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1 Introduction

Regarding the fundamental differences between set and category theory, the translation of ideas and
concepts from Bishop set theory into category theory is an especially interesting topic. Bishop’s
theory of sets underlying Bishop-style constructive mathematics, or constructive analysis to be
precise, was first developed in chapter 3 of Bishop’s seminal book Foundations of Constructive
Analysis and in chapter 3 of the book Constructive Analysis, where he co-authored with Bridges.
Bishop’s aim was to create a constructive framework for advanced mathematics to be done within.
However, set theory was only briefly treated in both books. Bishop set theory (BST), developed in
[9], is Petrakis’ account of an informal, constructive theory of totalities and assignment routines,
serving as a reconstruction of Bishop’s theory of sets and functions. BST makes a clear distinction
between sets and classes, e.g. the powerset of a set X is treated as a class.

While set theory is based on sets and functions, category theory is a formalization of mathemat-
ical structures. Categories are an abstract representation of mathematical concepts, consisting of
objects and arrows. Our aim is to appropriately translate set-theoretic terms, within Bishop-style
constructive mathematics, to categorical notions.

Bishop describes a subset of a set X as a pair consisting of a set A and an embedding of A into
X. Bishop’s definition of a subset of a set is related to the notion of a subobject of an object in
category theory, as described by Awodey on p.89 in his book Category Theory, where a subobject
of an object x is defined as a monomorphism into x. To avoid the use of negation in basic set
theory, which may cause some problems in constructive analysis, Bishop introduced the notion of
a complemented (sub)set, which avoids the negative definition of the complement of a subset. This
gives us a positively defined notion of disjointness of subsets. In BST a complemented subset of
a set (X, =x,#x) with an equality and inequality is a pair of subsets of X that are disjoint with
respect to #Zx. In terms of Bishop-style constructive mathematics, an equality =x and inequality
#x, or apartness relation, on a set X were defined through some formula. In set theory, a relation
between two sets X and Y is defined as a subset R of their cartesian product X x Y, which
one can translate into the theory of categories. In order to translate the notion of a subset and
complemented subset to the language of categories, we need to capture equality and apartness
categorically. To do so we first need to define what a relation is within category theory. Following
Klein [4] we present the categorical notion of a binary relation.

Following Petrakis’ work [8] with the categorical translations of equality and apartness we
can then translate the notion of a complemented subset into category theory as the notion of a
complemented subobject with respect to a given pair of equality and apartness of some object x
in a category C. This allows us to define the category of complemented subobjects of an object
in a category, which can be seen as the categorical translation of the category of complemented
subsets.

Before we can work on translating the set-theoretic concepts to category theory we will first

need to revisit Bishop’s set theory and introduce the basic notions. This thesis has the following



structure:

(i)

(i)

(iii)

(iv)

(v)

Following Petrakis’ work [9] we introduce the basic notions of Bishop set theory. Especially

focusing on complemented subsets, we prove various properties.

After having introduced complemented subsets and partial functions, we give a full proof
of the existence of class functions between the the class of complemented subsets PI[(X)
and the class of strongly extensional partial functions %#%¢(X,2). This proposition was first

proved in [7].

We present the basic notions of category theory based on Awodey’s book [1] and turn to
the categorical aspects of complemented subsets. Following Petrakis’ work [6] we present
the category of complemented subsets ’PM(X ) and show its full embedding into the the Chu
category Chu(Set, X x X).

Based on [4], we present the categorical notion of a binary relation between two objects z and
y. Based on [8] we use this notion to define an equality relation, where we distinguish local
equality from global equality and show that every global equality implies a local equality.

We also define the notion of a local apartness relation.

Finally, we define the category of complemented subobjects of an object of a category.

The notion of a global apartness relation is not treated in this thesis, however we give a brief

outlook on which further research still needs to be done and what open task could be worked on

in the future.



2 Complemented subsets

Before we can talk about the categorical aspects of complemented subsets, we will first present
the fundamental notions of Bishop set theory. In this chapter we will follow [9] to introduce the
basic elements of BST and prove some properties about subsets of a set, partial functions and

complemented subsets.

2.1 Sets and functions

We have a primitive notion of a totality. Any totality X is defined through a membership condition
x € X, i.e. by describing what must be done to construct an element of X. For a totality X, we
introduce the notion of an equality * =x y defined for any x,y € X, satisfying the properties of

an equivalence relation, i.e. reflexive, symmetric and transitive.

Definition 2.1.1. For a totality X and an equality =x we call the pair (X,=x) a set. We will

only write X, if the equality =x is clear from the context.

We denote by Vi the totality of sets, which contains the primitive set N and all defined sets.
Vo itself is not a set but a class. We clearly distinguish classes from sets. A class is a totality
defined through a membership condition in which a quantification over Vg occurs. Particularly,
the powerset P(X) of a set X, the totality PI[(X) of complemented subsets of a set X and the
totality % (X,Y") of partial functions from a set X to a set Y are classes.

Definition 2.1.2. If XY are sets, their product X x Y is the totality defined by
z€ X XY & EImeXEIyey(z = (m,y))
with the equality
z=xxy 7 & (x,y) =xxy (@,¥) or=x2" &y=y Yy
Definition 2.1.3. A bounded formula on a set X is called an extensional property on X, if

Vayex ([ =x y & P(z)] = P(y)).

Definition 2.1.4. Let X be a set. An inequality on X, or an apartness relation on X, is a relation
x #x vy such that the following conditions are satisfied:

(i) vx,yEX(x =xy&r#xy=1)

(i) Vo,yex(z #x y = y #x @)

(iil) Voyex (z #£x ¥y = Veex (2 #x 2V 2 #x y))

We write (X, =x,#x) to denote the equality-inequality structure of a set X, and for simplicity
we refer to the set (X, =x,#x).

Remark 2.1.5. Let (X,=x,#x) and (Y, =y, #y) be sets.
(i) An inequality relation z #x y is extensional on X x X.

(ii) The canonical inequality on X x Y induced by #x and #y, which is defined by



(x,y) #xxy (@,Y) o #x 2" V y#v Yy,

for every (z,y) and (2',y’) € X x Y, is an inequality on X x Y.

Proof. (i) Let x #x y and let 2’,y’ € X with z = 2’ and y = y/. By property (iii) in the definition
of an inequality, we have that x # 2’ or ' #x y. Since the former is excluded definitionally, it
holds that «’ #x y. Again by (iii), 2’ #x y od ¥ #x y, which is again excluded. Hence z’ #x y'.
(ii) We show that the three conditions for an inequality are satisfied. Let (x,y), (2/,y') € X XY
with (z,y) Zxxv (@',y). I (z,y) =xxy (¢/,y), then we have z =x ¢ A z #x 2’ = L or
y=y ¥y Ny#yy = L. Obviously (z,y) Zxxvy (2',y") = (2',¥) #xxy (x,y). I (z,2') € X XY,

then z #x x V z #£x ¢’ and 2’ #y y V 2’ #y . Hence (2,2') #xxv (x,y) or (z,2) Zxxy (&', y).
So #xxy is an inequality. O

Definition 2.1.6.

(i) Let X,Y be totalities. A non-dependent assignement routine f : X ~»Y from X to Y assigns
to each element z € X an element f(z) =y €Y.

(ii) If (X, =x) and (Y, =y ) are sets, a function f: X — Y is an assignement routine from X to Y

that respects equality, i.e.
Vowex(z=x 2’ = f(z) =y f(2')).

(iii) A function f: X — Y is called an embedding, in symbols f: X < Y if
Vowex (f(z) =y f(z') =z =x 2').

If X is a set, the identity map idx on X is the function idx : X ~» X, defined by idx(x) := z,
for every x € X. We denote the totality of all functions from X to Y by F(X,Y).

Definition 2.1.7. Let (X,=x,#x) and (Y, =y,#y) be sets. A function f : X — Y is called

strongly extensional, if

VI,I’GX (f(x) #Y f(.%'/) =z #X ml)'

2.2 Subsets of a set

Definition 2.2.1. Let X be aset. A subset of X is a pair (A,i% ), where A is aset and i% : A — X
is an embedding of A into X. If (A,i%) and (B,i%) are subsets of X, then A is a subset of B,
in symbols (4,i%) C (B,i3), if there is a function f : A — B such that the following diagram

commutes
A—1 B
N A
X

In this case we use the notion f: A C B. Usualy we write A instead of (A,i% ). The totalitiy of
the subsets of X is the powerset P(X) of X and it is equipped with the equality

(A,i%) =p(x) (B,i) = ACB& BCA

If f:ACBandg:BC A, wewrite (f,g9) : A=px) B.



Definition 2.2.2. If (4,i%), (B,i%) C X, their union AU B is the totality defined by
z€ AUB: = z€ AV z€ B,
equipped with the non-dependent assignement routine iix(u g AUB~ X
X
X in(2) ,Zz€A
i z) =
Aup(2) {zg(z) ,ZEB

Definition 2.2.3. If (A4,i}),(B,i%) C X, their intersection AN B is the totality defined by

seperation on A x B as follows:
ANB:={(a,b) € Ax B |i}(a) =x i} (b)}.
Let the non-dependent assignement routine i%5 : AN B ~ X, defined by i 5(a,b) := iX (a), for
every (a,b) € AN B. If (a,b) and (a’,b’) are in AN B, let
(a,0) =anp (', V) 2 idnp(a,b) =x inp(a’, V) & i) (a) =x i} (d).
We write AJ{B to denote that the intersection AN B is inhabited, i.e. Ipcanp(® =anp ).

Proposition 2.2.4. Let A, B and C be subsets of the set X.

(i) AUB =pxy BUAand AN B =px) BN A.

(i) AU(BUC) =px) (AUB)UC and AN(BNC) =px) (ANB)NC.

(ili) AN(BUC) =px) (ANB)U(ANC)and AU(BNC) =px) (AUB)N(AUC).

Proof. The proofs of (i) and (ii) are straightforward. We will only show the first statement of (iii),

the other one follows similarly.

AN(BUC) = {(a,z) € Ax (BUCQC) | i} (a) =x iz c(2)}
={(a,b) e Ax B V (a,c) e Ax C| i (a) =x ix (D) V i3 (a) =x zé((c)}
=p(x) {(a,0) € Ax B | i} (a) =x i (b)} U{(a,c) € Ax C | if(a) =x i (c)}
=(ANB)U(ANCQC)
O

Definition 2.2.5. Let X,Y be sets, (4,i%),(C,id) C X, e: (A,i%) C (C,i), f: C = Y and
(B,i%) C Y. The restriction f|, of f to A is the function fa := foe

A@C#Y.

fla
The image f(A) of A under f is the pair f(A) := (A, fa), where A is equipped with the equality
a=s a & fl,(a) =y fi,(a), for every a,a’ € A. We denote f(A) := {f(a) | a € A}. The
pre-image f~1(B) of B under f is the set
J7HB) = {(c.;b) € C x B f(c) =y ip(b)}.

Let if-1(py : f~' < C, defined by if-1(p)(c,b) = c, for every (c,b) € f~1(B). The equality of the
extensional subset f~!(B) of C' x B is inherited from the equality of C' x B.



Proposition 2.2.6. Let X, Y be sets, A, B subsets of X, C, D subsetsof Y and f : X — Y. Then
i) f7H(CUD)=px) fTHO)UfH(D).

ii) f~H(C N D) =px) f~HCO)N fH(D).

iif) f(AUB) =p(v) f(A) U f(B).

iv) f(AN B) =pgy) f(A)N f(B).

v) AC fH(f(A)).

vi) f(f7HC)NA) =pyy ON f(A) and f(fH(C)) =pry C N F(X).

Proof.

(i) f7H(CUD) = {(z,y) € X x (CUD) | f(z) =y it,p(y)}
={(z,9) e X xC V (z,y) e X x D | f(x) =y i:(y) V f(z) =y ip(y)}
*P(X){ z,y) €EX xC | f(z) =y i)} U{(z,y) € X x D | f(z) =y ip(y)}
=f{C)uf (D)

A~ A~ o~ N/~

(i) f7HCND) = {(z,y) € X x (CND)| f(x) =y ilrp(y)}
= {(z,(c,d)) € X x (C x D) | f(z) =y ienp(c,d) == i%(c) and i%(c) =y zg(d)}
=px) {(#,¢) € X x C| f(z) =y it(y)} N {(x,d) € X x D | f(x) =y ip(y)}
= fHC) N fH(D)

(i) f(AUB):={f(z) |z € AUB}
={f(x) |zr€ AV ze B}
=pr) {f(2) |z € AyU{f(2) |z € B}
= f(A) U f(B)

(iv) f(ANB) :={f(z) | z € An B}
={f(z) | z = (a,b) € A x B}
=p) {f(a) [a€ A} n{f(b) | be B}
= f(4)N f(B)

(v) Let a € A, then f(a) € f(A). Since
FHFA) = {(2. f(a) € X x f(A) | f2) = f(a)},
we have (a, f(a)) € f'(f(A)) for every a € A.
So A C fTHf(A)).

(vi) f(f*l(c) N ) ({((ag c a) (X xC)x A| f(z) =y ig(c), i;(,l(c)(x,c) = =x if(a)
=pi) {((f(2),¢), f(a)) € (F(X) x C) x f(A) | f(x) =y i&(c), f(x) =y f(a)
(e, f(a))

=) {(c f(a) erf(A) | fla) =y i&(c)}
=Cn f(A)

The second equation is a special case of the one that we just proved. Since f~1(C) C X, we have

F(FHC)NX) = f(F7HO)) =pv) CN F(X).
O



Proposition 2.2.7. Let (A4,i%), (B,iy), (4,7 ), (B’,i%) C X, such that A =p(x) A’ and
B =p(x) B'. Let also (C,if.), (C', i), (D,i},) C Y, such that C =p(x) C’ and let f: X — Y.
(i) ANB =pxy ANB" and AUB =px) A'UB.
(i) f(A) =p(y) f(A) and f~H(C) =p(x) [~1(C").
(iii) (A x C,i% x i&) € X x Y, where the map i3 x il : Ax C < X x Y is defined by
(% xi&)(a,c) == (i (a), i (c)), (a,c) e Ax C.
(iv) Ax C =pxxy) A" x C".
(v) Ax (CUD) =pxxy) (AxC)U(Ax D).
(vi) A x (SN D) =p(xxy) (A x C) N (AN D).

Proof. We will show (i)-(iv). Let A =p(x) A" and B =p(x) B',ie. ACA & A’ C Aand BC B’
& B’ C B.

(i) AUB={z|z€ AVzeB}=px){z|z€A'Vze B} =4AUB
ANB:={(a,b) € Ax B |i}(a) =x in(b)}

=px) {(a,b) € A’ x B’ | i3 (a) =x i}y (b)}
=A'NB

(ii) f(A): = {f(a) | a € A} =p) {f(a) |a € A"} = f(A)
FHO) = {(z,c) e X x C | f(x) =y iz (D)}
=px) {(z,0) € X x C" | f(x) =y itn(c)}
=)

(iii) Let (a,c) € Ax C. Since AC X,i% : A= X and C CY,i% : C Y, we have
(ix xig)(a,c) == (i%(a),it(c)) € X xY, (a,c) € AxC

(iv) AxC={(a,c) |la€ A, c€C} =pxxy) {(a,c) |a€ A, ceC'} =4 xC" O

2.3 Partial functions

Definition 2.3.1. Let X,Y be sets. A partial function from X to Y is a triplet (A,i%, f} ), where
(A,i%) € X and fY € F(A,Y). We will sometimes use the notation f} instead of the triplet
(A,i%, fY) and we write f} : X =Y. If (4,45, f}) and (B,i%, f) are partial functions from X
to Y, we call f} a subfunction of f¥, in symbols (A,i%, fY) < (B,ix, f¥), or f} < f¥, if there

is eap : A — B such that the following inner diagrams commute

A——8 B
N
A B
X
£y i
Y



In this case we use the notation eap : fi < f4. The totality of partial functions from X to Y is
the partial function space Z#(X,Y) and it is equipped with the equality

Ifeap : f}{ < f}g/ and egg : fg < fX, we write (eAB,eBA) : fX =Z(X,Y) fg

Since the membership condition for .#(X,Y’) requires quantification over Vj, the totality
Z(X,Y) is not a set, but a class. We denote by .7 (X, 2) the totality of partial functions from the
set X to the Booleans 2 := {0, 1}.

Definition 2.3.2. Let the operation of multiplication on 2 := {0, 1} be defined by 0-1:=1-0:=
0-0:=0and 1-1:=1.If (4,i%, f3), (B,ix,9%) € F(X,2), let

fa-gp = (AN B,iXp, (fa - 98)%0n),
where (fa-9B)4np : AN B — 2 is defined, for every (a,b) € AN B, by
(fa-98)4np(a,b) = fi(a) - g5 (b).

Remark 2.3.3. If (a,b), (¢c,d) € AN B and (a,b) =anp (¢, d), then f2(a) =2 f(c) and f2(b) ==
f2(d). By the equality of the product on AN B, it follows

(fa-98)anp(a.b) = fi(a) - g5 (b) =2 fi(c) - g5 (d) = (fa - gB)Anp(c,d).

Hence (fa - gB)%np is a function.

2.4 Complemented subsets

The notion of a complemented subset gives us a positively defined notion of disjointness of subsets

of X. This allows us to avoid the negative definition of the complement of a set.

Definition 2.4.1. Let (X,=x,#x) be a set and (A,i%),(B,i%) C X. A and B are disjoint with
respect to #x, in symbols A][xx B, if

A]] [[#XB S VaecaVoen (Zf (a) #*x Z)Bg (b))
If #£x is clear from the context, we write A][B.
Clearly, if A][B, then AN B is not inhabited.

Definition 2.4.2. A complemented subset of a set (X,=x,#x) is a pair A = (Al, A%), where
(A',i%,) and (A°,i%,) are subsets of X such that A'][A°. We call A the I-component of A and
A® the 0-component of A.

If Dom(A) := A* U A° is the domain of A, the indicator function, or characterictic function, of A

is the operation xa : Dom(A) ~~ 2 defined by

(2) = 1 ,x € Al
Xal®l:=199 ,x e A°.

Let rc A:oxcAlandz ¢ A =z € A°. If A, B are complemented subsets of X, let



ACB:s A CB' & BYC A,

A CyB:o A C B & B = A9,

A C,B:e A= B! & B C A°.
Let PIL(X) be their totality, equipped with the equality A =pix) B ACB&BCA. A
map f: A — B from A to B is a pair (f!, f°), where f': A* — B! and f°: A° — B°.

Remark 2.4.3.

i) Clearly A =pIL(X) B:< Al =pII(X) B! & A0 =pII(X) B.

i) Since the membership condition for PIL(X) requires quantification over Vg, the totality PI(X)
is a class.

iii) The operation x4 is a partial function in .% (X,2). Let z,w € A1 U A° such that z = 4140 w,

i.e.

%1 (2) ,z € Al

i (w) ,w e Al
i%0(2) ,z€ A0

- X - X
=1 Z)=x 1 w) =
} AIUAO( ) X A1UA0( ) ifo (’LU) LW E A0

Let z € AL, If w € A°, then
ifl(z) = ii‘(lqu(z) =x iq1pa0(w) 1= iix(o (w),
therefore (z,w) € A N A°, but this is a contradicton to AJ[A". Hence w € A! and
xa(z) = xa(w).
If z € A, we work in a similar way.
Definition 2.4.4. If A,B € PIl(X) and C € PI(Y), we define

AUB := (A'U B!, AN BY),
ANB:=(A'nB AU BY),
—A = (A0, AY),
A —-B:=(A'nB° AU BY),
A xC:=(A'x O [A" x Y]U[X x CY).

Proposition 2.4.5. If A,B € PI[(X) and C € PI[(Y), then AUB, ANB, —A and A — B are
in PI[(X) and A x Cis in PI[(X x V).

Proof. We only show A UB € PI[(X) and A x C € PI[(X x Y), the others follow in a similar
way. Let A, B e PI[(X). If a; € A", ag € A°, by € B and by € B?, then

Z'i(l (al) 7éX Z.i‘(o (ao) and i)él (bl) #X i)BfO (bo)

By definition

for z € A' U B! and

ix0npo (0, bo) := o (ag) := i%0(bo).-

Hence

10



i1 (2) #x 5on g0 (a0, bo)

for all z € A' U B! and (ag,by) € AN B° so AUB € PI[(X). Now let C € PI[(Y). If ¢; € C!

and ¢y € C°, then
iga(e1) #y igo(co)-

For z € [A° x Y] U[X x CY)

. o ()i zeaxy
140X YIU[X x €] ixieo(z) Lif z€ X x CO.

Let 2 = (ag,y) € A°xY, since i, (a1) #x i%0(ao), it holds that i3, Y, (a1,¢1) #xxy ifoxxﬁ,(ao, Y).

AlxCt

Now let z = (2,c0) € X x C, since i¥(c1) #y ibo(co), it holds that i),

z§§ co(z,co). Hence, the following holds

X XY X XY
ixryor (a1, 1) Fxxy Z[AEXY}U[XXCO](Z)

for every (aj,c;) € A' x C'and z €,50 Ax Ce PI(X xY). O

Proposition 2.4.6. Let A, B and C be in PI(X). Then the following hold:

(
(iil) —(AUB) :=(-A)N(-B).

(iii) —(ANB) := (—A) U (—B).

(iv) AUBNC) =pi(x) (AUB)N(AUC).
(v) ANBUC) =pi1(x) (ANB)U(ANC).
(vi) A-B:=An(-B).
(vii) ACB & (ANB) =pi1(x) A.
(vii) ACB & —B C —A.
(ix) If ACB and BC C, then A C C.

Proof. All the statements follow directly by the definitions. Let A := (A!, A%),B

C = (C*,C%). Then

(i) —(-A):=—(4% A"
_ (Al,AO)
=A.

(ii) (=A) N = ((A°, A")n(B°, BY))
:(AomBO,AluB )
—(AtuB', A" nBY)
—(AUB).

(iii) (~A) U = (A%, AU (B, BY))
(AO U BO A'nBY
—(A'nB', AU BY)
—(ANB).

11

(alacl) FXxY

= (B, B%) and



(iv) AUBNC):= (4", A" u ((B, B°)n (C",CY))
= (AL A u B nct, B°uc?)
= (A'uB'nC"), AN (B NCY))
=pir(x) (A'UBYHYN(A'UCH), (AN BY)u (4’ N CY))
:(AUB) (AUC).

(v) AN(BUC):= (A}, A% n((B*, B u(C*,C%)
= (AL, A% n(B'uCh,B°nCY)
= (A'n(B'nCh), AU (B°ncY))
=picx) (A'NBHUATNCY, (A°UB") N (A"UCY))
=(ANB)U(ANC).

(vi) A—B:=(A'nB° A°uU B!
= (A1, A% N (B°, B)
=AnN(-B).

(vii) (ANB) =pirx) A & (A'N B, AU B°) =pyi(x) (A, A°)
& A'N B =piix) A" & A°UB® =pyx) A°
s A'C B & B C A°
< A CB.

(viii) ACB:= A' CB' & B° C A°
< BYC A° & Al C B?
& (B, BY) C (A% AY)
& —(B',B% C —(A', A%)
= —B C —A.

(xi) Let ACB& BCC,ie A'CB"& B C A’ and B' C O & C° C B.
Therefore, we have Atlccrt &' c A’ . ACC. O

Proposition 2.4.7. Let A € PI[(X) and B,C € PILY). Then
(i) A x (BUC) =piixxy) (AXxB)U(A x C).
(i) A x (BNC) =pir(xxy) (A xB)N (A x C).

Proof. We have that

(i) Ax (BUCQC):= (A" A% x (B*uct,B°ncCY)

= (A" x (B'uCh),[A° x Y]U[X x (BN CY))
=pii(x) (A" x BYYU (A" x C1),[A° x Y] U[(X x B”) N (X x C°)))
— it (AT x BY) U (AL x CY), [(A° x ¥) U (X x BY)] 1 [(A% x ¥) U (X x C%)))
=pix) (A" x B [A? x Y]U[X x BY]) U (A" x C*,[A” x Y] U [X x C7))

=(AxB)U(A xC).
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(i) A x (BN C) (A', A% x (B*nct,B'uC?)
= (A" x (B'nC"),[A° x Y]U[X x (B°UC")))
=pir(x) (A" x BN (A" x C"),[A° x Y]U[(X x B®) U (X x C?)))

(A x BN (A' x 01, [(A° x Y) U (X x BY)]U[(A° x Y) U (X x C%)))
=p11(x) (A" x BY[A" x Y]U[X x B"]) N (A" x C1,[A° x Y]U[X x C°])
=(AxB)n(AxC). O

—PI(X)

Remark 2.4.8. Let (X, :X,;«éﬁ() and (Y,=y,#y) besets. If f: X = Y, let 2y 7%”( Ty &
f(z1) #y f(x2), for every x1,25 € X.

Proposition 2.4.9. Let the sets (X, :X,#g() and (Y,=y,#y), where f : X — Y. Let also
A:=(A', A°%) and B := (B', B?) in PI(X).

(i) f7H(A) = (f71(AY), F71(AY) e Pll(X).

(i) f7H(AUB) =pirx) fTHA)U f7H(B).

(iii) f~1(ANB) =pll(x) ~YA)n f~4(B).

(iv) fH=A) =pux) —fH(A).

(v) f7HA = B) =pi(x) [H(A) = [1(B).

Proof. (i) By the definition we have that

fHAY ={(z,a1) € X x A" | f(2) =y iu(a1) }, i

J7HA%) = {(2,00) € X x A | f(2) =y i}o(a0)}, i
Let (z,a1) € f~1(A") and (y,a0) € f~1(A°). Since i}, (a1) #y i%o(ao) and by the extensionality
of £y it holds that

f—l(Al)(xa (11)
X
f

xZ,
71(A0)(37aa0) = .

Ty (@,01) i 0y (0, 00) 0w Ay [@) Ay fy) & (1) Ay i5(ao)-
Hence f~'(A) € PIL(X). Next we have
(i) f7Y(AUB):= f}(A'uB', A°n BY)
2 (Fr At u By, (A )
=piicx) (fTHADUFTHBY, fTHAY) N fH(BY))
= f"HA)UfI(B).

(iii) f~HANB) = 1A' n B, AU BY)
D (At BY, FL(A0 U BY)
=picx) (f7HAN) N fHBY, A% U FH(BY))
=fT(A)Nf(B).

(iv) fH(=A) =f (A%, A

2 1( F7HAY)
= —(ffl(A )af '(A")
= _f_l(A17AO)

= —f1(A).
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(v) fHA -B):= f 1A' nB° A°u BY)
= (1A' n B, f71(A°uBY)
= (1A N FUBY), AN U FH(BY)
= f"HA) - f7(B). O

The following definition gives alternative operations between complemented subsets.
Definition 2.4.10. If A, B € PI[(X) and C € PI[(Y), let
AVB:=([A'nBYU[A'n B U[A°n BY],A° N BY),
AAB:=(A'nB'[A'NB°|U[A°N B U[A° N BY)),
AoB:=AA(-B),
A®C:= (A x CL[A x COTU[A° x CYU[A° x C°)).
Remark 2.4.11. If A,B € PI[(X) and C € PI[(Y), then AV B, AAB, A ©B are in PI[(X)
and A ® Cis in PI[(X x Y).

Proof. The proofs are straightforward to show. We only show the first and last membership. By
definition A VB := ([A' N B U[A' N B U[A°N B, A°N B) =: ((AV B)!, (AV B)?).
We have ((4V B)l7i€f4\/3)1) and ((AV B)O,i()in)o)7 where

iXinp1(a,b) L if 2= (a,b) € AN B?
Z'f,(awB)l(Z) = iflﬂBo(C%b) ,if z := (a,b) € Al n BO
iNonpi(a,b) L if z:=(a,b) € A°N B!

i%i(a) ,if (a,b) € (A'NBY) U (A' N BY)
i%o(a) ,ifae A°N B!

and

ifiWB)o(z) i=i%onpo(a,b) :=i%0(a) ,for every z := (a,b) € A° N BC.
Let (a1,b1) € (AV B)!, (ag,by) € A° N BY, then we get the required inequality

igil\/B)l (a1,b1) #x %0 o (a0, bo).

Hence (A V B)'][(AV B)? and therefore A vV B € PI[(X). Now let (ai,c1) € A' x C' and
(ag,co) € AY x C, then

iar(a1) #x iao(ao) and ici(c1) #y ico(co).

By definition

i§1><><yc1 (ahcl) = (Z)A(I (al)a igl (Cl)'
If (a1,c0) € A' x C° then i}, "o(a1,co) = (i%i(a1),i%0(co)), if (ao,c1) € A® x C%, then

ifoxxigl(ao, c1) = (iﬁo(ao),igl (c1)) and if (ag, cp) € AYxCY, then ifOXXYCO (ag,co) = (ifo (ao),igo (co))-

In every one f these cases we have the inequality

iflxxyco (a1, co)

ifq(lXX)/Cq (a1,¢1) #xxy ii‘(oxgcl (ag,c1)

ii(OXX%O (ao, CO)~
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Hence A® C c PI(X xY). O

With the previous definitions the corresponding characteristic functions are expressed through

the characteristic functions of A and B, which is shown in the next proposition.

Proposition 2.4.12. If A, B are complemented subsets of X, then A VB, AAB, A6B, A®B
and —A are complemented subsets of X with chraracteristic functions

(i) xavB =#(x,2) XA V XB-

(ii) xarAB =2 (x,2) XA - XB-

(ili) xaeB =2 (x,2) xa(l — xB).

(iv) xaeB(7,¥) =7(xxx,2) Xa(Z) - XxB(Y)-

(V) X-a =z(x,2) | — Xxa-

Proof.

(i) The partial function xavp is defined as the triplet

XAVB ‘= (DOIII(A \ B)v i]gim(AvB)a (XA\/B)gom(A\/B))'

If xa : Dom(A) — 2 and xp : Dom(B) — 2, we have the partial function
Xa V xB = (Dom(A) N Dom(B), i35na)rpon(8): (XA V XB)5on(A)pon(B) )

where

1 ,ifaec A'vbe B!

Vv 2 ,0) =
(xa XB)Dom(A)mDom(B) (a,b) {O Jif (a,b) € A0 A BO

for (a,b) € Dom(A) N Dom(B).

Since Dom(A V B) =p(x) Dom(A) NDom(B), and if (f, g) : Dom(A V B) =p(x) Dom(A) NDom(B), the

following inner diagrams commute

Dom(A V B) Dom(A) N Dom(B)

X - X
“Dom(AVB) X 2Dom(A ) NDon(B)

(XAVXB)gom(A)ﬁDom(B)
2

Since (XAVXB)gom(A)ﬂDom(B) of = xavp and xayp°g = (xa \/XB)gom(A)ﬁDom(B) the outer diagrams

commute,and therefore the two partial functions xays and xa V xg are equal in Z# (X, 2).
(ii) By the definition of multiplication of partial maps ya : Dom(A) — 2 and xp : Dom(B) — 2, we

have the partial function

XA " XB = (DOIII(A) N Dom(B)’ iéf)m(A)ﬁDom(B)’ (XA ’ XB)gom(A)ﬂDom(B))’
(xa - XB)gom(A)nDom(B)(uvv) = xa(u) - xB(v)
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for every (u,v) € Dom(A) NDom(B). The partial function yaap is the triplet

Xang = (Dom(A A B), igim(AAB)’ (XA/\B)gom(A/\B))'
Since Dom(A AB) =p(x) Dom(A) NDom(B) and if (f, g) : Dom(A AB) =p(x) Dom(A) NDom(B), then

the following inner diagrams commute

f

T

Dom(A A B) Dom(A) N Dom(B)

. X - X
“pom( AAB) X “Dom( A ) NDom(B)

2
(XAAB)bon(AnB) (XA “XB)pon(A) Apon(B)

Let (a1, b1) € A* N B!, then

(xa -xB)(a1,b1) := xa(a1) - xB(b1) =1-1=1= xans(ai,b1).

Working similar for the other cases, we have commutativity of the above outer diagrams, hence
XAAB =Z(X,2) XA " XB-
(iii) The multiplication of the partial functions xa : Dom(A) — 2 and 1 — xp : Dom(B) — 2 is the

partial function
. 2
xa(l—xs) = (Dom(A) N Dom(B), Zéim(A)nDom(B)’ (XA(l - XB))Dom(A)ﬁDom(B))’
xa(l—xs)(a,b) == xa(a) - (1-xs(d))

for every (a,b) € Dom(A) NDom(B). The partial function xacp is defined as

XACB = (Dom(A ©B), i[))im(A@By (XAGB)gom(AeB))'
Since Dom(A ©B) =p(x) Dom(A) NDom(B), and if (f, g) : Dom(A © B) =p(x) Dom(A)NDom(B), the

following inner diagrams commute

f

/—\

Dom(A & B) Dom(A) N Dom(B)

\—/

g

- X - X
“Dom(ASB) X “pom(A)NDom(B)

3
(XAeB)Dom(AeB) (XA(l_XB)>2

Don(A)NDon(B)

2

Let a € A',b € B'. By the definition of multiplication on 2, we have
(xa(l—x8))(f(a,b)) = (xa(l —xB))(a,b) = xa(a)(1 = xB(b)) =1-(1 - 1) = 0= xaen(a,b).
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Working similarly for the other cases, we see that the above outer diagrams commute and therefore
XAcB =7(x,2) XA(l —xB).
(iv) xa(x) - xB(y) is the partial function
. 2
xa(r) xs(y) = (Dom(A) X Dom(B),Z]ﬁ:(ii)XDom(B), (XA(QC) ) XB(y))Dom(A)XDom(B))

for every (z,y) € Dom(A) X Dom(B). The partial function xyagp is the triplet

XaeB = (Dom(A @ B),ijo aen): (XASB)pon(asB))-
Since Dom(A®B) =p(x x x) Dom(A) xDom(B) and if (f, g) : Dom(A®B) =p(x x x) Dom(A) xDom(B),

the following inner diagrams commute

!

T

Dom(A ® B) Dom(A) x Dom(B)

\/

g9

. X - X
Lpom(AQB) X “Dom(A) X Dom(B)

2
(XA9B)oom(agB) (XA'XB)]?om(A)XDom(B)

2

Let (z,y) € A' x BL, then xags(z,y) :=1=1-1=: ya(z) - xB(y). In the other cases it holds
that xaes(z,y) :=0=: xa(z) - xB(y). Therefore the above outer diagrams commute as well and

we have xaeB(Z,Y) =2 (xxx,2) Xa(T) - xB(Y).
(v) The partial functions y_a and 1 — ya are defined as follows

X—A = (Dom(*A)’ir))(om(—A)v (X_A)gom(—A))7
1 xa = (Dom(A), i a) (1 = XA)5on(a))-

Since Dom(—A) =p(x) Dom(A) and if (f,g) : Dom(—A) =p(x) Dom(A), the following inner diagram

commutes
f

(X=A)pon(—A) (1=XA)5m(a)

Ifa€ A, then 1 — ya(a):=1—-1=0=x_a(a) andifa € A°, 1 —ya(a):=1-0=1=x_a(a).
Therefore the outer diagrams commute and it holds that x_a =z (x2) 1 — xa- O
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2.5 Complemented subsets and 2-valued partial functions

We denote by F3¢(X,2) the class of all strongly extensional partial functions from X to 2.
The next proposition shows that there are class functions between the two classes PII(X) and
F°¢(X,2), and that they are in fact inverse to each other. We follow [7], where the proof of the
following proposition originally lies. Here we give a full proof and show that the two class functions

are inverse to each other.

Proposition 2.5.1. If (X,=x,#x) is a set with an inequality, let the proper class-assignement

routines be defined as follows

Xpll(x ) s FX,2), A x¥(A) = xa,
= (AU A% a0 X ruao)s

X F5(X,2) ~ PI(X), fa:= (A%, [3)— 6% (fa),
5 (1) = (8303), mml 2 BUD: isgrm) )

where
6(f2) =faec Al fi=21}=[f%=21],
60(f3) ={a€cA| fZ=20} = [f5=20],

for every A := (A',i%,, A% i%,) € PI(X) and every f3 := (4,4}, f3) € #°°(X,2). Then
(i) XX is a well-defined, proper class-function.
(ii) 0% is a well-defined, proper class-function.

(iii) x* and 6% are inverse to each other.

Proof.

(i) Let A, B € PI(X), A = (AY,i,, A%, i%,) and B = (B, i%,, B, ZBO) To show that x X is well-
defined, we only need to show that ya is strongly extensional, i.e. x2 “Atu40 1s strongly extensional.
Let z,w € A' U A%, such that

X%lqu (2) #2 X,%;lqu (w).

Now suppose that X%, 40(2) := 1 and x3:, 40 (w) := 0, i.e. z € A' and w € A°. By the definition

of a complemented subset we get
i1 (2) #x 0 (w) €1 2 #1000 .
If x31,40(2) == 0 and x5, 40(w) :=1,ie z€ A® and w € A", we get
50 (2) #x 5 (W) €1z Farpa0 w.
Therefore X is strongly extensional. We still need to show that
A =pi1(x) B= XA =gs(x.2) XB

in order for y*X to be a proper class-function.
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Let (e1, 1) : A' =pir(x) B' and (e, jo) : A° =pir(x) B, then the following diagrams commute

Al B! A0 BY
i o e %0 7 i50
X X

We define the functions e : A' U A% — B'UB? and j : B' U B — A' U A° respectively by

e(z) = {61(2’) ,z€ Al ) = {j1(w) we B!

eo(2) ,z €AY Jo(w) ,w e BY.

Let z € A'UAC. If z € A, then i, po(e(2)) = i3 (€1(2)) = i%:(2) == i3 40(2) and if z € A,
we have i3 go(€(2)) = ixo(€0(2)) = i%0(2) := i%1, 40(2). Working similarly for w € B' U B?,

the following diagram commutes

€

/\‘

AU A° B'uB®
~_ ,
ifluAO i)BflLJBU
X
Xilqu X%IUBO
2

and therefore (e, j) : xA =2sc(x,2) XB, meaning that xX is a proper class-function.
(ii) Let fa € Z°¢(X,2), fa:= (A,i%, f3). We first show that 6% (fa) € 2I(X).
Let a € 6(f%) and b € 80(f3). As

fi(a) =2 1+#20=2 f3(b),

by the strong extensionality of f§ and according to the definition of the canonical inequality of
the subset (4,i% ), we get

a#abieix(a) #x ix(b).
Now we want to show that

fa=ze(x2) [B=05(fa) =p11(x) 7 (fB).
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If (A i, f3) =gee(x,3) (B,i%, f5), then the following diagram commutes

€AB

m

A B

S~

- X #2 X

The outer commutativities (#1) and (#2) imply that the functions

)
(eaB)isi(r2) 2 06(f3) — 05 (f3) and (ear)sa(s2) = 00 (f3) — 03(fB),
(epa)isa(rz) s 06(f5) — o (fX) and (epa)soszy : 00(f5) — 05(f3)

are well-defined. The commutativities (#3) and (#4) of the above inner diagrams (A, B, X) imply

the commutativity of the following diagrams

(ean) 5153 (eaB)|s0(s3)

(eBa)51(s3) (eBa)50(s3)

(4153053 (B)153(52) (14)159s2) (1B)159(s2)

X X

which proves that 0™ (fa) =p11(x) 6~ (f8) and therefore 6% is a proper class-function.
(iii) Let A € 2I(X), then
5X (XX (A)) = JX (Al U AO, ’i§1qu, XiluAO)
(51( A1040)5 (ZiluAO)lz%(xilqu)’58(X12211UA0)7(iiluAO)lég(xilqu))
=21(X) (Al ZAlvAO ZAU)
= A

Let fa € F*¢(X,2), then

(5X (fa) ) :XX(5X A ZAva )
=XX( (83 11(s2), 00 (f2); (21)4()|68(f§))
= XX([fA =2 1} Ur2=s1 [fA =2 O]ai[);g:Qo]))
= ([ff =2 HU[fi =2 O] 53 2110173 =200 X{3 =2 11013 =20))
=r(x2) (AiX, [3)=:fa
Hence 6% and ¥ are inverse to each other. O
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Remark 2.5.2. We notice that the use of strong extensionality is crucial to the proof that 6% is
well-defined. The statement would not hold for .# (X, 2).
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3 Categorical aspects

After having discussed Bishop set theory, we will in this chapter talk about the categorical aspects
of Bishop set theory. Following [6], we consider the category of complemented subsets and Chu-

representation of different categories.

3.1 Basic definitions

We will first introduce some basic definitions of category theory following [1].

Definition 3.1.1. A category consists of objects A, B,C, ... and arrows f,g,h,...,for f: A— B
we call A the domain of f and B the codomain of f. For given arrows f: A— Bandg: B— C
there is a given arrow go f : A — C' called the composite of f and g. For each object A there is a
given identity arrow 14 : A — A.

The following is required to hold:

(i) Associativity:

ho(gof)=(hog)of
foral f:A—-B,g:B—C,h:C — D.
(ii) Unit:
Jola=f=1pof
forall f: A— B.
If C is a category, we denote by Cj the objects and by C7 the arrows of C.
Definition 3.1.2. A functor
F:C—D
between two categories C and D is a mapping of objets to objects and arrows to arrows, such that
(i) F(f: A= B)=F(f): F(A) —» F(B),
(i) F(1a) = 1p(a),

(ili)) F(go f) = F(g) o F(f).
A functor F' : C — C is called an endofunctor.

Definition 3.1.3. Let the category C have binary product x. An exponential of objects B and
C consists of an object CP and an arrow € : CB x B — C such that, for any object A and arrow
f:Ax B — C there is a unique arrow f : A — CB such that

EO(fX1B):f,
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meaning that the following diagram commutes
CBExB ——C
fx1p 7
Ax B

Definition 3.1.4. A category is called cartesian closed, if it has finite products and exponentials.

Definition 3.1.5. In a category C, an arrow f : A — B is called
(i) a monomorphism, if given any g,h : C — A, fg = fh implies g = h.
(ii) an epimorphism, if given any 4,j : B — D, if = jf implies i = j.

Definition 3.1.6. A category is called thin, if for any objects A, B and morphisms f, g from A
to B

f
A=B=f=g.
9

Definition 3.1.7. The pullback of f : A — C and g : B — C consists of an object P with
morphisms p: P —> Aand q: P — B

P A

|

B C

such that fop = goq and universal with this property. That means for any given s; : S — A and

_r

g9

$9: S — B with fos; =go sy, there is a unique u : S — P with s; =powu and so = gou.

A
hf
—F— C

N
P
|
B
The pushout of f: C — A and g : C — B consists of an object P with morphisms p: A — P and

q:B—P
c A
B

—F P
such that po f = g o g and universal with this property.

_r
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3.2 The category of complemented subsets

After having discussed complemented subsets in the last chapter, we will now present the category

of complemented subsets.

Definition 3.2.1. If X is a set , the poset category ’PM(X) has as objects the complemented
subsets of X and a morphism f : A — B is a pair f = (f1,f0) : A C B,ie. f;: A C B! and
fo : B® C A°. The unit morphism 15 of A is the pair (id1,id40) and if g = (g1,90) : B C C,
then go f := (g1 0 f1, fo° g0)-

Proposition 3.2.2. Let A, B, C € PI[(X).

(i) If f: A —Bandg:C — B, then A xg C:= (A! xp C, A° + 50 CY) is a pullback, where

Al xp1 Ct = {(a1,¢1) € A' x C* | fi(ar) =pr g1(c1)},
iAlelcl : Al X pB1 Cl — X, iAlelcl(al,cl) = ifl(al); (al,cl) S Al X B1 Cl,
AY 5o C0 .= AU OO,
(i) If f: B— A and g: B — C, then A +5 C := (A! +p51 O, A° x go C?) is a pushout, where
Al 451 Ct = AU CH,

A% xgo C° := {(ag, co) € A® x C° | fo(ao) =po go(co)},
iAOXBocO t A% x o O = X, iAOXBOCO(ao,CO) = iio(ao); (ag,co) € A% x o CV.

Proof. (i) Let f = (f1,f0) : ACBand g = (g1,90) : CC B, ie. f1:A' C B! fy: B°C A° and
g1:CY C B go: B C C°. We define the morphism p = (p1,po), where

p1: A xp CY = AL piar, ) = a,
po: A® = AY 450 C%  polag) := (ao, co) € A°UC°

and the morphism ¢ = (q1, qo), where

@A xp C' = Y, qi(ar, ) = e,
qo : CO — A° +pBo CO, qO(Co) = (a(),C()) € A0 U CO.

Let ((Zl,Cl) € Al X p1 Cl, then
fi(pi(ar, c1)) = filar) =p1 g1(c1) = g1(q1(ar, c1)),

so fipr = 91q1-
Now let by € B, then there is a ap € A° and a ¢y € C°, such that fy(by) = ap and co = go(bo)-
We then get

po(fo(bo)) = po(ao) = (ao, co) = qo(co) = qo(go(bo)),

80 pofo = qogo- Therefore fp = gq, which proves that A xg C is a pullback.

(ii) We precede similarly as in (i):

Let f = (f1,f0) : B C Aand g = (g1,90) : B C C,ie. f; : Bt C Al fy : A° C B° and
g1: Bt CCtgy: C° C BY. We define the morphism p = (py, pg), where

pr: Al - Al 45Ot pi(ar) == (a1,¢1) € AL UCH,
po: AY xgo C0 — A% po(ao, co) = ag

and the morphism ¢ = (g1, o), where
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q1:C' = A 45 CY qi(er) i=(a1,c1) € ALUCH,
qo : AY x o C° = C°, qo(ao, co) := co
Let by € B!, then there is a a; € A' and a ¢; € C*, such that fi(b1) = a3 and g1(b1) = ¢;. We
then get
p1(f1(b1)) = pi(ar) = (a1,c1) = qi(c1) = q1(g1(b1)),
sop1fi = q191. Now let by € B, then f(b) € A' and g(b) € O, since f : B! C Al and f: B! C C*!

fo(po(ao, co)) = folao) =po go(co) = go(qo(ao, co)),

s0 fopo = goqo-
Hence pf = pg, which proves that A 4+g C is a pushout. O

Proposition 3.2.3. Let the sets (X, :X,7é§() and (Y,=y,#y), where f : X — Y and the
inequality 7&; on X induced by f is defined by

v £ a e f(z) £y f(@).
Let K := (K*, K°), L := (L', L°) in PI(X) and A := (4!, 4%), B := (B!, B®) in PI(V).
(i) f7HA) = (F1(AY), F1(AY) e Pll(X)
(it) fTH(AUB) =pux) fTH(A)Uf1(B)
(iii) 7 (ANB) =pux) fH(A)NfH(B)
(iv) F7H=A) =pi(x) —fH(A)
(v) 1A = B) =pu(x) fH(A) - f1(B)
(vi) ACB= f1(A) C f~}(B)
(vi)) f(K) == (F(K"), f(K®)) € PI(Y)
(viii) K C L = f(K) € f(L)
(ix) f(K)U f(L) S f(KUL)
(x) f(KNL) So f(K) N f(L)

Proof. We will only show (i) and (vii)-(viii):

(i) By definition we have

FHAY ={(z,a1) € X x AV | f(z) =y ifi(a1)},  ip-aqan(@,a1) =,
FTHAY) = {(z,a0) € X x A% | f(z) =y i%o(ao)},  ip-10a0)(x,a0) = 2.

Let (z,a1) € f~1(A') and (2,a0) € f~1(A%). Then we have, by extensionality of #y that
ig-10an) (T, a1) A ipo1a0)(2,00) 10 1 £ 216 f(2) Ey f(2) @ i (a1) Ay 5 (ao),

which holds by the hypothesis K € PI(X).

(vii) By definition we have

FIEY) :={f(k1) | kr e K'},  fxr = foig,
F(K®) :={f(ko) | ko € K°},  fxo = foio.

Let k1 € K' and kg € K°. Then we have that

ki # ) ko 4 (i (ka)) v fligo (ko)) 1 i (k1) #% 170 (ko) = i (k) #x i35 (Ko),
which holds by the hypothesis A € PIL(Y).
(viii) Let K C L, i.e. K' C L' and L° C K°.
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FEY) = {f(k) | ke K}, f(LO):={f(1) |l € L°}

Let k € K! and | € L°, then k € L' and | € K°. Therefore f(k) € f(L') and f(I) € f(K°)
for every k € K! and [ € LY. So we have f(K!') C f(L') and f(L°) C f(K°), which proves the

statement. O

3.3 The Chu category
The Chu category can be defined on a category with products.

Definition 3.3.1. Let C be a cartesian closed category. The Chu category Chu(C,~y) over C and
~v € Cp has objects Chu spaces, i.e. triplets (a, f,z) with a,z € Cy and f:axz — v € Cy. A
morphism ¢ : (a, f,2) — (b,g,y) in Chu(C,~), or a Chu transform, is a pair ¢ = (¢+, ¢~ ), where
¢T :a—band ¢~ : y — z are in C; such that the following diagram commutes

laxo™
axXy ——————aXxXzx

ot x1, f

bxy 5 ~

If0 = (0%,07) : (b,g.y) = (c.h.2), then B0 ¢ = (9% 0 . p~ 0 07).

1o Xp™
axy —————saxzx
¢t x1, f 1ax (¢~ 007)
bxy ———5—— 7 axz
1p,x6° h (0% 0pT)x1,
bX 2z — 3 cX 2
0t x1,
Moreover, 1, .0 = (1a, 12).
1,x1
axXxr ———"saxzx
1oX1y f

Xr ———
axXx 7 5

Remark 3.3.2. To show that composition is well-defined in Chu(C,~), we show commutativity

of the triangle in the above definition:



= hc, 2)

= [ho (67 x 1.)] (b, )
=[ho (8% x1.)0(¢" x 1.)](a, 2)
— [ho (0% 0 (6) x 1)) (a2).

Definition 3.3.3. A functor F': C — D, with Fy : Cy — Do and F; : C1 — D1, is called
i) injective (sujective) on objects, if Fy is an injection (surjection).

il) injective (sujective) on arrows, if Fy is an injection (surjection).

i) faithful, if for every a,b € Cy

Fapy : Ci(a,b) — D1(Fy(a), Fo(b)),

where F(,5)(f) = F1(f), is an injection.

iv) full, if for every a,b € Co, F(q,) is a surjection.

v) an embedding, if F is injective on objects and faithful.

vi) a representation, if F is a full embedding.

vii) a strict representation, if F' is injective on objects, arrows and is full.

viii) a Chu representation, if D is a Chu category and F is a representation.

3.3.1 A Chu-representation of the category of subsets

Definition 3.3.4. The category of sets Set has as objects sets (4,=4). If (A,=4),(B,=p) are
objects of Set, the morphisms are functions f : A — B.

Definition 3.3.5. The category of subsets P(X) has as objects the subsets (A4,i% ) of the set X.
If (A,i%) and (B,iy) are objects of P(X), a morphism f : (A,i%) — (B,i%) is a function, such

that the following diagram commutes

A— 7t B
z\ (A
A B
X

If g: (B,ig) = (C,i), we define go f : (4,i} ) = (C,i). Moreover Laxy =1da.

Proposition 3.3.6. (Chu-representation of P(X))
If (X,=x) is a set, then the functor

EX :P(X) — Chu(Set, X)
Eé((AvifA():(Avlil(’]l)v
I :Ax1— X, I¥(a,0) =i%(a) a€A,
Ef((f : (A’Zi() - (szg)) = (f,idy) : (A,I:Z(,]l) - (B,Ig,]l),

is a full embedding of P(X) into Chu(Set, X).
Proof. First we will show that EX is a well-defined functor. Clearly EX is a functor. Let (A,i%) €

P(X), then
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Eé((Avlil() = (Aajix(v 1).
A, 1 are objects in Set. Let (a,0), (b,0) € A x 1 with (a,0) = (b,0), i.e a = b, then
I3 (a,0) = i{ (a) = i} (b) = I} (b,0).

Hence I is a function in Set. Let (B,ix) € P(X) and f : (A,i%) — (B,i%), meaning that the

following triangle commutes

A— 7t B
z\ (P
A B
X

This implies the commutativity of the following rectangle

idA Xid][

Ax1 Ax1
fxile/ Jlf{

since I (ida x idy(a,0)) = I{(a,0) = iX(a) = ix(f(a)) = IF(f(a),0) = Ia(f x idy(a,0)),
for (a,0) € A x 1. Therefore EX(f) : (A,IX,1) — (B,I5,1) is in Chu(Set, X) and E¥ is
well-defined. Now let (g1,92) : (A, I5,1) = (B, Ix, 1), then the following triangle commutes

Ax1 Bx1
W
I 1%
X

which implies that (A4,i% ) = (B, i3 ), therefore EX is injective on objects. Now let (f,idy), (g,idy) :
(A, I§,1) = (B, I, 1), with (f,idy) = (g,idy), i.e.

(f(l?),()) = (fa ldl)(l‘,O) = (gvidl)(z70) = (Q(I),O)

for all (z,0) € A x 1. Therefore f = g and EX is injective on arrows. Hence EX is an embedding.
We still need to show that EX is full. By the commutativity of the above rectangle, we get the
commutativity of the first triangle. Hence, if (f,id;) : (A,I%,1) — (B, I5,1) is in Chu(Set, X),
then f: A — B is in P(X), so E¥X is a full embedding. O

Definition 3.3.7. If C is a category and v € Cy, the category Sub(C,~) of subobjects of ~ has as
objects the monomorphisms of C with codomain « and a morphism f : i — j, where i : a < v and

j 1 b vy is a morphism f : a — b such that the following diagram commutes
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Remark 3.3.8. Let g,h : k — ¢, where k : ¢ — v and i : a < ~. Suppose fg = fh, then the
following diagram commutes
c éﬁ a—1 b

Y

v

and it immediatly follows that g = h, i.e. f is a monomorphism. Moreover the diagram shows
that Sub(C,~) is thin.

Proposition 3.3.9. (Chu—representation of Sub(C,’y))
If C is cartesian closed, the functor

ESub(C.7) : Sub(C,~) — Chu(C,~),
E(?ub(c,’)’)(i PN 7) = (a,i opr,, ]-)a
ax1 &) a ‘—Z> 7>

Ef’Ub(C’A/)(f i —j)=(f,11): (a,i0opr,, 1) = (b,jopry,1)
is a full embedding of Sub(C,~) into Chu(C, 7).

Proof. First we show that ESUP(C7) is a well-defined functor. Clearly it is a functor, so we only
show that it is well-defined. Let i : a — v be an object of Sub(C,y). Then

EOSub(C,’)’)(i Cq e ’Y) = (a,i opr,, 1).

Since the morphism pr, is an isomorphism, it is a monomorphism and therefore i o pr, is a

monomorphism. To show that ElsUb(c’W)(f) : (a,i0pr,,1) — (b,j o pry,1) is a morphism in

Chu(C,v), we need to show that the following rectangle commutes

Lax1
ax1l —""1 5 ax1

fx 11[ ‘/iopra

bx1 ——— 5
JOPTY

It holds that

iopr, = (jof)opr, =jo(fopr,) =jolpr,o(f>x11)]=(jopr,)o(fx1),

as the equality f opr, = pr, o (f x 1;) follows from the definition of f x 1;

ax1
pry EYL
a if><11 1
N,
be—t  px1 —21 51

Therefore, we have (iopr,)o (1, x 1;) = (jopr,) o (f x 11), which proves that the above rectangle
commutes. Hence ES"P(:7) is well-defined. Let (a,i o pr,,1) = (b,j opry,1), then a = b and

iopr, = jopr,. As pr, is a monomorphism, we get ¢ = j, which shows that ESub(C) g
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injective on objects and it is trivially injective on arrows. To show that the functor is full, let
(¢*,¢7): (a,iopr,, 1) = (b,jopr,,1) in Chu(C,v). Clearly ¢~ = 1;. By the previous equalities
we get i opr, = (jo¢")opr, and since pr, is a monomorphism, it follows that j o ¢T = i.
Therefore ¢t : i — j is in Sub(C, 7). Hence ES"P(€7) is a full embedding. O

3.3.2 A Chu-representation of the category of complemented subsets

Proposition 3.3.10. (Chu-representation of PI(X))
If (X,=x,7#x) is a set with an inequality, then the functor

EX: PI(X) - Chu(Set, X x X),
EF(AY i, A% i) = (A, i, x i%,, A9),
Ef(((flvf())A_)B)_(flafO)( iAl XZAWAO) (Blai)él Xi)BgOaBO)
is a full embedding of PM(X) into Chu(Set, X x X).

Proof. Clearly EX is a functor, but we still need to show that it is well-defined. Let (A?!, ifl ,AC ifo)
be in PIL(X), then

Eg‘(Al,ifl,Ao,z'fo) = (Al,if_{l X ifo,AO).
Let

PN X%t A x A" - X x X
i X i%o](at, a®) = (i (a"), 350 (a”)),
for every (a17a0) € A x A°. A' and A° are objects in Set and z'ifl X iﬁo is a function in Set,
hence (Al,ifl X ii{o,AO) is in Chu(Set, X x X). If (f1, f°) : A — B, then the commutativity of

the following two triangles

I 10
N Y . o T~ 0
X X

implies that

[(i% xi%0) o (idar x f°)](a',b°) = [i%: x i%0](a', fO(b°))
(iil(al ZAO (o )
= (i (f'(a")), i ("))
= [i: x igo](f (a"),b°)
[(i%: x i) o (f* x idpo)](a',b").
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Therefore the following rectangle commutes

id 41 x O

Al x BO Al x A9

1y s . .
f deBol( ‘jﬁl ><1‘)A(0

B'xB" ———— X x X
151 X550
and (f1, f0) : (A%, x i%,,A%) — (Bl,i%, x i%,,BY) is a morphism in Chu(Set, X x X).
Hence EX is a well-defined functor. Clearly, EX is injective on objects and arrows, hence it
is an embedding. We still need to show that it is full. Let (f!, %) : (A%, x i%,,A%) —
(B',i%, X i%o, B%) in Chu(Set, X x X). The above equalities also show that the commutativity
of the above rectangle implies the commutativity of the above triangles. Hence, (f1, f°): A — B.
Therefore EX is a full embedding of PI[(X) into Chu(Set, X x X). O

Consequently, we can identify PI(X) with the full subcategory of Chu(Set, X x X) with
objects triplets (Al,if1 X iﬁo, AY), where ifl : A — X and ifo : A® — X such that

VarearVeoe a0 (ifl (al) #x i,)q(o (ao))-

We notice that the Chu(Set, X x X) ”captures” the behavior of the morphisms in PJ(X), but
not the positive disjointness of A, A°, as there are objects (4, f, B) of Chu(Set, X x X), with
AJB. As an example we consider the triplet (X,idxxx,X). Obviously X{X, but (X,idxxx,X)
is an object in Chu(Set, X x X).

Can we characterize categorically the full subcategory of Chu(Set, X x X), that corresponds

to Bishop’s complemented subsets, in order to grasp apartness of subsets categorically?

3.4 The generalized Chu construction over a cartesian closed category

C and an endofunctor on C

We need to generalise the Chu construction in order to embed Pred and Pred” into a Chu

category.

Definition 3.4.1. (The Chu construction over a ccc and an endofunctor)

Let C be a cartesian closed category, and let T : C — C be an endofunctor on C. The (generalised)
Chu category Chu(C,T") over C and T' has objects quadruples (z;a, f,b) with z,a,b € Cy and
fraxb—To(z) € C;. A morphism ¢ : (z;a, f,b) = (y;¢,9,d) in Chu(C,T'), or a (generalised)
Chu transform, is a triplet ¢ = (¢°, ¢, ¢7), where ¢° : & — y, ¢7 :a — cand ¢~ : d — b are in
C such that the following diagram commutes

1g -
axd —2  axb

Iy
To(z)

lrl(dz‘))

¢xd ———F— To(y)

T x1q
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Ifo=(0°0",07):(y;c,9,d) — (259,h,7),let Oop: (000", 0F 0T 07 007).

axd —22 L axb
f
¢t x1q Lo(z) Lax (¢~ 007)
Iy (¢°)
cxd — To(y) |T1(6%4%) axj
(6%
1,x60~ To(z) (6T opT)x1;
h

CX]—W X ]

Moreover, 1(z.q,10) = (12, 1a, 15).

1a><1b

axb axb
s
Lax1y To(x)

Jﬁ(lm):lro(z)

axb — To(z)

Remark 3.4.2. To show that composition in Chu(C,T") is well-defined, we show that the triangle

in the above definition commutes:

[T1(0°0¢°) o follyx (¢~ 007)]](a,j) = [T1(8°) o T1(¢°) o f o [La x (¢ 007)]](a,j)
= [11(6°) o [[1(6°) 0 f o (1o x ¢7)] 0 (Lo x 67)](a, )
= [[1(0°) 0 go(¢T x 14) o (14 x 07)](a, ))
= [[1(6°) o go(¢T x 1a)](a,d)
= (T1(6°) 0 g)(c, d)
= [[1(6°) o go (1. x 07)](c, 4)
= [F1(6°) ogo (e x07) o (¢F x 1;)](a, )
= [[T1(8°) o go (1 x 67)] o (67 x 15)](a, /)
[[ho (67 x1))]o (67 x 1;)](a,7)
=[ho[(0F 0¢T) x 1,)]](a, ).

Proposition 3.4.3. Let C be a ccc, v € Cy and let I'Y : C — C be the constant endofunctor with
value v, i.e. I'J(a) = v, for every a € Cy, and I'](f) = 1,,, for every f € Cy. Then the functor

E7 : Chu(C,v) — Chu(C,I),

Ej(a, f,b) = (v;a, f,b),
E)((o%,¢7) : (a, f,0) = (¢, 9,d)) = (14,6T,07) : (v;a, f,b) = (3¢, 9,d)



is an embedding of Chu(C, v) into Chu(C,TI'7).

Proof. Let (¢7,¢7) : (a, f,b) — (¢, g,d), then the following upper inner diagram commutes

axd%axb

)
/i

exd ———7— Toly

¢ x14

This implies that

[1y0fo(lyx¢7)]|(axd)=1y(To(x))
=To(y)
= [go (6T x +a)](a x d),

which shows that the above outer diagram commutes and (1,,¢",¢7) : (v;a, f,b) = (v;¢,9,d).
Therefore E7 is a well-defined functor. Clearly E7 is injective on objects and arrows, hence it is
an embedding. O

3.4.1 A generalized Chu-representation of the category of predicates

We present the definition of the category of predicates within BST.

Definition 3.4.4. The objects of the category of predicates Pred are triplets (X, if, A), where X
is a set and (A,i% ) is a subset of X. If (X,i%, A) and (Y, i}, B) are objects of Pred, a morphism
u: (X,i%X,A) — (Y,i5, B) in Pred is a pair of functions u = (u®,u™), where v : X — Y and

ut : A — B such that the following diagram commutes

A—— > B
iX\[ li"
A B

X ———Y

If v =(%0v"): (Y,i%,B) = (Z,i4,C), we define vou : (X,i%,A) = (Z,i&,C) by vou =

(v* ou®, vt ouT). Moreover, 1y x 4y = (idx,ida).

Proposition 3.4.5. (Generalized Chu-representations of Set and Pred)
(i) The functor ES°t : Set — Chu(Chu, Id), defined by

E§e(X) = (X; X, Ix, 1),
IF:Xx1—-1dy(X)=X, I¥(z,0)=12; z€X,
EFet(f: X =Y =(f,f): (X,ix,X) = (Y,iy,Y)) = (f, f,ida) : (X3 X, I, 1) = (Y;V, Iy, 1),

is a full embedding of Set into Chu(Set,Id).
(ii) The functor EFr®d : Pred — Chu(Chu, Id), defined by



EFred(X,iX, A) = (X; A, I, 1),
I :Ax 1 —=1do(X) = X, IX(a,0)=1i%(a); a€ A,
Efred(u= (u,ut) : (X,iX, 4) = (Y,ip, B)) = (u’,ut,idy) « (X; A, I, 1) = (V3 B, I}, 1),

is a full embedding of Pred into Chu(Set,Id).
(iii) If F : Set — Pred is the full embedding of Set into Pred, defined by

Fo(X) = (X, idx, X),
RB(f: X =Y)=(1),

then the following diagram commutes

Set — 2, Chu(Set, Id)

/| o

Pred w} Chu(Set,Id)

Proof.
(i) First we show that ES° is a well-defined functor. Let X be in Set, then
ESet(X) = (X; X, IF, 1).

X and 1 are objects in Set and I3 is a function in Set. If f : X — Y, then the commutativity of

the following rectangle
f

P

—Y
ix L{
—>f Y

—

=

implies the commutativity of the following diagram

X x1 —dxxids oxoq

Fxidy X
Jf

_
Y x1 53 Y

since

[f oI o (idx xid1)](z,0) = (f o I%)(,0) = f(z) = I} (f(2),0) = [IY o (f x id1)](,0).
Therefore (u°,u®,id;) : (X;X,I%,1) — (Y;Y,I7,1) is in Chu(Chu,Id). Clearly ESet is a
functor, hence it is a well-defined functor. ESt is injective on objects and arrows, so it is an
embedding. We still have to show that it is full. If (f, f,idy) : (X; X, I, 1) — (Y;Y, I¥, 1), then
the commutativity of the above rectangle implies the commutativity of the first rectangle, hence
(faf) = (X7i§’X) - (Y’ZSX;7Y)

(ii) Clearly EFred is a functor. Let (X,i%, A) be in Pred, then

E(IJDFEd(Xv 7',)4(7‘4) = (X;A,Iil(a ]]-)



X, A and 1 are objects in Set. I is a function in Set. If u = (u°,u") : (X,i%,A4) = (V,i%, B),

then the following rectangle commutes

iX\[ iy
A B
X ———Y

which implies the commutativity of the following diagram

Ax] —daxids g

u+><id1 X
J{Idl(u0)=u0
_
Bx1 v Y
since
[u® o I} o (ida x idy)](a,0) = u®(I (a,0))

=u’ (i (a))
=ig(ut(a))

Ilg(qu (a), )

= [IB o(ut 01d]1)](a,0).

Hence (u®,ut,idy) : (X;A4,I%,1) — (Y; B,1%5,1) is in Chu(Chu, Id) and EFT4 is a well-defined
functor. Clearly it is injective on objects and arrows, hence it is an embedding. E¥r®? is also full.
If (u¥ ut,idy) : (X5 A, 15, 1) — (Y; B, 15, 1), then the commutativity of the last diagram implies
the commutativity of the first rectangle, therefore u = (u®,u™) : (X,i%,A) — (Y,i%, B). Hence
EPred 5 a full embedding.

(iii) Let X be an object in Set and f: X — Y in Set. By (i) and (ii) follows

(Ido 0 E§°*)(X) = Ido(X; X, I, 1) = (X; X, IX, 1)
= EPred(x X, X) = EFred(X,idx, X)
= (EF™d 0 Fy)(X)

and

(Idy 0o EF®Y)(f: X = Y) =1di ((f, fridy) : (X; X, IR, 1) — (V3 Y, Iy, 1))
= ((f, fide) : (X; X, I, 1) = (Y3 Y, Iy, 1))
= BT ) - (X,i%, X) = (Yiiy, Y))
= (BEf™oR)(f: X > Y).

Hence the diagram commutes.
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Definition 3.4.6. If C is a category, the category Pred(C) of C has objects pairs (x,i : a < x),
where z € Cy and i € Cy(a,z) is a monomorphism, and morphisms (f°, f*) : (2,3 : a — z) —
(y,7:b—y) with jo fT = f0oi.

f+

IR
Q>

fO
If (9% g%) : (y,j s b= y) = (2,k 1 c = 2), then (¢°,g7) o (f°, fT) = (¢° o f%, g* o fF). Moreover,
1(m,i:a‘—>m) = (1z7 1a)~
Proposition 3.4.7. (Generalized Chu-representation of Pred(C))

Let C be a cartesian closed category. The functor

EPred(©) : Pred(C) — Chu(C,1d°),

Eg’red(c)(;c’i ra = x) = (v;a,i0pr,, 1),

pra 1‘
axXl——sa——=x

Pred(C , . . .
BU YO0 i a @) = (927 b ) = (% F,10) : (w3.0,i0pr,, 1) = (43D, Gopry, 1),
is a full embedding of Pred(C) into Chu(C,1d°).

Proof. First we show that EPT*4(©) is well-defined. Let (2,7 : @ < 2) be an object in Pred(C),

then

Pred(C) (

E, z,i:a—x)=(x;a,i0pr,1).

The morphism pr, is an isomorphism, hence a monomorphism. Therefore i o pr, is a monomor-

phism. If (f°, f*):(2,i:a < ) — (y,7 : b= y), the following diagram commutes

f+

(=

SRR
.

|

fO
To show that Efred(c)(fo,fﬂ : (z;a,i0pr,,1) = (y;b,j opry,1) is in Chu(C,IdC), we need to
show that the following diagram commutes

lax1
G,X].—X>(1X1

J{i opr,

Frx1y

x
Jr
_—
bx1 Tomm Y

By the commutativity of the first rectangle it holds that

[f%0(iopr,)](a,1) = [(f 0 i) opr,](a,1)



(Jopry) o (fT x

Hence, the last diagram commutes. Clearly EP*e4(C) is a functor, hence it is a well-defined functor.
Let (z;a,i0pr,,1) = (y;b,j o pry,1), then x = y, @ = b and i opr, = jopr,. Since pr,

is a monomorphism, we have i = j, therefore EPred()

is injective on objects. It is trivially
injective on arrows, hence it is an embedding. We still need to show that EF®d(C) ig full. Let
(@°, T, ¢—) : (x;5a,i0pr,,1) = (y;b,j o pry,1). Clearly ¢~ = 1;. By the previous equalities and

since pr, is a monomorphism, we get
(¢°0d)opr, = (jog")opr, = ¢’ oi=jog¢T,
ie. (¢°,¢1): (z,i:a— x) = (y,7: b= y). Finally we get that EPr*4(C) ig a full embedding. [

3.4.2 A generalized Chu-representation of the category of complemented predicates

In this section, we present the complemented predicates on sets that are equipped with a fixed
inequality in the category Pred”. By Pred?fe we denote the subcategory of Pred”, where we
consider strongly extensional functions in the definition of the morphisms. The motivation for the
next definition is to get a full embedding of Pred7ﬁ(Set) into the Chu category over Set and the
endofunctor Id? : Set — Set, defined by

Id2(X) = X x X,
Idg(fiX%Y):XxXﬁYxY,
(12 () (x,2') = (f(2), f()).

This result is analogous to the full embedding of Pred into Chu(Set, Id).

Definition 3.4.8. The category Pred’é(Set) of complemented predicates has objects pairs (X, A),
where X is in Set”, the category of sets equipped with a fixed inequality and strongly extensional
functions between them, and A := (A!, A°) is a complemented subset of X. If (X, A) and (Y, B)
are objects of Pred”, a morphism u : (X,A) — (Y,B) is a triplet u = (u°,ut,u™), where
w: X =Y, ut: A = B!, and u~ : B® — AC such that the following rectangles commute

Al u Bl BO u AO
iX \[ liy % \[ lzx
Al B1 BO A0

X ———Y Y X

If v = (02,0, 0v7) : (Y,B) — (Z,C), we define the composite morphism vou : (X,A) — (Z,C)

by vou= (v’ ou’, vt out, v ou). Moreover, I(x,a) = (idx,id a1, id 40).
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Proposition 3.4.9. (Generalized Chu-representation of Pred#(Set))
The functor

EPred”(Set) . Pred” — Chu(Set, 1d?),
Eg’red¢(Set)(X’ A) = (X;Al,z‘fl « 2-1)4(07140),
% %%t A x A 5 Id(X) = X x X,
#
Yo S0 (00wt um) (X, A) = (V,B)) = (u0,utu™) s (X; AL, %, xi%,, A%) —

(Y; B, i%, x ik, BY),
is a full embedding of Pred” (Set) into Chu(Set,Id?).

Proof. Let (X,A) be in Pred”, then (X; AY,i%, x i%,,A%) is an object in Chu(Set,Id®). If
(u,ut,u”) : (X,A) — (Y,B), then the following two rectangles commute

Al ut Bl BO u” A0
o b
Al B1 BO A0

X —Y Y +——F X

which implies the commutativity of the following diagram

id 41 Xu™
Al x B? A Al x A9
Jifl xiXo
ut xid 5o X xX

Jld? (u®)

1 0
tp1 Xigo

since

Hence (u®,utu™) : (X;AY, 0%, X i%,A%) = (Y;Bi%, X ik, BY) is in Chu(Set,Id?). Clearly
EPred” g injective on objects and arrows, therefore it is an embedding. We still need to show that
EPred” g full. If (w0, utu™) : (X3 AL i, x iy, A%) = (YV; BY,i%, x ik, B?), then the commuta-
tivity of the last diagram implies the commutativity of the first two rectangles, so (u®,ut,u™) :
(X,A) — (Y,B). Therefore EPred” i5 4 full embedding. O
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4 Apartness relations in categories

Our aim is to translate the notions of Bishop’s set theory into category theory. We want to
introduce subsets and complemented subsets into the language of categories. In the terms of
Bishop, an equality and inequality were defined through some formula. In set theory, a relation
between sets is defined as a subset of their cartesian product, and this one can translate into the

theory of categories. We are based on Petrakis’ work Fquality and apartness relations in categories,
[8].
Definition 4.0.1. A subobject of an object X in a category C is a monomorphisms

m:M—X

with codomain X, where isomorphic subobjects are identified.

Definition 4.0.2. Let C be a category.

(i) An object 0 of C is called initial, if for any object X € Cj there is a unique morphism i : 0 — X.
(ii) An object 1 of C is called terminal, if for any object X € Cy there is a unique morphism
t: X — 1.

4.1 Binary relations

Definition 4.1.1. A binary relation between two objects x1,z2 of a category C is a triplet
r:=(r € Co,ry : 7 — x1,73 : T — Z3), where r1,ro are jointly monic arrows, i.e. for every

g,h:a— r such that 1y 09 =1r;0h and r9 0 g = r5 0 h we have that g = h,

I T
T1 Ty
g g
— o
a r a r— I
~_ 7 ~_ Ti
h h
T2 T2
) T2

and we may also write (r1,72) : v — (x1,22). If n € N¥, an n-ary relation is a structure
r:=(r€Cory:r— 21,..,Ty T — &), where ry,...,r, are jointly monic arrows, i.e. for every
g,h:a— rsuch that ryog=7ry0h,..,r,0g9 =r,0h, we have that g = h. In the general case we

may also write (r1,...,7,) : 7 < (1, ..., Tpn)-

Definition 4.1.2. If C is a category and x1,z2 € Cp, the category Relc(z1, 22) of binary relations
between x1,zs , or simply Rel(x1,x2), has objects binary relations r := (r,r1,72) and an arrow

f :r — s, where s := (s,81,82), is an arrow f : 7 — s such that the following inner diagrams
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commute

r—mmm S8
%

The composition of arrows in Rel(xy, ) is the composition of arrows in C, and 1(,.,, ) = 1.

N
f
ro
T2
If n € Nand zy,...,z, € Cy, the category Rel(zy, ..., z,) of n-ary relations between x1, ..., x, is

defined similarly.

Definition 4.1.3. Let C be a category with a terminal object 1. An element of an object « in C

is an arrow e : 1 — x.

Definition 4.1.4. If 1 is a terminal object of a category C, a member of a binary relation r €
Rel(z1,22) is a triplet 4 := (1,41,i2), where 47 : 1 < x1 and i3 : 1 < x5, hence an object of

Rel(z1,22), such that there is an arrow m : ¢ — r in Rel(x1, x2), i.e. the following inner diagrams

T1
l%r
T2

commute

and we write
iMembr & m:iMembr,
to denote that m realises the membership of 7 to r.

A relation between two sets X7, X5 is a subset R C X7 x X5. Using Bishop’s notion of a subset,
this is a set R and an embedding ¢ : R — X; X X5. Then one can show that there is a relation
(7’1,7’2) ‘R — (Xl X X2)

Proposition 4.1.5. Let R C X x Xo.

(i) Let i : R — X; x X3 be an embedding. If r; = pr; o4 and ry = pry o, then (r1,r2) : R —
(X1, X>) is a relation.

(ii) Conversely, if (r1,72) : R < (X1, X3), then i =1y X r9 : R < X; x X5 is an embedding, where
(

r1 x r2)(z) = (r1(x),r2(x)) for every x € R.

Proof.

1 Xl

pl'

g9 ) /
AT TR Xy x Xy
\h)y

pry

Xo

(i) Let g,h: A = R, with rpog =ryoh and 73 0 g = 19 o h. It holds that 11 o g = pryciog =

pryoioh=rjohand r0g = pryoiog =pr,oioh = ryoh. Since pr; and pr, are isomorphisms,
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hence monomorphisms, it follows
1og=10h.

Since i is an embedding we get g = h. Hence r; and ry are jointly monic. Therefore (r1,72) : R <
(X1, X5) is a binary relation.

(ii) Now, let (ri,72) : R — (X1, X2) and let tog =ioh, for g,h: A — R. For z € A the following
holds

i(g(x)) = (ri(g(2)),r2(9(x))) = (r1(h(@)), r2(h())) = i(h(z)),

which implies that r1(g(z)) = r1(h(x)) and r2(g(x)) = ro2(h(z)). Since 71 and ry are jointly monic,
it holds g = h. Hence 1 = r; X r9 : R — X7 X X3 is an embedding. O]

Remark 4.1.6. Let C be a category with 1, x,21,22,y1,y2 € Cp and let r := (r,r1,7r2),8 =
(s,81,82) and ©:= (1,41,42) in Rel(zy,zq).

(i) If ¢ Memb r and f : r — s in Rel(z1,x3), then ¢ Memb s.

(ii) If e; : @ < 1 is a subobject of 1 and es : a < x5 is a subobject of x5, then (a,eq,es) €
Rel(zy,x2).

(iii) If e : @ < x is a subobject of z, then (a,e,e) € Rel(z, ).

(iv) If f1: 21 <= y1 and fo : xo < yo, then (f1, fo)* : Rel(z1,z2) — Rel(y1, y2) is a functor, where
(f1, f2)5(x) == (f1, fa) ox := (r, from1, faora), and (f1, f2)j(h:r —s) := h.

(v) If e : @ — x is a subobject of z, let ¢* : Rel(a,a) — Rel(z,z) be the functor (e,e)*, ie.
ej(r) ;== (r,eor,eory) =:eor. Then, ¢ Membr = e o ¢ Memb eor.

(vi) The category Rel(z1,x2) is thin.

(vil) If e : 1 < r is an element of r, then e := (1,71 oe,r3 0 ¢) Memb r and e : € Memb r.

Proof.
(i) Let ¢ Memb r and f : r — s in Rel(x1,x2), i.e. the following left and right inner diagrams

commute
Ty

r1
1 n r f s
T2

since i3, =mory =mo fos; and io =mory =mo fosy. Hence ¢ Memb s.

(ii) Let e1 : @ < x1 be a subobject of z1 and es : a < x5 be a subobject of zo, i.e. e; and es are

monomorphisms. Let g,h : b — a

with e 0o g =e10h and e3 0 g = e3 0 h. Since e; and ey are monomorphisms, g = h, hence e; and

e are jointly monic and (a,e1,e2) € Rel(zy, z2).
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(iii) Let e : @ < x be a subobject of z, i.e. e is a monomorphism. Let g,h: b — a

with e o g = e o h. Since e is a monomorphism, g = h, hence e and e are jointly monic and
(a,e,e) € Rel(z, x).
(iv) Let f1 : 21 < y1 and fa : 29 < y2 be monic, then we need to show that (r, f1 o7y, faors) €
Rel(y1,y2). Obviously r € Cy. Let g,h : a — 7 with fiorjog = fiorjoh and faorgog = faorgoh.
Since f1, fo are monic we have

rmog=riohandroog=ry0h
and since 11,72 are jointly monic by definition, we get

g=nh.

Hence f1 o7y and fs o 79 are jointly monic and (r, f1 o 71, fo o 72) is in Rel(y1,y2). Let h:r — s
be an arrow in Rel(z1, z2). (f1, f2);(h) := h. Then the commutativity of the following right inner

diagrams follows from the commutativity of the left inner diagrams

T1 hn

y’ K floy‘ WM
h h

r —mm S r —m7m S

K % f% Az
T2 Y2

since fior; = fio(syoh) = (fios1)ohand foorg = foo(sgoh) = (fe0s3)oh. Hence h:r — s

*

is an arrow in Rel(y1,y2). Therefore (f1, f2)* is a functor from Rel(x1,x2) to Rel(y1, y2).

(v) Let e : a < x be a subobject of x and e* : Rel(a,a) — Rel(x,z) be the functor (e,e)*. Let

i,r € Rel(a,a). If m : 4 Memb r, then the following inner diagrams commute

a
7N
1$>7~
N A

a

By definiton e 0 4 := (1,e0i;,e01;) and eor := (r,eory,eory). Then the following inner diagrams

commute since, by the commutativity of the first diagram, eoi; = eo (r; om) = eory om and
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eoig=eo(rgom)=eoryom.

axm‘/a

Hence m : e o ¢ Memb eor.

(vi) Let f,g:r — s be in Rel(z1, z2), then the following inner diagrams commute

1
AP
f
/S —
g
T2

and it holds
rp=s10f=s10gandrg=ss0f=s30g.

Since 1, so are jointly monic we get f = g. Hence Rel(x1,x2) is thin.
(vil) Let e : 1 < r be an element of r, then e := (1,71 o e, 79 0 €) is in Rel(z1, z2), since 1 € Cy
and 71 o e, rg 0 e are jointly monic, because e is monic and 71, ry are jointly monic. The following

inner diagrams obviously commute

T

Ty ’X
€

l————r

%/

Z2
Hence e Memb r and e : € Memb r. O

Because of the thinness of Rel(zy,z2), we write r < s, if there is (unique) arrow h:r — s. In

this case, we also write h : r < s.
Remark 4.1.7. Let ¢, r € Rel(x1,x2), then
it Membr < 1 <r.

Proof. ”=" Let © Memb r, then the following inner diagrams commute



Let g : 1 — r be another arrow from 1 to r, then iy =riof =ryog and i =ry0 f =ry0g. Since
r1,79 are jointly monic we get f = g, hence f : 1 — r is unique, so 7z < r.
7«<” Now let 2 < r, then there exist a unique arrow f : 1 — r such that the above inner diagrams

commute. Hence ¢ Memb r. O
In a category with products the product x1 X s is the largest binary relation between x, x5.

Proposition 4.1.8. Let C be a category with products, z1, z2 objects of C and r € Rel(z1, x2).
(i) x1 X X2 := (21 X x2,pry,pry) € Rel(zy,22), and (r1,r2) : r < X3 X Xa.

(ii) 71,79 are jointly monic if and only if (ri,r9) : ¥ — 21 X x5 is monic.

(iii) If 0 is an initial object of C and 0 := (0,0,,,0,,) € Rel(x1,z3), then 0, : 0 < r.

Proof. (i) Let pry : 1 X £3 — 21 and pry : ©1 X 2 — 2. We need to show that pr; and pr, are

jointly monic. Let g,h : a — x; X 29 with pr; o g = pr; o h and pr, o g = pr, o h.

L1
pr r1
g
/N <T1 ,T2> r
¢« 7

a T1 X Ty
S~
h
pry T2
T2

Since pr; and pr, are isomorphisms, hence monomorphisms, it holds that g = h, so pry,pr,
are jointly monic. Hence x; X xg is a binary relation. Let (ri,rs) : » — x1 X x9, then the
above inner diagrams commute and (ri,re) is unique since pry,pr, are jointly monic. Hence
(ri,rma) i r < X1 X Xa.

(ii) First, let 7 and 72 be jointly monic and g, h : @ — r such that (r1,r2) o g = (r1,r2) o h.

T
T1
g
—— (r1,72)
a r—————" 1] X To
~_7
h
T2
T2

Since (r1,7m2) =11 X 12 We have for z € a

(ri,72) (9(2)) = (r1(g(@)), 72(9(2))) = (r1(A(x)), r2(A(x))) = (r1,r2) (h(2)),

which implies r1(g(x)) = r1(h(z)) and ra2(g(x)) = ro(h(z)). Since 71,72 are jointly monic we get
g = h, hence (r1,73) : r — x1 X x2 is monic. Now let (r1,r2) be monic, and r; 0 g = 71 o h and

ro 0 g =190 h, then
(ri,me)0og=(r1 xXre)og=(riog) x (roog)=(rioh)x (reoh)=(ry Xxry)oh = (ry,rq) oh.

Since (r1,r9) is monic, we get g = h. Hence r1, 72 are jointly monic.

(iii) Let 0 be an initial object of C and 0 € Rel(x1, x2). By definition of an initial object there is
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a unique arrow 0, : 0 — r. Then the following inner diagrams commute

Hence 0, : 0 <r. O

Now let C be a category with pullbacks and pushouts. Let x be an object in C, then we want
to define the intersection and union of two binary relations r and s. First consider the pullback of
the following diagram

q S1
r Xy 8§ —

Pl
T1
r
T

—
2

T

We can define the intersection of r and s as their pullback.

Definition 4.1.9. Let r,s € Rel(z,z). The intersection of r := (r,ry,r2) and s := (s, 51, $2) i
defined as

rns:= {(a,b) €Erxgs|(r Op)(a):(SQOq)(b)}
where p:r X, s > rand q:7 X, s — s.

Let i, :rNs — r and is : rN's — s be the obvious inclusions of r N's into r and s. Taking the

pushout of i, along i, gives us the disjoint union of r and s,

is S1

S
J{SQ
71

——> T+ S

i
gg

rns

where we identify i.(x) with is(x) for every x € r N's. Since the pullback of r and s is the

intersection, the pushout is in fact the union of r and s. Hence we get the following definition:
Definition 4.1.10. Let r,s € Rel(z,z). The union of r and s is defined as
rUs:={z€r+,s|i(z)=is(z) Vz erns}

where i, : rN's — r and is : r N's — s are the inclusions.

In the following we assume that the category C has finite products and an epi-mono-factorization.

In such a category every arrow f : a — b can be factorized by an epimorphism e : a — ¢ and a
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monomorphism m : ¢ — b such that f = m o e, meaning that the following diagram commutes

a —— ¢ 2 b.

~_ 7

f

c is called the image of f. The epi-mono factorization is unique up to isomorphisms in the sense
that, if there exists another epimorphism ¢’ : a — ¢ and monomorphism m’ : ¢ — b with

f =m'oé, then there is an isomorphism 7 : ¢ — ¢’ such that hoe =¢ and m’ o h = m.

We now want to present the composition of two relations r and s as a relation s or. Let
C be a category with pullbacks, x,y,z € C. Let r := (r,71,7r2) be a relation between z,y and
s := (s, 81, 82) be a relation between y, z, then r C z X y and s C y X z. The composition of r with

s is expressed through the following subset
sor={(a,c)€xxz|Iey ((ab)erAec)es)}Caxz

First consider the pullback of ro along sq,

q
T XySs —

!

=

1
x
where r x, s = {(a,b) € r X s | r2(a) = s1(b)}. We factorize the morphism (71 o p, s2 o q) by
(riop,saoq) = ((sor)1,(sor)z)oe:rXys—sor—x Xz,
where ((so7)1,(s0r)s) is a monomorphism and e is an epimorphism. We call
sor:=(sor,(sor);,(sor)s)

the composition of r and s. Let i := ((sor)1,(sor)sz). If (sor); =pr, oi and (sor); = pry o,

then s or indeed defines a relation between x and z.

T Xy S

/ J; \

e
r sor S
(sor) (sor)2
71 . S2
i
X
z 1231 rxz pry z

Let g,h :a — sor with (sor)jog=(sor);ohand (sor)yog = (sor)yoh. Then it holds
prjoiog = (sor)jog = (sor)joh =pryoioh and pryoiog = (sor)yog = (sor)yoh = pryoioh.
As pry,pr, and ¢ are monomorphisms, it holds g = h. Hence (sor)1, (sor)s are jointly monic and

sor is a relation between = and z.

Definition 4.1.11. Let f : X — Y be a morphism. A morphism ¢ : Y — X is called an inverse
of f,if fog=1idy and go f =idx.
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Let f:2 — yand f~!:y — x be the inverse. Let r := (r,r1,72) be a relation on x,r, then
f(r) is a subset of y x y. Using Bishop’s notion of a subset f(r) is a set and i : f(r) — y X y is
an embedding. If for; =pr,oioF and fory =pryoio f, then f(r) = (r,for,fory)isa

relation between vy, y.

x%y
-
/ T"”
Py f ,
K3
a__ r—— f(r) ——yxy
4 \ lprz
)
Ty

Let g,h : a = r, then for,og =pr,oiofog=pr,oiofoh = for;oh, then it follows
that io fog =40 foh = fog = foh,since i is an embedding. Hence g = h. Similarly for
forgog= foryoh. Hence fory, fory are jointly monic and f(r) is a relation between y, y.

Let s := (s, 51, 82) be a relation on y,y. Then s is a subset of y x y. We consider the pullback
of the corner < s1,s9 >:s >yxyand f x f:axxz —=yxy:

<s'1,s’2>

f=Hs) X x
fl fof
s <81,82> Y X Y-
We want to show that f~!(s) is a relation on z,r. Again using Bishop’s language, s is a set and

1:8 =y Xy is an embedding.

’ :I; y
S
g / TPIH
o , _
a f’l(s)L>scL>y><y
S~
h J{PIQ
s
T —y

If fos) =pr,oiofand fosh=rpr,oiof, then f~1(s):= (f~1(s),s], sh) is a relation between
z,x. Let g,h:a— f~1(s), then fosiog=rpr,oiofog=pr,oiofoh=fos)oh. It follows
that io fog =40 foh = fog = foh,since i is an embedding. Hence g = h. Similarly for

foshog= foshoh. Hence sj and s} are jointly monic and f~!(s) is a relation between z, .

4.2 Equality relations

4.2.1 Local equality relations

After having introduced binary relations in the last section, we now define the notion of an equality
relation. We describe it as a binary relation satisfying specific properties. The description of

these properties requires quantification over elements of an object. In order for this elementwise

48



description to be predicative we need to work in a locally small category, where for given objects x
and y the collection of morphisms from x to y is actually a set and not a proper class. We therefore

refer to local equality relations.

Definition 4.2.1. Let C be a category with 1, x € Cy and r := (r,r1,72) € Rel(z,z). We call r
(locally) reflexive, if for every element e : 1 < x of & we have that (1,e,¢e) Memb r

/reﬂ\
\ A

and in this case we write refl? : (1,e,e) Memb r. We call r (locally) symmetric, if for every
(1,e1,e2) € Rel(x, z) we have that (1,e1,ez) Memb r = (1,e2,e1) Memb r

x x
SN N
1 n r o,
x T

If r is symmetric with m : (1, e1, e2) Memb r, we write sym], : (1, e2,e1) Memb r. We call r (locally)

transitive, if for every (1,e1,e2),(1,e2,e3) € Rel(z,z) we have that

[(1,e1,e2) Memb r & (1,€2,€3) Memb 1| = (1,€1,€e3) Memb T

SN SN N
N AN A RN A

If m: (1,e1,e2) Memb r and n : (1, ez, e3) Memb r, we write try, ,, : (1,e1,e3) Memb r.

Definition 4.2.2. If eq” := (eq”, eqf, eq}) € Rel(z, z) is reflexive, symmetric and transitive, we
call it a (local) equality relation, or simply an equality, on x. In this case, we call the pair (x,eq”),

or simply x, a set-like object in C, or a set in C.

Proposition 4.2.3. Let C be a category with 1, z € Cjy and eq” := (eq”,eqf,eq}) an equality
relation between z, x.

(i) If h: eq® — (s, 51,52) in Rel(z, x), then (s, 51, 52) is an equality on z, with ref1$ = horef1%d",
symj, = ho symzqm and try, , =ho trfﬁn

(ii) If e : @ — z is a subobject of z, and eq” is an equality on a, then ef(eq®) := e o eq” is an

equality on x.

Proof. (i) Let h : eq® — (s, 51, $2) be in Rel(z,z) and e : 1 < x be an element of z. Since eq”
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an equality we have that (1, e,e) Memb eq®. Then the following inner diagrams commute

/\% N

refleq
et — 5

A WA

which implies that e = ref1%" oeq} = refl1® o hos; and e = refl1® oeq} = refl®d oho sy.
Hence refl? : (1,e,¢) Memb s and m : refl® = horefléd . Now let (1,e1,ez) € Rel(x,z) and

(1,e1,€e2) Memb s. Then the following left inner diagrams commute

TN e
NZEEN

and since eq”® is symmetric, the above right inner diagrams commute. From h : eq® — (s, s1, $2)
we get eo = eqf o sym;’ = syoho symeol and e1 = eqs o sym;’ = sy 0 hosym, . Hence

symy : (1,e2,e1) Memb s and symj = ho symh . Let (1,e1,e2), (1, e2,e3) € Rel(z, x) with
m: (1,e1,e2) Memb s & n : (1,e2,e3) Memb s.

Since eq” is reflexive the following inner diagrams commute

g
A

and by h : eq® — (s,51,52) we get e = eqf o trol, = s;o0hotril, and ez = eq} o trel, =
saoho tr‘fﬁfn. Hence tr;, ,, : (1,e1,e3) Memb s and tr;, , = ho treq . Therefore (s, s1,s2) is an
equality on x.

(ii) Let e : a < x be a subobject of x and eq® be an equality on a. e oeq® = (eq?, eoeqf,ecoeq?)
is in Rel(z,z). Let i : 1 < a be an element of a, then eoi : 1 < x and refl?qa : (1,4,4) Memb

eq®. The following inner diagrams commute
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since eoi = eoeq‘foreflfqa and eoi = eoquorefqua. Hence (1,e01,e0%) Memb coeq?, so eoceq®
is reflexive. Let (1,e1,e2) € Rel(a,a) with (1,e1,e3) Memb eq®, then (1,eo0eq,eo0es) € Rel(z, x)

and m : (1,eoer,eoes) Memb e o eq®. The commutativity of the following inner diagrams follows

eoey K\\ngQ1
med

sym.  m
o
e iﬁ\\\! K//ég;qz

a a
eoey = eoeqfosymid and eoe; = eoeqj osym®d . Hence (1,e0e9,e0e1) Memb e o eq?,

from the symmetry of eq?,

so e o eq® is symmetric. Moreover, let (1,e2,e3) € Rel(a,a) with (1,e2,e3) Memb eq®, then
(1,eo0eq,e0e3) € Rel(z,z) and n: (1,eceq,eo0e3) Memb eq®. The commutativity of the following

inner diagrams follows from the transitivity of eq®,

Eo;}//f K\\(gfql
trod

] —2" 5 eq?

egéé\\x K//ég;qg
X

eoe; =eoeqf otreq and eoes = eoeqjotrs?, . Hence (1,e0ej,eoe3) Memb eoeq?, so eoeq®

is transitive. Therefore e o eq® is an equality on x. O

Remark 4.2.4. Case (ii) above is the categrocial formulation of the equivalence a =4 o &

i%X (a) =x i (a’) in the case of a subset (4,i%) of a Bishop set X.

Every arrow f : z — y in a category C with 1 is an operation-arrow, or an assignement-routine-
arrow, as it sends elements of x to elements of y. Namely, if f :  — y is an arrow in C and

e: 1 < z is an element of x, the application f(e) of f on e is an element foe: 1< yof y

1<L>$L>y

f(e)

Moreover, if ¢ := (1,i1,i2) € Rel(z,z), then f(i) := (1, f(i1), f(i2)) € Rel(y,y), as the arrows

f(i1), f(i2) are both monic

xLy

1
:\M

$*>f Yy

Next we define when f : z — y behaves like a function, with respect to given equalities = and
Y.

Definition 4.2.5. Let C be a category with 1, and let (z,eq®) and (y,eq¥) be sets in C. An arrow

51



f:x — yin C is function-like (with respect to eq® and eq¥), or simply a function, if for every
i:= (1,i1,12) € Rel(z, x) we have that

i Memb eq” = f(z) Memb eq?

RN
SNA

In this case, if m : ¢ Memb eq®, we write f(m) : f(2) Memb eq¥. If for every i € Rel(x,z) the

converse inclusion f(¢) Memb eq? = i Memb eq” is satisfied, then we call f an embedding-arrow, or

simply an embedding (with respect to eq¥ and eq”).

Remark 4.2.6. Let C be a category with 1, and let (z,eq”), (v,eq?), (z,eq*) be sets in C.

(i) 1, is function-like, where if m : i Memb eq”, then 1,(m) = m : 1,(¢) Memb eq®.

(i) If f:2 — yand g: y — z are function-like, then g o f is function-like, where if m : 4 Memb eq”
and f(m): f(¢) Memb eqY, then (go f)(2) = g(f(i)) Memb eq®.

(iii) If f :  — y is monic, i.e. x is a subobject of y, and if eq? = f o eq”, then [ is an embedding.

Proof. (i) Let 1, : ¢ — x and 7 € Rel(z,z). Let m : ¢ Memb eq”, then 1,(m) = m : 1,(2) Memb
eq”. Hence, by definition, 1, is function-like.

(ii) Let f : 2 — y and g : y — z be function-like. Let m : ¢ Memb eq”, then, since f is function-like,
f(m) : f(2) Memb eq¥. Since g is function-like, we have (go f)(¢) = g(f(¢)) Memb eq®. Hence go f
is function-like.

(iii) Let I : f(¢) Memb f o eq”,

PN
e

then we have f o (eqf ol) = f(i1) = foi; and fo(eq} ol) = f(iz) = f ois. Since f is monic,
eqi ol =iy and eq3 ol = i5. Hence [ : ¢ Memb eq”, so f is an embedding. O

4.2.2 Global equality relations

In the previous section we restricted our definition of an equality relation to categories that admit
a terminal object 1. We now want to consider more general categories that do not necessarily have
a terminal object. Hence we will give a definition of a global equality relation without mentioning
elements of an object.

First we define some notions that we will need in our definition. Let C be a category with
products and X € Cy. We call §x : (X,1x,1x) € Rel(X, X) the identity relation, where 1x :
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X — X is the identity morphism. This relation is the subset A := {(z,z) | z € X} C X x X
called the diagonal of X.

X
X X xX X

A relation r := (R,71,72) between X, X is a subset {(z,y) | z,y € X} € X x X. We call
r°P := (R, ry,71) the opposite relation of r, given by the subset {(y,z) | (z,y) €r} C X x X.

Definition 4.2.7. Let C be a category with pullbacks and limits and r := (r,71,72) € Rel(z, ).
We call r (globally) reflexive, if 6, <r

refl
x

and in this case we write refl : §, < r. We call r (globally) symmetric, if r < r°P

x
sym
r—m——r
T
and we write sym : r < r°P. r is called (globally) transitive, if ror <r

X
o N
tr

roy ————r

TCN ﬁ
T

X
b N
r —— 7T

and in this case we write tr:ror <r.

Definition 4.2.8. If eq” := (eq”,eqf,eq}) € Rel(z, z) is reflexive, symmetric and transitive, we
call it a (global) equality relation, or simply an equality on x. We call the pair (z,eq”) a Bishop

set object.
Proposition 4.2.9. Let s,r € Rel(z,z). If h: s <r, then for every ¢ = (1,41,12) € Rel(z, x)

i Memb s = ¢ Memb r
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Proof. Let h : s <r and m : ¢ Memb s, then the following right and left inner diagrams commute

X
S1 71
1&m 56— 5y
iz
X

and it holds iy =mos; =mo(hor;) =(moh)or; and ia =mosy =mo (hory) = (moh)ors.

Hence the above outer diagrams commute and ¢ Memb r. O
We will use this proposition in the proof of the following theorem.

Theorem 4.2.10. Let C be a category with pullbacks, limits and a terminal object 1 and let x

be an object in C. If r is a global equality relation on z, then r is a local equality relation on x.

Proof. We show the properties of a local equality relation. First we show that r is locally reflexive.

Since r is globally reflexive, it holds that , < r. Now let e : 1 < x be an element of x, then

X
e
1 e T refl r
X [ A
X

e=¢eol, =co(reflor;) = (eorefl)or; ande =eol, = eo(reflory) = (eorefl) ors.

Therefore the above outer diagrams commute and (1, e, ¢) Memb r, hence r is locally reflexive. Next

we show local symmetry. Since r is globally symmetric, r°? < r. Let (1,e1,es) € Rel(z,z) with

h:(1,e1,e3) Memb r,
x
1 hor Sy
\ l’"%
)
x

then it holds e = hosymor; = hory and e = hosymory = hory. Hence (1,ez,61) Memb r, sor

is locally symmetric. Now let (1,e1,€e2), (1, ez, e3) € Rel(z, z) with
m: (1,e1,e2) Memb r & n : (1,e2,e3) Memb r.

The following inner diagrams commute

X X
1 1
1 —7——r 1 —T——r
[=2) €3
x x
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To prove local transitivity we first show (1,e1,e3) Memb ror. Since h: ror < r the following left

r
Lrl
T

inner diagrams commute.

P
T
</ ’\ {
M
T1L

roy ———r

o S
i

—

T2

We take the pullback P of the two morphisms r; : 7 — = and r3 : 7 — x, as shown in the right
diagram above. By the universal property of the pullback, since 1 on = es = m o ro, there is a
unique arrow u : 1 — P such that g ou = n and p o u = m. Moreover, there is an arrow from the
pullback P to the product = x x, which can be factorized through an epimorphism e : P — ror

and a monomorphism m : r or — x X x, shown in the following diagram:

X
t PT) rxr PT; v

Hence we have an arrow eou : 1 — r o such that e; = (ror);oeow and e3 = (ror)yoeouwu,

meaning that the following left inner diagrams commute,

xT

T
(ror)y !

eou h
1 ror r

(ror)a -

T

so it holds that (1,e;,e3) Memb r o r. From Prop. 4.2.9 it follows that (1,e1,e3) Memb r. Hence r

is locally transitive and therefore r is a local equality relation. O

Remark 4.2.11. The converse does not generally hold. Suppose for every i := (1,i1,i2) €
Rel(z, x) it holds that ¢ Memb s & i Memb r = s < r. Let r be a local equality relation on 2. Then
r is locally reflexive, i.e. for every e : 1 < x, it holds that refl : (1,e,e) Memb r. Let 1, : z —
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be the identity on z, then the following inner diagrams commute

/\
\/

By our assumption d, < r. Asr is locally symmetric, it holds for every (1,e1,e2) € Rel(x, z) that

m: (1,e1,e2) Memb r = sym: (1,eq,e1) Memb r. Hence the following inner diagrams commute

/\
\/

and it holds (1, e1,es) Memb r°P. Again by our assumption we have r°? < r. By now we showed
global reflexiveness and global symmetry. However our assumption is not sufficient to prove global
transitivity. It remains an open problem to find a good condition on C, to prove local equality =

global equality.

The next proposition was originally stated on p. 103 of [10]. Here we give a full proof of the

proposition with respect to our definition of a global equality.

Proposition 4.2.12. In any category with finite limits, the kernel pair of a morphism f:x — y
is the pullback of f along itself:
r1

T2

B =
LS R
~

f

These maps r; and 7o define a monomorphism (ry,72) : 7 < x X x, so the object r is always
a subobject of the product z x x. Indeed, subobjects defined by kernel pairs are always global

equivalence relations.

Proof. Let r be a subobject of x X x defined by the kernel pair of f : z — y with (r1,r2) : r — z x 2.
First, let 1, : © — = be the identity morphism, then it holds that fo1l, = fo1,. By the universal
property of the pullback there is a unique morphism refl : x — r
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such that 1, = r; orefl and 1, = ry o refl. Hence the following inner diagrams commute

x
AR
refl
r—7r

S A

and 8, = (x,1;,1,) < r. Next we want to prove symmetry. Since f or; = f org, again by the

universal property of the pullback there is a unique morphism sym: r — r

and it holds r°? = (r,79,71) < r. Therefore r is globally symmetric. The pullback of r; and rs is

the fiber product r x, r

’
1 T2

rXer —— 7T T
J’"
T

B

|

’
T2
T2

1

]
i

such that 71 o] = roor). Then r1 o1, ro0rh : r X, r — 2 are two morphisms with fo (rjor]) =

f o (rg orf). Hence there is a unique morphism w: 7 X, 7 — 71

T XgT rior}
\
T

1

J

QLE— 8
.

i
2075 re

B =

y

such that ryou=ryorf and roou=ry07%. Letror = (ror,(ror);,(ror);) € Rel(z,z). As

rX,r C x Xz, there is a morphism from 7 X, to x X x, which can be factorized by an epimorphism
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e:r X, 1T — ror and a monomorphism m:ror — x X x.
T XgT

Le

ror

% ﬂ" (MJ

— —_—
T pr TXT BT, x

riory rooTh

As ryor] = ryor), it holds that pryomoe =ryor] = rpory = proomoe. Since e is an
epimorphism we have (ror); = pr;om = pryom = (ror),. Hence it holds fo(ror); = fo(ror)s,

so there is a unique morphism tr:ror —r

ror ror)y
K
T1
—

(roIN_ .,

B
R R
~

—
!

such that (ror); =7 otr and (ror)y = rgotr. Therefore the following inner diagrams commute

xT
AN
tr

roy ————r

X

and it holds ror < r, so r is globally transitive. We finally get that r is a global equality

relation. O

4.3 Apartness relations

So far we have seen the definition of an equality in the categorical sense. We now also want to
translate the notion of an inequality into categorical terms. For a given Bishop set object (x,eq”)
we will define an apartness relation ineq®.

4.3.1 Local apartness relations

As in the section about local equality relations, we give an elementwise description of an apartness

relation, so we work in a locally small category in order to ensure that our definition is predicative.

Definition 4.3.1. Let C be a category with 1, x € Cy and eq® := (eq”, eqf, eq}) be an equality
relation on z. Let ineq” := (ineq”,ineqf,ineq3) € Rel(z,z), then we call ineq” an apartness

relation to (x,eq”), if it is irreflexive, i.e. for every ¢ := (1,e1, e3) € Rel(z, ) we have that
(i Memb eq® & ¢ Memb ineq”) = L,
symmetric, i.e. for every (1,e1,e3) € Rel(z,z) we have that

(1,e1,€2) Memb ineq” = (1,eq,€1) Memb ineq”,
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T
/ wqf @/ Wq‘f

) sym .
1 —™ % ineq” 1 ——" % ineq”
62\‘ ﬁqu el\ ﬁqu

T x

and cotransitive, i.e. for every element e : 1 — x of x we have that

i Memb ineq” = ((1,e,e;) Memb ineq” V (1,e,ez) Memb ineq”).

x x T
el/ WQT / r\ineql” / Wﬁtﬁ

m cotr,, cotr,,

1 ——— 3 ineq” 1 ———" 3 ineq” 1 ——= 3 ineq”

(x ﬁqu el\/ ﬁqu 62\ ﬁqu
X X X

Definition 4.3.2. We call (z,eq”, ineq”) a full Bishop object.
We give an example of an apartness relation for a given equality relation.

Example 4.3.3. Let Set be the category of sets and functions. Let X := {1,2,3} be an object
of Set with the given equality relation

R=1{(1,1),(2,2),(3,3)} C X x X.

R is obviously an equality relation as it is reflexive, symmetric and transitive. Then the apartness

relation to (X, R) is the following set
S =1(1,2),(1,3),(2,1),(3,1),(2,3),(3,2)}.
It holds that RN S =0 and RUS = X x X.

We now give a definition of when f : x — y behaves like a function, with respect to given

inequalities on x and y.

Definition 4.3.4. Let C be a category with 1, and let (z,eq”,ineq”) and (y,eq?,ineq”) be full
Bishop objects in C. An arrow f : x — y in C is function-like (with respect to ineq” and ineq”),

or simply a function, if for every ¢:= (1,e1,e2) € Rel(x,x) we have that

¢ Memb ineq” = f(¢) Memb ineq’

f
r— Yy
i“eq'/ \ f(e/ N‘ff
n 1

ineq” f) ineq?
ineqxl / f(‘b\‘ %qg
T Y

In this case, if n : ¢ Memb ineq”, we write f(n) : f(i¢) Memb ineq”. An arrow f :z — y in C is

called strongly extensional, if for every ¢ := (1, e1, e3) € Rel(z, z) we have that
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f(2) Memb ineq” = i Memb ineq”

Proposition 4.3.5. Let C be a category with 1, and let (z,eq”,ineq”), (y,eq?,ineq”) and
(z,eq?,ineq”) be full Bishop objects in C.

(i) 1, is function-like, where if n : ¢ Memb ineq”, then 1,(n) = n: 1,(¢) Memb ineq”.

(i) If f: 2 — y and g : y — 2z are function-like, then g o f is function-like, where if n : ¢ Memb
ineq” and f(n): f(¢) Memb ineq”, then (g o f)(¢) = g(f(4)) Memb ineq”.

(iii) 1, is strongly extensional.

(iv) If f: 2z — y and g: y — z are strongly extensional, then g o f is strongly extensional.

(v) If f: 2 — y is monic and if ineq” = f o ineq”, then f is strongly extensional.

Proof. (i) Let 1, : © — = and i € Rel(z,z). Let n : ¢ Memb ineq”, then 1,(n) = n : 1,(¢) Memb
ineq”. Hence, by definition, 1, is function-like.
(ii) Let f : ¢ — y and ¢ : y — 2z be function-like. Let n : ¢ Memb ineq”, then, since f is function-like,
f(n): f(4) Memb eq?. Since g is function-like, we have g(f(n)) : g(f(¢)) Memb eq*. Hence go f is
function-like.
(iii) Let 2 := (1, e1,e2) € Rel(x,x) and let 1,(n) : 1,(7) Memb ineq”. Since 1,(n) =n and 1,(z) =
i, we have n : 7 Memb ineq”.
(iv) Let f: 2 — y and g : y — z be strongly extensional. Let ¢ € Rel(x,z), then f(i) € Rel(y,y).
Since g is strongly extensional, we have that
g(f(2)) Memb ineq® = f(3) Memb ineq”
and since f ist strongly extensional, we get
f(2) Memb ineq? = 4 Memb ineq”.
Hence it holds
(go f)) = g(f(2)) Memb ineq® = ¢ Memb ineq”.

So g o f is strongly extensional.
(v) Let n: f(¢) Memb f o ineq”,

f f
x Y x
“/ \ f(e/ \q
1

ineq” n n ineq”

in&q;ﬂ\‘ / f(eQ\ ﬁqg

then we have fo (ineqjy on) = f(e1) = foey and fo(ineq3 on) = f(ea) = foes. Since f is monic,

ineqf{ on = e and ineq; o n = es. Hence n : ¢ Memb ineq”, so f is strongly extensional. O

After having presented the notions of equality relations and apartness relations in categorical
language, we can now define the notion of a complemented subobjects of (z,eq”,ineq”), which

can be seen as the categorical version of Bishop’s complemented subsets described in section 3.2.
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Definition 4.3.6. Let (x,eq”,ineq”) be a full Bishop object in C. We call a complemented
subobject of x a pair of subobjects (i : a — x,7 : b < y) of x, such that for every element
x:1—aofaandy:1< bofb, it holds

(1,i0x,joy) Memb ineq”.

This means that the following inner diagrams commute

x
/
a
/
1 n ineq”

Xb
xx

and we write m : (1,i0x,joy) Memb ineq”. For simplicity we refer to the pair (a,b) instead of

ineq?

ineqy

(i:a—=xz,j:b—>y).

Now we can define the category of complemented subobjects.
Definition 4.3.7. Let C be a category with 1 and let (x,eq®,ineq”) be a full Bishop object of
C. Then the category Sub g eqe ineqe)(C) of complemented subobjects of x has as objects the com-
plemented subobjects of x. If (a',a®) and (b',°) are objects of Sub(; eq* ineq)(C), a morphism
f:(at,a®) — (b',bY) is a pair of morphisms (fi, fo), where f; : a* — b! and fo : 8° — a°, such

that the following diagrams commute

If (¢!, ") is an object of Sub(, eqe ineqs)(C) and g = (g1,90) : (b*,0%) — (¢!, c°), then go f :=

(g1 © f1, fo 0 go) is the composition of arrows in C.

i g fi
al f1 pl g1 ol co 0 B0 0 a0

i1 J1 k1 ko Jo io

T T
The unit morphism 141 40y = (idg1,idgo)

id 1 id o

al —— 5 ¢! ad —— 5 ¢

\ / x /
T T
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The following proposition shows that Sub(, eqe ineq)(C) can be fully embedded into the Chu
category Chu(C, z X x).

Proposition 4.3.8. (Chu-representation of Sub(, eq ineqs)(C))
If (z,eq”,ineq”) is a full Bishop object, then the functor

E* : Sub(y eqe ineq®) (C) = Chu(C,z x x),
E&(iy : a' < z,ip : a® — z) = (a', i1 x ig, a?),
E%((fl,f()) : (Zl tal = $,io 20l — I‘) — (]1 bl — IE,jO : b0 — x)) = (fl,fo) : (al,il X io,ao) —
(blajl X .j07 bO)
is a full embedding of Sub(, eq ineqz)(C) into Chu(C,z x ).
Proof. The proof is similar to the proof of prop. 3.3.10. in section 3.3.2. [

Remark 4.3.9. In prop. 3.3.10 we presented the full embedding of the category of complemented
subsets ’PM(X) into the Chu category Chu(Set, X x X). In fact this is a specific example of the
above proposition for the category of the complemented subobjects of X in Set.
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5 Conclusion

This thesis consisted of three parts. In the first part we were concerned with Bishop set theory,
where we followed [9] to introduce the basic notions of BST and especially focused on complemented
subsets. Moreover we presented partial functions between sets. Following [7] we gave a detailed
proof of the existence of proper class-assignement routines between the class of complemented
subsets PI[(X) an .7°¢(X, 2), the class of strongly extensional partial functions from X to 2.

In the second part we focused on the categorical aspects of complemented subsets by studying
Chu representations of different categories. Following Petrakis’ work [6] we presented the category
of complemented subsets PI(X) and showed it’s embedding into the Chu category Chu(Set, X x
X).

In the last part, we worked on translating some elements of Bishop set theory into category
theory. Based on Petrakis’ work [8] we defined the categorical notions of an equality relation and
an apartness relation. We distinguished between local and global equality relations and proved
that every global equality is indeed a local equality. We defined the notion of a full Bishop object
(z,eq”,ineq”), which gives us the categorical version of Bishop’s complemented subset. Finally
we defined the category of complemented subobjects of a category C.

Of course, there are still a lot of open questions that arise. As mentioned in remark 4.2.11 it
does not generally hold that a local equality relation is a global equality relation. It is still an open
task to find a good condition on a category C such that this implication holds.

Another big task requiring some extra work is the global representation of an apartness relation,
which we have not yet found categorically. In the global definition of an apartness relation, we
need to define irreflexivity and cotransitivity in a global manner. Let (z,eq”) be a Bishop set
object, if r € Rel(z, ), then one could define r to be globally irreflexive if eq® Nr = 0, where
0 := (0,e1,e2) is the empty relation. However, if 0 is the initial object of the category C, then
e1, es are not jointly monic. To define global cotransitivity we would like to have a presentation
of a categorical definition of cocomposition, the dual notion of composition. Let R and S be two

subsets of X x X, then the cocomposition of R with S is defined as follows
RxS:={(z,2) e X x X |Vye X((z,y) € R V (y,2) € 9)}.

If we had a categorical representation of cocomposition we could define global cotransitivity through
r*r < r, which would be dual to our definition of global transitivity. It would be really desirable
to have a categorical representation of cocomposition of relations and to define the global version
of an apartness relation.

An obvious question one may think of is whether a global apartness implies a local apartness
and if so, if there exists a good condition on a category C to prove the converse. These open
questions however are not straightforward and require some more work to be answered.

Finally, it would be really interesting to see more examples of equivalence and apartness rela-

tions and to elaborate some interesting applications of our work.
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