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Abstract

Erret A. Bishop is well known in the community of constructive mathematicians
for his work on informal constructive set theory and informal constructive analysis.
However among his unpublished work, manuscripts have been found that, along some
of his published work, concern themselves with formal foundations of his constructive
mathematics. In this thesis we present two systems from this unpublished work.
First a simply typed one called system Σ for which we also provide Bishop’s concept
of compilation, a re-discovery of core concepts of realizability theory. We then show
that Σ is sound in regards to this through polishing the proof Bishop gave himself.
Second we discuss his draft for a dependently typed system, which is built to reflect
all of Bishop Set Theory.
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1 Introduction

Erret Bishop’s work on his informal system of constructive mathematics BISH [9, 2]
is well known in the community of intuitionists and has been topic of active research
and development ever since. In [19] a semi-formal system, the so called Bishop Set
Theory is developed, which serves as a intermediate step between Bishop’s original
theory of sets and a formal system for it. In this thesis however we provide an
overview of his less well known, even unpublished work on two formal systems that
he developed for his informal system of constructive mathematics.
In this introductory section we will first explain why constructivism matters and

why Bishop’s approach to constructive mathematics is of interest. Moreover, we
will briefly present notable formalization approaches by other mathematicians. In
Section 2 we will then present the definitions to system Σ, the theoretical basis of
Bishop’s first approach to formalization. Following this in Section 3 we will state
and present the proof of Bishop’s fundamental result of [4], a soundness theorem for
the concept of compilation he defined in order to finally achieve the translation from
system Σ into ALGOL, an at the time prevalent imperative programming language,
showing first ideas that could lead to mechanical proof verification or even proof
assistants. In that section we will also see how his concept of compilation has
great similarities to (modified) realizability but has key differences in concepts and
intuition. Finally in Section 4 we will showcase the previously unreleased attempt
of Bishop to expand the formalization to a full dependent type theory in order to
represent the complete scope of BST. In that section we will also explore similarities
and differences between Bishop’s approach and the nowadays well known, but at
the time not yet published work of Per Martin-Löf on his intuitionistic type theory
known as Martin-Löf Type Theory (MLTT).

1.1 Contributions

Since this work is largely based on unpublished manuscripts of Bishop, here we
would like to indicate what we have simply taken from these manuscripts, where we
have made modifications and where we have added new things.
First of all, throughout this thesis we have updated notation, which was either

deemed less readable by us or simply non-standard for modern times, since Bishop
of course could not have participated the 50 years of development in type theory
since him coming up with his notation. We have tried to make note of wherever we
substantially altered the notation and why.
Next, the definitions of system Σ in Section 2 as well as the rules and axioms given

there are taken from [4] without modifications to their meaning. We have newly
introduced the distinct variable convention (DVC), see Section 2 into this system
to make it less cumbersome, which eliminates the need for Bishop’s generalized
constants, terms and formulas, which we have still given the way Bishop did for
completeness. Similarly in Section 4 we have also not changed the definitions of
his general language or other definitions, unless specifically indicated otherwise, and
even then only to adapt them to modern times.
Our main contribution comes in Section 3, where the basic proof of Bishop’s Com-

pilation Theorem is still taken from [4], but we have extracted one case into Lemma 1,
since for this case we found Bishop’s proof to be too vacuous. We have also fixed
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an apparent error in the last case of the proof, where instead of the decidable case
distinction we have now contributed, Bishop performed a sort of meta-induction on
natural numbers, while this principle is what is to be shown correct in that case,
and also not making use of the structure specifically defined earlier for exactly this
purpose. Additionally we have created tables that encapsulate the essence of the
theorem for easier reference.
Lastly we have made a connection between Bishop’s work on compilation and

the work on realizability, as well as drawn parallels between these systems of his
and some of his more philosophically minded work as to the canonical form of
mathematical statements.

1.2 What is Constructive Mathematics?

Since the field of mathematics is very old, dating back to at least the ancient Greeks
or even before, it has gone through a lot of evolution. This evolution has come
in many forms, be it in contents, where mathematical theories were formed and
refined continuously throughout the ages, in the way we do mathematics, where
new proof methods are discovered and developed in turn with the needs of the
evolving contents, or finally in the foundations of mathematics themselves.
This last change might be viewed as the most drastic one, stemming from the

“Grundlagenkriese”, which ignited when Bertrand Russel found an inconsistency in
Cantor’s informal set theory with his famous paradox. Up until this point, nearly all
of mathematics of course had been subject to some form of rigour and formality, but
its foundations were just thought to be intuited in some way or another, and their
consistency taken as intuitive fact. The field of mathematical logic then strived
to formalize mathematics from the very core, resulting in modern axiomatic set
theories like Zermelo-Fränkel set theory with the axiom of choice (ZFC), which are
now widely used by mathematicians. But with this formalization also came another
split in the community, between the formalists, championed by Hilbert, and the
intuitionists, led by Brouwer. While formalists were very much content with the
new axiomatic theories, the intuitionists found issues with parts of it, namely the
law of the excluded middle, A∨¬A and related propositions, insisting that in order
to show proper existence of an element, it is paramount that one produces one such
element, not just disprove the non-existence. This idea of the intuitionists is the core
of constructive logic and by extensions constructive, sometimes also intuitionistic (in
contrast to “normal” or classical), mathematics in general. The main reason for this
is that constructive proofs always contain actual information, also sometimes called
computational content. Let us see a small example of a classical proof that showcases
the information lost by using the law of the excluded middle:

Example 1. There exist irrational numbers a, b such that ab is rational.

Proof. By the law of the excluded middle,
√
2
√
2
is rational or not rational, i.e.

irrational.

•
√
2
√
2
is rational:

We let a = b =
√
2, thus ab =

√
2
√
2
, which by assumption is rational.
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•
√
2
√
2
is irrational:

We let a =
√
2
√
2
, b =

√
2, resulting in ab =

√
2
√
2
√
2

=
√
2
2
= 2, proving our

statement.

Classically speaking this proof is completely acceptable, but in actuality it does
not provide us with any information whatsoever. We now know there “exist” such
a and b, but we still don’t know any, since we have not actually proven the status

of rationality of
√
2
√
2
. The actual proof of

√
2
√
2
being irrational uses the Gelfond-

Schneider theorem [18, Ch. X], the proof of which in turn is much more involved,
showing that the deceptively simple proof of this proposition actually obscures the
true effort required in order to truly know the result, at least as far as a constructivist
point of view is concerned.
Another important point of view to consider in regards to constructive mathemat-

ics is that of a computer scientist. Computer scientists are interested in algorithms
which can actually compute a concrete result in order to be able to use them in
a more concrete fashion, either as further input or as end result. This approach
is being applied, both by computer scientists as well as some mathematicians, to
help prove mathematical theorems in an algorithmic manner, both using interactive
[22, 7, 16] and fully automated [26, 10, 24] methods. For this then the constructive
approach is of course very natural, as it always offers the possibility of extracting
programs from such proofs, and sometimes it is even required in order to get the
needed information, for example from a proof of existence, which in the classical way
does not necessarily hold enough information to actually deduce a representative.

1.3 The State of Formalization

Formalization of mathematics has evolved greatly since Bishop wrote the manu-
scripts we concern ourselves with here. Starting with the intuitionistic type theory
of Martin-Löf [17] there has been a lot of work to use dependent type theories as
formal systems for mathematics. It is remarkable that Martin-Löf’s work was only
first published around five years after [4, 3] were most likely written, so specifically
with the dependent type theory proposed in [3] in mind, which we discuss further
in Section 4, Bishop would have possibly contributed much to constructive found-
ations of mathematics if it had not been for his early passing. After Martin-Löf’s
initial proposal resulting in MLTT as we know it today after some refinements, for
example regarding the self-referential universe of MLTT, which resulted in paradox-
ical behaviour and could be solved by introducing the now used infinite hierarchy of
universes, there has been the rather recent extension, first with work of Hoffmann
and Streicher [12] and most notably through the introduction of the Univalence Ax-
iom by Voevodsky [25], of MLTT to Homotopy Type Theory (HoTT) [23], which
even ultimately led to Voevodsky winning the fields medal. Flavours of both MLTT
and HoTT served as the basis for modern proof assistants like Agda [22] and Coq [7]
but also predominantly classically minded proof assistants like Lean [16] were born
from the ideas of dependent type theory and are seeing more and more active use by
mathematicians. The first major result to famously be formalized, after checking of
certain computer assisted parts of the proof turned out to be too involved to do by
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hand to gain complete certainty, was the four colour theorem by Appel and Haken
[1] and since then proof assistants have become increasingly accepted not only by
computer scientist but also by mainstream mathematicians. In essence these tools
are the natural continuation of the thoughts Bishop expressed in [4], showing that
the idea behind the concept of compilation, which we will explore in detail in Sec-
tion 3, of using computers to formalize mathematics on the basis of types was at
the forefront of its time, coming around the beginning of De Bruijn’s Automath
project [6] and maybe even preceding it. It is thus of immense interest to see what
ideas of Bishop in this regard might lead to intuitions or developments that could
possibly influence how we see proof systems and particularly formal foundations of
mathematics in the modern day. We discuss this further in Section 3.4.
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2 System Σ

In this section we will concern ourselves with the definition of the mathematical sys-
tem Σ as well as discuss a canonical form for mathematical statements conjectured
to exist by Bishop in [5]. The former was first given by Bishop in [5, 4], and inspired
(in name and content) by Clifford Spector [21], who concerned himself with a sys-
tem, essentially starting from slightly extended version of this Σ, iteratively giving
a stronger language for proofs of recursive functionals of analysis. Bishop’s version
studied here is therefore a weaker system and might not be suitable to formalize the
entirety of mathematics (something which Bishop attempted to rectify in [3], see
Section 4), thus future work might concern itself with extending the ideas laid out
later in Section 3 to a system of strength similar to Σ4 of [21], or even adapting them
to a more modern system like HoTT and see if profound differences exist between
Bishop’s approach and modern theorem proving approaches.
In Section 2.1 we present and motivate the types, terms and formulas of Σ, in

Section 2.2 we then provide the axioms and rules of the calculus. Finally Section 2.3
concerns itself with Bishop’s aforementioned supposed canonical form of mathem-
atical theorems.

2.1 Types, Terms and Formulas

First a few basic definitions are in order for completeness:

Definition 1 (Bound and Free Variables). An occurrence of a variable is said to be
a bound occurrence in a term t or formula A if it occurs as x1, . . . , xn in a subterm of
t of the form λx1,...,xn .t1 or as x in a subformula of A of the form ∀xA1(x) or ∃xA1(x).

All occurrences that are not bound are said to be free occurrences.

Definition 2 (Distinct Variable Convention (DVC)). All bound variables of a term
t or formula A must have distinct names, as well as names distinct from all occur-
ring free variables.

In case this does not hold, it can be achieved through substituting fresh names for
all bound variables. We will thus assume DVC to hold throughout.

The distinct variable convention is something not employed by Bishop, we however
find this to be much more intuitive, especially for a formal approach, since the need
to constantly mention how renaming or different variable assignment might impact
the truth of some statement makes things overly cumbersome and approaches to
signify that all possible variable assignments are considered, like the g-constants, -
terms and -formulas Bishop uses, see Section 3.1 below, impair readability needlessly.

As a last remark, we would like to stress the difference between the two types of
equalities we use throughout. The first is that of definitional equality, denoted by
≡ and the second that of propositional equality, denoted by the standard =. This
differentiation exists in many type systems, most notably in MLTT and HoTT and
serves to distinguish between what can be described as a given rewrite rule, and a
proposition that must first be proved and can only then be used with an inference
rule to actually rewrite in context. The former of course implies the latter, of course
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not the other direction does not generally hold, and the former can only be reasoned
about in a very limited way within the system itself.

Now we first present the type system of Σ.

Z is the type of nonnegative integers
(1T,Nat)

T1, . . . , Tn types

T1 × · · · × Tn type
(2T, Prod)

T1, T2 types

T1 → T2 type
(3T, Fun)

Figure 1: Types of Σ

This type system, seen in Fig. 1, is rather basic, featuring the naturals (called Z
in [4] or [0] in [5]), with 0 as the starting constant, as well as the type of all finite
product and function types. As will become apparent in Section 3 this product is
sometimes even used in a dependent way, even though Bishop does not treat this
in a special manner. For the n-product type, Bishop used tuple notation, which
we converted to a more standard product notation. Also he either used natural
language or in [3] a sort of function T in order to indicate the typing of a term. We
have opted to instead use standard modern t : T notation, meaning term t is of type
T .
The terms in the language Σ, see Fig. 2, consist at their base of arbitrary constants

and variables, which need to be of a given type. Further, if we have an element of
the function type we can create a new term as usual by applying this function to
an argument of the appropriate type, note that Bishop used the unconventional
notation (t; t1) for function application, which we modernized. In case we have a
term t of the n-product type, there exist terms πi(t), called the i-th projection of
t, for these Bishop also used peculiar notation, namely the same as for function
application (t; i), which we did not find to be helpful, opting to introduce πi as
a primitive function symbol instead as is often done nowadays. Conversely it is
possible to construct a n-tuple from n appropriately typed terms. For the successor
of natural numbers Bishop opted to use the notation of t′, as is also used in [21].
A term of a function type is constructed with lambda notation, natively taking a
n-tuple of variables, using (6R) and (7R) from Section 2.2 we see this can also be
curried. In (7t) [u1 7→ t1, . . . , un 7→ tn] will be equal to the functional ti where
1 ≤ i ≤ n is the least integer such that ui ̸= 0 or tn if ∀iui = 0. Bishops original
notation [u1 : t1; . . . un : tn] is not problematic in and of itself. Nevertheless, we
opted to change it however to avoid confusion with the colon now being used for
typing declaration. Finally concerning (8t) we define ind(t1, t2, t3, t4) as follows:

ind(t1, t2, t3, t4) =

{
t3 if t2 = t1

ind(t′1, t2, t4((t1, t3)), t4) otherwise.

This then gives us the tool to perform induction within our language.
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0 : Z
(0t, Zero)

x : T constant or variable

x : T term
(1t, V ar)

t : T1 → T2 t1 : T1

t(t1) : T2

(2t, App)

t : T1 × · · · × Tn

∀1≤i≤nπi(t) : Ti

(3t, Project)

∀1≤i≤nti : Ti

(t1, . . . , tn) : T1 × · · · × Tn

(4t, Pair)

t : Z
t′ : Z

(5t, Succ)

t : T ∀1≤i≤nxi : Ti distinct variables

λx1,...,xn .t : ((T1 × · · · × Tn) → T )
(6t, Abst)

u1, . . . , un : Z t1, . . . , tn : T

[u1 7→ t1, . . . , un 7→ tn] : T
(7t, Functional)

t1, t2 : Z t3 : T t4 : (Z, T ) → T

ind(t1, t2, t3, t4) : T
(8t, Ind)

Figure 2: Terms of Σ

t1, t2 : Z
t1 = t2, t1 ̸= t2 formulas

(1F,Eq)

A formula x variable

∃xA,∀xA formulas
(2F,Quant)

A,B formulas

A ∧B,A ∨B,A ⇒ B formulas
(3F,Base)

Figure 3: Formulas of Σ

Finally we present the definition of the formulas of Σ in Fig. 3. They are built
inductively with equality/inequality of two terms of type Z as our basic prime for-
mulas, or as Bishop calls them “simple formulas”. We have the usual connectives
∧,∨ and ⇒ as well as existential and universal quantifiers. (Bishop overloaded
→ for implication as well as function types, we chose to make these more visually
distinct) When dealing with variables we apply the generality interpretation,
meaning free variables are regarded to be universally quantified, i.e. A(x1, . . . , xn)
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means ∀x1,...xnA(x1, . . . , xn).
Primitively the language Σ only allows for (in-)equality between terms of type Z,

thus for terms of product and function types we define equality pointwise, meaning
terms f, g : T1 → T2 are viewed to be equal iff f(α) = g(α) for any α : T1, and
likewise terms t, r : T1×· · ·×Tn are viewed to be equal iff πi(t) = πi(r) for 1 ≤ i ≤ n.
With this inductive approach we can also define formulas t1 = t2, and analogously
for t1 ̸= t2, as follows:
Case t1, t2 : T1 × · · · × Tn:

t1 = t2 ⇔ π1(t1) = π1(t2) ∧ · · · ∧ πn(t1) = πn(t2)

Case t1, t2 : T1 → T2:
t1 = t2 ⇔ ∀x(t1(x) = t2(x))

2.2 Inference Rules

In [4] Bishop gives the rules and axioms of Σ in the form of natural language (e.g.
“If X then Y”). We have adapted this to the modern notation of inference rules.
Also Bishop makes an effort of distinguishing between axioms and rules, saying the
view of axioms as a rule without premises is not customary. We will in general
not make this distinction, only sometimes referring to it for the sake of consistency.
Thus going forward, “inference rules” equally address what Bishop calls axioms as
well as rules.
The first set of inference rules in Fig. 4 form the, of course intuitionistic, propos-

itional calculus with Gentzen style introduction and elimination rules for ∧,∨ and
⇒, (un-)currying and the principle of explosion, ex falso quodlibet.

With Fig. 4 the system is then extended to the predicate calculus. Note here that x
is a variable and t a term, where both have the same but arbitrary type. Originally
Bishop posed the additional restriction for (4A) and (5A) that t be free for x, a
condition we have made more explicit in general by requiring the DVC to hold at
all times as to not have to deal with variable renaming explicitly, as well as these
kinds of conditions.
An inference rule deserving of special mention is the constructive axiom of choice:

∀x∃yA(x, y) ⇒ ∃z∀xA(x, z(x))
(6A,AC)

where if x : T1 and y : T2 we require z : T1 → T2. This rule is of interest both
since its constructive truth for arbitrary types T1 is not immediate, as Bishop also
discusses in [4], and also since in [5] Bishop conjectures that the form ∃y∀xA(x, y) is
the canonical form for all mathematical statements. We will therefore continue the
discussion of (6A) in Section 2.3.
The inference rules in Fig. 6 concern themselves mostly with formalizing the intuit-

ive meaning to the appropriate terms, specifically (8A), (9A) and (10A), defining the
behaviour of projection, application and the functional respectively. In rule (7A) a
property similar to the transport of MLTT is defined, where t1 and t2 are of the same
arbitrary type and equality is as defined above, so t1 = t2 need not necessarily be a
simple formula. Rule (10R) provides the principle of induction for natural numbers
and (11R) gives the means to instantiate a proven existentially quantified formula
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A ⇒ A
(1A,Base)

A

B ⇒ A
(1R, True)

A A ⇒ B

B
(2R,MP )

A ⇒ B B ⇒ C

A ⇒ C
(3R, Trans)

A ∧B ⇒ A B ∧ A ⇒ A A ⇒ A ∨B B ⇒ A ∨B
(2A,∨+ ∧−)

A ⇒ C B ⇒ C

A ∨B ⇒ C
(4R,∨−)

C ⇒ A C ⇒ B

C ⇒ A ∧B
(5R,∧+)

A ⇒ B ⇒ C

A ∧B ⇒ C
(6R,Uncurry)

A ∧B ⇒ C

A ⇒ B ⇒ C
(7R,Curry)

0 = 0′ ⇒ A
(3A,EfQ)

Figure 4: Axioms and rules of Σ forming the propositional calculus

A ⇒ B(x) x not free in A

A ⇒ ∀xB(x)
(8R, ∀+)

B(x) ⇒ A x not free in A

∃xB(x) ⇒ A
(9R, ∃+)

∀xA(x) ⇒ A(t)
(4A, ∀Base)

A(t) ⇒ ∃xA(x)
(5A, ∃Base)

Figure 5: Axioms and rules of Σ forming the predicate calculus

with the constant c0, which represents the functional constructed “according to the
proof P of ∃xA(x)”[4], which we may in general also denote as α(P ) later.
The final set of inference rules in 7 enables the behaviour of equality as expected,

where all variables are of type Z and further equality is again defined inductively as
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(t1 = t2 ∧ A(t1)) ⇒ A(t2)
(7A, Transport)

m,n : Z 1 ≤ m ≤ n

πm((t1, . . . , tn)) = tm
(8A,Proj)

(λx1,...xn .t(x1, . . . , xn))(t1, . . . , tn) = t(t1, . . . , tn)
(9A,App)

i, n : Z 1 ≤ i ≤ n

u1 = 0 ∧ · · · ∧ ui−1 = 0 ∧ ui ̸= 0 ⇒ [u1 7→ t1, . . . , un 7→ tn] = ti
(10A,Functional)

x : Z A(0) A(x) ⇒ A(x′)

A(x)
(10R, Ind)

∃xA(x) x1, . . . , xn all free variables of A

A(c0(x1, . . . , xn))
(11R, ∃Proof)

Figure 6: Further axioms and rules of Σ

x = x (x = y ∧ z = y) ⇒ x = z
(12A, Trans)

x = y ⇒ t(x) = t(y)
(13A,Ext)

x′ = 0 ⇒ 0′ = 0
(14A,False)

x′ = y′ ⇒ x = y x = y ⇒ x′ = y′
(15A,+Ext)

x = y ∨ x ̸= y (x = y ∧ x ̸= y) ⇒ 0′ = 0
(16A,False)

Figure 7: Axioms for Z in Σ

given above.

2.3 Canonical Form of Mathematical Statements

In this section we will discuss Bishop’s argument as to the previously alluded to
canonical form for all (constructive) mathematical statements that he posits in [5],
its relation to the numerical meaning of implication and further how it might relate
to the constructive axiom of choice, (6A) in Σ.

First, Bishop distinguishes between complete and incomplete mathematical state-
ments, the differentiating factor being whether or not the statement contains all
definitions needed for it. One can easily see that most statements are therefore
deemed incomplete, making it sensible to talk about the canonical form for these
in particular. Bishop conjectures that such a statement can be said to depend on a
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finite amount of pre-existing assumptions, which therefore should be constructible
following some finite rules. Thus, Bishop posits, these parameters are existentially
quantified, we shall call them by y for ease of use, even though y may have more than
one component. The statement can then be said to be equivalent to ∃yP (y), where
this P (y) is then complete in Bishop’s sense. Such complete statements, Bishop
argues, should semantically assert “that a given constructively defined function f ,
from a given constructively defined set S to the integers, vanishes identically. In
other words, it asserts ∀xA(x), where A is the decidable predicate f(x) = 0 and x
ranges over S”[5, p. 57]. This interpretation of constructivism is especially valuable
in our opinion when dealing with machine computations, as the integers are the
primitive components of the language of computation.

Joining these definitions we obtain this canonical form for incomplete mathematical
statements:

∃y∀xA(x, y) (1)

where x : S and y : T .

Granting the mere existence of a canonical form for all mathematical statements,
and it even being this one in particular, may at first seem to be a big and unwarran-
ted commitment to make. Let us thus, departing for the moment from the focus of
Bishop as to the numerical meaning of implication, briefly discuss the relationship
between the constructive axiom of choice and (1), which will hopefully make it more
believable.

Let’s first see as to why, at least within the framework that concerns us here, where
everything is finally grounded in natural numbers, we may even want to regard (6A)
to intuitively be true in a constructive sense, in the manner of Bishop [4, p. 9-10].
Given ∀x∃yA(x, y), where x : T1, y : T2, we can for all functionals f : T1, since
we have a proof of ∃yA(f, y), construct some functional f̃ : T2, such that A(f, f̃).
To now define a functional h : T1 → T2, the first instinct would be h(f) := f̃ ,
and this can be made to work, depending on the kind of types one permits as T1

and T2. Specifically we need to be able to convert the elements of the types into a
fixed representation, for example binary for natural numbers, so that we can always
guarantee if f1 = f2 then h(f1) = h(f2). For higher types this fixed representation,
into which all representatives of the type can be converted, may not necessarily exist,
but Bishop conjectures, that “However, it is intuitively very plausible that for sets
of the types being considered every constructively definable operation is in fact a
function” [4, p. 10]. In general since the time of writing of Bishop’s manuscripts, the
specific version of choice posed in (6A) can be shown provable for example in MLTT
(not implying the law of the excluded middle, which versions in even constructive
set theory do), which can be viewed as further evidence of the constructive truth of
(6A) in this context.
Now using the constructive axiom of choice, we can see that formulas of the form

of (1) can be achieved as the consequence of the former from any formula of the
form ∀x∃yA(x, y). This form now, is always easily achieved, since the inverse oper-
ation to (6A) is undoubtedly true. Now once all quantifiers in possibly mixed order
have been ordered to first have all universal and only then all existential quantifiers,
(6A) provides us with the sought after form, providing further justification to the
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existence of this canonical form.

Now regarding the numerical meaning of implication, Bishop [5] transforms the
starting canonical form of the implication P ⇒ Q,

∃y∀xA(x, y) ⇒ ∃v∀uB(u, v) (2)

into a statement the following:

∀y∃v∀u(∀xA(x, y) ⇒ B(u, v)). (3)

This critically rests on the claim made, that

C ⇒ ∃rD (4)

shall imply the statement
∃r(C ⇒ D). (5)

Bishop justifies this implication, saying that while the procedure of construction of
this r may indeed assume the truth of C, it is still possible to give a universally
valid definition of r, by assigning some convenient constant to it if C is not known
to be true at the time, “with the property that in case [C] does hold, then [r] will
have the value originally prescribed” [5, pp. 58] (Bishop discusses this directly with
subformulas of (2) and v, we decided however to keep it more general).
Continuing from (3), fixing values for y, v and u, Bishop goes on to postulate, that

in a constructive context, experience indicates that a proof of a statement

∀xA(x, y) ⇒ B(u, v) (6)

typically only relies on finitely many x1, . . . , xn for which A(xi, y) holds in order to
prove B(u, v). This assumption further transforms the formula into

A(x1, y) ∧ · · · ∧ A(xn, y) ⇒ B(u, v), (7)

from where, since it is a finitary statement of only decidable propositions it must
hold, that there exists 1 ≤ k ≤ n such that

A(xk, y) ⇒ B(u, v). (8)

This then means it would hold, that

∃x(A(x, y) ⇒ B(u, v)), (9)

essentially replacing the universal by an existential quantifier.
This finally means (3) can be transformed into

∀y∃v∀u∃x(A(x, y) ⇒ B(u, v)), (10)

and if we then apply (6A), we finally receive what Bishop views as the candidate
for the canonical numerical version of P ⇒ Q,

∃v̄∃x̄∀y∀u(A(x̄(y, u), y) ⇒ B(u, v̄(y))). (11)

As future work it remains to actually define and use a system with (11) as primitive
definition of implication, called numerical implication by Bishop, possibly even in
the context of the dependent type theory we will discuss in Section 4.
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3 Bishop’s Compilation Theorem

In this section, building on the system Σ, as defined in the section above, defining a
notion of compilation, which very closely relates to realizability [14, 13] and modified
realizability [14], constituting a mixture of both in some ways, and then giving a
soundness theorem, called compilation theorem by Bishop, for this notion, which
was contained in [4] but we wrote some parts out in more detail, gave some extra
supporting proofs explicitly and fixed the proof of one of the cases.

3.1 Definitions

In [4], Bishop defines the concepts of generalized, or g-, constants, formulas and
terms. For the sake of completeness we include these below. However since we
opted to use DVC, use of these is not necessary, since leaving all free variables in
their current form, may no longer lead to conflicts that may change the meaning of
the original term or formula.

Definition 3 (generalized constant). A generalized constant of a specific type is a
representation of a specific functional of the given type.

Definition 4 (generalized formula). We define a generalized formula, or g-formula,
A to be derived from a (non-generalized) term A0 of Σ by substituting generalized
constants of the appropriate types for certain of the free variables of A0.

Definition 5 (generalized term). We define a generalized term, or g-term, t to be
derived from a (non-generalized) term t0 of Σ by substituting generalized constants
of the appropriate types for certain of the free variables of t0.

While generally only terms have types, for the notion of compilation which we
will introduce shortly, it is natural and helpful to define the notion of the type of a
(g-)formula, which will then be the type of the term that compiles this formula.

Definition 6 (Type of (g-)formulas). To each (g-)formula A we associate the in-
ductively defined type T (A). We now inductively define T (A):

1. In case A does not contain any ∃ or ∨ (i.e. is existence-free), specifically if it
is a simple formula, T (A) = Z. For all other cases A is assumed to contain
at least one of ∃ or ∨ (i.e. is existential).

2. In case A ≡ A1 ∧ A2, then T (A) ≡ (T (A1), T (A2)).

3. In case A ≡ A1 ∨ A2, then T (A) ≡ (Z, T (A1), T (A2)).

4. In case A ≡ A1 ⇒ A2, then T (A) ≡ T (A1) → T (A2).

5. In case A ≡ ∃xA1(x), then T (A) ≡ (T (x), T (A1(x))), where T (x) is the type
of x.
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6. In case A ≡ ∀xA1(x), then T (A) ≡ T (x) → T (A1(x)).

Next we finally present Bishop’s definition of compilation. Note that Bishop origin-
ally did not include a case for simple formulas, which we proceeded to add in a style
that resembles realizability. The relationship between compilation and realizability
will be subject of further discussion in the following Section 3.3.

Definition 7 (Compilation). We inductively define what it means for a generalized
term t of type T (A) to compile a constructive proof P of a generalized formula A,
written t c PA:

1. In case A has free variables, then t c PA iff for each assignment a of a func-
tional of the requisite type to each of the free variables of A, ta c Pa

Aa. For
the remaining cases we may assume that A has no free variables.

2. In case A is a simple formula, i.e. A ≡ t1 = t2 or A ≡ t1 ̸= t2, or
A is existence-free, t c PA iff t : Z and P constructively proves the equal-
ity/inequality, i.e. A is true.

3. In case A ≡ A1∧A2, then t c PA iff πi(t) c Pi
Ai, where Pi is the corresponding

proof of Ai which can be inferred from P for i ∈ {1, 2}.

4. In case A ≡ A1 ∨ A2, then t c PA iff πi+1(t) c Pi
Ai, where i = 1 iff π1(t) = 0

and i = 2 iff π1(t) ̸= 0 and Pi is the corresponding proof of Ai which can be
inferred from P .

5. In case A ≡ A1 ⇒ A2, then t c PA iff whenever t1 c P1
A1, it also holds that

t(t1) c P2
A2.

6. In case A ≡ ∃xA1(x), then t c PA iff π1(t) = α(P ) (for all values of free

variables of π1(t), if any) and π2(t) c P1(α(P ))A1(α(P )).

7. In case A ≡ ∀xA1(x), then t c PA iff t(x) c P1(x)
A1(x).

3.2 Compilation Theorem

Bishop’s fundamental result in [4] is the following version of a soundness theorem
relating the above notion of compilation with his notion of an informal constructive
proofs.

Theorem 1 (Compilation Theorem). There exists an algorithm AL, realizable in
any general string-manipulation programming language, such that

⊢PA

Σ A ⇒ AL(PA)cPA

where AL(PA) is a constant free term of Σ.
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Algorithm Axiom/Rule Term
AL1 1A t ≡ λx.x
AL2 1R t(β) ≡ λx.β
AL3 2R t(β, γ) ≡ γ(β)
AL3 3R t(β, γ) ≡ λx.γ(β(x))
AL1 2A∧ t ≡ λx.π1(x)
AL1 2A∨ t ≡ λx.(0, x, y)
AL3 4R t(β, γ) ≡ λx.[π1(x) 7→ γ(π3(x)), 1 7→ β(π2(x))]
AL3 5R t(β, γ) ≡ λx.(β(x), γ(x))
AL2 6R t(β) ≡ λx.(β(π1(x)))(π2(x))
AL2 7R t(β) ≡ λx,y.β((x, y))
AL1 3A t ≡ λx.y
AL2 8R t(β) ≡ λy,x.β(y)
AL2 9R t(β) ≡ λy.((λx.β)(π1(y)))(π2(y))
AL1 4A t ≡ λy.y(w)
AL1 5A t ≡ λy.(w, y)
AL1 6A t ≡ λz.(λx.π1(z(x)), λx.π2(z(x)))
AL1 7A t ≡ λz.π2(z)
AL3 10R t(β, γ) ≡ ind(0, x, β, λ2.γ(π1(w)))
AL2 11R t(β) ≡ π2(β)

Table 1: AL

Proof. Like Bishop we actually present three algorithms AL1, AL2 and AL3 which
in turn define the algorithm AL. The constructed terms are listed as an overview
in Table 2, Table 3 and Table 4 respectively and joined for the sake of completeness
Table 1. where we decided to omit the premises and conclusions to aid readability.
These can be cross-referenced from the respective algorithm below. It remains to
justify for each of the listed terms that t c PA indeed holds, for which we will
consider each algorithm, and within that each rule, in turn. When doing this, we
will justify before each of them respectively, that the algorithms actually satisfy our
needs, using Bishop’s arguments.

3.2.1 AL1

Axiom Statement Term
1A A ≡ A′ ⇒ A′ t ≡ λx.x
2A∧ A ≡ A′ ∧ A′′ ⇒ A′ t ≡ λx.π1(x)
2A∨ A ≡ A′ ⇒ A′ ∨ A′′ t ≡ λx.(0, x, y)
3A A ≡ 0 = 0′ ⇒ A′ t ≡ λx.y
4A A ≡ ∀xA

′(x) ⇒ A′(w) t ≡ λy.y(w)
5A A ≡ A′(w) ⇒ ∃xA

′(x) t ≡ λy.(w, y)
6A A ≡ ∀x∃yA

′(x, y) ⇒ ∃z∀xA
′(x, z(x)) t ≡ λz.(λx.π1(z(x)), λx.π2(z(x)))

7A A ≡ (t1 = t2 ∧ A′(t1)) ⇒ A′(t2) t ≡ λz.π2(z)

Table 2: AL1
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First for AL1 we are only dealing with axioms, thus not needing any outside
hypotheses.
If now AL1(PA) = t, this t might still contain constants ci occurring in A. In this

case, since these constants must be introduced by (11R), which is handled by AL2,
thus, AL in its entirety must already have given a term ti, for which ti c Pi

∃xiAi(xi)

holds and which thus is equal to ci but constant free. Thus the whole constant free
term is obtained by replacing the ci by ti in each occurrence.
Now that we have seen AL1 to function as desired, we will define it and prove

t c PA in turn for each axiom.

(1A): It suffices to show that given t̄ c P ′A′
holds, it follows that t(t̄) c P ′′A′

also
holds. We obtain this from t(t̄) ≡ t̄ and the fact that P ′ and P ′′ must in fact
be the same in the sense given above.

(2A∧): It suffices to show that given s c LA′∧A′′
holds, it follows that t(s) c P ′A′

also holds. By definition of t,

t(s) ≡ π1(s),

which in turn by definition behaves as desired.

The term and argument follow analogously for A ≡ A′ ∧ A′′ ⇒ A′′.

(2A∨): It suffices to show that given t̄ c P ′A′
holds, it follows that t(t̄) c SA′∨A′′

also holds. By definition of t,

t(t̄) ≡ (0, t̄, y),

where y is any variable of type T (A′′), and since π1((0, t̄, y)) ≡ 0 means that

S is actually a proof of A′, thus it remains to show π2(t(t̄)) c P ′′A′
, which

holds, since π2((0, t̄, y)) ≡ t̄ and P ′′ and P ′ must be the same.

The term and argument follow analogously for A ≡ A′′ ⇒ A′ ∨ A′′.

(3A): It suffices to show that given u c R0=0′ holds, it follows that t(u) c P ′A′
also

holds. Bishop proves this in a vacuous way, postulating that there are no
proofs of 0 = 0′.

(4A): It suffices to show that given t̄ c P ′∀xA′(x) holds, it follows that t(t̄) c P ′′A′(w)

also holds. By definition of t,

t(t̄) ≡ t̄(w).

By the definition of compilation from t̄ c P ′∀xA′(x) it follows that t̄(f) c P ′A′(f)

holds for all functionals f , thus also for w.

(5A): It suffices to show that given t̄ c P ′A′(w) holds, it follows that t(t̄) c P ′′∃xA′(x)

also holds. By definition to show t(t̄) c P ′′∃xA′(x), we need to show π1(t(t̄)) =

α(P ′′) as well as π2(t(t̄)) c P ′′′(α(P ′′))A
′(α(P ′′)). Also by definition of t,

t(t̄) ≡ (w, t̄)

and thus π1((w, t̄)) = w, which fulfils the first condition, since α(P ′′) = w. For

the second condition we have π2((w, t̄)) = t̄, which by assumption t̄ c P ′A′(w)

compiles a proof of A′(α(P ′′)), which must in turn be the same proof as P ′.
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(6A): While well-typedness has been straightforward so far, for this term it might
not immediately be apparent, thus we will first argue this and only then prove
the main property.

Looking at Definition 6, we see that for the first element we need an element
of the same type as z from the existential. This then is a function from the
type of x to the type of y from the existential in the premise. Thus we create
a function, abstracting over x, thus having the correct domain type, applying
x to our argument function and recovering the generated functional of the
type of y from the given existential. The second element of the dependent
pair needs to have the same type as ∀xA

′(x, z(x)), which again is a function
type by Definition 6, again with the same domain but we need something of
the same type as A′(x, z(x)), which since z(x) is of the same type as y, is
the same type as A′(x, y), which we recover as the second projection of our
argument function applied on x.

Now to show that t c P ∀x∃yA′(x,y)⇒∃z∀xA′(x,z(x)) holds, it suffices to show that
given t̄ c P ′∀x∃yA′(x,y) holds, then t(t̄) c P ′′∃z∀xA′(x,z(x)) also holds. By definition

to show t(t̄) c P ′′∃z∀xA′(x,z(x)), we need to show that π1(t(t̄)) = α(P ′′) and

π2(t(t̄)) c P
′′′∀xA′(x,z(x)). By definition π1(t(t̄)) = λx.π1(t̄(x)). Since equality of

functions is defined pointwise we show that for each functional f of the same
type as x, π1(t̄(f)) = α(P ′′)(f). Since t̄ c P ′∀x∃yA′(x,y), by definition we have
π1(t̄(f)) ≡ α(P ′(f)), where P ′(f) proves ∃yA

′(f, y) and since α(P ′′)(f) =
α(P ′(f)) we have shown the first condition to hold.

For the second condition, by definition of t, π2(t(t̄)) = λx.π2(t̄(x)). Again by

definition of compilation, from t̄ c P ′∀x∃yA′(x,y), we know that for any func-
tional f of the same type as x π2(t̄(f)) c P ′′′′(α(P ′(f)))A

′(f,α(P ′(f))) holds. To
show the second condition it now just remains to show π2(t̄(f)) c S

A′(f,α(P ′′)(f))

also holds, which must be the case, since S and P ′′′′(α(P ′(f))) must be the
same proof and α(P ′′)(f) = α(P ′(f)).

(7A): It suffices to show that given t̄ c P ′t1=t2∧A′(t1) holds, it follows that t(t̄) c P ′′A′(t2)

also holds. By definition t̄ c P ′t1=t2∧A′(t1) means π1(t̄) c S
t1=t2 and π2(t̄) c S

′A′(t1)

and also by definition of t,
t(t̄) ≡ π2(t̄).

Thus what is left to be shown is π2(t̄) c P ′′A′(t2), which holds due to t1 = t2
and Lemma 1.

3.2.2 AL2

Next for AL2 we consider all rules with exactly one premise. Thus we will for all
cases assume that for the listed formula B in Table 3 there is some term u : T (B)
such that u cQB. In the terms we define for the conclusion we use β as the parameter
that will be replaced by u. In cases (8R) and (9R), where u depends on some x,
we denote this through square brackets u[x], thus for some functional f : T (x), u[f ]
denotes the term u[x], where all occurrences of x have been replaced by f . Note
that the DVC can always be fulfilled by renaming bound variables that conflict with
f or choosing an encoding like De Bruijn indices [8] which does not use variable
names, thus we will not further discuss this.
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Rule Premise Conclusion Term
1R B ≡ B A ≡ B′ ⇒ B t(β) ≡ λx.β
6R B ≡ D ⇒ (E ⇒ F ) A ≡ D ∧ E ⇒ F t(β) ≡ λx.(β(π1(x)))(π2(x))
7R B ≡ D ∧ E ⇒ F A ≡ D ⇒ (E ⇒ F ) t(β) ≡ λx,y.β((x, y))
8R B ≡ E ⇒ F (x) A ≡ E ⇒ ∀xF (x) t(β) ≡ λy,x.β(y)
9R B ≡ E(x) ⇒ F A ≡ ∃xE(x) ⇒ F t(β) ≡ λy.((λx.β)(π1(y)))(π2(y))
11R B ≡ ∃xB

′(x) A ≡ B′(c0(x1, . . . , xn)) t(β) ≡ π2(β)

Table 3: AL2

If now AL2(PA) = t(β), by induction hypothesis a term u such that u c QB is
already defined. Thus, the term t(u) by assumption compiles PA.
Now that we have seen AL2 to function as desired, we will define it and prove

t c PA in turn for each single premise rule.

(1R): To show t(u) c PA holds, it suffices to show that given ū c Q′B′
holds, it

follows that (t(u))(ū) c Q′′B also holds. By definition of t,

(t(u))(ū) ≡ u

and since u c QB also u c Q′′B since Q and Q′′ must be the same proof.

(6R): To show t(u) c PA holds, it suffices to show that given w c RD∧E holds, it
follows that (t(u))(w) c SF also holds. Now by definition of t,

(t(u))(w) ≡ (u(π1(w)))(π2(w))

and π1(w) cR
′D as well as π2(w) cR

′′E hold. From this we get u(π1(w)) c S
′E⇒F

and thus (u(π1(w)))(π2(w)) c S ′′F showing (t(u))(w) c SF since S and S ′′

must be the same proof.

(7R): To show t(u) c PA holds, it suffices to show that given w1 c R′D holds, it
follows that (t(u))(w1) c S ′E⇒F also holds. For this in turn it suffices to show
that given w2 c R′′E holds, it follows that ((t(u))(w1))(w2) c SF also holds.
Now by definition of t,

((t(u))(w1))(w2) ≡ (u((w1, w2)))

for which using the assumption u c QB, we get that u((w1, w2)) c S ′′F holds,
showing that ((t(u))(w1))(w2) c SF , since S and S ′′ must be the same proof.

(8R): To show t(u) c PA holds, it suffices to show that given w c RE holds, it
follows that (t(u[x]))(w) c S∀xF (x) also holds. By definition of compilation it

now suffices to show that for each functional f : T (x), (t(u[f ]))(w) c S ′F (f)

holds. By definition of t,

(t(u[f ]))(w) ≡ u[f ](w).

By assumption u[x] c QE⇒F (x) and thus u[f ] c Q′E⇒F (f). From this follows

by definition that u[f ](w) c S ′′F (f) showing (t(u[f ]))(w) c S ′F (f), since S ′ and
S ′′ must be the same proof.
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(9R): To show t(u) c PA holds, it suffices to show that given w c R∃xE(x) holds, it
follows that (t(u[x]))(w) c SF also holds. By definition of t,

(t(u[x]))(w) ≡ u[π1(w)](π2(w)).

By the definition of compilation, we know π1(w) must be equal to α(R) and

from the assumption u c QB, it then follows that both u[π1(w)] c Q
′E(π1(w))⇒F

and u[α(R)] c Q′E(α(R))⇒F hold respectively due to the equality. Also from

the definition of compilation, we have π2(w) c R′E(α(R)). From all this follows
that u[π1(w)](π2(w)) c S ′F , showing (t(u[x]))(w) c SA holds, since S ′ and S
must be the same proof.

(11R): To show t(u) c PA holds, by definition we need to show π2(u) c P
A holds. By

the assumption u c QB and the definition of compilation, π2(u) c Q′B′(α(Q))

holds. But since by definition c0(x1, . . . , xn) is exactly this α(Q), the desired
property holds by assumption.

3.2.3 AL3

Rule Premise 1 Premise 2 Conclusion Term
2R B ≡ B C ≡ B ⇒ A A ≡ A t(β, γ) ≡ γ(β)
3R B ≡ B′ ⇒ D C ≡ D ⇒ C ′ A ≡ B′ ⇒ C ′ t(β, γ) ≡ λx.γ(β(x))
4R B ≡ B′ ⇒ D C ≡ C ′ ⇒ D A ≡ B′ ∨ C ′ ⇒ D′ t(β, γ) ≡

λx.[π1(x) 7→ γ(π3(x)), 1 7→ β(π2(x))]

5R B ≡ D ⇒ B′ C ≡ D ⇒ C ′ A ≡ D ⇒ B′ ∧ C ′ t(β, γ) ≡ λx.(β(x), γ(x))
10R B ≡ A(0) C ≡ A(x) ⇒ A(x′) A ≡ A(x) t(β, γ) ≡ ind(0, x, β, λz.γ(π2(z)))

Table 4: AL3

Lastly for AL3 we consider all remaining rules, which are the ones with exactly
two premises. Thus, in addition to the term u : T (B) we already used in AL2, we
now analogously assume that in all cases for the listed formula C in Table 4 there
is some term v : T (C), such that v c RC . Also analogously to β as in AL2, we
additionally use γ as the parameter that will be replaced by v.
If now AL3(PA) = t(β, γ), by induction hypothesis both terms u and v exist,

such that u c QB holds, and also v c RC holds as well. Thus, the term t(u, v) by
assumption compiles PA.
Now that we have seen AL3 to function as desired, we will define it and prove

t c PA in turn for each two premise rule.

(2R): To show t(u, v) c PA, we directly use the definition of t, by which

t(u, v) ≡ v(u),

thus it needs to hold v(u) c PA. By assumption v c RB⇒A and with the
definition of compilation, we thus know in combination with the other as-
sumption u c QB that v(u) c P ′A, which shows t(u, v) c PA, since P ′ and P
must be the same.
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(3R): To show t(u, v) c PA, it suffices to show that given ū c Q′B′
holds, it follows

that (t(u, v))(ū) c R′C′
also holds. By definition of t,

(t(u, v))(ū) ≡ v(u(ū)).

By assumption u c QB′⇒D and with the definition of compilation, we get
that u(ū) c SD holds. In turn, since also by assumption v c RD⇒C′

, we

analogously know that v(u(ū)) c R′′C′
holds, which yields (t(u, v))(ū) c R′C′

,
since R′′ and R′ must be the same proof.

(4R): To show t(u, v) c PA, it suffices to show that given s c LB′∨C′
holds, it follows

that (t(u, v))(s) c SD also holds. By definition of t,

(t(u, v))(s) ≡ [π1(s) 7→ v(π3(s)), 1 7→ u(π2(s))].

We perform a case distinction on π1(s), where in the first case we consider it to
be equal to 0 and in the second case to not be equal to 0. This case distinction
is constructive since s : T (B′∨C ′) ≡ (Z, T (B′), T (C ′)) and therefore π1(s) : Z
and equality for natural numbers is decidable, thus we do not use the rule of
the excluded middle.

Now if π1(s) = 0, by (10A) it follows that [π1(s) 7→ v(π3(s)), 1 7→ u(π2(s))] =
u(π2(s)). By the definition of compilation and using the assumption that

π1(s) = 0 we get that π2(s) c R′B′
holds, and then using the assump-

tion u c RB′⇒D, we know again from the definition of compilation that
u(π2(s)) c S ′D holds, which yields (t(u, v))(s) c SD, since S ′ and S must
be the same proof.

For the other case, we now assume π1(s) ̸= 0. This time by (10A) it follows
that [π1(s) 7→ v(π3(s)), 1 7→ u(π2(s))] = v(π3(s)). By the definition of compil-

ation and using the assumption that π1(s) ̸= 0 we get that π3(s) c Q′C′
holds,

and then using the assumption v c QC′⇒D, we know again from the definition
of compilation that v(π3(s)) c S ′′D holds, which yields (t(u, v))(s) c SD, since
S ′′ and S must be the same proof.

(5R): To show t(u, v) c PA, it suffices to show that given w c S ′D holds, it follows

that (t(u, v))(w) c P ′B′∧C′
also holds. By definition of t,

(t(u, v))(w) ≡ (u(w), v(w)).

To now show (u(w), v(w)) c P ′B′∧C′
, it suffices to show that u(w) c Q′B′

and

that v(w) c R′C′
both hold. By assumption u c QD⇒B′

from which, using the

definition of compilation, we get u(w) c Q′′B′
, which yields u(w) c Q′B′

since
Q′′ and Q′ must be the same proof. Analogously by assumption v c QD⇒C′

,
from which, again using the definition of compilation, we get v(w) c R′′C′

,

which yields v(w) c R′C′
since R′′ and R′ must be the same proof.

(10R): To show t(u, v) c PA, we use the fact that equality on natural numbers is
decidable, case splitting on the second argument of ind, namely x : Z, as to
whether x = 0 or x ̸= 0. By definition of t,

t(u, v)[x] ≡ ind(0, x, u, λz.v[π1(z)](π2(z))).
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If now x = 0, by the computation rule of ind, since 0 = 0, we get

ind(0, 0, u, λz.v(π2(z))) ≡ u.

Since by assumption u c BA(0), the first case is proven.

In the other case, we fix some n : Z with n ̸= 0 and x = n. Thus by the
computation rule of ind we get

ind(0, n, u, λz.v[π1(z)](π2(z)))

≡ ind(0′, n, (λz.v[π1(z)](π2(z)))(0, u), λz.v[π1(z)](π2(z)))

≡ ind(0′, n, v[0](u), λz.v[π1(z)](π2(z)))

≡ ind(0′′, n, v[0′](v[0](u)), λz.v[π1(z)](π2(z)))

. . .

≡ ind(n, n, v[n− 1](v[n− 2](. . . v[0′](v[0](u)) . . . )), λz.v[π1(z)](π2(z)))

≡ v[n− 1](v[n− 2](. . . v[0′](v[0](u)) . . . ))

where the fourth line of course doesn’t happen if n = 0′ and n−1 and n−2 are
shorthand notation for 0 with ′ used n− 1 or n− 2 times respectively. Thus,
what remains to be shown is v[n](v[n−1](. . . v[0′](v[0](u)) . . . )) c P ′A(n). Since

by assumption for any x, v[x] c R[x]A(x)⇒A(x′) holds, and also by assumption
u c QA(0), we have v[0](u) c Q1

A(0′), v[0′](v[0](u)) c Q2
A(0′′), . . . , v[n](v[n −

1](. . . v[0′](v[0](u)) . . . )) c Qn
A(n), where Qn and P must then be the same

proof and thus the second case is also proven.

This concludes the definition of the algorithms. While most of this proof follows
Bishop [4], notations have been updated significantly, details have been made more
precise and crucially we have added a proof of (7A), which Bishop just postulated
to hold since t1 = t2, which we actually prove in Lemma 1, as well as fixed a minor
mistake in the proof for (10R), where Bishop used induction, which however is the
property we are trying to prove sound in the first place and also does not make
use of the definition and properties of the ind structure at all, while our proof by
decidable case distinction does.

At this point [4, pp. 24], Bishop also goes into more detail regarding the concept
of sameness of proofs, which he heavily uses in the proof of the compilation theorem.
He first acknowledges, that up until this point, proofs were viewed throughout as
not formally rigid objects, which is why he now bases the sameness of proofs again
on the structure of the formula the proof proves.

Definition 8 (Sameness of Proofs [4]). Let P and P ′ both be proofs of the same
formula A. We define the notion that P and P ′ are the same proof inductively on
the structure of A:

1. If A has free variables x1, . . . , xn, then P and P ′ are the same, if the corres-
ponding proofs of A(f1, . . . , fn) are the same for all functionals f1, . . . , fn of
requisite types. For all remaining cases, A is assumed to have no free variables.

2. If A ≡ A1 ∧A2, then P and P ′ are the same, if the corresponding proofs of Ai

are the same (for i = 1 and i = 2).
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3. If A ≡ A1 ∨ A2, then P and P ′ are the same, if the same Ai is being proved,
and if the proofs of that Ai are the same.

4. If A ≡ A1 → A2, then P and P ′ are the same, if for an arbitrary proof of A1,
the corresponding proofs of A2 are the same.

5. If A ≡ ∀xA1(x), then P and P ′ are the same, if the corresponding proofs for
A1(x) are the same.

6. If A ≡ ∃xA1(x), then P and P ′ are the same, if α(P ) = α(P ′) and if the
corresponding proofs of A1(α(P )) are the same.

3.2.4 Supporting Lemmas

Bishop again does not provide a case for the simple formulas. This time however
this is most likely due to the informality of the proofs. If they were made to be more
precise, defining a notion of sameness for proofs of simple formulas might be feasible
beyond simply requiring that they both prove the formula, since in this less formal
setting we do not always know how the simple formula was proven and if there even
are different ways at all of proving them.

As we mentioned above, we still have to prove the main property for (7A), which
we shall do now:

Lemma 1. If terms t1, t2 : T1 are equal and t : T (A(t1)), then t c PA(t1) implies

t c P ′A(t2).

Proof. Assume t c PA(t1). Note that due to the equality of t1 and t2 it also holds
that T (A(t1)) ≡ T (A(t2)). We show t c P ′A(t2) by induction over the structure of
A(ti).

1. In case A(ti) is a prime formula, meaning either A(ti) ≡ ti = t3 or A(ti) ≡
ti ̸= t3, where t3 : T3 ≡ Z. Since equality is symmetric by (12A), we disregard
the symmetric cases without loss of generality. We now need to show that,
given t c P t1[=]t3 , t c P ′t2[=]t3 holds, where [=] signifies it could be either = or
̸=, since it doesn’t matter for the argument. By definition any term of type
Z is sufficient if the (in-)equality holds, by transitivity, i.e. (12A), it does and
since t : T (A(t1)) ≡ Z must hold in this case, we are done.

2. In case A(ti) ≡ A1(ti) ∧ A2(ti), we need to show that given t c PA1(t1)∧A2(t1),

t c P ′A1(t2)∧A2(t2) holds. Thus, by definition we need to show that πi(t) c P
′
i
Ai(t2)

holds, which we get from the induction hypothesis and the fact that by defin-
ition of compilation πi(t) c Pi

Ai(t1).

3. In case A(ti) ≡ A1(ti) ∨ A2(ti), we need to show that given t c PA1(t1)∨A2(t1),

t c P ′A1(t2)∨A2(t2) holds. Thus, by definition we need to show that π2(t) c P
′
1
A1(t2)

holds if π1(t) = 0 and π3(t) c P ′
2
A2(t2) holds if π1(t) = 1. In the first case by

definition from t c PA1(t1)∨A2(t1) we get π2(t) c P1
A1(t1) and are done using the

induction hypothesis, and similarly in the second case we use the induction
hypothesis with π3(t) c P2

A2(t1).
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4. In case A(ti) ≡ A1(ti) ⇒ A2(ti), we need to show that given t c PA1(t1)⇒A2(t1),

t c P ′A1(t2)⇒A2(t2) holds. Thus, by definition we need to show that whenever
t̄ c P ′

1
A1(t2) holds, then t(t̄) c P ′

2
A2(t2) also holds. By definition of compilation,

from t c PA1(t1)⇒A2(t1) we obtain that whenever t̃ c P1
A1(t1) holds, t(t̃) c P2

A2(t1)

must also hold. The induction hypothesis at first only yields t̄ c P1
A1(t1)

⇒ t̄ c P1
A1(t2), however due to the symmetry of equality, from this we also

get t̄ c P1
A1(t2) ⇒ t̄ c P1

A1(t1), thus finishing the proof with the previous
assumptions.

5. In case A(ti) ≡ ∃xA1(ti, x), we need to show that given π1(t) = α(PA(t1)) and

π2(t) c P1(P
A(t1))

A1(PA(t1))
, π1(t) = α(PA(t2)) and π2(t) c P1(P

A(t2))
A1(PA(t2))

.
Since t1 = t2, the proofs PA(t1) and PA(t2) are the same, regarding the defin-
ition above, thus it also follows, that α(PA(t1)) = α(PA(t2)), from which by
transitivity we of course get π1(t) = α(PA(t2)) as desired. Finally from the
induction hypothesis and the sameness of the proofs just discussed, we then

get that π2(t) c P1(P
A(t2))

A1(PA(t2))
must hold, since π2(t) c P1(P

A(t1))
A1(PA(t1))

holds.

6. In case A(ti) ≡ ∀xA1(ti, x), we need to show that given t c P ∀xA1(t1,x) holds,

then t c P ′∀xA1(t2,x) also holds. Thus, by definition of compilation, we need
to show that t(x) c P ′(x)A1(t2,x) holds. This immediately follows from the

induction hypothesis and the fact that t(x) c P (x)A1(t1,x) holds.

Another property we have used throughout is the fact that compilation respects
equality. We prove this by induction in the following:

Lemma 2 (g-Term congruence). If terms t1, t2 : T are equal and t1 c PA, then also
t2 c PA, where P is a proof of A

Proof. We prove this by induction on the definition of t1 c PA.

1. Since t1 c PA, for each assignment of a functional of the requisite type to each
of the free variables of A, t1a c Pa

Aa . Since t2 equals t1, they have the same
free occurrences of variables, thus t1a also equals t2a and from the induction
hypothesis we get t2a c Pa

Aa .

2. Since t1 c PA, t1 : Z and P constructively proves A, by the equality of t1 and
t2, it follows that t2 : Z and thus t2 c PA.

3. Since t1 c PA, πi(t1) c Pi
Ai holds. Since t1 and t2 are equal, it must hold that

t2 c P ′A′
1∧A′

2 where A′
1 ≡ A1 and A′

2 ≡ A2. Since Pi is a proof for Ai it must
also be a proof A′

i, since they are equal. Thus from the induction hypothesis
we get πi(t2) c Pi

Ai and finally t2 c PA.

4. Since t1 c P
A, πi+1(t1) c Pi

Ai , where i = 1 iff π1(t1) = 0 and i = 2 iff π1(t1) ̸= 0,
note that this is decidable by Axiom (16A) and LEM is not required. Since
t1 and t2 are equal, πi(t1) ≡ πi(t2) for i ∈ {1, 2, 3}, thus analogous to the
previous case from equality of t1 and t2 we get πi+1(t2) c Pi

Ai and from the
induction hypothesis we further get t2 c PA.
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5. Since t1 c PA, whenever t11 c P1
A1 , we also have t1(t11) c P2

A2 . We want to
show t2 c P

A, meaning whenever we have t21 c P1
A1 , we also have t2(t11) c P2

A2 .
Assume t21 c P1

A1 . From the induction hypothesis we get that if t11 and t21
are equal, we have t1(t21) c P2

A2 . Now since t1 and t2 are equal, with Axiom
(7A) it follows that t2(t21) c P2

A2 as desired.

6. Since t1 c PA, π1(t1) = α(P ) and π2(t1) c A1(α(P ))P1(α(P )). We now want

to show that π1(t2) = α(P ) and π2(t2) c A1(α(P ))P1(α(P )). The first property
follows immediately with Axiom (7A) and the equality of t1 and t2. The second
one we recover from using the same axiom with the induction hypothesis.

7. Since t1 c PA, t1(x) c P1(x)
A1(x). We now need to show t2(x) c P1(x)

A1(x).
From the equality of t1 and t2 we again get the equality of t1(x) and t2(x),
thus we are done by induction hypothesis.

With this result we give the details of Bishop’s remarks, since he simply postulated
that this was true and could be shown by induction.

After giving the compilation theorem, and the notes described above, Bishop then
goes on to describe how one might implement this set of constant free terms he
calls Σ0 into ALGOL, specifically he notes that compilation into ALGOL68 would
be “trivial” due to the type system (called modes in ALGOL68) being sufficiently
expressive already, but at the time ALGOL60 was still more widespread and thus he
devoted some pages to the workarounds necessary for the less expressive type system.
Since modern functional programming languages like Haskell or even dependently
typed ones like Lean have even richer type systems than ALGOL68, we will not
further delve into this part of the manuscript, leaving it as possible future work to
maybe implement the proposed compilation into any programming language, maybe
even ALGOL60 following Bishop’s instructions.

3.3 Compilation vs. Realizability

Realizability [13] as well as modified realizability [15], are concepts that are in prin-
ciple very close to Bishop’s notion of compilation in that they all aim to relate
provability of a formula to some other language.

“Normal” realizability, or Kleene realizability, was first given and proven sound
(along some other properties) by Kleene [13] and below we present his definition
with slightly updated notation. Also note that of course this definition is not in the
system Σ, not in a type theory context at all in fact, but in a system of (partial)
recursive functions and formulas in the usual sense, but one could of course without
much effort adapt the definition to conform to system Σ.

Definition 9 ((Kleene) Realizability [13]). A natural number is said to realize a
formula, or to be a realizer of the formula, denoted as n r A iff

1. If A(y1, . . . , ym) is a formula containing exactly the distinct free variables
y1, . . . , ym in order of first free occurrence, and if e r ∀y1,...,ymA(y1, . . . , ym),
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then also e r A(y1, . . . , ym). For all remaining cases we assume the formulas
to not contain any free variables.

2. An elementary formula F is realized by 0 if it is true, i.e. 0 r F .

3. If a r A and b r B, then 2a · 3b r A ∧B.

4. If a r A, 20 · 3a r A ∨B, also if b r B, then 21 · 3b r A ∨B.

5. If e is the Gödel number of a partial recursive function ϕ, for which it holds
that whenever a r A, also ϕ(a) r B, then e r A ⇒ B.

6. If a r A(x), where x is the only free variable of A, then 2x · 3a r ∃xA(x).

7. If e is the Gödel number of a general recursive function ϕ, for which it holds
that for every x, ϕ(x) r ∀xA(x).

A formula is said to be realizable iff some natural number realizes it.

For ease of use, later iterations of this definitions admitted any natural number
n to realize an elementary formula iff it is true instead of only 0 doing so. In the
spirit of this convention we also constructed the case for basic formulas in the sense
of Bishop for his concept of compilation, which initially lacked a base case.
Later Kreisel [15] adapted this concept of Kleene, from using natural numbers as

realizers, to instead use tuples of typed variables, the types depending on the logical
structure of the specific formula. This concept called modified realizability also
now uses a version of Heyting arithmetic, in the definition used by [14] specifically
E−HAω, as the language of formulas. To give this definition note that Kohlenbach
defines the following notation:

yx := y1x, . . . , ynx

where y = y1, . . . , yn, x = x1, . . . , xk are tuples of functionals of suitable types and
yix := yix1 . . . xn, essentially mass-applying the elements of a tuple of functionals
each to the same tuple of arguments.

Definition 10 (Modified Realizability [14][15]). For each formula A of L(E−HAω)
we define a formula x mr A also of L(E −HAω), to be read as ‘x modified realizes
A’, where x is a - possibly empty - tuple of variables which do not occur free in A.
The definition is inductive over the logical structure of A as follows:

1. x mr A := A with the empty tuple x, if A is a prime formula.

2. x, y mr A ∧B := x mr A ∧ y mr B.

3. z0, x, y mr (A ∨B) := [(z =0 0 ⇒ x mr A) ∧ (z ̸=0 0 ⇒ y mr B)].

4. y mr (A ⇒ B) := ∀x(x mr A ⇒ yx mr B).

5. x mr (∀yρA(y)) := ∀yρ(xy mr A(y)).

6. zρ, x mr (∃yρA(y)) := x mr A(z).
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Instead of collecting potentially exponantiated, Gödel numbers and their products
as one big realizer as Kleene does, Kreisel now collects a tuple of typed witnesses of
the type theoretic truth of the formulas, which is already a lot closer to our modern
understanding and use of type theory and the intuition we get from type theory.

It turns out that compilation as defined by Bishop, barring the missing base case for
prime, or basic, formulas, is very much identical to modified realizability. The main
difference is Bishop’s focus on compiling the proof, instead of realizing a formula.
In essence this very vague concept is however never really used in the definition,
since all case analysis is done on the logical structure of the formulas. However
despite this apparent irrelevance of the proofs at first glance, philosophically and
conceptually it for one depends the relation to the Curry-Howard correspondence,
by having the terms compile the crucial derivation part of a formula, instead of
realizing the very abstract and formalistic notion of a formula. Starting from such
an intuition which might give new interpretation to previously known results, fields
have undergone major change, for example MLTT has been significantly expanded
upon starting with the idea of viewing more formalistic concepts with a homotopic
interpretation in mind, finally resulting in HoTT. Of course the intuition is not the
sole factor in such work, therefore in the next section we would like to expand on
work which is still left open.

3.4 Future Work

As a consequence of the inclusion of strong inequality in system Σ, it felt natural
to think about constructing a proof system in which one may not only have deriv-
ations, possibly in the form of Gentzen-style derivation trees, but also constructive
refutations of facts talking about constructive or strong negative properties. These
concepts then exist in a sort of category theoretic duality, where a refutation may
be thought of as a co-derivation, and thus having a co-derivation tree, which like all
dual concepts, think co-products or co-limits for example, would then be inverted,
following a top-down direction instead of the typical bottom-up one of Gentzen-style
derivations. Further and of course more concrete work will be done by Petrakis [20].
Bishop makes note specifically of proofs in both formal and informal notions. De-

veloping further on how possibly informal mathematical proofs might be reasoned
about with a formal concept like compilation may prove insightful, to understand
more about Bishop’s motivations.
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4 Bishop’s Dependent Type Theory

In this section we will now take a brief look at Bishop’s further ventures in regards to
formal mathematics, namely [5], where he develops a dependent type theory, which
in essence is an extension of the system Σ always with the modus of “typical”,
meaning informal, Bishop Set Theory in mind. This system however was very much
left “in development” by Bishop, meaning it seems to not be completely finished.
First we will present the term system as well as the axioms and rules of this

“General Language” of Bishop, which we will further call “Bishop Type Theory”.
After we briefly will talk about how BST can be actually modelled in Bishop Type
Theory according to Bishop and then lastly discuss some specific curiosities of this
system.

4.1 Terms and Types

In this section we will give the term system of Bishop Type Theory, where every
term also has a type, specifically a possibly dependent type. The typeformers are
mostly the same as for System Σ, but critically of course every type also has itself
a type again. We have adapted the changes to notation made for System Σ also
to Bishop Type Theory, specifically the modern type declarations using colons and
more standard application notation were changed in the exact same way as described
previously.

As System Σ, Bishop Type Theory is grounded in natural numbers N , but now
we also have a sort of “upper bound” for all types, C, which represents the class
of all classes, signifying the correspondence between classes in the BST-sense and
types in Bishop Type Theory. The constants 0,N and C are called basic constants,
the only other constants are constants c that arise as the result of the proof of some
formula ∃xA.

0 : N N : C C : C terms
(1t)

x : t variable

x : t term
(2t)

t : N
t′ : N

(3t)

Due to the age of the paper, the nowadays well-known problematic self-referential
C : C makes this system by default prone to paradoxes [11], further work might
constitute actually showing a specific paradox resulting from this for this specific
system, but at least this specific problem can most likely be solved the same way it
was for MLTT, by introducing an infinite hierarchy of Ci’s but introducing this and
dealing with possible consequences would also be future work.

New to the term structure in contrast to System Σ, is a representation of the power
set, more accurately the power class but we will stick to the more common name, P .
In order to “switch” the type of a member of a power set to being a “normal” class,
we have the construct |t1|, we have the option to view members of this class, which
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by construction must be a subclass of the one that was used to form the power set,
as members of the original class, we may use t2 ↓ and in reverse, we can use t2 ↑ t1
if we know that t3 is in fact an element of t1 viewed on its own. For (4t, 4) note,
that ⊢ means, that the formula is provable.

Note, that for all rules (nt, x) we mean this to be the x-th part of the n-th rule,
thus type declarations from previous parts apply and names are defined across all
parts of the same rule.

t : C
P(t) : C

(4t, 1)

t1 : P(t)

|t1| : C
(4t, 2)

t2 : |t1|
t2 ↓: t

(4t, 3)

t3 : t ⊢ t3 ∈ t1

t3 ↑ t1 : |t1|
(4t, 4)

Where System Σ natively had functions, implying that these objects respect equal-
ity, for Bishop Type Theory the primitive in this regard is an assignment operation,
which does not by default respect equality. This notion of an assignment operation
stems from BST, where it also constitutes the base of functions. Additionally we also
have what Bishop called “guided operators”, which we would now view as dependent
functions, or more accurately in this setting dependent assignment routines. They
need a sort of type family as a prerequisite, meaning an (non-dependent) assignment
routine, which maps into C. These also occur in informal BST, so they are natural
to include and again don’t necessarily respect equality.

In terms of notation, while Bishop used Op(t1, t2) for the assignment routines and
Op(t : t1) for the dependent version, we found this to be not very informative or
readable, possibly stemming from this works incomplete state and thus propose the
Notation seen below, which is more in line with the notation Bishop himself used in
informal BST.

t1, t2 : C
t1 ⇝ t2 : C

(5t)

t1 : t⇝ C
k

t

t1 : C
(6t)

As already discussed for System Σ for functions, assignment routines are λ-terms and
can be applied to arguments of the correct type as usual. For dependent assignment
routines this holds analogously with the main distinction, that the result type of
the dependent application is of course dependent on the input. The notation T(t)
hereby denotes the type of some term t.

t3 : t1 ⇝ t2 t4 : t1

t3(t4) : t2
(7t)
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t1 : t⇝ C t2 : t t3 :
k

t

t1

t3(t2) : t1(t2)
(8t)

x is final in dep(x, t) x : t1 t : t2

λx.t : t1 ⇝ t2
(9t)

t1 : t⇝ C x : t t2 : t1(x) x is final in dep(x, t2)

λx.t2 :
k

t

t1
(10t)

At this point for completeness we will give a formal definition of the parents of
terms and formulas, which we will need below. We will also signify where variables
are bound, or as we’ll discuss below in Bishop’s words “dummied”.

Definition 11 (Parents of term or formula [3]). Every term or formula has a number
of parents, defined through case distinction on the rules of their creations.

(1at): The basic constants have no parent. The term c has every formula occurring
in the proof of ∃xA as a parent, including the formula ∃xA itself.

(2at): The (only) parent of a variable x is its type.

(3at): The parent of t′ is t.

(4at): The parent of P(t) is t, of |t1| is t1 and of t2 ↓ is t2. The parents of t3 ↑ t1
are t1 and t3.

(5at): The parents of t1 ⇝ t2 are t1 and t2.

(6at): The parents of
c

t

t1 are t and t1.

(7at): The parents of t3(t4) are t3 and t4.

(8at): The parents of t3(t2) are t2 and t3

(9at): The parents of λx.t are x and t, and x is bound.

(10at): The parents of λx.t2 are x and t2, and x is bound.

(11at): The parents of [u|t0, . . . , tn] are u, t0, . . . , tn.

(12at): The parents of t1 ∪ · · · ∪ tn are t1, . . . , tn. The parents of ini(t̄i) are t̄i and
t1 ∪ · · · ∪ tn. The parent of t0! and outi(t0) is t0.

(13at): The parents of {x|A} are x and A, and x is bound.

(14at): The parents of G(x1, . . . , xn) are x1, . . . , xn, and x1, . . . , xn are bound.

(15at): The parents of ind(t1, t2, t3, t4) are t1, t2, t3 and t4.

(1aF): The parents of t1 = t2 and t1 ̸= t2 are t1 and t2.

(2aF): The parents of t1 ∈ t3 are t1 and t3.
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(3aF): The parents of A ∧B,A ∨B and A ⇒ B are A and B.

(4aF): The parents of ∀xA and ∃xA are x and A, and x is bound.

This definition is taken directly from [3], of course with our new notation. Each
rule (nat) or (naF ) references the corresponding rule (nt) or (nF ) below.

One concept that Bishop introduces in (10t) is that of dep(x, t), as well as some
variable being final in this. Bishop defines this in the following way:

Definition 12 (Dependency). Dependency is defined inductively as follows:
Every variable x depends upon itself.
If x is not bound for a term or formula and a parent of this depends on x, the term
or formula depends on x.

We denote the dependency of y on x as the relation x ≤ y.

Let t1, . . . , tm be terms and A1, . . . , An be formulas. Then dep(t1, . . . , tm, A1, . . . , An)
is defined as the set of all variables on which one of these terms or formulas depend.
An element x of this set S is called final iff y ∈ S ⇒ x ≤ y ⇒ y ≡ x. Similarly a
Subset S1 ⊆ S is called a final segment of S iff y ∈ S ⇒ x ∈ S1 ⇒ x ≤ y ⇒ y ∈ S1

Instead of “bound” Bishop uses the notion “dummied” in this definition, we found
“bound” to be the more appropriate concept, since their definitions coincide and
boundedness is an established well known concept already. Also with the definition
we might now say that intuitively speaking x being final in dep(x, t) means, there
are no other variables which depend on x in t, which are not themselves bound
somewhere in t before. The only way by which this may be violated is, if some
variable distinct from x has a type which then depends on x.
Let’s see a few small examples for this definition of dependency and dep:

Example 2. Let t ≡ λx.y : T1 ⇝ T2, where y : T2 and x : T1. Then the parents of
t are for one x, which is also bound for this term, and y, which is not bound. Then
dep(x, t) ≡ {x, y}. For one by including x directly in dep, and it always depends
on itself, we will always have it in our dependency set but it would not be included
through t, since as a parent of t it is bound. On the other hand y is a parent of
t which is not bound for this term and thus since it depends on itself needs to be
included. If T1 and T2 are more complex types, which also include variables, these
might also show up in dep, since for all variables their only parent is their type.
We can now see, that x is indeed final in dep(x, y), since y does not depend on it
and for x it indeed holds that x ≡ x, thus t is a well formed assignment routine
according to (9t).

Example 3. Let t ≡ λx.y : P(N ) ⇝ x, where x : P(N ) and y : x. Again
dep(x, y) ≡ {x, y}, but this time for one x would also be in the dependence set
without being explicitly listed as an argument and more critically x is not final in
this, since y does depend on x here, since its parent is x itself and x depends on
itself. Thus this is not a well formed assignment routine according to (9t). The
main problem here is, that we have a more or less random free variable, which since
it depends on x might prove to be trouble.

30



u : N t0, . . . , tn : t

[u|t0, . . . , tn] : t
(11t)

This construct represents the u-th element of the n terms, where it always represents
tn if u > n.

t1, . . . , tn : C
t1 ∪ · · · ∪ tn : C

(12t, 1)

t̄i : ti

init̄i : t1 ∪ · · · ∪ tn
(12t, 2)

t0 : t1 ∪ · · · ∪ tn

t0! : N outi(t0) : ti, 1 ≤ i ≤ n
(12t, 3)

The language also features all finite (disjoint) unions of classes with the typical
notation. For the injection of an element of the i-th part of the union, we have
adapted Bishop’s original notation of [t′i, i, t1 ∪ · · · ∪ tn] to a more modern one that
takes inspiration from inl and inr used for the constructors of the sum type in
MLTT, thus init̄i is an element of type t1 ∪ · · · ∪ tn for arbitrary 0 ≤ i ≤ n. Lastly
the operator ! will return the index j, such that t0 was originally injected from an
element of type tj. Thus outi(t0) only represents the corresponding object, iff i = t0!.
It requires further work to see whether it might be feasible to simply replace i with
t0!, thus only allowing “correct” extractions, or if this somehow limits expressiveness.
Note that Bishop originally used the notation (t0; i) instead of outi(t0), this however
is for one, as in the original notation for System Σ, ambiguous with the notation
he used for application (which we also changed as noted in Section 2) and also not
very informative.

x : t A is formula x is final in dep(x,A)

{x|A} : P(t)
(13t)

Here we introduce the of course ever important structure which enables defining a
set through some property A. Again we need to restrict x to variables such that no
free variable in A depends on it, since this structure additionally binds x.

x1, . . . , xn final segment of dep(x1, . . . , xn) ∀i≤j xi does not depend on xj

G(x1, . . . , xn) : C
(14t, 1)

x1, . . . , xn ⇒ t1, . . . , tn is a specialization

⟨t1, . . . , tn⟩ : G(x1, . . . , xn)
(14t, 2)

t : G(x1, . . . , xn)

∀1≤i≤nπi(t) Types depend on specialization x1, . . . , xn ⇒ π1(t), . . . , πn(t)
(14t, 3)

The last new concept is that of G(x1, . . . , xn), which Bishop calls a layered product.
This name most likely stems from the fact, that each variable, or “layer”, may only
depend on the layers before it, but not the ones after. Therefore this layered product
can be thought of as the generalized version of a Σ-type from modern dependent type
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theories such as MLTT. We have only slightly simplified the notation for this, opting
to exclude the additional “: G(t1, . . . , tn)” Bishop originally put after the list of terms
inside the n-tuple. In order to fully understand these layered products as Bishop
envisioned them, we need to define and then understand what a specialization is in
the first place. The following is how Bishop defines these specializations and the
accompanying concept of an image of a proof, term or formula.

Definition 13 (Specialization, Image [3]). Let z1, . . . , zk be a final sequence of vari-
ables that is a final segment of dep(z1, . . . , zk) where zi does no depend on zj for
i < j. A specialization of a finite sequence of variables z1, . . . , zk assigns to each zi
a term vi denoted by z1, . . . , zn ⇒ v1, . . . , vn, such that the types of v1 and z1 are the
same and for all other vi it holds, that

vi : im(T(zi)|z1, . . . , zi−1 ⇒ v1, . . . , vi−1)

for 2 ≤ i ≤ k, where T(zi) stands for the type of zi and im(t|z1, . . . , zk ⇒ v1, . . . vk)
stands for a certain term, the image of the term t with respect to the given special-
ization.

Let now z1, . . . , zk ⇒ v1, . . . vk be a fixed specialization and let im(t) stand for the
image of a term t with respect to that fixed specialization. For im(t) to be defined, it
is required, that for each variable u belonging to dep(z1, . . . , zk, t), either u = zi for
some i, or else im(T(u)) is defined and im(T(u)) = T(u). Analogously this holds
for a formula A instead of t.
In case t is a basic constant, im(t) ≡ t.
In case the constant c is declared to represent the element constructed by the proof
P of the formula ∃xB, then im(x) is a constant declared to represent the element
constructed by the proof im(P ) of the formula im(∃xB).
In case x is a variable, then im(x) ≡ vi in case x ≡ zi and im(x) ≡ x otherwise.
For a term t that is neither a variable nor a constant or for a formula A, let
t1, . . . , tm, A1, . . . , An be the parents of t (respectively A), and let x1, . . . , xp be bound.
We may assume, after reordering if necessary, that xi does not depend on xj for
i < j. Let x̄1, . . . , x̄p be newly declared variables, with x̄1 : im(T(x1)) and

x̄i : im(T(xi)|z̄1, . . . , z̄k, x1, . . . , xi−1 ⇒ v̄1, . . . , v̄k, x̄1, . . . , ¯xi−1)

for 2 ≤ i ≤ p, where z̄i stands for zi and v̄i for vi, except that they are left out of the
list id xj ≤ zi, meaning zi depends on xj, for some j (1 ≤ j ≤ p). Let t̄i (respectively
Āi) be the image of ti (respectively Ai) with respect to the specialization

z1, . . . , zk, x1, . . . , xp ⇒ v1, . . . , vk, x̄1, . . . , x̄p.

Then im(t) (respectively im(A)) is obtained from t (respectively A) by replacing each
of its parents ti or Ai by its image t̄i or Āi.
Finally, if P is a proof of a theorem A, then proof im(P ) of im(A) is obtained as
follows. If A is an axiom, im(A) will have a canonical proof. If A is the con-
clusion of some rule of inference, whose premises are A1, . . . , An, then there ex-
ist canonical specializations σ1, . . . , σn, uniquely determined by the specialization
z1, . . . , zk ⇒ v1, . . . , vk and the number of the rule of inference, and a canonical
deduction D of im(A) from im(A1|σ1), . . . , im(An|σn). The proof im(P ) then con-
sists in proving im(Ai|σi) by the proof im(Pi|σi) (where Pi is the proof of Ai) for
1 ≤ i ≤ n, and then deducing im(A) by D.
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While this definition might seem overwhelming at first, in essence it boils down
to the following steps to calculate the types for the terms of a concrete specialization:

1. Take the first variable, its type is also the type of your first term. Then for all
following terms that are left, repeat steps 2 to 6 until all terms are typed.

2. Identify the type of the corresponding variable, meaning the n-th variable if
you want the type of the n-th term.

3. Identify all parents of that type.

4. For all these parents, continue recursively with enumerating their parents until
you end up with only constants and variables.

5. Leave all basic constants the same, replace all variables that are part of the
specialization with their corresponding specialization term and for existential
constants input the constant the proof calculates, leave all other variables
untouched.

6. Reassemble the type with these replaced parents in the same order you previ-
ously deconstructed it.

Step 4, 5 and 6 apply regardless of if the deconstructed object is a term or formula.
Calculating the image of a proof simply means splitting the proof into its premises
and canonical specializations. Notation wise, where we opted to use “|” as a sep-
arator within the im-statements, Bishop originally used “:”, which of course would
conflict with our decision to use modern typing declarations using “:”.

x, t1, t2 : N y, t3 : t t4 : G(x, y)⇝ t x and y are independent

ind(t1, t2, t3, t4) : t
(15t)

Lastly we introduce a term that we already recognize from System Σ. The intended
definition for ind then is as follows:

ind(t1, t2, t3, t4) =

{
t3 if t2 = t1

ind(t′1, t2, t4(⟨t1, t3⟩), t4) otherwise.

We see that the definition we want to have is very similar to the one in System
Σ, the notable difference being, that it is dependently typed with the new layered
product instead of a “standard” pair.

t1, t2 : Z
t1 = t2, t1 ̸= t2 formulas

(1F )

t1 : t2 t3 : P(t2)

t1 ∈ t3 formula
(2F )

A,B formulas

A ∧B,A ∨B,A ⇒ B formulas
(3F )
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A formula x final in dep(x,A)

∃xA, ∀xA formulas
(4F )

Formulas in Bishop Type Theory are the same as in System Σ, with two small
exceptions, for one the quantified formulas also require, that x be final in dep(x,A)
and there is an additional formula t1 ∈ t3 which of course will semantically be used
to signify membership of a set/class.

4.2 Inference Rules

The rules and axioms are originally given in the same natural language based way as
those of System Σ and we have again adapted this to a modern notation of inference
rules.
Now, as was also the case for System Σ, Bishop begins with the inference rules
(we will again as in Section 2 use this to mean both axioms and rules) constituting
the constructive propositional calculus. For the most part, as seen in Fig. 8, these
are also the same as the inference rules used in System Σ, but there are two key
differences.

A ⇒ A
(1A)

B

A ⇒ B
(1R)

A A ⇒ B {x1, . . . , xn} = (dep(A) \ dep(B))

(∃x1,...,xn0 = 0) ⇒ B
(2R)

A ⇒ B B ⇒ C {x1, . . . , xn} = (dep(B) \ dep(A,C))

(∃x1,...,xn0 = 0) ⇒ (A ⇒ C)
(3R)

A ∧B ⇒ A B ∧ A ⇒ A A ⇒ A ∨B B ⇒ A ∨B
(2A)

A ⇒ C B ⇒ C

A ∨B ⇒ C
(4R)

C ⇒ A C ⇒ B

C ⇒ A ∧B
(5R)

A ⇒ B ⇒ C

A ∧B ⇒ C
(6R)

A ∧B ⇒ C

A ⇒ B ⇒ C
(7R)

0 = 0′ ⇒ A
(3A)

Figure 8: Axioms and rules of Bishop Type Theory, forming the propositional cal-
culus
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As is probably immediately apparent to anyone versed in systems of logic, two
rules which are foundational to really any such system, namely (2R), modus pon-
ens, and (3R), transitivity of implication, have been modified with a very specific
pre-condition, which is completely new and to our knowledge has not appeared any-
where else in this form before or since. For some unknown reason, Bishop postulates,
that in order for these two rules to be usable, first the existence of all “forgotten
dependencies” must be shown. The formula 0 = 0 itself is of course vacuously
true, so the existential pre-conditions imposed here amount to a proof of the in-
habitedness of the respective types of x1, . . . , xn. This inhabitedness corresponds
to truth of the formula represented by that type in regards to the Curry-Howard
correspondence, but since Bishop does not give justification for or even in any way
comments on these new restrictions, it is unclear what his intentions may have been.

In (8R) and (9R), A does not depend on x. A(t) is short for im(A|x ⇒ t):

(∃x0 = 0) ⇒ A ⇒ B x is final in dep(x,B)

A ⇒ ∀xB
(8R)

(∃x0 = 0) ⇒ B ⇒ A x is final in dep(x,B)

(∃xB) ⇒ A
(9R)

K ⇒ (∀xA(x)) ⇒ A(t) x is final in dep(x,A)
(4A)

K ⇒ A(t) ⇒ ∃xA(x) x is final in dep(x,A)
(5A)

where K ≡ 0 = 0 if A(x) actually depends on x, and K ≡ ∃x(0 = 0) otherwise.
Again analogously to System Σ, these four inference rules finish the definition of the
constructive predicate calculus. However again, Bishop chose to include the existen-
tial pre-conditions albeit this time for the two axioms only if A actually depends on
x. So for some reason, Bishop was concerned with possibly allowing quantification
over an empty type. Again, he does not make further notice of anything regarding
this.

Axiom (6A) is (AC), the type theoretic axiom of choice, which we have already
discussed in great detail in Section 2. For this, y may not depend on x and z :
T(x) ⇒ T(y). It further also holds in case there is some t, such that t : T(x) ⇒ C
not depending on x, y : t(x) and z :

c

T(x)

t, meaning in a dependent setting:

∀x∃yA(x, y) ⇒ ∃z∀xA(x, z(x))
(AC)

Both (10R) and (11R) are exactly the same as for System Σ:

A(0) A(x) ⇒ A(x′)

A(x)
(10R)

∃xA(x)

A(c) c constant from proof of existence
(11R)
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The next rule now encapsulates the previously mentioned interpretation of the new
term {x|A(x)}:

t1 ∈ {x|A(x)} ⇔ A(t1)
(7A)

Here B ⇔ C as usual is simply shorthand notation for (B ⇒ C) ∧ (C ⇒ B).

For (8 − 10A) all terms are of type N , note that these rules are only a subset of
the axioms for Z used in System Σ.

t1 = t2 ∨ t1 ̸= t2
(8A)

t1 = t2 ∧ (t1 ̸= t2) ⇒ 0 = 0′
(9A)

t1 = t2 ⇒ t′1 = t′2 t ̸= t′
(10A)

Bishop at this point defines a notation that two classes are actually “equivalent” in
some sense:

Definition 14. Let t : C, t1, t2 : t, x : P(t). Then t1 ≈ t2 is defined by:

∀x(t1 ∈ x ⇔ t2 ∈ x)

(11 − 12A) are in context of (4t), specifically t1, t2 and t3, and again now define
the previously described meaning:

t2 ↓∈ t1
(11A)

t2 ↓↑ t1 ≈ t2 (t3 ↑ t1) ↓≈ t3
(12A)

The inference rule (13A) is in context of (9t), with x and t̄ having the same type,
and now defines application of assignment operations:

(λx.t(x))(t̄) ≈ t(t̄)
(13A)

Next, (14A) is the dependent version of (13A) and in context of (10t), again x and
t̄ have the same type.

(λx.t2(x))(t̄) ≈ t2(t̄)
(14A)

The inference rule (15A) is in context of (11t), defining the semantics of the choice
object we defined there. We use the notation 0i as shorthand for 0

′...′ with i primes:

u = 0i ⇒ [u|t0, . . . , tn] ≈ tj j ≡ min(i, n)
(15A, 1)

u ̸= 00 ∧ · · · ∧ u ̸= 0n ⇒ [u|t0, . . . , tn] ≈ tn
(15A, 2)
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Now, (16A) is in context of (12t) and gives the semantics of the operators defined
there as previously described:

outi(t̄i)! = 0i ini(outi(t̄i)) ≈ t̄i t̄! = 0i ⇒ outi(ini(t̄)) ≈ t̄
(16A)

The rules of inference (17 − 18A) are in context of (14t) where there is a formula
A(x1, . . . , xn) such that A(t1, . . . , tn) and A(t̄1, . . . , t̄n) are defined. They give the
semantics of the layered product, which we discussed in length above:

⟨π1(t), . . . , πn(t)⟩ ≈ t
(17A)

⟨t1, . . . , tn⟩ ≈ ⟨t̄1, . . . , t̄n⟩ ⇒ (A(t1, . . . , tn) ⇔ A(t̄1, . . . , t̄n))
(18A)

For (19A) t1, t2 : N , giving an intuitively desired property of the above defined
equivalence operator:

t1 = t2 ⇒ t1 ≈ t2
(19A)

Finally (20A) is in context of (16t), defining the semantics of ind as given above:

t1 = t2 ⇒ ind(t1, t2, t3, t4) ≈ t3
t2 = ti1 ⇒ (ind(t1, t2, t3, t4) ≈ ind(t′1, t2, t4(⟨t1, t3⟩), t4))

(20A)

This concludes the definition of Bishop Type Theory as laid out in [3]. At the end
of the rules of inference, Bishop writes, that “It should be stressed that certain
seemingly artificial restrictions of the language are motivated by the desire not to
press the search for constructive meaning too far. This does not mean that we are
primarily concerned with avoiding contradictions. A contradiction would be just an
indication that we were indulging in meaningless formalism” [3, p. 16]. This might
be directed towards the peculiar pre-conditions we discussed above, but still does
not really give any further insight as to their meaning.

In the rest of the manuscript, Bishop then works on formalizing some mathematical
concepts, like Borell sets in this language of his. Discussing this would however go
beyond the scope of this thesis, and requires further research, especially with regard
to the oddities of the existential pre-conditions and their effect on the expressiveness
of Bishop Type Theory as a whole. Thus it is left as future work for now. Additional
future work involves checking if the paradoxes involving C : C actually apply to this
setting, as in the case of Girard’s Paradox [11].
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5 Conclusion

In this thesis we have explored the previously unpublished works of Bishop in the
realm of formal foundations for mathematics, beginning with the concept of compil-
ation, for which we first explored system Σ and its possible relation to what Bishop
viewed as the canonical form for all mathematical statements and have then seen
how Bishop ended up showing this system to be compilable into a constant free
subset of terms and eventually into a programming language like ALGOL68. To
this end we have given Bishop’s proof, for which we have made certain cases more
precise and fixed one case. We have also provided a better visual representation of
the compilation algorithm by using tables to show the correspondence between rules
and compilation terms. This concept of compilation developed by Bishop we have
further compared to (modified) realizability and found that while the definitions
are very similar, core concepts regarding proofs might prove valuable for gaining a
better understanding and further developing proof systems in a constructive frame-
work. Finally we have discussed the early stages of a dependent type theory based
on Bishop Set Theory, which would have preceded that of Martin-Löf and features
interesting peculiarities which might warrant further examination. Throughout we
have always adapted the notation used to modern times and introduced new notation
where deemed worthwhile to aid readability.
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