iXA∩B , (fA · gB)2A∩B

)
,

where (fA · gB)2A∩B : A ∩B → 2 is defined, for every (a, b) ∈ A ∩B, by

(fA · gB)2A∩B(a, b) := f2A(a) · g2B(b).

Remark 2.3.3. If (a, b), (c, d) ∈ A ∩B and (a, b) =A∩B (c, d), then f2A(a) =2 f
2

A(c) and f2B(b) =2

f2B(d). By the equality of the product on A ∩B, it follows

(fA · gB)2A∩B(a, b) := f2A(a) · g2B(b) =2 f
2

A(c) · g2B(d) =: (fA · gB)2A∩B(c, d).

Hence (fA · gB)2A∩B is a function.

2.4 Complemented subsets

The notion of a complemented subset gives us a positively defined notion of disjointness of subsets

of X. This allows us to avoid the negative definition of the complement of a set.

Definition 2.4.1. Let (X,=X , 6=X) be a set and (A, iXA ), (B, iXB ) ⊆ X. A and B are disjoint with

respect to 6=X , in symbols AKJ 6=XB, if

AKJ 6=XB :⇔ ∀a∈A∀b∈B
(
iXA (a) 6=X iXB (b)

)
.

If 6=X is clear from the context, we write AKJB.

Clearly, if AKJB, then A ∩B is not inhabited.

Definition 2.4.2. A complemented subset of a set (X,=X , 6=X) is a pair A := (A1, A0), where

(A1, iXA1) and (A0, iXA0) are subsets of X such that A1KJA0. We call A1 the 1-component of A and

A0 the 0-component of A.

If Dom(A) := A1 ∪A0 is the domain of A, the indicator function, or characterictic function, of A

is the operation χA : Dom(A) 2 defined by

χA(x) :=

{
1 , x ∈ A1

0 , x ∈ A0.

Let x ∈ A :⇔ x ∈ A1 and x /∈ A :⇔ x ∈ A0. If A, B are complemented subsets of X, let
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A ⊆ B :⇔ A1 ⊆ B1 & B0 ⊆ A0,

A ⊆0 B :⇔ A1 ⊆ B1 & B0 = A0,

A ⊆1 B :⇔ A1 = B1 & B0 ⊆ A0.

Let PKJ(X) be their totality, equipped with the equality A =PKJ(X) B :⇔ A ⊆ B & B ⊆ A. A

map fff : A→ B from A to B is a pair (f1, f0), where f1 : A1 → B1 and f0 : A0 → B0.

Remark 2.4.3.

i) Clearly A =PKJ(X) B :⇔ A1 =PKJ(X) B
1 & A0 =PKJ(X) B

0.

ii) Since the membership condition for PKJ(X) requires quantification over V0, the totality PKJ(X)

is a class.

iii) The operation χA is a partial function in F (X,2). Let z, w ∈ A1 ∪A0, such that z =A1∪A0 w,

i.e.

iXA1(z) , z ∈ A1

iXA0(z) , z ∈ A0

}
:= iXA1∪A0(z) =X iXA1∪A0(w) :=

{
iXA1(w) , w ∈ A1

iXA0(w) , w ∈ A0.

Let z ∈ A1. If w ∈ A0, then

iXA1(z) := iXA1∪A0(z) =X iA1∪A0(w) := iXA0(w),

therefore (z, w) ∈ A1 ∩A0, but this is a contradicton to A1KJA0. Hence w ∈ A1 and

χA(z) = χA(w).

If z ∈ A0, we work in a similar way.

Definition 2.4.4. If A,B ∈ PKJ(X) and C ∈ PKJ(Y ), we define

A ∪B := (A1 ∪B1, A0 ∩B0),

A ∩B := (A1 ∩B1, A0 ∪B0),

−A := (A0, A1),

A−B := (A1 ∩B0, A0 ∪B1),

A×C :=
(
A1 × C1, [A0 × Y ] ∪ [X × C0]

)
.

Proposition 2.4.5. If A,B ∈ PKJ(X) and C ∈ PKJ(Y ), then A ∪B, A ∩B, −A and A−B are

in PKJ(X) and A×C is in PKJ(X × Y ).

Proof. We only show A ∪ B ∈ PKJ(X) and A × C ∈ PKJ(X × Y ), the others follow in a similar

way. Let A,B ∈ PKJ(X). If a1 ∈ A1, a0 ∈ A0, b1 ∈ B1 and b0 ∈ B0, then

iXA1(a1) 6=X iXA0(a0) and iXB1(b1) 6=X iXB0(b0).

By definition

iXA1∪B1(z) :=

{
iXA1(z) , if z ∈ A1

iXB1(z) , if z ∈ B1

for z ∈ A1 ∪B1 and

iXA0∩B0(a0, b0) := iXA0(a0) := iXB0(b0).

Hence
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iXA1∪B1(z) 6=X iXA0∩B0(a0, b0)

for all z ∈ A1 ∪ B1 and (a0, b0) ∈ A0 ∩ B0, so A ∪B ∈ PKJ(X). Now let C ∈ PKJ(Y ). If c1 ∈ C1

and c0 ∈ C0, then

iYC1(c1) 6=Y iYC0(c0).

For z ∈ [A0 × Y ] ∪ [X × C0]

iX×Y[A0×Y ]∪[X×C0](z) :=

{
iX×YA0×Y (z) , if z ∈ A0 × Y
iX×YX×C0(z) , if z ∈ X × C0.

Let z = (a0, y) ∈ A0×Y , since iXA1(a1) 6=X iXA0(a0), it holds that iX×YA1×C1(a1, c1) 6=X×Y iX×YA0×Y (a0, y).

Now let z = (x, c0) ∈ X × C0, since iYC1(c1) 6=Y iYC0(c0), it holds that iX×YA1×C1(a1, c1) 6=X×Y

iX×YX×C0(x, c0). Hence, the following holds

iX×YA1×C1(a1, c1) 6=X×Y iX×Y[A0×Y ]∪[X×C0](z)

for every (a1, c1) ∈ A1 × C1 and z ∈, so A×C ∈ PKJ(X × Y ).

Proposition 2.4.6. Let A, B and C be in PKJ(X). Then the following hold:

(i) −(−A) := A.

(ii) −(A ∪B) := (−A) ∩ (−B).

(iii) −(A ∩B) := (−A) ∪ (−B).

(iv) A ∪ (B ∩C) =PKJ(X) (A ∪B) ∩ (A ∪C).

(v) A ∩ (B ∪C) =PKJ(X) (A ∩B) ∪ (A ∩C).

(vi) A−B := A ∩ (−B).

(vii) A ⊆ B⇔ (A ∩B) =PKJ(X) A.

(viii) A ⊆ B⇔ −B ⊆ −A.

(ix) If A ⊆ B and B ⊆ C, then A ⊆ C.

Proof. All the statements follow directly by the definitions. Let A := (A1, A0),B := (B1, B0) and

C := (C1, C0). Then

(i) − (−A) := −(A0, A1)

:= (A1, A0)

:= A.

(ii) (−A) ∩ (−B) :=
(
(A0, A1) ∩ (B0, B1)

)
:= (A0 ∩B0, A1 ∪B1)

:= −(A1 ∪B1, A0 ∩B0)

:= −(A ∪B).

(iii) (−A) ∪ (−B) :=
(
(A0, A1) ∪ (B0, B1)

)
:= (A0 ∪B0, A1 ∩B1)

:= −(A1 ∩B1, A0 ∪B0)

:= −(A ∩B).

11



(iv) A ∪ (B ∩C) := (A1, A0) ∪
(
(B1, B0) ∩ (C1, C0)

)
:= (A1, A0) ∪ (B1 ∩ C1, B0 ∪ C0)

:=
(
A1 ∪ (B1 ∩ C1), A0 ∩ (B0 ∩ C0)

)
=PKJ(X) ((A1 ∪B1) ∩ (A1 ∪ C1), (A0 ∩B0) ∪ (A0 ∩ C0))

:= (A ∪B) ∩ (A ∪C).

(v) A ∩ (B ∪C) := ((A1, A0) ∩ ((B1, B0) ∪ (C1, C0))

:= (A1, A0) ∩ (B1 ∪ C1, B0 ∩ C0)

:= (A1 ∩ (B1 ∩ C1), A0 ∪ (B0 ∩ C0))

=PKJ(X)

(
(A1 ∩B1) ∪ (A1 ∩ C1), (A0 ∪B0) ∩ (A0 ∪ C0)

)
:= (A ∩B) ∪ (A ∩C).

(vi) A−B := (A1 ∩B0, A0 ∪B1)

:= (A1, A0) ∩ (B0, B1)

:= A ∩ (−B).

(vii) (A ∩B) =PKJ(X) A⇔ (A1 ∩B1, A0 ∪B0) =PKJ(X) (A1, A0)

⇔ A1 ∩B1 =PKJ(X) A
1 & A0 ∪B0 =PKJ(X) A

0

⇔ A1 ⊆ B1 & B0 ⊆ A0

⇔ A ⊆ B.

(viii) A ⊆ B :⇔ A1 ⊆ B1 & B0 ⊆ A0

⇔ B0 ⊆ A0 & A1 ⊆ B1

⇔ (B0, B1) ⊆ (A0, A1)

⇔ −(B1, B0) ⊆ −(A1, A0)

:⇔ −B ⊆ −A.

(xi) Let A ⊆ B & B ⊆ C, i.e. A1 ⊆ B1 & B0 ⊆ A0 and B1 ⊆ C1 & C0 ⊆ B0.

Therefore, we have A1 ⊆ C1 & C0 ⊆ A0 :⇔ A ⊆ C.

Proposition 2.4.7. Let A ∈ PKJ(X) and B,C ∈ PKJY ). Then

(i) A× (B ∪C) =PKJ(X×Y ) (A×B) ∪ (A×C).

(ii) A× (B ∩C) =PKJ(X×Y ) (A×B) ∩ (A×C).

Proof. We have that

(i) A× (B ∪C) := (A1, A0)× (B1 ∪ C1, B0 ∩ C0)

:=
(
A1 × (B1 ∪ C1), [A0 × Y ] ∪ [X × (B0 ∩ C0)]

)
=PKJ(X)

(
(A1 ×B1) ∪ (A1 × C1), [A0 × Y ] ∪ [(X ×B0) ∩ (X × C0)]

)
=PKJ(X)

(
(A1 ×B1) ∪ (A1 × C1), [(A0 × Y ) ∪ (X ×B0)] ∩ [(A0 × Y ) ∪ (X × C0)]

)
=PKJ(X)

(
A1 ×B1, [A0 × Y ] ∪ [X ×B0]

)
∪
(
A1 × C1, [A0 × Y ] ∪ [X × C0]

)
:= (A×B) ∪ (A×C).
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(ii) A× (B ∩C) := (A1, A0)× (B1 ∩ C1, B0 ∪ C0)

:=
(
A1 × (B1 ∩ C1), [A0 × Y ] ∪ [X × (B0 ∪ C0)]

)
=PKJ(X)

(
(A1 ×B1) ∩ (A1 × C1), [A0 × Y ] ∪ [(X ×B0) ∪ (X × C0)]

)
=PKJ(X)

(
(A1 ×B1) ∩ (A1 × C1), [(A0 × Y ) ∪ (X ×B0)] ∪ [(A0 × Y ) ∪ (X × C0)]

)
=PKJ(X)

(
A1 ×B1, [A0 × Y ] ∪ [X ×B0]

)
∩
(
A1 × C1, [A0 × Y ] ∪ [X × C0]

)
:= (A×B) ∩ (A×C).

Remark 2.4.8. Let (X,=X , 6=f
X) and (Y,=Y , 6=Y ) be sets. If f : X → Y , let x1 6=f

X x2 :⇔
f(x1) 6=Y f(x2), for every x1, x2 ∈ X.

Proposition 2.4.9. Let the sets (X,=X , 6=f
X) and (Y,=Y , 6=Y ), where f : X → Y . Let also

A:=(A1, A0) and B := (B1, B0) in PKJ(X).

(i) f−1(A) :=
(
f−1(A1), f−1(A0)

)
∈ PKJ(X).

(ii) f−1(A ∪B) =PKJ(X) f
−1(A) ∪ f−1(B).

(iii) f−1(A ∩B) =PKJ(X) f
−1(A) ∩ f−1(B).

(iv) f−1(−A) =PKJ(X) −f−1(A).

(v) f−1(A−B) =PKJ(X) f
−1(A)− f−1(B).

Proof. (i) By the definition we have that

f−1(A1) :=
{

(x, a1) ∈ X ×A1 | f(x) =Y iXA1(a1)
}
, iXf−1(A1)(x, a1) := x,

f−1(A0) :=
{

(x, a0) ∈ X ×A0 | f(x) =Y iXA0(a0)
}
, iXf−1(A0)(x, a0) := x.

Let (x, a1) ∈ f−1(A1) and (y, a0) ∈ f−1(A0). Since iXA1(a1) 6=Y iXA0(a0) and by the extensionality

of 6=Y it holds that

iXf−1(A1)(x, a1) 6=f
X iXf−1(A0)(y, a0) :⇔ x 6=f

X y :⇔ f(x) 6=Y f(y)⇔ iXA1(a1) 6=Y iXA0(a0).

Hence f−1(A) ∈ PKJ(X). Next we have

(ii) f−1(A ∪B) := f−1(A1 ∪B1, A0 ∩B0)

(i)
:=
(
f−1(A1 ∪B1), f−1(A0 ∩B0)

)
=PKJ(X)

(
f−1(A1) ∪ f−1(B1), f−1(A0) ∩ f−1(B0)

)
:= f−1(A) ∪ f−1(B).

(iii) f−1(A ∩B) := f−1(A1 ∩B1, A0 ∪B0)

(i)
:=
(
f−1(A1 ∩B1), f−1(A0 ∪B0)

)
=PKJ(X)

(
f−1(A1) ∩ f−1(B1), f−1(A0) ∪ f−1(B0)

)
:= f−1(A) ∩ f−1(B).

(iv) f−1(−A) := f−1(A0, A1)

(i)
:=
(
f−1(A0), f−1(A1)

)
= −

(
f−1(A1), f−1(A0)

)
:= −f−1(A1, A0)

:= −f−1(A).
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(v) f−1(A−B) := f−1(A1 ∩B0, A0 ∪B1)

:=
(
f−1(A1 ∩B0), f−1(A0 ∪B1)

)
=
(
f−1(A1) ∩ f−1(B0), f−1(A0) ∪ f−1(B1)

)
:= f−1(A)− f−1(B).

The following definition gives alternative operations between complemented subsets.

Definition 2.4.10. If A,B ∈ PKJ(X) and C ∈ PKJ(Y ), let

A ∨B :=
(
[A1 ∩B1] ∪ [A1 ∩B0] ∪ [A0 ∩B1], A0 ∩B0

)
,

A ∧B :=
(
A1 ∩B1, [A1 ∩B0] ∪ [A0 ∩B1] ∪ [A0 ∩B0]

)
,

A	B := A ∧ (−B),

A⊗C :=
(
A1 × C1, [A1 × C0] ∪ [A0 × C1] ∪ [A0 × C0]

)
.

Remark 2.4.11. If A,B ∈ PKJ(X) and C ∈ PKJ(Y ), then A ∨B, A ∧B, A 	B are in PKJ(X)

and A⊗C is in PKJ(X × Y ).

Proof. The proofs are straightforward to show. We only show the first and last membership. By

definition A ∨B :=
(
[A1 ∩B1] ∪ [A1 ∩B0] ∪ [A0 ∩B1], A0 ∩B0

)
=:
(
(A ∨B)1, (A ∨B)0

)
.

We have
(
(A ∨B)1, iX(A∨B)1

)
and

(
(A ∨B)0, iX(A∨B)0

)
, where

iX(A∨B)1(z) :=


iXA1∩B1(a, b) , if z := (a, b) ∈ A1 ∩B1

iXA1∩B0(a, b) , if z := (a, b) ∈ A1 ∩B0

iXA0∩B1(a, b) , if z := (a, b) ∈ A0 ∩B1

:=

iXA1(a) , if (a, b) ∈ (A1 ∩B1) ∪ (A1 ∩B0)

iXA0(a) , if a ∈ A0 ∩B1

and

iX(A∨B)0(z) := iXA0∩B0(a, b) := iXA0(a) , for every z := (a, b) ∈ A0 ∩B0.

Let (a1, b1) ∈ (A ∨B)1, (a0, b0) ∈ A0 ∩B0, then we get the required inequality

iX(A∨B)1(a1, b1) 6=X iXA0∩B0(a0, b0).

Hence (A ∨ B)1KJ(A ∨B)0 and therefore A ∨ B ∈ PKJ(X). Now let (a1, c1) ∈ A1 × C1 and

(a0, c0) ∈ A0 × C0, then

iA1(a1) 6=X iA0(a0) and iC1(c1) 6=Y iC0(c0).

By definition

iX×YA1×C1(a1, c1) := (iXA1(a1), iYC1(c1).

If (a1, c0) ∈ A1 × C0, then iX×YA1×C0(a1, c0) = (iXA1(a1), iYC0(c0)), if (a0, c1) ∈ A0 × C1, then

iX×YA0×C1(a0, c1) = (iXA0(a0), iYC1(c1)) and if (a0, c0) ∈ A0×C0, then iX×YA0×C0(a0, c0) = (iXA0(a0), iYC0(c0)).

In every one f these cases we have the inequality

iX×YA1×C1(a1, c1) 6=X×Y


iX×YA1×C0(a1, c0)

iX×YA0×C1(a0, c1)

iX×YA0×C0(a0, c0).
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Hence A⊗C ∈ PKJ(X × Y ).

With the previous definitions the corresponding characteristic functions are expressed through

the characteristic functions of A and B, which is shown in the next proposition.

Proposition 2.4.12. If A, B are complemented subsets of X, then A ∨ B, A ∧ B, A	B, A⊗B

and −A are complemented subsets of X with chraracteristic functions

(i) χA∨B =F(X,2) χA ∨ χB.

(ii) χA∧B =F(X,2) χA · χB.

(iii) χA	B =F(X,2) χA(1− χB).

(iv) χA⊗B(x, y) =F(X×X,2) χA(x) · χB(y).

(v) χ−A =F(X,2) 1− χA.

Proof.

(i) The partial function χA∨B is defined as the triplet

χA∨B := (Dom(A ∨B), iXDom(A∨B), (χA∨B)2Dom(A∨B)).

If χA : Dom(A)→ 2 and χB : Dom(B)→ 2, we have the partial function

χA ∨ χB := (Dom(A) ∩ Dom(B), iXDom(A)∩Dom(B), (χA ∨ χB)2Dom(A)∩Dom(B)),

where

(χA ∨ χB)2Dom(A)∩Dom(B)(a, b) :=

{
1 , if a ∈ A1 ∨ b ∈ B1

0 , if (a, b) ∈ A0 ∩B0

for (a, b) ∈ Dom(A) ∩ Dom(B).

Since Dom(A∨B) =P(X) Dom(A)∩ Dom(B), and if (f, g) : Dom(A∨B) =P(X) Dom(A)∩ Dom(B), the

following inner diagrams commute

Dom(A ∨B) Dom(A) ∩ Dom(B)

X

2

iXDom(A∨B)

f

χ2A∨B

g

(χA∨χB)2Dom(A)∩Dom(B)

iXDom(A)∩Dom(B)

Since (χA∨χB)2Dom(A)∩Dom(B)◦f = χ2A∨B and χ2A∨B◦g = (χA∨χB)2Dom(A)∩Dom(B) the outer diagrams

commute,and therefore the two partial functions χA∨B and χA ∨ χB are equal in F (X,2).

(ii) By the definition of multiplication of partial maps χA : Dom(A)→ 2 and χB : Dom(B)→ 2, we

have the partial function

χA · χB :=
(
Dom(A) ∩ Dom(B), iXDom(A)∩Dom(B), (χA · χB)2Dom(A)∩Dom(B)

)
,

(χA · χB)2Dom(A)∩Dom(B)(u, v) := χA(u) · χB(v)
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for every (u, v) ∈ Dom(A) ∩ Dom(B). The partial function χA∧B is the triplet

χA∧B :=
(
Dom(A ∧B), iXDom(A∧B), (χA∧B)2Dom(A∧B)

)
.

Since Dom(A∧B) =P(X) Dom(A)∩Dom(B) and if (f, g) : Dom(A∧B) =P(X) Dom(A)∩Dom(B), then

the following inner diagrams commute

Dom(A ∧B) Dom(A) ∩ Dom(B)

X

2

iXDom(A∧B)

f

(χA∧B)2Dom(A∧B)

g

(χA·χB)2Dom(A)∩Dom(B)

iXDom(A)∩Dom(B)

Let (a1, b1) ∈ A1 ∩B1, then

(χA · χB)(a1, b1) := χA(a1) · χB(b1) = 1 · 1 = 1 = χA∧B(a1, b1).

Working similar for the other cases, we have commutativity of the above outer diagrams, hence

χA∧B =F(X,2) χA · χB.

(iii) The multiplication of the partial functions χA : Dom(A)→ 2 and 1− χB : Dom(B)→ 2 is the

partial function

χA(1− χB) :=
(
Dom(A) ∩ Dom(B), iXDom(A)∩Dom(B),

(
χA(1− χB)

)2
Dom(A)∩Dom(B)

)
,

χA(1− χB)(a, b) := χA(a) ·
(
1− χB(b)

)
for every (a, b) ∈ Dom(A) ∩ Dom(B). The partial function χA	B is defined as

χA	B :=
(
Dom(A	B), iXDom(A	B), (χA	B)2Dom(A	B)

)
.

Since Dom(A	B) =P(X) Dom(A)∩Dom(B), and if (f, g) : Dom(A	B) =P(X) Dom(A)∩Dom(B), the

following inner diagrams commute

Dom(A	B) Dom(A) ∩ Dom(B)

X

2

iXDom(A	B)

f

(χA	B)2Dom(A	B)

g

(
χA(1−χB)

)
2

Dom(A)∩Dom(B)

iXDom(A)∩Dom(B)

Let a ∈ A1, b ∈ B1. By the definition of multiplication on 2, we have

(
χA(1− χB)

)(
f(a, b)

)
=
(
χA(1− χB)

)
(a, b) = χA(a)

(
1− χB(b)

)
= 1 · (1− 1) = 0 = χA	B(a, b).
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Working similarly for the other cases, we see that the above outer diagrams commute and therefore

χA	B =F(X,2) χA(1− χB).

(iv) χA(x) · χB(y) is the partial function

χA(x) · χB(y) :=
(
Dom(A)× Dom(B), iX×X

Dom(A)×Dom(B),
(
χA(x) · χB(y)

)2
Dom(A)×Dom(B)

)
for every (x, y) ∈ Dom(A)× Dom(B). The partial function χA⊗B is the triplet

χA⊗B :=
(
Dom(A⊗B), iXDom(A⊗B), (χA⊗B)2Dom(A⊗B)

)
.

Since Dom(A⊗B) =P(X×X) Dom(A)×Dom(B) and if (f, g) : Dom(A⊗B) =P(X×X) Dom(A)×Dom(B),

the following inner diagrams commute

Dom(A⊗B) Dom(A)× Dom(B)

X

2

iXDom(A⊗B)

f

(χA⊗B)2Dom(A⊗B)

g

(χA·χB)2Dom(A)×Dom(B)

iXDom(A)×Dom(B)

Let (x, y) ∈ A1 × B1, then χA⊗B(x, y) := 1 = 1 · 1 =: χA(x) · χB(y). In the other cases it holds

that χA⊗B(x, y) := 0 =: χA(x) · χB(y). Therefore the above outer diagrams commute as well and

we have χA⊗B(x, y) =F(X×X,2) χA(x) · χB(y).

(v) The partial functions χ−A and 1− χA are defined as follows

χ−A :=
(
Dom(−A), iXDom(−A), (χ−A)2Dom(−A)

)
,

1− χA :=
(
Dom(A), iXDom(A), (1− χA)2Dom(A)

)
.

Since Dom(−A) =P(X) Dom(A) and if (f, g) : Dom(−A) =P(X) Dom(A), the following inner diagram

commutes

Dom(−A) Dom(A)

X

2

iXDom(−A)

f

(χ−A)2Dom(−A)

g

(1−χA)2Dom(A)

iXDom(A)

If a ∈ A1, then 1−χA(a) := 1− 1 = 0 = χ−A(a) and if a ∈ A0, 1−χA(a) := 1− 0 = 1 = χ−A(a).

Therefore the outer diagrams commute and it holds that χ−A =F(X,2) 1− χA.
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2.5 Complemented subsets and 2-valued partial functions

We denote by F se(X,2) the class of all strongly extensional partial functions from X to 2.

The next proposition shows that there are class functions between the two classes PKJ(X) and

F se(X,2), and that they are in fact inverse to each other. We follow [7], where the proof of the

following proposition originally lies. Here we give a full proof and show that the two class functions

are inverse to each other.

Proposition 2.5.1. If (X,=X , 6=X) is a set with an inequality, let the proper class-assignement

routines be defined as follows

χX : PKJ(X) // F se(X,2), A 7→ χX(A) =: χA,

χA :=
(
A1 ∪A0, iXA1∪A0 , χ2A1∪A0

)
,

δX : F se(X,2) // PKJ(X), fA := (A, iXA , f
2

A) 7→ δX(fA),

δX(fA) :=
(
δ1
0(f2A), (iXA )|δ1

0(f2A), δ
0
0(f2A), (iXA )|δ0

0(f2A)

)
,

where

δ1
0(f2A) := {a ∈ A | f2A =2 1} =: [f2A =2 1],

δ0
0(f2A) := {a ∈ A | f2A =2 0} =: [f2A =2 0],

for every A := (A1, iXA1 , A0, iXA0) ∈ PKJ(X) and every f2A := (A, iXA , f
2

A) ∈ F se(X,2). Then

(i) χX is a well-defined, proper class-function.

(ii) δX is a well-defined, proper class-function.

(iii) χX and δX are inverse to each other.

Proof.

(i) Let A, B ∈ PKJ(X), A = (A1, iXA1 , A0, iXA0) and B = (B1, iXB1 , B0, iXB0). To show that χX is well-

defined, we only need to show that χA is strongly extensional, i.e. χ2A1∪A0 is strongly extensional.

Let z, w ∈ A1 ∪A0, such that

χ2A1∪A0(z) 6=2 χ
2

A1∪A0(w).

Now suppose that χ2A1∪A0(z) := 1 and χ2A1∪A0(w) := 0, i.e. z ∈ A1 and w ∈ A0. By the definition

of a complemented subset we get

iXA1(z) 6=X iXA0(w)⇔: z 6=A1∪A0 w.

If χ2A1∪A0(z) := 0 and χ2A1∪A0(w) := 1, i.e. z ∈ A0 and w ∈ A1, we get

iXA0(z) 6=X iXA1(w)⇔: z 6=A1∪A0 w.

Therefore χX is strongly extensional. We still need to show that

A =PKJ(X) B⇒ χA =Fse(X,2) χB

in order for χX to be a proper class-function.
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Let (e1, j1) : A1 =PKJ(X) B
1 and (e0, j0) : A0 =PKJ(X) B

0, then the following diagrams commute

A1 B1

X

iX
A1

j1

e1

iX
B1

A0 B0

X

iX
A0

j0

e0

iX
B0

We define the functions e : A1 ∪A0 → B1 ∪B0 and j : B1 ∪B0 → A1 ∪A0 respectively by

e(z) :=

{
e1(z) , z ∈ A1

e0(z) , z ∈ A0
, j(w) :=

{
j1(w) , w ∈ B1

j0(w) , w ∈ B0.

Let z ∈ A1 ∪A0. If z ∈ A1, then iXB1∪B0

(
e(z)

)
:= iXB1

(
e1(z)

)
= iXA1(z) := iXA1∪A0(z) and if z ∈ A0,

we have iXB1∪B0

(
e(z)

)
:= iXB0

(
e0(z)

)
= iXA0(z) := iXA1∪A0(z). Working similarly for w ∈ B1 ∪ B0,

the following diagram commutes

A1 ∪A0 B1 ∪B0

X

2

iX
A1∪A0

e

χ2
A1∪A0

j

χ2
B1∪B0

iX
B1∪B0

and therefore (e, j) : χA =Fse(X,2) χB, meaning that χX is a proper class-function.

(ii) Let fA ∈ F se(X,2), fA := (A, iXA , f
2

A). We first show that δX(fA) ∈PKJ(X).

Let a ∈ δ1
0(f2A) and b ∈ δ0

0(f2A). As

f2A(a) =2 1 6=2 0 =2 f
2

A(b),

by the strong extensionality of f2A and according to the definition of the canonical inequality of

the subset (A, iXA ), we get

a 6=A b :⇔ iXA (a) 6=X iXA (b).

Now we want to show that

fA =Fse(X,2) fB ⇒ δX(fA) =PKJ(X) δ
X(fB).
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If (A, iXA , f
2

A) =Fse(X,2) (B, iXB , f
2

B), then the following diagram commutes

A B

X

2

iXA

#3

eAB

#1

f2A

eBA

#2

f2B

iXB

#4

The outer commutativities (#1) and (#2) imply that the functions

(eAB)|δ1
0(f2A) : δ1

0(f2A)→ δ1
0(f2B) and (eAB)|δ0

0(f2A) : δ0
0(f2A)→ δ0

0(f2B),

(eBA)|δ1
0(f2B) : δ1

0(f2B)→ δ1
0(f2A) and (eBA)|δ0

0(f2B) : δ0
0(f2B)→ δ0

0(f2A)

are well-defined. The commutativities (#3) and (#4) of the above inner diagrams (A,B,X) imply

the commutativity of the following diagrams

δ1
0(f2A) δ1

0(f2B)

X

(iXA )|δ10(f2
A

)

(eBA)|δ10(f2
B

)

(eAB)|δ10(f2
A

)

(iXB )|δ10(f2
B

)

δ0
0(f2A) δ0

0(f2B)

X

(iXA )|δ00(f2
A

)

(eBA)|δ00(f2
B

)

(eAB)|δ00(f2
A

)

(iXB )|δ00(f2
B

)

which proves that δX(fA) =PKJ(X) δ
X(fB) and therefore δX is a proper class-function.

(iii) Let A ∈PKJ(X), then

δX
(
χX(A)

)
:= δX

(
A1 ∪A0, iXA1∪A0 , χ2A1∪A0

)
:=
(
δ1
0(χ2A1∪A0), (iXA1∪A0)|δ1

0(χ2
A1∪A0 ), δ

0
0(χ2A1∪A0), (iXA1∪A0)|δ0

0(χ2
A1∪A0 )

)
=PKJ(X) (A1, iXA1 , A0, iXA0)

:= A

Let fA ∈ Fse(X,2), then

χX
(
δX(fA)

)
:= χX

(
δX(A, iXA , f

2

A)
)

:= χX
(
δ1
0(f2A), (iXA )|δ1

0(f2A), δ
0
0(f2A), (iXA )|δ0

0(f2A)

)
:= χX

(
[f2A =2 1], iX[f2A=21], [f

2

A =2 0], iX[f2A=20])
)

:=
(
[f2A =2 1] ∪ [f2A =2 0], iX[f2A=21]∪[f2A=20], χ

2

[f2A=21]∪[f2A=20]

)
=F(X,2) (A, iXA , f

2

A) =: fA

Hence δX and χX are inverse to each other.
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Remark 2.5.2. We notice that the use of strong extensionality is crucial to the proof that δX is

well-defined. The statement would not hold for F (X,2).
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3 Categorical aspects

After having discussed Bishop set theory, we will in this chapter talk about the categorical aspects

of Bishop set theory. Following [6], we consider the category of complemented subsets and Chu-

representation of different categories.

3.1 Basic definitions

We will first introduce some basic definitions of category theory following [1].

Definition 3.1.1. A category consists of objects A,B,C, ... and arrows f, g, h, ..., for f : A → B

we call A the domain of f and B the codomain of f . For given arrows f : A→ B and g : B → C

there is a given arrow g ◦ f : A→ C called the composite of f and g. For each object A there is a

given identity arrow 1A : A→ A.

The following is required to hold:

(i) Associativity:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

for all f : A→ B, g : B → C, h : C → D.

(ii) Unit:

f ◦ 1A = f = 1B ◦ f

for all f : A→ B.

If C is a category, we denote by C0 the objects and by C1 the arrows of C.

Definition 3.1.2. A functor

F : C → D

between two categories C and D is a mapping of objets to objects and arrows to arrows, such that

(i) F (f : A→ B) = F (f) : F (A)→ F (B),

(ii) F (1A) = 1F (A),

(iii) F (g ◦ f) = F (g) ◦ F (f).

A functor F : C → C is called an endofunctor.

Definition 3.1.3. Let the category C have binary product ×. An exponential of objects B and

C consists of an object CB and an arrow ε : CB × B → C such that, for any object A and arrow

f : A×B → C there is a unique arrow f̃ : A→ CB such that

ε ◦ (f̃ × 1B) = f ,
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meaning that the following diagram commutes

CB ×B C

A×B

ε

f̃×1B f

Definition 3.1.4. A category is called cartesian closed, if it has finite products and exponentials.

Definition 3.1.5. In a category C, an arrow f : A→ B is called

(i) a monomorphism, if given any g, h : C → A, fg = fh implies g = h.

(ii) an epimorphism, if given any i, j : B → D, if = jf implies i = j.

Definition 3.1.6. A category is called thin, if for any objects A, B and morphisms f , g from A

to B

A
f

⇒
g
B ⇒ f = g.

Definition 3.1.7. The pullback of f : A → C and g : B → C consists of an object P with

morphisms p : P → A and q : P → B

P A

B C

p

q f

g

such that f ◦ p = g ◦ q and universal with this property. That means for any given s1 : S → A and

s2 : S → B with f ◦ s1 = g ◦ s2, there is a unique u : S → P with s1 = p ◦ u and s2 = q ◦ u.

S

P A

B C

s1u

s2

p

q f

g

The pushout of f : C → A and g : C → B consists of an object P with morphisms p : A→ P and

q : B → P

C A

B P

f

g p

q

such that p ◦ f = q ◦ g and universal with this property.
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3.2 The category of complemented subsets

After having discussed complemented subsets in the last chapter, we will now present the category

of complemented subsets.

Definition 3.2.1. If X is a set , the poset category PKJ(X) has as objects the complemented

subsets of X and a morphism f : A → B is a pair f = (f1, f0) : A ⊆ B, i.e. f1 : A1 ⊆ B1 and

f0 : B0 ⊆ A0. The unit morphism 1A of A is the pair (idA1 , idA0) and if g = (g1, g0) : B ⊆ C,

then g ◦ f := (g1 ◦ f1, f0 ◦ g0).

Proposition 3.2.2. Let A,B,C ∈ PKJ(X).

(i) If f : A→ B and g : C→ B, then A×B C := (A1 ×B1 C1, A0 +B0 C0) is a pullback, where

A1 ×B1 C1 :=
{

(a1, c1) ∈ A1 × C1 | f1(a1) =B1 g1(c1)
}

,

iA1×B1C1 : A1 ×B1 C1 → X, iA1×B1C1(a1, c1) := iXA1(a1); (a1, c1) ∈ A1 ×B1 C1,

A0 +B0 C0 := A0 ∪ C0.

(ii) If f : B→ A and g : B→ C, then A +B C := (A1 +B1 C1, A0 ×B0 C0) is a pushout, where

A1 +B1 C1 := A1 ∪ C1,

A0 ×B0 C0 :=
{

(a0, c0) ∈ A0 × C0 | f0(a0) =B0 g0(c0)
}

,

iA0×B0C0 : A0 ×B0 C0 → X, iA0×B0C0(a0, c0) := iXA0(a0); (a0, c0) ∈ A0 ×B0 C0.

Proof. (i) Let f = (f1, f0) : A ⊆ B and g = (g1, g0) : C ⊆ B, i.e. f1 : A1 ⊆ B1, f0 : B0 ⊆ A0 and

g1 : C1 ⊆ B1, g0 : B0 ⊆ C0. We define the morphism p = (p1, p0), where

p1 : A1 ×B1 C1 → A1, p1(a1, c1) := a1,

p0 : A0 → A0 +B0 C0, p0(a0) := (a0, c0) ∈ A0 ∪ C0

and the morphism q = (q1, q0), where

q1 : A1 ×B1 C1 → C1, q1(a1, c1) := c1,

q0 : C0 → A0 +B0 C0, q0(c0) := (a0, c0) ∈ A0 ∪ C0.

Let (a1, c1) ∈ A1 ×B1 C1, then

f1

(
p1(a1, c1)

)
= f1(a1) =B1 g1(c1) = g1

(
q1(a1, c1)

)
,

so f1p1 = g1q1.

Now let b0 ∈ B0, then there is a a0 ∈ A0 and a c0 ∈ C0, such that f0(b0) = a0 and c0 = g0(b0).

We then get

p0

(
f0(b0)

)
= p0(a0) = (a0, c0) = q0(c0) = q0

(
g0(b0)

)
,

so p0f0 = q0g0. Therefore fp = gq, which proves that A×B C is a pullback.

(ii) We precede similarly as in (i):

Let f = (f1, f0) : B ⊆ A and g = (g1, g0) : B ⊆ C, i.e. f1 : B1 ⊆ A1, f0 : A0 ⊆ B0 and

g1 : B1 ⊆ C1, g0 : C0 ⊆ B0. We define the morphism p = (p1, p0), where

p1 : A1 → A1 +B1 C1, p1(a1) := (a1, c1) ∈ A1 ∪ C1,

p0 : A0 ×B0 C0 → A0, p0(a0, c0) := a0

and the morphism q = (q1, q0), where
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q1 : C1 → A1 +B1 C1, q1(c1) := (a1, c1) ∈ A1 ∪ C1,

q0 : A0 ×B0 C0 → C0, q0(a0, c0) := c0

Let b1 ∈ B1, then there is a a1 ∈ A1 and a c1 ∈ C1, such that f1(b1) = a1 and g1(b1) = c1. We

then get

p1

(
f1(b1)

)
= p1(a1) = (a1, c1) = q1(c1) = q1

(
g1(b1)

)
,

so p1f1 = q1g1. Now let b1 ∈ B1, then f(b) ∈ A1 and g(b) ∈ C1, since f : B1 ⊆ A1 and f : B1 ⊆ C1

f0

(
p0(a0, c0)

)
= f0(a0) =B0 g0(c0) = g0

(
q0(a0, c0)

)
,

so f0p0 = g0q0.

Hence pf = pg, which proves that A +B C is a pushout.

Proposition 3.2.3. Let the sets (X,=X , 6=f
X) and (Y,=Y , 6=Y ), where f : X → Y and the

inequality 6=f
X on X induced by f is defined by

x 6=f
X x′ :⇔ f(x) 6=Y f(x′).

Let K := (K1,K0), L := (L1, L0) in PKJ(X) and A := (A1, A0), B := (B1, B0) in PKJ(Y ).

(i) f−1(A) :=
(
f−1(A1), f−1(A0)

)
∈ PKJ(X)

(ii) f−1(A ∪B) =PKJ(X) f
−1(A) ∪ f−1(B)

(iii) f−1(A ∩B) =PKJ(X) f
−1(A) ∩ f−1(B)

(iv) f−1(−A) =PKJ(X) −f−1(A)

(v) f−1(A−B) =PKJ(X) f
−1(A)− f−1(B)

(vi) A ⊆ B⇒ f−1(A) ⊆ f−1(B)

(vii) f(K) :=
(
f(K1), f(K0)

)
∈ PKJ(Y )

(viii) K ⊆ L⇒ f(K) ⊆ f(L)

(ix) f(K) ∪ f(L) ⊆1 f(K ∪ L)

(x) f(K ∩ L) ⊆0 f(K) ∩ f(L)

Proof. We will only show (i) and (vii)-(viii):

(i) By definition we have

f−1(A1) := {(x, a1) ∈ X ×A1 | f(x) =Y iXA1(a1)}, if−1(A1)(x, a1) := x,

f−1(A0) := {(x, a0) ∈ X ×A0 | f(x) =Y iXA0(a0)}, if−1(A0)(x, a0) := x.

Let (x, a1) ∈ f−1(A1) and (z, a0) ∈ f−1(A0). Then we have, by extensionality of 6=Y that

if−1(A1)(x, a1) 6=f
X if−1(A0)(z, a0) :⇔ x 6=f

X z :⇔ f(x) 6=Y f(z)⇔ iXA1(a1) 6=Y iXA0(a0),

which holds by the hypothesis K ∈ PKJ(X).

(vii) By definition we have

f(K1) := {f(k1) | k1 ∈ K1}, fK1 = f ◦ iXK1 ,

f(K0) := {f(k0) | k0 ∈ K0}, fK0 = f ◦ iXK0 .

Let k1 ∈ K1 and k0 ∈ K0. Then we have that

k1 6=f(K) k0 :⇔ f(iXK1(k1)) 6=Y f(iXK0(k0)) :⇔ iXK1(k1) 6=f
X iXK0(k0) :⇔ iXK1(k1) 6=X iXK0(k0),

which holds by the hypothesis A ∈ PKJ(Y ).

(viii) Let K ⊆ L, i.e. K1 ⊆ L1 and L0 ⊆ K0.
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f(K1) := {f(k) | k ∈ K1}, f(L0) := {f(l) | l ∈ L0}

Let k ∈ K1 and l ∈ L0, then k ∈ L1 and l ∈ K0. Therefore f(k) ∈ f(L1) and f(l) ∈ f(K0)

for every k ∈ K1 and l ∈ L0. So we have f(K1) ⊆ f(L1) and f(L0) ⊆ f(K0), which proves the

statement.

3.3 The Chu category

The Chu category can be defined on a category with products.

Definition 3.3.1. Let C be a cartesian closed category. The Chu category Chu(C, γ) over C and

γ ∈ C0 has objects Chu spaces, i.e. triplets (a, f, x) with a, x ∈ C0 and f : a × x → γ ∈ C1. A

morphism φ : (a, f, x)→ (b, g, y) in Chu(C, γ), or a Chu transform, is a pair φ = (φ+, φ−), where

φ+ : a→ b and φ− : y → x are in C1 such that the following diagram commutes

a× y a× x

b× y γ

1a×φ−

φ+×1y f

g

If θ = (θ+, θ−) : (b, g, y)→ (c, h, z), then θ ◦ φ = (θ+ ◦ φ+, φ− ◦ θ−).

a× y a× x

b× y γ a× z

b× z c× z

1a×φ−

φ+×1y f

g

1a×(φ−◦θ−)

(θ+◦φ+)×1z1b×θ−

θ+×1z

h

Moreover, 1(a,f,x) = (1a, 1x).

a× x a× x

a× x γ

1a×1x

1a×1x f

f

Remark 3.3.2. To show that composition is well-defined in Chu(C, γ), we show commutativity

of the triangle in the above definition:

[
f ◦ [1a × (φ− ◦ θ−)]

]
(a, z) =

[
f ◦ (1a × φ−) ◦ (1a × θ−)

]
(a, z)

=
[
g ◦ (φ+ × 1y) ◦ (1a × θ−)

]
(a, z)

=
[
g ◦ (φ+ ×+z)

]
(a, y)

= g(g, y)
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= h(c, z)

=
[
h ◦ (θ+ × 1z)

]
(b, z)

=
[
h ◦ (θ+ × 1z) ◦ (φ+ × 1z)

]
(a, z)

=
[
h ◦ [(θ+ ◦ (φ+)× 1z)]

]
(a, z).

Definition 3.3.3. A functor F : C → D, with F0 : C0 → D0 and F1 : C1 → D1, is called

i) injective (sujective) on objects, if F0 is an injection (surjection).

ii) injective (sujective) on arrows, if F1 is an injection (surjection).

iii) faithful, if for every a, b ∈ C0

F(a,b) : C1(a, b)→ D1(F0(a), F0(b)),

where F(a,b)(f) = F1(f), is an injection.

iv) full, if for every a, b ∈ C0, F(a,b) is a surjection.

v) an embedding, if F is injective on objects and faithful.

vi) a representation, if F is a full embedding.

vii) a strict representation, if F is injective on objects, arrows and is full.

viii) a Chu representation, if D is a Chu category and F is a representation.

3.3.1 A Chu-representation of the category of subsets

Definition 3.3.4. The category of sets Set has as objects sets (A,=A). If (A,=A), (B,=B) are

objects of Set, the morphisms are functions f : A→ B.

Definition 3.3.5. The category of subsets P(X) has as objects the subsets (A, iXA ) of the set X.

If (A, iXA ) and (B, iXB ) are objects of P(X), a morphism f : (A, iXA ) → (B, iXB ) is a function, such

that the following diagram commutes

A B

X

iXA

f

iXB

If g : (B, iXB )→ (C, iXC ), we define g ◦ f : (A, iXA )→ (C, iXC ). Moreover 1(A,iXA ) = idA.

Proposition 3.3.6.
(
Chu-representation of P(X)

)
If (X,=X) is a set, then the functor

EX : P(X)→ Chu(Set, X)

EX0 (A, iXA ) = (A, IXA ,1),

IXA : A× 1→ X, IXA (a, 0) = iXA (a) a ∈ A,

EX1 (f : (A, iXA )→ (B, iXB )) = (f, id1) : (A, IXA ,1)→ (B, IXB ,1),

is a full embedding of P(X) into Chu(Set, X).

Proof. First we will show that EX is a well-defined functor. Clearly EX is a functor. Let (A, iXA ) ∈
P(X), then
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EX0 (A, iXA ) = (A, IXA ,1).

A,1 are objects in Set. Let (a, 0), (b, 0) ∈ A× 1 with (a, 0) = (b, 0), i.e a = b, then

IXA (a, 0) = iXA (a) = iXA (b) = IXA (b, 0).

Hence IXA is a function in Set. Let (B, iXB ) ∈ P(X) and f : (A, iXA ) → (B, iXB ), meaning that the

following triangle commutes

A B

X

iXA

f

iXB

This implies the commutativity of the following rectangle

A× 1 A× 1

B × 1 X

idA×id1

f×id1 IXA

IXB

since IXA (idA × id1(a, 0)) = IXA (a, 0) = iXA (a) = iXB (f(a)) = IXB (f(a), 0) = IXB (f × id1(a, 0)),

for (a, 0) ∈ A × 1. Therefore EX1 (f) : (A, IXA ,1) → (B, IXB ,1) is in Chu(Set, X) and EX is

well-defined. Now let (g1, g2) : (A, IXA ,1) = (B, IXB ,1), then the following triangle commutes

A× 1 B × 1

X

IXA

g1

g2

IXB

which implies that (A, iXA ) = (B, iXB ), therefore EX is injective on objects. Now let (f, id1), (g, id1) :

(A, IXA ,1)→ (B, IXB ,1), with (f, id1) = (g, id1), i.e.

(f(x), 0) = (f, id1)(x, 0) = (g, id1)(x, 0) = (g(x), 0)

for all (x, 0) ∈ A×1. Therefore f = g and EX is injective on arrows. Hence EX is an embedding.

We still need to show that EX is full. By the commutativity of the above rectangle, we get the

commutativity of the first triangle. Hence, if (f, id1) : (A, IXA ,1)→ (B, IXB ,1) is in Chu(Set, X),

then f : A→ B is in P(X), so EX is a full embedding.

Definition 3.3.7. If C is a category and γ ∈ C0, the category Sub(C, γ) of subobjects of γ has as

objects the monomorphisms of C with codomain γ and a morphism f : i→ j, where i : a ↪→ γ and

j : b ↪→ γ is a morphism f : a→ b such that the following diagram commutes

a b

γ

i

f

j
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Remark 3.3.8. Let g, h : k → i, where k : c ↪→ γ and i : a ↪→ γ. Suppose fg = fh, then the

following diagram commutes

c a b

γ

g

k

h

f

i
j

and it immediatly follows that g = h, i.e. f is a monomorphism. Moreover the diagram shows

that Sub(C, γ) is thin.

Proposition 3.3.9.
(
Chu-representation of Sub(C, γ)

)
If C is cartesian closed, the functor

ESub(C,γ) : Sub(C, γ)→ Chu(C, γ),

E
Sub(C,γ)
0 (i : a ↪→ γ) = (a, i ◦ pra, 1),

a× 1
pra

↪−−−→ a
i

↪−−−−→ γ,

E
Sub(C,γ)
1 (f : i→ j) = (f, 11) : (a, i ◦ pra, 1)→ (b, j ◦ prb, 1)

is a full embedding of Sub(C, γ) into Chu(C, γ).

Proof. First we show that ESub(C,γ) is a well-defined functor. Clearly it is a functor, so we only

show that it is well-defined. Let i : a→ γ be an object of Sub(C, γ). Then

E
Sub(C,γ)
0 (i : a ↪→ γ) = (a, i ◦ pra, 1).

Since the morphism pra is an isomorphism, it is a monomorphism and therefore i ◦ pra is a

monomorphism. To show that E
Sub(C,γ)
1 (f) : (a, i ◦ pra, 1) → (b, j ◦ prb, 1) is a morphism in

Chu(C, γ), we need to show that the following rectangle commutes

a× 1 a× 1

b× 1 γ

1a×11

f×11 i◦pra

j◦prb

It holds that

i ◦ pra = (j ◦ f) ◦ pra = j ◦ (f ◦ pra) = j ◦ [prb ◦ (f × 11)] = (j ◦ prb) ◦ (f × 11),

as the equality f ◦ pra = prb ◦ (f × 11) follows from the definition of f × 11

a× 1

a 1

b b× 1 1

prapr1

f×11

f 11

prb pr1

Therefore, we have (i ◦pra) ◦ (1a× 11) = (j ◦prb) ◦ (f × 11), which proves that the above rectangle

commutes. Hence ESub(C,γ) is well-defined. Let (a, i ◦ pra, 1) = (b, j ◦ prb, 1), then a = b and

i ◦ pra = j ◦ pra. As pra is a monomorphism, we get i = j, which shows that ESub(C,γ) is
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injective on objects and it is trivially injective on arrows. To show that the functor is full, let

(φ+, φ−) : (a, i ◦ pra, 1)→ (b, j ◦ prb, 1) in Chu(C, γ). Clearly φ− = 11. By the previous equalities

we get i ◦ pra = (j ◦ φ+) ◦ pra and since pra is a monomorphism, it follows that j ◦ φ+ = i.

Therefore φ+ : i→ j is in Sub(C, γ). Hence ESub(C,γ) is a full embedding.

3.3.2 A Chu-representation of the category of complemented subsets

Proposition 3.3.10.
(
Chu-representation of PKJ(X)

)
If (X,=X , 6=X) is a set with an inequality, then the functor

EX : PKJ(X)→ Chu(Set, X ×X),

EX
0 (A1, iXA1 , A0, iXA0) = (A1, iXA1 × iXA0 , A0),

EX
1 ((f1, f0) : A→ B) = (f1, f0) : (A1, iXA1 × iXA0 , A0)→ (B1, iXB1 × iXB0 , B0)

is a full embedding of PKJ(X) into Chu(Set, X ×X).

Proof. Clearly EX is a functor, but we still need to show that it is well-defined. Let (A1, iXA1 , A0, iXA0)

be in PKJ(X), then

EX
0 (A1, iXA1 , A0, iXA0) = (A1, iXA1 × iXA0 , A0).

Let

iXA1 × iXA0 : A1 ×A0 → X ×X
[iXA1 × iXA0 ](a1, a0) = (iXA1(a1), iXA0(a0)),

for every (a1, a0) ∈ A1 × A0. A1 and A0 are objects in Set and iXA1 × iXA0 is a function in Set,

hence (A1, iXA1 × iXA0 , A0) is in Chu(Set, X ×X). If (f1, f0) : A→ B, then the commutativity of

the following two triangles

A1 B1

X

iX
A1

f1

iX
B1

B0 A0

X

iX
B0

f0

iX
A0

implies that

[(
iXA1 × iXA0

)
◦
(
idA1 × f0

)]
(a1, b0) =

[
iXA1 × iXA0

]
(a1, f0(b0))

=
(
iXA1(a1), iXA0(f0(b0))

)
=
(
iXB1(f1(a1)), iXB0(b0)

)
=
[
iXB1 × iXB0

](
f1(a1), b0

)
=
[(
iXB1 × iXB0

)
◦
(
f1 × idB0

)]
(a1, b0).
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Therefore the following rectangle commutes

A1 ×B0 A1 ×A0

B1 ×B0 X ×X

idA1×f0

f1×idB0 iX
A1×iXA0

iX
B1×iXB0

and (f1, f0) : (A1, iXA1 × iXA0 , A0) → (B1, iXB1 × iXB0 , B0) is a morphism in Chu(Set, X × X).

Hence EX is a well-defined functor. Clearly, EX is injective on objects and arrows, hence it

is an embedding. We still need to show that it is full. Let (f1, f0) : (A1, iXA1 × iXA0 , A0) →
(B1, iXB1 × iXB0 , B0) in Chu(Set, X ×X). The above equalities also show that the commutativity

of the above rectangle implies the commutativity of the above triangles. Hence, (f1, f0) : A→ B.

Therefore EX is a full embedding of PKJ(X) into Chu(Set, X ×X).

Consequently, we can identify PKJ(X) with the full subcategory of Chu(Set, X × X) with

objects triplets (A1, iXA1 × iXA0 , A0), where iXA1 : A1 ↪→ X and iXA0 : A0 ↪→ X, such that

∀a1∈A1∀a0∈A0

(
iXA1(a1) 6=X iXA0(a0)

)
.

We notice that the Chu(Set, X ×X) ”captures” the behavior of the morphisms in PKJ(X), but

not the positive disjointness of A1, A0, as there are objects (A, f,B) of Chu(Set, X × X), with

A()B. As an example we consider the triplet (X, idX×X , X). Obviously X()X, but (X, idX×X , X)

is an object in Chu(Set, X ×X).

Can we characterize categorically the full subcategory of Chu(Set, X ×X), that corresponds

to Bishop’s complemented subsets, in order to grasp apartness of subsets categorically?

3.4 The generalized Chu construction over a cartesian closed category

C and an endofunctor on C

We need to generalise the Chu construction in order to embed Pred and Pred6= into a Chu

category.

Definition 3.4.1. (The Chu construction over a ccc and an endofunctor)

Let C be a cartesian closed category, and let Γ : C → C be an endofunctor on C. The (generalised)

Chu category Chu(C,Γ) over C and Γ has objects quadruples (x; a, f, b) with x, a, b ∈ C0 and

f : a × b → Γ0(x) ∈ C1. A morphism φ : (x; a, f, b) → (y; c, g, d) in Chu(C,Γ), or a (generalised)

Chu transform, is a triplet φ = (φ0, φ+, φ−), where φ0 : x → y, φ+ : a → c and φ− : d → b are in

C1 such that the following diagram commutes

a× d a× b

Γ0(x)

c× d Γ0(y)

1a×φ−

φ+×1d

f

Γ1(φ0)

g
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If θ = (θ0, θ+, θ−) : (y; c, g, d)→ (z; i, h, j), let θ ◦ φ : (θ0 ◦ φ0, θ+ ◦ φ+, θ− ◦ φ−).

a× d a× b

Γ0(x)

c× d Γ0(y) a× j

Γ0(z)

c× j i× j

1a×φ−

φ+×1d

f

Γ1(φ0)

Γ1(θ0◦φ0)g

Γ1(θ0)

1a×(φ−◦θ−)

(θ+◦φ+)×1j1c×θ−

θ+×1j

h

Moreover, 1(x;a,f,b) = (1x, 1a, 1b).

a× b a× b

Γ0(x)

a× b Γ0(x)

1a×1b

1a×1b

f

Γ1(1x)=1Γ0(x)

f

Remark 3.4.2. To show that composition in Chu(C,Γ) is well-defined, we show that the triangle

in the above definition commutes:

[
Γ1(θ0 ◦ φ0) ◦ f ◦ [1a × (φ− ◦ θ−)]

]
(a, j) =

[
Γ1(θ0) ◦ Γ1(φ0) ◦ f ◦ [1a × (φ− ◦ θ−)]

]
(a, j)

=
[
Γ1(θ0) ◦ [Γ1(φ0) ◦ f ◦ (1a × φ−)] ◦ (1a × θ−)

]
(a, j)

=
[
Γ1(θ0) ◦ g ◦ (φ+ × 1d) ◦ (1a × θ−)

]
(a, j)

=
[
Γ1(θ0) ◦ g ◦ (φ+ × 1d)

]
(a, d)

= (Γ1(θ0) ◦ g)(c, d)

=
[
Γ1(θ0) ◦ g ◦ (1c × θ−)

]
(c, j)

=
[
Γ1(θ0) ◦ g ◦ (1c × θ−) ◦ (φ+ × 1j)

]
(a, j)

=
[
[Γ1(θ0) ◦ g ◦ (1c × θ−)] ◦ (φ+ × 1j)

]
(a, j)

=
[
[h ◦ (θ+ × 1j)] ◦ (φ+ × 1j)

]
(a, j)

=
[
h ◦ [(θ+ ◦ φ+)× 1j)]

]
(a, j).

Proposition 3.4.3. Let C be a ccc, γ ∈ C0 and let Γγ : C → C be the constant endofunctor with

value γ, i.e. Γγ0(a) = γ, for every a ∈ C0, and Γγ1(f) = 1γ , for every f ∈ C1. Then the functor

Eγ : Chu(C, γ)→ Chu(C,Γγ),

Eγ0 (a, f, b) = (γ; a, f, b),

Eγ1 ((φ+, φ−) : (a, f, b)→ (c, g, d)) = (1γ , φ
+, φ−) : (γ; a, f, b)→ (γ; c, g, d)
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is an embedding of Chu(C, γ) into Chu(C,Γγ).

Proof. Let (φ+, φ−) : (a, f, b)→ (c, g, d), then the following upper inner diagram commutes

a× d a× b

Γ0(x)

c× d Γ0(y)

1a×φ−

φ+×1d

f

1γ

g

g

This implies that

[
1γ ◦ f ◦ (1a × φ−)

]
(a× d) = 1γ

(
Γ0(x)

)
= Γ0(y)

=
[
g ◦ (φ+ ×+d)

]
(a× d),

which shows that the above outer diagram commutes and (1γ , φ
+, φ−) : (γ; a, f, b) → (γ; c, g, d).

Therefore Eγ is a well-defined functor. Clearly Eγ is injective on objects and arrows, hence it is

an embedding.

3.4.1 A generalized Chu-representation of the category of predicates

We present the definition of the category of predicates within BST.

Definition 3.4.4. The objects of the category of predicates Pred are triplets (X, iXA , A), where X

is a set and (A, iXA ) is a subset of X. If (X, iXA , A) and (Y, iYB , B) are objects of Pred, a morphism

u : (X, iXA , A) → (Y, iYB , B) in Pred is a pair of functions u = (u0, u+), where u0 : X → Y and

u+ : A→ B such that the following diagram commutes

A B

X Y

u+

iXA

u0

iYB

If v = (v0, v+) : (Y, iYB , B) → (Z, iZC , C), we define v ◦ u : (X, iXA , A) → (Z, iZC , C) by v ◦ u =

(v0 ◦ u0, v+ ◦ u+). Moreover, 1(X,iXA ,A) = (idX , idA).

Proposition 3.4.5. (Generalized Chu-representations of Set and Pred)

(i) The functor ESet : Set→ Chu(Chu, Id), defined by

ESet
0 (X) = (X;X, IXX ,1),

IXX : X × 1→ Id0(X) = X, IXX (x, 0) = x; x ∈ X,

ESet
1

(
f : X → Y = (f, f) : (X, iXX , X)→ (Y, iYY , Y )

)
= (f, f, id1) : (X;X, IXX ,1)→ (Y ;Y, IYY ,1),

is a full embedding of Set into Chu(Set,Id).

(ii) The functor EPred : Pred→ Chu(Chu, Id), defined by
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EPred
0 (X, iXA , A) = (X;A, IXA ,1),

IXA : A× 1→ Id0(X) = X, IXA (a, 0) = iXA (a); a ∈ A,

EPred
1

(
u = (u0, u+) : (X, iXA , A)→ (Y, iYB , B)

)
= (u0, u+, id1) : (X;A, IXA ,1)→ (Y ;B, IYB ,1),

is a full embedding of Pred into Chu(Set,Id).

(iii) If F : Set→ Pred is the full embedding of Set into Pred, defined by

F0(X) = (X, idX , X),

F1(f : X → Y ) = (f, f),

then the following diagram commutes

Set Chu(Set, Id)

Pred Chu(Set, Id)

ESet

F

EPred

Id

Proof.

(i) First we show that ESet is a well-defined functor. Let X be in Set, then

ESet
0 (X) = (X;X, IXX ,1).

X and 1 are objects in Set and IXX is a function in Set. If f : X → Y , then the commutativity of

the following rectangle

X Y

X Y

f

iXX

f

iYY

implies the commutativity of the following diagram

X × 1 X × 1

X

Y × 1 Y

idX×id1

f×id1

IXX

f

IYY

since[
f ◦ IXX ◦ (idX × id1)

]
(x, 0) =

(
f ◦ IXX

)
(x, 0) = f(x) = IYY

(
f(x), 0

)
=
[
IYY ◦ (f × id1)

]
(x, 0).

Therefore (u0, u+, id1) : (X;X, IXX ,1) → (Y ;Y, IYY ,1) is in Chu(Chu, Id). Clearly ESet is a

functor, hence it is a well-defined functor. ESet is injective on objects and arrows, so it is an

embedding. We still have to show that it is full. If (f, f, id1) : (X;X, IXX ,1)→ (Y ;Y, IYY ,1), then

the commutativity of the above rectangle implies the commutativity of the first rectangle, hence

(f, f) = (X, iXX , X)→ (Y, iYY , Y ).

(ii) Clearly EPred is a functor. Let (X, iXA , A) be in Pred, then

EPred
0 (X, iXA , A) = (X;A, IXA ,1).
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X, A and 1 are objects in Set. IXA is a function in Set. If u = (u0, u+) : (X, iXA , A)→ (Y, iYB , B),

then the following rectangle commutes

A B

X Y

u+

iXA

u0

iYB

which implies the commutativity of the following diagram

A× 1 A× 1

X

B × 1 Y

idA×id1

u+×id1

IXA

Id1(u0)=u0

IYB

since

[
u0 ◦ IXA ◦ (idA × id1)

]
(a, 0) = u0

(
IXA (a, 0)

)
= u0

(
iXA (a)

)
= iYB

(
u+(a)

)
= IYB

(
u+(a), 0

)
=
[
IYB ◦ (u+ ◦ id1)

]
(a, 0).

Hence (u0, u+, id1) : (X;A, IXA ,1)→ (Y ;B, IYB ,1) is in Chu(Chu, Id) and EPred is a well-defined

functor. Clearly it is injective on objects and arrows, hence it is an embedding. EPred is also full.

If (u0, u+, id1) : (X;A, IXA ,1)→ (Y ;B, IYB ,1), then the commutativity of the last diagram implies

the commutativity of the first rectangle, therefore u = (u0, u+) : (X, iXA , A) → (Y, iYB , B). Hence

EPred is a full embedding.

(iii) Let X be an object in Set and f : X → Y in Set. By (i) and (ii) follows

(
Id0 ◦ ESet

0

)
(X) = Id0(X;X, IXX ,1) = (X;X, IXX ,1)

= EPred
1 (X, iXX , X) = EPred

0 (X, idX , X)

=
(
EPred

0 ◦ F0

)
(X)

and

(
Id1 ◦ ESet

1

)
(f : X → Y ) = Id1

(
(f, f, id1) : (X;X, IXX ,1)→ (Y ;Y, IYY ,1)

)
=
(
(f, f, id1) : (X;X, IXX ,1)→ (Y ;Y, IYY ,1)

)
= EPred

1

(
(f, f) : (X, iXX , X)→ (Y, iYY , Y )

)
=
(
EPred

1 ◦ F1

)
(f : X → Y ).

Hence the diagram commutes.
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Definition 3.4.6. If C is a category, the category Pred(C) of C has objects pairs (x, i : a ↪→ x),

where x ∈ C0 and i ∈ C1(a, x) is a monomorphism, and morphisms (f0, f+) : (x, i : a ↪→ x) →
(y, j : b ↪→ y) with j ◦ f+ = f0 ◦ i.

a b

x y

f+

i

f0

j

If (g0, g+) : (y, j : b ↪→ y)→ (z, k : c ↪→ z), then (g0, g+) ◦ (f0, f+) = (g0 ◦ f0, g+ ◦ f+). Moreover,

1(x,i:a↪→x) = (1x, 1a).

Proposition 3.4.7.
(
Generalized Chu-representation of Pred(C)

)
Let C be a cartesian closed category. The functor

EPred(C) : Pred(C)→ Chu(C, IdC),
E

Pred(C)
0 (x, i : a ↪→ x) = (x; a, i ◦ pra, 1),

a× 1
pra

↪−−−→ a
i

↪−−−−→ x

E
Pred(C)
1

(
(f0, f+):(x, i : a ↪→ x)→ (y, j : b ↪→ y)

)
= (f0, f+, 11) : (x; a, i◦pra, 1)→ (y; b, j◦prb, 1),

is a full embedding of Pred(C) into Chu(C, IdC).

Proof. First we show that EPred(C) is well-defined. Let (x, i : a ↪→ x) be an object in Pred(C),
then

E
Pred(C)
0 (x, i : a ↪→ x) = (x; a, i ◦ pra, 1).

The morphism pra is an isomorphism, hence a monomorphism. Therefore i ◦ pra is a monomor-

phism. If (f0, f+):(x, i : a ↪→ x)→ (y, j : b ↪→ y), the following diagram commutes

a b

x y

f+

i

f0

j

To show that E
Pred(C)
1 (f0, f+) : (x; a, i ◦ pra, 1) → (y; b, j ◦ prb, 1) is in Chu(C, IdC), we need to

show that the following diagram commutes

a× 1 a× 1

x

b× 1 y

1a×1

f+×11

i◦pra

f0

j◦prb

By the commutativity of the first rectangle it holds that

[
f0 ◦ (i ◦ pra)

]
(a, 1) =

[
(f0 ◦ i) ◦ pra

]
(a, 1)
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=
[
(j ◦ f+) ◦ pra

]
(a, 1)

= j
(
f+(a)

)
= j(b)

= j
(
prb(b, 1)

)
= j ◦

[
prb ◦ (f+ × 11)

]
(a, 1)

=
[
(j ◦ prb) ◦ (f+ × 11)

]
(a, 1).

Hence, the last diagram commutes. Clearly EPred(C) is a functor, hence it is a well-defined functor.

Let (x; a, i ◦ pra, 1) = (y; b, j ◦ prb, 1), then x = y, a = b and i ◦ pra = j ◦ pra. Since pra

is a monomorphism, we have i = j, therefore EPred(C) is injective on objects. It is trivially

injective on arrows, hence it is an embedding. We still need to show that EPred(C) is full. Let

(φ0, φ+, φ−) : (x; a, i ◦ pra, 1)→ (y; b, j ◦ prb, 1). Clearly φ− = 11. By the previous equalities and

since pra is a monomorphism, we get

(φ0 ◦ i) ◦ pra = (j ◦ φ1) ◦ pra ⇒ φ0 ◦ i = j ◦ φ+,

i.e. (φ0, φ+) : (x, i : a ↪→ x)→ (y, j : b ↪→ y). Finally we get that EPred(C) is a full embedding.

3.4.2 A generalized Chu-representation of the category of complemented predicates

In this section, we present the complemented predicates on sets that are equipped with a fixed

inequality in the category Pred 6=. By Pred6=se we denote the subcategory of Pred6=, where we

consider strongly extensional functions in the definition of the morphisms. The motivation for the

next definition is to get a full embedding of Pred6=(Set) into the Chu category over Set and the

endofunctor Id2 : Set→ Set, defined by

Id2
0(X) = X ×X,

Id2
0(f : X → Y ) : X ×X → Y × Y ,[
Id2

1(f)
]
(x, x′) =

(
f(x), f(x′)

)
.

This result is analogous to the full embedding of Pred into Chu(Set, Id).

Definition 3.4.8. The category Pred6=(Set) of complemented predicates has objects pairs (X,A),

where X is in Set6=, the category of sets equipped with a fixed inequality and strongly extensional

functions between them, and A := (A1, A0) is a complemented subset of X. If (X,A) and (Y,B)

are objects of Pred6=, a morphism u : (X,A) → (Y,B) is a triplet u = (u0, u+, u−), where

u0 : X → Y , u+ : A1 → B1, and u− : B0 → A0 such that the following rectangles commute

A1 B1

X Y

u+

iX
A1

u0

iY
B1

B0 A0

Y X

u−

iY
B0

u0

iX
A0

If v = (v0, v+, v−) : (Y,B) → (Z,C), we define the composite morphism v ◦ u : (X,A) → (Z,C)

by v ◦ u = (v0 ◦ u0, v+ ◦ u+, v− ◦ u−). Moreover, 1(X,A) = (idX , idA1 , idA0).
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Proposition 3.4.9.
(
Generalized Chu-representation of Pred6=(Set)

)
The functor

EPred6=(Set) : Pred6= → Chu(Set, Id2),

E
Pred6=(Set)
0 (X,A) = (X;A1, iXA1 × iXA0 , A0),

iXA1 × iXA0 : A1 ×A0 → Id2
0(X) = X ×X,

E
Pred6=(Set)
1

(
(u0, u+, u−) : (X,A)→ (Y,B)

)
= (u0, u+u−) : (X;A1, iXA1 × iXA0 , A0)→

(Y ;B1, iYB1 × iYB0 , B0),

is a full embedding of Pred 6=(Set) into Chu(Set, Id2).

Proof. Let (X,A) be in Pred6=, then (X;A1, iXA1 × iXA0 , A0) is an object in Chu(Set, Id2). If

(u0, u+, u−) : (X,A)→ (Y,B), then the following two rectangles commute

A1 B1

X Y

u+

iX
A1

u0

iY
B1

B0 A0

Y X

u−

iY
B0

u0

iX
A0

which implies the commutativity of the following diagram

A1 ×B0 A1 ×A0

X ×X

B1 ×B0 Y × Y

idA1×u−

u+×idB0

iX
A1×iXA0

Id2
1(u0)

iY
B1×iYB0

since

[
Id2

1(u0) ◦ (iXA1 × iXA0) ◦ (idA1 × u−)
]
(a1, b0) =

[
Id2

1(u0) ◦ (iXA1 × iXA0)
]
(a1, u−(b0))

= Id2
1(u0)

(
iXA1(a1), iXA0(u−(b0))

)
=
(
u0(iXA1(a1)), u0(iXA0(u−(b0)))

)
=
(
iYB1(u+(a1)), iYB0(b0)

)
=
[
iYB1 × iYB0

]
(u+(a1), b0)

=
[
(iYB1 × iYB0) ◦ (u+ × idB0)

]
(a1, b0).

Hence (u0, u+u−) : (X;A1, iXA1 × iXA0 , A0) → (Y ;B1, iYB1 × iYB0 , B0) is in Chu(Set, Id2). Clearly

EPred6= is injective on objects and arrows, therefore it is an embedding. We still need to show that

EPred6= is full. If (u0, u+u−) : (X;A1, iXA1 × iXA0 , A0)→ (Y ;B1, iYB1 × iYB0 , B0), then the commuta-

tivity of the last diagram implies the commutativity of the first two rectangles, so (u0, u+, u−) :

(X,A)→ (Y,B). Therefore EPred6= is a full embedding.
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4 Apartness relations in categories

Our aim is to translate the notions of Bishop’s set theory into category theory. We want to

introduce subsets and complemented subsets into the language of categories. In the terms of

Bishop, an equality and inequality were defined through some formula. In set theory, a relation

between sets is defined as a subset of their cartesian product, and this one can translate into the

theory of categories. We are based on Petrakis’ work Equality and apartness relations in categories,

[8].

Definition 4.0.1. A subobject of an object X in a category C is a monomorphisms

m : M ↪→ X

with codomain X, where isomorphic subobjects are identified.

Definition 4.0.2. Let C be a category.

(i) An object 0 of C is called initial, if for any object X ∈ C0 there is a unique morphism i : 0→ X.

(ii) An object 1 of C is called terminal, if for any object X ∈ C0 there is a unique morphism

t : X → 1.

4.1 Binary relations

Definition 4.1.1. A binary relation between two objects x1, x2 of a category C is a triplet

r := (r ∈ C0, r1 : r → x1, r2 : r → x2), where r1, r2 are jointly monic arrows, i.e. for every

g, h : a→ r such that r1 ◦ g = r1 ◦ h and r2 ◦ g = r2 ◦ h we have that g = h,

x1

a r

x2

g

h

r1

r2

x1

...

a r xi

...

x2

g

h

r1

r2

ri

and we may also write (r1, r2) : r ↪→ (x1, x2). If n ∈ N+, an n-ary relation is a structure

r := (r ∈ C0, r1 : r → x1, ..., rn : r → xn), where r1, ..., rn are jointly monic arrows, i.e. for every

g, h : a→ r such that r1 ◦ g = r1 ◦ h, ..., rn ◦ g = rn ◦ h, we have that g = h. In the general case we

may also write (r1, ..., rn) : r ↪→ (x1, ..., xn).

Definition 4.1.2. If C is a category and x1, x2 ∈ C0, the category RelC(x1, x2) of binary relations

between x1, x2 , or simply Rel(x1, x2), has objects binary relations r := (r, r1, r2) and an arrow

f : r → s, where s := (s, s1, s2), is an arrow f : r → s such that the following inner diagrams
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commute
x1

r s

x2

r1

f

r2

s1

s2

The composition of arrows in Rel(x1, x2) is the composition of arrows in C, and 1(r,r1,r2) = 1r.

If n ∈ N and x1, ..., xn ∈ C0, the category Rel(x1, ..., xn) of n-ary relations between x1, ..., xn is

defined similarly.

Definition 4.1.3. Let C be a category with a terminal object 1. An element of an object x in C
is an arrow e : 1→ x.

Definition 4.1.4. If 1 is a terminal object of a category C, a member of a binary relation r ∈
Rel(x1, x2) is a triplet i := (1, i1, i2), where i1 : 1 ↪→ x1 and i2 : 1 ↪→ x2, hence an object of

Rel(x1, x2), such that there is an arrow m : i→ r in Rel(x1, x2), i.e. the following inner diagrams

commute
x1

1 r

x2

i1

m

i2

r1

r2

and we write

i Memb r & m : i Memb r,

to denote that m realises the membership of i to r.

A relation between two sets X1, X2 is a subset R ⊆ X1×X2. Using Bishop’s notion of a subset,

this is a set R and an embedding i : R ↪→ X1 × X2. Then one can show that there is a relation

(r1, r2) : R ↪→ (X1 ×X2).

Proposition 4.1.5. Let R ⊆ X1 ×X2.

(i) Let i : R ↪→ X1 ×X2 be an embedding. If r1 = pr1 ◦ i and r2 = pr2 ◦ i, then (r1, r2) : R ↪→
(X1, X2) is a relation.

(ii) Conversely, if (r1, r2) : R ↪→ (X1, X2), then i = r1× r2 : R ↪→ X1×X2 is an embedding, where

(r1 × r2)(x) =
(
r1(x), r2(x)

)
for every x ∈ R.

Proof.

X1

A R X1 ×X2

X2

g

h

r1

r2

i

pr1

pr2

(i) Let g, h : A → R, with r1 ◦ g = r1 ◦ h and r2 ◦ g = r2 ◦ h. It holds that r1 ◦ g = pr1 ◦ i ◦ g =

pr1 ◦ i◦h = r1 ◦h and r2 ◦g = pr2 ◦ i◦g = pr2 ◦ i◦h = r2 ◦h. Since pr1 and pr2 are isomorphisms,
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hence monomorphisms, it follows

i ◦ g = i ◦ h.

Since i is an embedding we get g = h. Hence r1 and r2 are jointly monic. Therefore (r1, r2) : R ↪→
(X1, X2) is a binary relation.

(ii) Now, let (r1, r2) : R ↪→ (X1, X2) and let i ◦ g = i ◦ h, for g, h : A→ R. For x ∈ A the following

holds

i
(
g(x)

)
=
(
r1(g(x)), r2(g(x))

)
=
(
r1(h(x)), r2(h(x))

)
= i
(
h(x)

)
,

which implies that r1(g(x)) = r1(h(x)) and r2(g(x)) = r2(h(x)). Since r1 and r2 are jointly monic,

it holds g = h. Hence i = r1 × r2 : R ↪→ X1 ×X2 is an embedding.

Remark 4.1.6. Let C be a category with 1, x, x1, x2, y1, y2 ∈ C0 and let r := (r, r1, r2), s :=

(s, s1, s2) and i:= (1, i1, i2) in Rel(x1, x2).

(i) If i Memb r and f : r→ s in Rel(x1, x2), then i Memb s.

(ii) If e1 : a ↪→ x1 is a subobject of x1 and e2 : a ↪→ x2 is a subobject of x2, then (a, e1, e2) ∈
Rel(x1, x2).

(iii) If e : a ↪→ x is a subobject of x, then (a, e, e) ∈ Rel(x, x).

(iv) If f1 : x1 ↪→ y1 and f2 : x2 ↪→ y2, then (f1, f2)∗ : Rel(x1, x2)→ Rel(y1, y2) is a functor, where

(f1, f2)∗0(r) := (f1, f2) ◦ r := (r, f1 ◦ r1, f2 ◦ r2), and (f1, f2)∗1(h : r→ s) := h.

(v) If e : a ↪→ x is a subobject of x, let e∗ : Rel(a, a) → Rel(x, x) be the functor (e, e)∗, i.e.

e∗0(r) := (r, e ◦ r1, e ◦ r2) =: e ◦ r. Then, i Memb r⇒ e ◦ i Memb e ◦ r.

(vi) The category Rel(x1, x2) is thin.

(vii) If e : 1 ↪→ r is an element of r, then e := (1, r1 ◦ e, r2 ◦ e) Memb r and e : e Memb r.

Proof.

(i) Let i Memb r and f : r → s in Rel(x1, x2), i.e. the following left and right inner diagrams

commute
x1

1 r s

x2

i1

m

i2

f

r1

r2

s1

s2

since i1 = m ◦ r1 = m ◦ f ◦ s1 and i2 = m ◦ r2 = m ◦ f ◦ s2. Hence i Memb s.

(ii) Let e1 : a ↪→ x1 be a subobject of x1 and e2 : a ↪→ x2 be a subobject of x2, i.e. e1 and e2 are

monomorphisms. Let g, h : b→ a
x1

b a

x2

e1
g

h
e2

with e1 ◦ g = e1 ◦ h and e2 ◦ g = e2 ◦ h. Since e1 and e2 are monomorphisms, g = h, hence e1 and

e2 are jointly monic and (a, e1, e2) ∈ Rel(x1, x2).
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(iii) Let e : a ↪→ x be a subobject of x, i.e. e is a monomorphism. Let g, h : b→ a

x

b a

x

e
g

h
e

with e ◦ g = e ◦ h. Since e is a monomorphism, g = h, hence e and e are jointly monic and

(a, e, e) ∈ Rel(x, x).

(iv) Let f1 : x1 ↪→ y1 and f2 : x2 ↪→ y2 be monic, then we need to show that (r, f1 ◦ r1, f2 ◦ r2) ∈
Rel(y1, y2). Obviously r ∈ C0. Let g, h : a→ r with f1◦r1◦g = f1◦r1◦h and f2◦r2◦g = f2◦r2◦h.

Since f1, f2 are monic we have

r1 ◦ g = r1 ◦ h and r2 ◦ g = r2 ◦ h

and since r1, r2 are jointly monic by definition, we get

g = h.

Hence f1 ◦ r1 and f2 ◦ r2 are jointly monic and (r, f1 ◦ r1, f2 ◦ r2) is in Rel(y1, y2). Let h : r → s

be an arrow in Rel(x1, x2). (f1, f2)∗1(h) := h. Then the commutativity of the following right inner

diagrams follows from the commutativity of the left inner diagrams

x1

r s

x2

r1

h

r2

s1

s2

y1

r s

y2

f1◦r1

h

f2◦r2

f1◦s1

f2◦s2

since f1 ◦ r1 = f1 ◦ (s1 ◦ h) = (f1 ◦ s1) ◦ h and f2 ◦ r2 = f2 ◦ (s2 ◦ h) = (f2 ◦ s2) ◦ h. Hence h : r→ s

is an arrow in Rel(y1, y2). Therefore (f1, f2)∗ is a functor from Rel(x1, x2) to Rel(y1, y2).

(v) Let e : a ↪→ x be a subobject of x and e∗ : Rel(a, a) → Rel(x, x) be the functor (e, e)∗. Let

i,r ∈ Rel(a, a). If m : i Memb r, then the following inner diagrams commute

a

1 r

a

i1

m

i2

r1

r2

By definiton e ◦ i := (1, e◦ i1, e◦12) and e◦r := (r, e◦r1, e◦r2). Then the following inner diagrams

commute since, by the commutativity of the first diagram, e ◦ i1 = e ◦ (r1 ◦m) = e ◦ r1 ◦m and
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e ◦ i2 = e ◦ (r2 ◦m) = e ◦ r2 ◦m.

x

a a

1 r

a a

x

e

i1

e

m

i2

r1

r2

e e

Hence m : e ◦ i Memb e ◦ r.

(vi) Let f, g : r→ s be in Rel(x1, x2), then the following inner diagrams commute

x1

r s

x2

r1

f

g

r2

s1

s2

and it holds

r1 = s1 ◦ f = s1 ◦ g and r2 = s2 ◦ f = s2 ◦ g.

Since s1, s2 are jointly monic we get f = g. Hence Rel(x1, x2) is thin.

(vii) Let e : 1 ↪→ r be an element of r, then e := (1, r1 ◦ e, r2 ◦ e) is in Rel(x1, x2), since 1 ∈ C0

and r1 ◦ e, r2 ◦ e are jointly monic, because e is monic and r1, r2 are jointly monic. The following

inner diagrams obviously commute

x1

1 r

x2

r1◦e

e

r2◦e

r1

r2

Hence e Memb r and e : e Memb r.

Because of the thinness of Rel(x1, x2), we write r 6 s, if there is (unique) arrow h : r→ s. In

this case, we also write h : r 6 s.

Remark 4.1.7. Let i, r ∈ Rel(x1, x2), then

i Memb r ⇔ i 6 r.

Proof. ”⇒” Let i Memb r, then the following inner diagrams commute

x1

1 r

x2

i1

f

i2

r1

r2
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Let g : 1→ r be another arrow from 1 to r, then i1 = r1 ◦ f = r1 ◦ g and i2 = r2 ◦ f = r2 ◦ g. Since

r1, r2 are jointly monic we get f = g, hence f : 1→ r is unique, so i 6 r.

”⇐” Now let i 6 r, then there exist a unique arrow f : 1→ r such that the above inner diagrams

commute. Hence i Memb r.

In a category with products the product x1 × x2 is the largest binary relation between x1, x2.

Proposition 4.1.8. Let C be a category with products, x1, x2 objects of C and r ∈ Rel(x1, x2).

(i) x1 × x2 := (x1 × x2, pr1, pr2) ∈ Rel(x1, x2), and 〈r1, r2〉 : r 6 x1 × x2.

(ii) r1, r2 are jointly monic if and only if 〈r1, r2〉 : r → x1 × x2 is monic.

(iii) If 0 is an initial object of C and 0 := (0, 0x1
, 0x2

) ∈ Rel(x1, x2), then 0r : 0 6 r.

Proof. (i) Let pr1 : x1 × x2 → x1 and pr2 : x1 × x2 → x2. We need to show that pr1 and pr2 are

jointly monic. Let g, h : a→ x1 × x2 with pr1 ◦ g = pr1 ◦ h and pr2 ◦ g = pr2 ◦ h.

x1

a x1 × x2 r

x2

g

h

pr1

pr2

〈r1,r2〉

r1

r2

Since pr1 and pr2 are isomorphisms, hence monomorphisms, it holds that g = h, so pr1, pr2

are jointly monic. Hence x1 × x2 is a binary relation. Let 〈r1, r2〉 : r → x1 × x2, then the

above inner diagrams commute and 〈r1, r2〉 is unique since pr1, pr2 are jointly monic. Hence

〈r1, r2〉 : r 6 x1 × x2.

(ii) First, let r1 and r2 be jointly monic and g, h : a→ r such that 〈r1, r2〉 ◦ g = 〈r1, r2〉 ◦ h.

x1

a r x1 × x2

x2

g

h

r1

r2

〈r1,r2〉

Since 〈r1, r2〉 = r1 × r2 we have for x ∈ a

〈r1, r2〉
(
g(x)

)
=
(
r1(g(x)), r2(g(x))

)
=
(
r1(h(x)), r2(h(x))

)
= 〈r1, r2〉

(
h(x)

)
,

which implies r1(g(x)) = r1(h(x)) and r2(g(x)) = r2(h(x)). Since r1, r2 are jointly monic we get

g = h, hence 〈r1, r2〉 : r → x1 × x2 is monic. Now let 〈r1, r2〉 be monic, and r1 ◦ g = r1 ◦ h and

r2 ◦ g = r2 ◦ h, then

〈r1, r2〉 ◦ g = (r1 × r2) ◦ g = (r1 ◦ g)× (r2 ◦ g) = (r1 ◦ h)× (r2 ◦ h) = (r1 × r2) ◦ h = 〈r1, r2〉 ◦ h.

Since 〈r1, r2〉 is monic, we get g = h. Hence r1, r2 are jointly monic.

(iii) Let 0 be an initial object of C and 0 ∈ Rel(x1, x2). By definition of an initial object there is
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a unique arrow 0r : 0→ r. Then the following inner diagrams commute

x1

0 r

x2

0r

0x2

0x1
r1

r2

Hence 0r : 0 6 r.

Now let C be a category with pullbacks and pushouts. Let x be an object in C, then we want

to define the intersection and union of two binary relations r and s. First consider the pullback of

the following diagram

r ×x s s x

r x

x

q

p

s1

s2

r2

r1

We can define the intersection of r and s as their pullback.

Definition 4.1.9. Let r, s ∈ Rel(x, x). The intersection of r := (r, r1, r2) and s := (s, s1, s2) is

defined as

r ∩ s :=
{

(a, b) ∈ r ×x s | (r1 ◦ p)(a) = (s2 ◦ q)(b)
}

where p : r ×x s→ r and q : r ×x s→ s.

Let ir : r ∩ s→ r and is : r ∩ s→ s be the obvious inclusions of r ∩ s into r and s. Taking the

pushout of ir along is gives us the disjoint union of r and s,

r ∩ s s x

r r +x s

x

is

ir

s1

s2

r2

r1

where we identify ir(x) with is(x) for every x ∈ r ∩ s. Since the pullback of r and s is the

intersection, the pushout is in fact the union of r and s. Hence we get the following definition:

Definition 4.1.10. Let r, s ∈ Rel(x, x). The union of r and s is defined as

r ∪ s :=
{
x ∈ r +x s | ir(x) = is(x) ∀x ∈ r ∩ s

}
where ir : r ∩ s→ r and is : r ∩ s→ s are the inclusions.

In the following we assume that the category C has finite products and an epi-mono-factorization.

In such a category every arrow f : a → b can be factorized by an epimorphism e : a → c and a
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monomorphism m : c→ b such that f = m ◦ e, meaning that the following diagram commutes

a c b.e

f

m

c is called the image of f . The epi-mono factorization is unique up to isomorphisms in the sense

that, if there exists another epimorphism e′ : a → c′ and monomorphism m′ : c′ → b with

f = m′ ◦ e′, then there is an isomorphism i : c→ c′ such that h ◦ e = e′ and m′ ◦ h = m.

We now want to present the composition of two relations r and s as a relation s ◦ r. Let

C be a category with pullbacks, x, y, z ∈ C. Let r := (r, r1, r2) be a relation between x, y and

s := (s, s1, s2) be a relation between y, z, then r ⊆ x× y and s ⊆ y× z. The composition of r with

s is expressed through the following subset

s ◦ r =
{

(a, c) ∈ x× z | ∃b ∈ y ((a, b) ∈ r ∧ (b, c) ∈ s)
}
⊆ x× z.

First consider the pullback of r2 along s1,

r ×y s s z

r y

x

q

p

s2

s1

r1

r2

where r ×y s = {(a, b) ∈ r × s | r2(a) = s1(b)}. We factorize the morphism (r1 ◦ p, s2 ◦ q) by

(r1 ◦ p, s2 ◦ q) =
(
(s ◦ r)1, (s ◦ r)2

)
◦ e : r ×y s→ s ◦ r → x× z,

where
(
(s ◦ r)1, (s ◦ r)2

)
is a monomorphism and e is an epimorphism. We call

s ◦ r := (s ◦ r, (s ◦ r)1, (s ◦ r)2)

the composition of r and s. Let i :=
(
(s ◦ r)1, (s ◦ r)2

)
. If (s ◦ r)1 = pr1 ◦ i and (s ◦ r)2 = pr2 ◦ i,

then s ◦ r indeed defines a relation between x and z.

r ×y s

r s ◦ r s

x x× z z

p q
e

r1
i

(s◦r)1 (s◦r)2

s2

pr2pr1

Let g, h : a → s ◦ r with (s ◦ r)1 ◦ g = (s ◦ r)1 ◦ h and (s ◦ r)2 ◦ g = (s ◦ r)2 ◦ h. Then it holds

pr1 ◦ i◦g = (s◦r)1 ◦g = (s◦r)1 ◦h = pr1 ◦ i◦h and pr2 ◦ i◦g = (s◦r)2 ◦g = (s◦r)2 ◦h = pr2 ◦ i◦h.

As pr1, pr2 and i are monomorphisms, it holds g = h. Hence (s ◦ r)1, (s ◦ r)2 are jointly monic and

s ◦ r is a relation between x and z.

Definition 4.1.11. Let f : X → Y be a morphism. A morphism g : Y → X is called an inverse

of f , if f ◦ g = idY and g ◦ f = idX .
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Let f : x → y and f−1 : y → x be the inverse. Let r := (r, r1, r2) be a relation on x, x, then

f(r) is a subset of y × y. Using Bishop’s notion of a subset f(r) is a set and i : f(r) → y × y is

an embedding. If f ◦ r1 = pr1 ◦ i ◦ F and f ◦ r2 = pr2 ◦ i ◦ f , then f(r) := (r, f ◦ r1, f ◦ r2) is a

relation between y, y.

x y

a r f(r) y × y

x y

f

g

h

r1

r2

f i

pr1

pr2

f

Let g, h : a → r, then f ◦ r1 ◦ g = pr1 ◦ i ◦ f ◦ g = pr1 ◦ i ◦ f ◦ h = f ◦ r1 ◦ h, then it follows

that i ◦ f ◦ g = i ◦ f ◦ h ⇒ f ◦ g = f ◦ h, since i is an embedding. Hence g = h. Similarly for

f ◦ r2 ◦ g = f ◦ r2 ◦ h. Hence f ◦ r1, f ◦ r2 are jointly monic and f(r) is a relation between y, y.

Let s := (s, s1, s2) be a relation on y, y. Then s is a subset of y × y. We consider the pullback

of the corner < s1, s2 >: s→ y × y and f × f : x× x→ y × y:

f−1(s) x× x

s y × y.

<s′1,s′2>

f f×f

<s1,s2>

We want to show that f−1(s) is a relation on x, x. Again using Bishop’s language, s is a set and

i : s ↪→ y × y is an embedding.

x y

a f−1(s) s y × y

x y

f

g

h

s′1

s′2

f i

pr1

pr2

f

If f ◦ s′1 = pr1 ◦ i ◦ f and f ◦ s′2 = pr2 ◦ i ◦ f , then f−1(s) := (f−1(s), s′1, s
′
2) is a relation between

x, x. Let g, h : a→ f−1(s), then f ◦ s′1 ◦ g = pr1 ◦ i ◦ f ◦ g = pr1 ◦ i ◦ f ◦ h = f ◦ s′1 ◦ h. It follows

that i ◦ f ◦ g = i ◦ f ◦ h ⇒ f ◦ g = f ◦ h, since i is an embedding. Hence g = h. Similarly for

f ◦ s′2 ◦ g = f ◦ s′2 ◦ h. Hence s′1 and s′2 are jointly monic and f−1(s) is a relation between x, x.

4.2 Equality relations

4.2.1 Local equality relations

After having introduced binary relations in the last section, we now define the notion of an equality

relation. We describe it as a binary relation satisfying specific properties. The description of

these properties requires quantification over elements of an object. In order for this elementwise
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description to be predicative we need to work in a locally small category, where for given objects x

and y the collection of morphisms from x to y is actually a set and not a proper class. We therefore

refer to local equality relations.

Definition 4.2.1. Let C be a category with 1, x ∈ C0 and r := (r, r1, r2) ∈ Rel(x, x). We call r

(locally) reflexive, if for every element e : 1 ↪→ x of x we have that (1, e, e) Memb r

x

1 r

x

e

e

reflre

r1

r2

and in this case we write reflre : (1, e, e) Memb r. We call r (locally) symmetric, if for every

(1, e1, e2) ∈ Rel(x, x) we have that (1, e1, e2) Memb r ⇒ (1, e2, e1) Memb r

x

1 r

x

e1

e2

m

r1

r2

x

1 r

x

e2

symrm

e1

r1

r2

If r is symmetric with m : (1, e1, e2) Memb r, we write symrm : (1, e2, e1) Memb r. We call r (locally)

transitive, if for every (1, e1, e2), (1, e2, e3) ∈ Rel(x, x) we have that[
(1, e1, e2) Memb r & (1, e2, e3) Memb r

]
⇒ (1, e1, e3) Memb r

x

1 r

x

e1

e2

m

r1

r2

x

1 r

x

e2

n

e3

r1

r2

x

1 r

x

e1

trrm,n

e3

r1

r2

If m : (1, e1, e2) Memb r and n : (1, e2, e3) Memb r, we write trrm,n : (1, e1, e3) Memb r.

Definition 4.2.2. If eqx := (eqx, eqx1 , eqx2) ∈ Rel(x, x) is reflexive, symmetric and transitive, we

call it a (local) equality relation, or simply an equality, on x. In this case, we call the pair (x, eqx),

or simply x, a set-like object in C, or a set in C.

Proposition 4.2.3. Let C be a category with 1, x ∈ C0 and eqx := (eqx, eqx1 , eqx2) an equality

relation between x, x.

(i) If h : eqx → (s, s1, s2) in Rel(x, x), then (s, s1, s2) is an equality on x, with reflse = h◦refleqx

e ,

symsh = h ◦ symeqx

h and trsm,n = h ◦ treqx

m,n.

(ii) If e : a ↪→ x is a subobject of x, and eqa is an equality on a, then e∗0(eqa) := e ◦ eqa is an

equality on x.

Proof. (i) Let h : eqx → (s, s1, s2) be in Rel(x, x) and e : 1 ↪→ x be an element of x. Since eqx is
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an equality we have that (1, e, e) Memb eqx. Then the following inner diagrams commute

x

1 eqx

x

e

e

refleqx

e

eqx1

eqx2

x

eqx s

x

eqx1

h

eqx2

s1

s2

which implies that e = refleqx

e ◦ eqx1 = refleqx

e ◦ h ◦ s1 and e = refleqx

e ◦ eqx2 = refleqx

e ◦ h ◦ s2.

Hence reflse : (1, e, e) Memb s and m : reflse = h ◦ refleqx

e . Now let (1, e1, e2) ∈ Rel(x, x) and

(1, e1, e2) Memb s. Then the following left inner diagrams commute

x

1 s

x

e1

e2

m

s1

s2

x

1 eqx

x

e2

sym
eqx

h

e1

eqx1

eqx2

and since eqx is symmetric, the above right inner diagrams commute. From h : eqx → (s, s1, s2)

we get e2 = eqx1 ◦ sym
eqx

h = s1 ◦ h ◦ symeqx

h and e1 = eqx2 ◦ sym
eqx

h = s2 ◦ h ◦ symeqx

h . Hence

symsh : (1, e2, e1) Memb s and symsh = h ◦ symeq
x

h . Let (1, e1, e2), (1, e2, e3) ∈ Rel(x, x) with

m : (1, e1, e2) Memb s & n : (1, e2, e3) Memb s.

Since eqx is reflexive the following inner diagrams commute

x

1 eqx

x

e1

treqx

m,n

e3

eqx1

eqx2

and by h : eqx → (s, s1, s2) we get e1 = eqx1 ◦ treqx

m,n = s1 ◦ h ◦ treqx

m,n and e3 = eqx2 ◦ treqx

m,n =

s2 ◦ h ◦ treqx

m,n. Hence trsm,n : (1, e1, e3) Memb s and trsm,n = h ◦ treqxm,n. Therefore (s, s1, s2) is an

equality on x.

(ii) Let e : a ↪→ x be a subobject of x and eqa be an equality on a. e ◦ eqa = (eqa, e ◦ eqa1 , e ◦ eqa2)

is in Rel(x, x). Let i : 1 ↪→ a be an element of a, then e ◦ i : 1 ↪→ x and refl
eqa

i : (1, i, i) Memb

eqa. The following inner diagrams commute

x

a a

1 eqa

a a

x

e

i

e

refl
eqa

i

i

eqa1

eqa2

e e
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since e◦ i = e◦eqa1 ◦refl
eqa

i and e◦ i = e◦eqa2 ◦refl
eqa

i . Hence (1, e◦ i, e◦ i) Memb e◦eqa, so e◦eqa

is reflexive. Let (1, e1, e2) ∈ Rel(a, a) with (1, e1, e2) Memb eqa, then (1, e ◦ e1, e ◦ e2) ∈ Rel(x, x)

and m : (1, e ◦ e1, e ◦ e2) Memb e ◦ eqa. The commutativity of the following inner diagrams follows

from the symmetry of eqa,
x

1 eqa

x

e◦e2
symeqa

m

e◦e1

e◦eqa1

e◦eqa2

e ◦ e2 = e ◦ eqa1 ◦ symeqa

m and e ◦ e1 = e ◦ eqa2 ◦ symeqa

m . Hence (1, e ◦ e2, e ◦ e1) Memb e ◦ eqa,

so e ◦ eqa is symmetric. Moreover, let (1, e2, e3) ∈ Rel(a, a) with (1, e2, e3) Memb eqa, then

(1, e ◦ e2, e ◦ e3) ∈ Rel(x, x) and n : (1, e ◦ e2, e ◦ e3) Memb eqa. The commutativity of the following

inner diagrams follows from the transitivity of eqa,

x

1 eqa

x

e◦e1
treqa

m,n

e◦e3

e◦eqa1

e◦eqa2

e ◦ e1 = e ◦ eqa1 ◦ treqa

m,n and e ◦ e3 = e ◦ eqa2 ◦ treqa

m,n. Hence (1, e ◦ e1, e ◦ e3) Memb e ◦ eqa, so e ◦ eqa

is transitive. Therefore e ◦ eqa is an equality on x.

Remark 4.2.4. Case (ii) above is the categrocial formulation of the equivalence a =A a′ ⇔
iXA (a) =X iXA (a′) in the case of a subset (A, iXA ) of a Bishop set X.

Every arrow f : x→ y in a category C with 1 is an operation-arrow, or an assignement-routine-

arrow, as it sends elements of x to elements of y. Namely, if f : x → y is an arrow in C and

e : 1 ↪→ x is an element of x, the application f(e) of f on e is an element f ◦ e : 1 ↪→ y of y

1 x ye

f(e)

f

Moreover, if i := (1, i1, i2) ∈ Rel(x, x), then f(i) :=
(
1, f(i1), f(i2)

)
∈ Rel(y, y), as the arrows

f(i1), f(i2) are both monic

x y

1

x y

i1

f

f(i1)

i2

f

f(i2)

Next we define when f : x→ y behaves like a function, with respect to given equalities x and

y.

Definition 4.2.5. Let C be a category with 1, and let (x, eqx) and (y, eqy) be sets in C. An arrow
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f : x → y in C is function-like (with respect to eqx and eqy), or simply a function, if for every

i:= (1, i1, i2) ∈ Rel(x, x) we have that

i Memb eqx ⇒ f(i) Memb eqy

x y

eqx 1 eqy

x y

f

f(i1)eqx1

m

eqx2

i1

f(m)

f(i2) eqy2

eqy1

f

i2

In this case, if m : i Memb eqx, we write f(m) : f(i) Memb eqy. If for every i ∈ Rel(x, x) the

converse inclusion f(i) Memb eqy ⇒ i Memb eqx is satisfied, then we call f an embedding-arrow, or

simply an embedding (with respect to eqy and eqx).

Remark 4.2.6. Let C be a category with 1, and let (x, eqx), (y, eqy), (z, eqz) be sets in C.
(i) 1x is function-like, where if m : i Memb eqx, then 1x(m) = m : 1x(i) Memb eqx.

(ii) If f : x→ y and g : y → z are function-like, then g ◦ f is function-like, where if m : i Memb eqx

and f(m) : f(i) Memb eqy, then (g ◦ f)(i) = g(f(i)) Memb eqz.

(iii) If f : x→ y is monic, i.e. x is a subobject of y, and if eqy = f ◦ eqx, then f is an embedding.

Proof. (i) Let 1x : x → x and i ∈ Rel(x, x). Let m : i Memb eqx, then 1x(m) = m : 1x(i) Memb

eqx. Hence, by definition, 1x is function-like.

(ii) Let f : x→ y and g : y → z be function-like. Let m : i Memb eqx, then, since f is function-like,

f(m) : f(i) Memb eqy. Since g is function-like, we have (g ◦ f)(i) = g(f(i)) Memb eqz. Hence g ◦ f
is function-like.

(iii) Let l : f(i) Memb f ◦ eqx,

x y x

eqx 1 eqx

x y x

f

f(i1)

f

eqx1

l

eqx2

i1

l

f(i2) eqx2

eqx1

f

i2

f

then we have f ◦ (eqx1 ◦ l) = f(i1) = f ◦ i1 and f ◦ (eqx2 ◦ l) = f(i2) = f ◦ i2. Since f is monic,

eqx1 ◦ l = i1 and eqx2 ◦ l = i2. Hence l : i Memb eqx, so f is an embedding.

4.2.2 Global equality relations

In the previous section we restricted our definition of an equality relation to categories that admit

a terminal object 1. We now want to consider more general categories that do not necessarily have

a terminal object. Hence we will give a definition of a global equality relation without mentioning

elements of an object.

First we define some notions that we will need in our definition. Let C be a category with

products and X ∈ C0. We call δX : (X, 1X , 1X) ∈ Rel(X,X) the identity relation, where 1X :
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X → X is the identity morphism. This relation is the subset ∆ := {(x, x) | x ∈ X} ⊆ X × X
called the diagonal of X.

X

X X ×X X

1X 1X

A relation r := (R, r1, r2) between X,X is a subset {(x, y) | x, y ∈ X} ⊆ X × X. We call

rop := (R, r2, r1) the opposite relation of r, given by the subset {(y, x) | (x, y) ∈ r} ⊆ X ×X.

Definition 4.2.7. Let C be a category with pullbacks and limits and r := (r, r1, r2) ∈ Rel(x, x).

We call r (globally) reflexive, if δx 6 r

x

x r

x

1x

1x

refl

r1

r2

and in this case we write refl : δx 6 r. We call r (globally) symmetric, if r 6 rop

x

r r

x

r2

r1

sym

r1

r2

and we write sym : r 6 rop. r is called (globally) transitive, if r ◦ r 6 r

x

r ◦ r r

x

r◦r1

r◦r2

tr

r1

r2

and in this case we write tr : r ◦ r 6 r.

Definition 4.2.8. If eqx := (eqx, eqx1 , eqx2) ∈ Rel(x, x) is reflexive, symmetric and transitive, we

call it a (global) equality relation, or simply an equality on x. We call the pair (x, eqx) a Bishop

set object.

Proposition 4.2.9. Let s, r ∈ Rel(x, x). If h : s 6 r, then for every i = (1, i1, i2) ∈ Rel(x, x)

i Memb s ⇒ i Memb r
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Proof. Let h : s 6 r and m : i Memb s, then the following right and left inner diagrams commute

x

1 s r

x

i1

m

i2

s1

s2

h

r1

r2

and it holds i1 = m ◦ s1 = m ◦ (h ◦ r1) = (m ◦ h) ◦ r1 and i2 = m ◦ s2 = m ◦ (h ◦ r2) = (m ◦ h) ◦ r2.

Hence the above outer diagrams commute and i Memb r.

We will use this proposition in the proof of the following theorem.

Theorem 4.2.10. Let C be a category with pullbacks, limits and a terminal object 1 and let x

be an object in C. If r is a global equality relation on x, then r is a local equality relation on x.

Proof. We show the properties of a local equality relation. First we show that r is locally reflexive.

Since r is globally reflexive, it holds that δx 6 r. Now let e : 1 ↪→ x be an element of x, then

x

1 x r

x

e

e

e

1x

1x

refl

r1

r2

e = e ◦ 1x = e ◦ (refl ◦ r1) = (e ◦ refl) ◦ r1 and e = e ◦ 1x = e ◦ (refl ◦ r2) = (e ◦ refl) ◦ r2.

Therefore the above outer diagrams commute and (1, e, e) Memb r, hence r is locally reflexive. Next

we show local symmetry. Since r is globally symmetric, rop 6 r. Let (1, e1, e2) ∈ Rel(x, x) with

h : (1, e1, e2) Memb r,
x

1 r r

x

e1

h

e2

r2

r1

sym

r1

r2

then it holds e1 = h ◦ sym ◦ r1 = h ◦ r2 and e2 = h ◦ sym ◦ r2 = h ◦ r1. Hence (1, e2, e1) Memb r, so r

is locally symmetric. Now let (1, e1, e2), (1, e2, e3) ∈ Rel(x, x) with

m : (1, e1, e2) Memb r & n : (1, e2, e3) Memb r.

The following inner diagrams commute

x

1 r

x

e1

e2

m

r1

r2

x

1 r

x

e2

e3

n

r1

r2
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To prove local transitivity we first show (1, e1, e3) Memb r ◦ r. Since h : r ◦ r 6 r the following left

inner diagrams commute.

x

r ◦ r r

x

(r◦r)1

(r◦r)2

r1

r2

P r

r x

p

q r1

r2

r1

r2

We take the pullback P of the two morphisms r1 : r → x and r2 : r → x, as shown in the right

diagram above. By the universal property of the pullback, since r1 ◦ n = e2 = m ◦ r2, there is a

unique arrow u : 1→ P such that q ◦ u = n and p ◦ u = m. Moreover, there is an arrow from the

pullback P to the product x × x, which can be factorized through an epimorphism e : P → r ◦ r
and a monomorphism m : r ◦ r → x× x, shown in the following diagram:

1

P

r r ◦ r r

x x× x x

e3

m

u

n

p
e

q

r2

h h

m (r◦r)2
r1

e1

(r◦r)1

pr2pr1

Hence we have an arrow e ◦ u : 1 → r ◦ r such that e1 = (r ◦ r)1 ◦ e ◦ u and e3 = (r ◦ r)2 ◦ e ◦ u,

meaning that the following left inner diagrams commute,

x

1 r ◦ r r

x

e1

e◦u

e3

(r◦r)1

(r◦r)2

h

r1

r2

so it holds that (1, e1, e3) Memb r ◦ r. From Prop. 4.2.9 it follows that (1, e1, e3) Memb r. Hence r

is locally transitive and therefore r is a local equality relation.

Remark 4.2.11. The converse does not generally hold. Suppose for every i := (1, i1, i2) ∈
Rel(x, x) it holds that i Memb s & i Memb r ⇒ s 6 r. Let r be a local equality relation on x. Then

r is locally reflexive, i.e. for every e : 1 ↪→ x, it holds that refl : (1, e, e) Memb r. Let 1x : x → x
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be the identity on x, then the following inner diagrams commute

x

1 x

x

e

e

e

1x

1x

By our assumption δx 6 r. As r is locally symmetric, it holds for every (1, e1, e2) ∈ Rel(x, x) that

m : (1, e1, e2) Memb r ⇒ sym : (1, e2, e1) Memb r. Hence the following inner diagrams commute

x

1 x

x

e1

sym

e2

r2

r1

and it holds (1, e1, e2) Memb rop. Again by our assumption we have rop 6 r. By now we showed

global reflexiveness and global symmetry. However our assumption is not sufficient to prove global

transitivity. It remains an open problem to find a good condition on C, to prove local equality ⇒
global equality.

The next proposition was originally stated on p. 103 of [10]. Here we give a full proof of the

proposition with respect to our definition of a global equality.

Proposition 4.2.12. In any category with finite limits, the kernel pair of a morphism f : x→ y

is the pullback of f along itself:

r x

x y

r1

r2 f

f

These maps r1 and r2 define a monomorphism (r1, r2) : r ↪→ x × x, so the object r is always

a subobject of the product x × x. Indeed, subobjects defined by kernel pairs are always global

equivalence relations.

Proof. Let r be a subobject of x×x defined by the kernel pair of f : x→ y with (r1, r2) : r ↪→ x×x.

First, let 1x : x→ x be the identity morphism, then it holds that f ◦ 1x = f ◦ 1x. By the universal

property of the pullback there is a unique morphism refl : x→ r

x

r x

x y

1x

1x

refl

r1

r2 f

f
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such that 1x = r1 ◦ refl and 1x = r2 ◦ refl. Hence the following inner diagrams commute

x

x r

x

1x

1x

refl

r1

r2

and δx = (x, 1x, 1x) 6 r. Next we want to prove symmetry. Since f ◦ r1 = f ◦ r2, again by the

universal property of the pullback there is a unique morphism sym : r → r

r

r x

x y

r2

r1

sym

r1

r2 f

f

such that r2 = r1 ◦ sym and r1 = r2 ◦ sym. Hence the following inner diagrams commute

x

r r

x

r2

r1

sym

r1

r2

and it holds rop = (r, r2, r1) 6 r. Therefore r is globally symmetric. The pullback of r1 and r2 is

the fiber product r ×x r

r ×x r r x

r x

x

r′1

r′2

r2

r1

r2

r1

such that r1 ◦ r′1 = r2 ◦ r′2. Then r1 ◦ r′1, r2 ◦ r′2 : r×x r → x are two morphisms with f ◦ (r1 ◦ r′1) =

f ◦ (r2 ◦ r′2). Hence there is a unique morphism u : r ×x r → r

r ×x r

r x

x y

r1◦r′1

r2◦r′2

u

r1

r2 f

f

such that r1 ◦ u = r1 ◦ r′1 and r2 ◦ u = r2 ◦ r′2. Let r ◦ r =
(
r ◦ r, (r ◦ r)1, (r ◦ r)2

)
∈ Rel(x, x). As

r×x r ⊆ x×x, there is a morphism from r×x r to x×x, which can be factorized by an epimorphism
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e : r ×x r → r ◦ r and a monomorphism m : r ◦ r → x× x.

r ×x r

r ◦ r

x x× x x

r1◦r′1
e

r2◦r′2

m (r◦r)2
(r◦r)1

pr2pr1

As r1 ◦ r′1 = r2 ◦ r′2, it holds that pr1 ◦ m ◦ e = r1 ◦ r′1 = r2 ◦ r′2 = pr2 ◦ m ◦ e. Since e is an

epimorphism we have (r◦r)1 = pr1 ◦m = pr2 ◦m = (r◦r)2. Hence it holds f ◦(r◦r)1 = f ◦(r◦r)2,

so there is a unique morphism tr : r ◦ r → r

r ◦ r

r x

x y

(r◦r)1

(r◦r)2

tr

r1

r2 f

f

such that (r ◦ r)1 = r1 ◦tr and (r ◦ r)2 = r2 ◦tr. Therefore the following inner diagrams commute

x

r ◦ r r

x

(r◦r)1

(r◦r)2

tr

r1

r2

and it holds r ◦ r 6 r, so r is globally transitive. We finally get that r is a global equality

relation.

4.3 Apartness relations

So far we have seen the definition of an equality in the categorical sense. We now also want to

translate the notion of an inequality into categorical terms. For a given Bishop set object (x, eqx)

we will define an apartness relation ineqx.

4.3.1 Local apartness relations

As in the section about local equality relations, we give an elementwise description of an apartness

relation, so we work in a locally small category in order to ensure that our definition is predicative.

Definition 4.3.1. Let C be a category with 1, x ∈ C0 and eqx := (eqx, eqx1 , eqx2) be an equality

relation on x. Let ineqx := (ineqx, ineqx1 , ineqx2) ∈ Rel(x, x), then we call ineqx an apartness

relation to (x, eqx), if it is irreflexive, i.e. for every i := (1, e1, e2) ∈ Rel(x, x) we have that(
i Memb eqx & i Memb ineqx

)
⇒ ⊥,

symmetric, i.e. for every (1, e1, e2) ∈ Rel(x, x) we have that

(1, e1, e2) Memb ineqx ⇒ (1, e2, e1) Memb ineqx,
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x

1 ineqx

x

e1

e2

m

ineqx1

ineqx2

x

1 ineqx

x

e2

symm

e1

ineqx1

ineqx2

and cotransitive, i.e. for every element e : 1 ↪→ x of x we have that

i Memb ineqx ⇒
(
(1, e, e1) Memb ineqx ∨ (1, e, e2) Memb ineqx

)
.

x

1 ineqx

x

e1

e2

m

ineqx1

ineqx2

x

1 ineqx

x

e

cotrm

e1

ineqx1

ineqx2

x

1 ineqx

x

e

cotrm

e2

ineqx1

ineqx2

Definition 4.3.2. We call (x, eqx, ineqx) a full Bishop object.

We give an example of an apartness relation for a given equality relation.

Example 4.3.3. Let Set be the category of sets and functions. Let X := {1, 2, 3} be an object

of Set with the given equality relation

R = {(1, 1), (2, 2), (3, 3)} ⊆ X ×X.

R is obviously an equality relation as it is reflexive, symmetric and transitive. Then the apartness

relation to (X,R) is the following set

S = {(1, 2), (1, 3), (2, 1), (3, 1), (2, 3), (3, 2)}.

It holds that R ∩ S = ∅ and R ∪ S = X ×X.

We now give a definition of when f : x → y behaves like a function, with respect to given

inequalities on x and y.

Definition 4.3.4. Let C be a category with 1, and let (x, eqx, ineqx) and (y, eqy, ineqy) be full

Bishop objects in C. An arrow f : x → y in C is function-like (with respect to ineqx and ineqy),

or simply a function, if for every i:= (1, e1, e2) ∈ Rel(x, x) we have that

i Memb ineqx ⇒ f(i) Memb ineqy

x y

ineqx 1 ineqy

x y

f

f(e1)ineqx1

n

ineqx2

e1

f(n)

f(e2) ineqy2

ineqy1

f

e2

In this case, if n : i Memb ineqx, we write f(n) : f(i) Memb ineqy. An arrow f : x → y in C is

called strongly extensional, if for every i := (1, e1, e2) ∈ Rel(x, x) we have that

59



f(i) Memb ineqy ⇒ i Memb ineqx

Proposition 4.3.5. Let C be a category with 1, and let (x, eqx, ineqx), (y, eqy, ineqy) and

(z, eqz, ineqz) be full Bishop objects in C.
(i) 1x is function-like, where if n : i Memb ineqx, then 1x(n) = n : 1x(i) Memb ineqx.

(ii) If f : x → y and g : y → z are function-like, then g ◦ f is function-like, where if n : i Memb

ineqx and f(n) : f(i) Memb ineqy, then (g ◦ f)(i) = g(f(i)) Memb ineqz.

(iii) 1x is strongly extensional.

(iv) If f : x→ y and g : y → z are strongly extensional, then g ◦ f is strongly extensional.

(v) If f : x→ y is monic and if ineqy = f ◦ ineqx, then f is strongly extensional.

Proof. (i) Let 1x : x → x and i ∈ Rel(x, x). Let n : i Memb ineqx, then 1x(n) = n : 1x(i) Memb

ineqx. Hence, by definition, 1x is function-like.

(ii) Let f : x→ y and g : y → z be function-like. Let n : i Memb ineqx, then, since f is function-like,

f(n) : f(i) Memb eqy. Since g is function-like, we have g(f(n)) : g(f(i)) Memb eqz. Hence g ◦ f is

function-like.

(iii) Let i := (1, e1, e2) ∈ Rel(x, x) and let 1x(n) : 1x(i) Memb ineqx. Since 1x(n) = n and 1x(i) =

i, we have n : i Memb ineqx.

(iv) Let f : x→ y and g : y → z be strongly extensional. Let i ∈ Rel(x, x), then f(i) ∈ Rel(y, y).

Since g is strongly extensional, we have that

g(f(i)) Memb ineqz ⇒ f(i) Memb ineqy

and since f ist strongly extensional, we get

f(i) Memb ineqy ⇒ i Memb ineqx.

Hence it holds

(g ◦ f)(i) = g(f(i)) Memb ineqz ⇒ i Memb ineqx.

So g ◦ f is strongly extensional.

(v) Let n : f(i) Memb f ◦ ineqx,

x y x

ineqx 1 ineqx

x y x

f

f(e1)

f

ineqx1

n

ineqx2

e1

n

f(e2) ineqx2

ineqx1

f

e2

f

then we have f ◦ (ineqx1 ◦n) = f(e1) = f ◦ e1 and f ◦ (ineqx2 ◦n) = f(e2) = f ◦ e2. Since f is monic,

ineqx1 ◦ n = e1 and ineqx2 ◦ n = e2. Hence n : i Memb ineqx, so f is strongly extensional.

After having presented the notions of equality relations and apartness relations in categorical

language, we can now define the notion of a complemented subobjects of (x, eqx, ineqx), which

can be seen as the categorical version of Bishop’s complemented subsets described in section 3.2.
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Definition 4.3.6. Let (x, eqx, ineqx) be a full Bishop object in C. We call a complemented

subobject of x a pair of subobjects (i : a ↪→ x, j : b ↪→ y) of x, such that for every element

x : 1 ↪→ a of a and y : 1 ↪→ b of b, it holds

(1, i ◦ x, j ◦ y) Memb ineqx.

This means that the following inner diagrams commute

x

a

1 ineqx

b

x

i

x

y

m

ineqx1

ineqx2

j

and we write m : (1, i ◦ x, j ◦ y) Memb ineqx. For simplicity we refer to the pair (a, b) instead of

(i : a ↪→ x, j : b ↪→ y).

Now we can define the category of complemented subobjects.

Definition 4.3.7. Let C be a category with 1 and let (x, eqx, ineqx) be a full Bishop object of

C. Then the category Sub(x,eqx,ineqx)(C) of complemented subobjects of x has as objects the com-

plemented subobjects of x. If (a1, a0) and (b1, b0) are objects of Sub(x,eqx,ineqx)(C), a morphism

f : (a1, a0) → (b1, b0) is a pair of morphisms (f1, f0), where f1 : a1 → b1 and f0 : b0 → a0, such

that the following diagrams commute

a1 b1

x

i1

f1

j1

b0 a0

x

j0

f0

i0

If (c1, c0) is an object of Sub(x,eqx,ineqx)(C) and g = (g1, g0) : (b1, b0) → (c1, c0), then g ◦ f :=

(g1 ◦ f1, f0 ◦ g0) is the composition of arrows in C.

a1 b1 c1

x

i1

f1

j1

g1

k1

c0 b0 a0

x

k0

g0

j0

f0

i0

The unit morphism 1(a1,a0) = (ida1 , ida0).

a1 a1

x

i1

ida1

i1

a0 a0

x

i0

ida0

i0
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The following proposition shows that Sub(x,eqx,ineqx)(C) can be fully embedded into the Chu

category Chu(C, x× x).

Proposition 4.3.8. (Chu-representation of Sub(x,eqx,ineqx)(C))
If (x, eqx, ineqx) is a full Bishop object, then the functor

Ex : Sub(x,eqx,ineqx)(C)→ Chu(C, x× x),

Ex0 (i1 : a1 ↪→ x, i0 : a0 ↪→ x) = (a1, i1 × i0, a0),

Ex1
(
(f1, f0) : (i1 : a1 ↪→ x, i0 : a0 ↪→ x)→ (j1 : b1 ↪→ x, j0 : b0 ↪→ x)

)
= (f1, f0) : (a1, i1 × i0, a0)→

(b1, j1 × j0, b0)

is a full embedding of Sub(x,eqx,ineqx)(C) into Chu(C, x× x).

Proof. The proof is similar to the proof of prop. 3.3.10. in section 3.3.2.

Remark 4.3.9. In prop. 3.3.10 we presented the full embedding of the category of complemented

subsets PKJ(X) into the Chu category Chu(Set, X ×X). In fact this is a specific example of the

above proposition for the category of the complemented subobjects of X in Set.
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5 Conclusion

This thesis consisted of three parts. In the first part we were concerned with Bishop set theory,

where we followed [9] to introduce the basic notions of BST and especially focused on complemented

subsets. Moreover we presented partial functions between sets. Following [7] we gave a detailed

proof of the existence of proper class-assignement routines between the class of complemented

subsets PKJ(X) an F se(X,2), the class of strongly extensional partial functions from X to 2.

In the second part we focused on the categorical aspects of complemented subsets by studying

Chu representations of different categories. Following Petrakis’ work [6] we presented the category

of complemented subsets PKJ(X) and showed it’s embedding into the Chu category Chu(Set, X×
X).

In the last part, we worked on translating some elements of Bishop set theory into category

theory. Based on Petrakis’ work [8] we defined the categorical notions of an equality relation and

an apartness relation. We distinguished between local and global equality relations and proved

that every global equality is indeed a local equality. We defined the notion of a full Bishop object

(x, eqx, ineqx), which gives us the categorical version of Bishop’s complemented subset. Finally

we defined the category of complemented subobjects of a category C.
Of course, there are still a lot of open questions that arise. As mentioned in remark 4.2.11 it

does not generally hold that a local equality relation is a global equality relation. It is still an open

task to find a good condition on a category C such that this implication holds.

Another big task requiring some extra work is the global representation of an apartness relation,

which we have not yet found categorically. In the global definition of an apartness relation, we

need to define irreflexivity and cotransitivity in a global manner. Let (x, eqx) be a Bishop set

object, if r ∈ Rel(x, x), then one could define r to be globally irreflexive if eqx ∩ r = 0, where

0 := (0, e1, e2) is the empty relation. However, if 0 is the initial object of the category C, then

e1, e2 are not jointly monic. To define global cotransitivity we would like to have a presentation

of a categorical definition of cocomposition, the dual notion of composition. Let R and S be two

subsets of X ×X, then the cocomposition of R with S is defined as follows

R ∗ S :=
{

(x, z) ∈ X ×X | ∀y ∈ X((x, y) ∈ R ∨ (y, z) ∈ S)
}

.

If we had a categorical representation of cocomposition we could define global cotransitivity through

r ∗ r 6 r, which would be dual to our definition of global transitivity. It would be really desirable

to have a categorical representation of cocomposition of relations and to define the global version

of an apartness relation.

An obvious question one may think of is whether a global apartness implies a local apartness

and if so, if there exists a good condition on a category C to prove the converse. These open

questions however are not straightforward and require some more work to be answered.

Finally, it would be really interesting to see more examples of equivalence and apartness rela-

tions and to elaborate some interesting applications of our work.
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weiteren als die angegebenen Quellen verwendet habe. Alle Passagen, die aus fremden Quellen
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