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1. On Inductive Definitions

The most characteristic example of an inductive (or recursive) definition is that
of a natural number. It can be given using the following two rules

n €N
0eN S(n) e N’

where S(n) denotes the successor of n. Note though, that this definition alone
does not determine a unique set; for example the rationals Q or the reals R
satisfy the same rules. We determine N by postulating that N is the least set
satisfying the above rules. We do so by stating the following induction axiom:

A(0) = Vp(A(n) = A(S(n))) = Vn(A(n)),

where A is a formula representing a predicate on natural numbers. If A is any
formula, then the above principle is the well-known full induction principle on
natural numbers (if we restrict the range of A’s we get other weaker induction
principles). Its interpretation is the following: Suppose that A satisfies the
two rules, A(0) and V,(A(n) — A(S(n))), i.e., as it is usually said, A is a
“competitor” predicate to N, then N C A, i.e, V,,(A(n)), or a bit more precisely,
V. (N(z) = A(z)). A consequence of this inductive characterization of N is that
if we want to define a function f : N — X, where X is a set, it suffices to define
it on 0, and provide a rule G which gives the value of f on S(n) through the
value of f on n. Le., we have the following proposition:

Proposition 1. If X is a set, xtg € X and G : X — X is a function, then there
exists a unique function f : N — X such that f(0) = z¢ and f(S(n)) = G(f(n)).

Proof. 1t is direct to see that the above defined f is a function with domain N
and range in X. To show its uniqueness we suppose that there exists g : N — X
satisfying the above two conditions, and we apply the induction principle on

A(n) := (f(n) = g(n)) to show that ¥, (A(n)). O

So, we cannot see an inductive definition without its corresponding induction
principle. If we consider now the inductive definition of a formula in Classical
Propositional Calculus

peP ¢ € Form ¢, € Form
p€Form —¢ € Form ¢V € Form’

the corresponding full induction principle is

A(p) = V(A(9) = A(=9)) = Vo4 (A(¢) = A(Y) = A(PV ¢)) = V4(A()),

where A is any formula of our meta-language, for example this could be the lan-
guage of set theory. Some times in the bibliography one can find one more clause
in the above inductive definition of the form “there are no other formulas except
the ones determined by the previous rules”, and then the induction principle is



proved as a theorem. It is clear though, that the added rule is a disguised form
of the induction principle. Since this added rule is not also a formal statement,
we propose in these notes to understand an inductive definition as a pair

(Inductive Rules, Induction Principle).

Again, a consequence of this inductive characterization of Form is that if we
want to define a function F': Form — X, where X is a set, it suffices to define
it on the prime formulas P, and then provide firstly a rule G_ which gives the
value of F' on —¢ through the value of F' on ¢, and secondly a rule G\, which
gives the value of F' on ¢ V ¢ through the value of F on ¢ and ¥. lLe., we have
the following proposition:

Proposition 2. If X isaset, f: P—>X,G.: X > X and Gy : X x X - X
are given functions, then there exists a unique function F' : Form — X satisfying

F(p) = f(p), for each p,
F(=¢) = G-(F(9)),
F(¢ V) =Gy(F($)V F(¥)).
Proof. Exercise 1. U

Consider the function V' : Form — P(P), where P(P) denotes the power set
of P, and V(¢) is the set of propositional variables occurring in ¢ defined by

Vi(p) = {p},
V(~¢) = V(@),
V(6 V1) = V(6) UV (¥).
The unique existence of V' is guaranteed by Proposition 2.

Exercise 2: Which are the functions f, G-, G\ that correspond to the function
v?

The set 2 = {0,1} (in the lecture course it is also written as {w, f}, or you can
see it elsewhere as {tt, ff}) is the simplest boolean algebra i.e., a complemented
distributive lattice, or a commutative ring with 1 in which every element is idem-
potent (p? = p). These algebraic structures are very important in mathematical
logic and topology. So, we define on 2 the following operations:

-0=1, —-1=0, 0vb=b, 1VvVb=1,
for each b € 2. Also the ring operations are defined from —, Vv as follows:
b-c:=bAg,

b+c:=(bA-c)V(mbAc),



where bAc:=-bVe.

We have now all the tools to understand how a truth valuation W : Form — 2
works. f W : P — 2, G, = =, and G, = V are given, then by Proposition 2
there exists a unique function W* : Form — 2 satisfying;:

W*(p) = W(p), for each p,

W*(=¢) = =W*(¢),
WH(o V) =W () v W (),

where the V on the left side of the last equality is the logical connective, and
the V on the right side is the boolean operation.

Exercise 3: Give an example of a function F' : Form — 2 which is not an
extension of a truth valuation.

We are in position now to fully grasp the formulation of the following proposition
given in the lecture course.

Proposition 3. If Wi, W5 : P — 2 are truth valuations, then

VoWivie) = Wayvg) — Wi (9) = W3 (e)).

Proof. Exercise 4.
Hint: Apply the induction principle corresponding to the inductive definition
of formulas on

A(9) = Wiv(p) = Warv(e) — Wi(e) = W5 (),
using the definition of V(). O

Exercise 5: (i) Given the field structure (R,+,,0,1) of the real numbers,
define inductively the set of rationals Q.
(ii) Which is the corresponding induction principle?

2. On Classical Propositional Calculus

If ¢ € Form, then it is called a tautology, if

Yivear (W (9) = 1),

where XY denotes the set of all functions f: Y — X. A formula ¢ is called a
contradiction, if

Yiwear (W7(¢) = 0).

Exercise 6: (i) Give an example of a tautology, and an example of a contra-
diction.
(ii) Show that ¢ is a tautology iff —¢ is a contradiction.



(iii) Explain why Proposition 3 guarantees that there is a (semantic) algorithm
deciding if a formula ¢ is a tautology or not. Although the notion of a Yes/No-
algorithm is not yet formally defined, what we mean by it is a recipe which
can be executed in a finite amount of time and provides effectively a Yes or
No-answer to a given question.

(iv) Describe explicitly the above algorithm for a specific formula ¢ of your
choice.

(v) After you learn the definition of a tautology in Classical Predicate Calculus,
try to guess if there is a similar (semantic) algorithm deciding if a formula in
Predicate Calculus is a tautology or not.

Proposition 4. Ifn € N, M,, = 2{ro-pn} gnd F : M,y — 2, then

EI¢(V(¢) - {pO, . apn} A VW(W*(¢) = F(WT{PO,...,pn}))'

The fact that the above proposition expresses the completeness of the connec-
tives {—, V}, that is the sufficiency of {—, vV} in writing equivalent forms to all
formulas, is related to the general definition of a connective. Maybe more will
be added on that later.

Exercise 7. Show that the set of connectives {A, =} is not complete.

Hint: Since {-,V} is a complete set of connectives, the set {—, A} is also
complete (why?). Then try to show that — is not expressible within {A, —}. If
{N, =} was complete, there would exist some formula ¢ including p, A, — and
equivalent to —p i.e., Vi (W*(¢) = W*(—p)), for some fixed p € P. Show that
this cannot happen.

3. On the basic definitions of Classical Predicate Calculus

Exercise 8. Write down the Induction Principle that corresponds to the in-
ductive definition of L-terms’

v € Var ce Konst  t1,...,t, € Term, f € Funk”
v € Term’ ¢ € Term’ f(t1,...,t,) € Term

where Funk™ denotes the set of function symbols of L with arity n. Formulate
the theorem of recursive definition on Term which corresponds to Propositions 1
or 2.

Exercise 9. Write down the Induction Principle that corresponds to the in-
ductive definition of L-formulas

t1,ts € Term t1,...,t, € Term, R € Rel”
t1 =ty € Form’ R(ty,...,t,) € Form

IFor simplicity we avoid the subscript L from the symbols Var, Konst, Term, Form.



¢ € Form ¢, € Form ¢ € Form, x € Var
—¢ € Form’ ¢V € Form’ 3,06 € Form
where Rel” denotes the set of relation symbols of L with arity n. Formulate the

theorem of recursive definition on Term which corresponds to Propositions 1
or 2. For that it will be helpful to write the last inductive rule as follows:

¢ € Form, x; € Var
3z, ¢ € Form

where Var = {z,, | n € N}.

4. On L-structures and L-interpretations

If L = (Rel, Funk, Konst) is a lst-order language, then an L-structure is a
structure 2 = (A, Relgy, Funkg, cg ), where Rely is a set of relations on A, Funkg
is a set of functions on products of A and with values in A, and c¢g is a fixed
subset of A.

An L-semi interpretation is a pair (2, ¢), where 2 is an L-structure, and e
is a triplet of functions, ¢ = (ey, ea, €3), such that e; : Rel — Rely, e3 : Funk —
Funkgy and e3 : Konst — Konstg, where

RS RY,
f3
=
such that the arity of each relation symbol R or each function symbol f of L is

preserved.

Exercise 10. Give two different L-semi interpretations for some 1st-order
language L.

An L-assignment 1 in an L-structure 2 is a function
n:Var — A,

where A is the carrier set of 2.

An L-interpretation is a triplet Z = (2, e,n), where (2, ¢) is an L-semi
interpretation, and 7 is an L-assignment in 2. An L-interpretation contains all
the information necessary to extend the interpretation of Term in 2 and define
the notion of truth of a formula in 2.

Since 7 is given in an L-interpretation beforehand, by the theorem of recur-
sive definition on Term there exists a unique function

H :Term — A



t 4T

such that

UI = 77(”)7

= es(c) =,
(fltr, o ta))T = (2N 1) = fA(H - 1)

Note that in the lecture course notes it is used instead the notation t*, where
the use of a given assignment 7 is not explicitly mentioned.

From an assignment n we define the assignment n(z +— a), for each given
x € Var and a € A, as follows:

N a)(v) =

{ n(w) L ifv#a

a ,ifv=ux,

i.e., the assignment n(z — a) agrees with 7 on each variable # x and maps x to
a. If 7 is an L-interpretation, then we denote by Z(x — a) the interpretation

IZ(x v+ a) = A, e,n(z — a)).

Exercise 11. The object t2(*~%) ¢ A and a replaces each occurrence of z in
tI(I’—)a)-

Now we can extend trivially the above definition to the case where each one of
the fixed pairwise distinct variables z; are mapped to the fixed element a; € A,
respectively: if @ denotes a finite sequence of elements of A and ¥ a finite
sequence of pairwise distinct variables z; € Var, such that |@| = |Z|, where [.|
denotes the length of a finite sequence (how can we define it?), then we define
for a given assignment 7:

00— 0) ==,
77((@17 ceey Gy, am+1) = (1‘17 e a'rm7xm+l)) =
= [n((ala cee 7a'7n) — (-rlv cee 7$m))](anb+l — an-i—l)-
Exercise 12. If # = (z1,...,2,,) is a finite sequence of pairwise distinct vari-

ables and d is a finite sequence of elements of A of length m, then

nw) ,ifv£xi A...ANVE Ty,

I ay ,if v =24
nE o a) =4 0 e
am S ifv=ux,
It is with this assignment n(Z — @) that the interpretation t3[a1,...,an] of a

term ¢t € Term in 2 is defined in the lecture course notes. L.e., we have

t%[ah cey O] = {L(@—=a)



Next we define recursively the notion Z = ¢, “the L-interpretation I models
¢ € Form”, or “¢ is true under the L-interpretation Z”. Note that we need
to specify all the necessary information Z = (2, e¢,n) on the left-hand side of
T = ¢, and not just 2A, because the assignment 7 is necessary to define the
interpretation ¢Z which appears in the case of prime formulas. The presence of
the assignment 7 is also crucial in the case of an existential formula. What we
can only fix, and therefore skip from our notation, is the L-semi interpretation
¢. Thus, we define:

IEt =ttt =t
. ZER(ty,... ty,) > R, ... 1)
T E —¢:+ not (T = ¢)

TV T EdorT =1
. I |E 3¢ > there exists a € A such that Z(z — a) = ¢,

Otk W N =

where the L-interpretation Z(z + a) was defined above. The reason for the
use of this interpretation in the last clause of the above definition has to do
with avoiding “capture” in the direction (+) of clause 5. Intuitively, we want
T = ¢(a), for some a € A, but we want to assure that each occurrence of z will
be replaced by a, so that x does not occur in ¢(a), and no capture occurs with
the quantifier 3.

A reformulation of clause 5 can be given through the equivalence (Blatt 2,
exercise 3)

I = a) b ¢ & I E galb),

where t is a closed term such that tZ = a and FV(¢) C {z}. Therefore for
such formulas we could present the above definition without introducing the
interpretation Z(x — a) on the right-hand side. This equivalence expresses
formally what we said in the previous paragraph intuitively.

Exercise 13. Show that the definition of the Giiltigkeitsrelation in the lecture
course notes can be written in the above terminology as
I(Z— d) = ¢.

Of course, the definition given above of Z |= ¢ is derived from the definition of
the lecture course notes by taking = (). Therefore, the two presentations are
equivalent.

Exercise 14. If we consider the 1st-order language L = (+,-,0,1,<), the
L-structure N' = (N, +N NN 1N, <N)7 the L-semi interpretation e given by

+ =4+ e N 0= 0N 11N <N
and the L-assignment 7 : Var — N defined by

Ty — 20,



for each n > 0, check if the following hold:
(a) I k= (w2, +(21, 22)) = 24,

(b) Z = Va3, (< (0, 21)),

where Z = (N, e, 7).

Exercise 15. If we consider the 1st-order language L = (o, ¢), the L-structure
R = (R, +,0), the L-semi interpretation ¢ given by

o—+, er—0,
and the L-assignment n : Var — R in R defined as the constant function
9,

show that
T EVi(roe=u1x),

where 7T = (R, ¢, 7).

Exercise 16. If f is a binary function symbol, L = (@, f,0), and

¢ = Vy, (f($o7 $1) = $0),

find L-interpretations Z;,Zs such that

Il ':(b and IQI#QS

5. Blatt 2, Aufgabe 3

Remark on the notation: The interpretation t* of an L-term t in the L-
structure 2 can be also denoted by

2

in order to specify the fixed assignment 7 : Var — A we use (see section 4). In
section 4 we have also used the notation

tI

)

where
Z=(U¢e,m),

in order to give a full account of the information necessary in order to define
the interpretation of a term. One can use any of these notations having in mind
that whenever a simplified one is used then either ¢ or 7 are fixed. Similarly we
can write

RN



or
2,1 9,

or the fully informative

IE¢.

In order to solve this exercise we need to show the following lemma;:

Lemma 5. If Term® denotes the closed terms of L (konstante Terme) and
T = (U,e,n) is an L-interpretation, then

thTCYm(VSETermCIVGGA(SQL’n =a— t(s/x)m)n = t?l,n(:v—)a))),

where our notational conventions w.r.t. the notation in the lecture course notes

are
t(s/x) = ta(s),
and the assignment n(x — a) is defined in section 4.

Proof. We apply the induction principle corresponding to the inductive defini-
tion of Term on the formula

P(t) := Ve rorme Vaca (s%" = a — t(s/z)™" = t¥n@=a)),

P(v): We fix s € Term® and a € A such that s*7 = a. Since

v@my:{v,ﬁv¢x

s Lifv=uw,

we conclude

o(s/z)2n = { nw) ifv#x

s if o =z
On the other hand, by the definition vZ of the interpretation of a variable we
have that

Ap(zrra) _ _ o) ifv#e
Y —n(xHa)(v)_{a Jif v =z,

therefore by the hypothesis s*7 = a we conclude the required equality.

P(c): Since c(s/x) = ¢, we have that c(s/x)%" = %" = c* while also

CQL,n(:m—)a) — CQ[ .

P(t1) = ... = P(t,) = P(f(t1...t,)): Using the definition of substitution on
complex terms we have that

[(ftr. ) (s/2)]*" = [f(ta(s/2) ... tals/2)]*"
(/)7 [ta(s/2)] ™)

W) pagnema) oo

[f(t1

(
1
)P,

10



Next we rewrite the initial Exercise, using our initial notational conventions, as
follows.

Proposition 6. IfZ = (A, ¢) is an L-semi interpretation and AV¥ denotes the
set of all L-assignments in A, then

V¢€F0rm(vn€AV‘“ (vtETermdvaeA(tmﬂ7 =a— [QL n ': ¢(t/$) < 2, 77(37 = a‘) ': ¢])))

Proof. We apply the induction principle corresponding to the inductive defini-
tion of Form on the formula

Q) = Ypeaver (Vyeterme Vaea(t™" = a = [U,n | 6(t/2) & Az = a) | ¢])).

Q(t; = ty): We fix n € AV* s € Term® and a € A such that s%" = a. Since
[t1 = ta](t/x) = [t1(t/x) = ta(t/x)], we have that

A, = 1 (t]2) = to(t /) & 1y (t/2)™ = to(t /)™

while
A 71(I»—>a) 2 A,n(x—a)

A,n(z—a) =ty =t ot

and we use the previous lemma to get the required equivalence. Actually, the
lemma is forced to us by this very first case of our inductive proof.

Q(R(t1 .. .t,)): By the definition of substitution we get that

A (Rt ... a](t/2)) & Ay = Rt (/). ta(t)2))
& B[t (/o)™ [t (t/2)]7)

o RQl(t?‘w(ﬂﬂHa)7 o 72%m(ﬂwm))

o Anx—a)ERE ... ts).

Q(9) = Q) — Q(é V ¥): Straightforward.
Q(¢) = Q(—¢): Straightforward.
Q) — Q(3,): We fix n € AVa' s € Term® and a € A such that s%7 = a.
Since v "
B Jifz =y
Bi2) ={ Toasm) Litep
we get
_ AnE3I Jifz=y
ok Bt = { 3 C 3y it 2
| thereexistsbe A: A, n(y —b) = Jifr =y
" | thereexistsbe A: A n(y—b) Ev(t/z) ,ifx#y.

On the other hand,

A, n(z — a) = 3y9 <> there exists c€ A: A [n(x — a)l(y — ¢c) =9

11



i.e.,
A, n(z — a) = Iy > there exists c€ A: A, n((z,y) — (a,¢) = .

If 2 = y, we get by the inductive definition of n((x,y) — (a,c)) (see Section 4)
that n((z,y) — (a,c)) = n(y — ¢) and the required equivalence is automatic. If
x # vy, we need to show that

(%) thereexistsbe A: A, n(y—b) Ev(t/z) &

> there exists c € A: A, n((z,y) — (a,¢)) EY ().
But if we apply the inductive hypothesis Q() on t,a and the assignment

n(y —b),
we get that
Ay = b) = b(t/z) < A n(y = b)l(x—a) =
& 2 n((z,y) = (a,0) = ¢,
which shows that (x) — (#x). In a similar way we show that (#x) — (x). O

6. On the relation of logical consequence

If T'C S(L) and ¢ € S(L), where S(L) denotes the sentences of L (i.e., the
L-formulas with no free variables), then we define the relation T = ¢, “¢ is a
logical consequence of T” by

TE¢ Ve =T —AE )

Similarly we define ® = ¢, where ® C Form and ¢ € Form.

Exercise 17. If ¢ is a sentence of L, 2 is an L-structure, and T is an L-theory,
check the validity or not of the following propositions:

(i) not (A = ¢ and A = —¢).
(ii) (A = ¢) V (2 = 29).

(iii) not(T = ¢), then T' = —¢.
(v (T V(T I —9).

Exercise 18. Show that
3Vyd = Yy 320,

but what about the converse? Try to find an example of such a logical conse-
quence from standard mathematics.

12



Exercise 19. [Coincidence Lemma] Suppose that Lp, Lo are lst-order lan-
guages, 71 = (A1,e1,m), Zo = (Aa,ea,72) are Ly and Lo-interpretations, re-
spectively, such that

Q[l = (A, Relgll y Funkgll s C2Ay ),
ng = (A7 Rel%, Funk% 5 CQLQ)

i.e., the two structures have a common carrier set, and
L= L1 N L2.

(i) If t € Termy, such that the interpretations Z;,Z, agree on the non-logical L-
symbols occurring in ¢, and they also agree on V' (¢), the set of variables occurring
inti.e.,
Vxeva)(m(x) =n2(x)),
then show that
th =5,

(ii) If ¢ € Formy, such that the interpretations Z;,Z, agree on the non-logical
L-symbols occurring in ¢, and they also agree on FV(¢), the free variables in
¢ i.e.,
Veervie) (m(z) = n2(w)),
then show that
LiEocoLE9.

Exercise 20. Using the Coincidence Lemma show that Z |= ¢ depends only on

(a) the finitely many values e;(R), ea(f), es(c), where R, f,c range over the
finitely many non-logical symbols of L occurring in ¢, and

(b) the finitely many values n(z), where x ranges over the finitely many vari-
ables occurring freely in ¢.

Remark: Because of the above it is absolutely OK to use the suggestive nota-
tion of the lecture course notes

A ': (b:f[ala"'va’m]a

where
¢ € Var" « FV(¢) C{z1,...,Tm},

w.r.t. the fixed enumeration of Var, and n(z1) = a1, ..., n(@m) = am.

Exercise 21. Suppose that L, L are lst-order languages such that L C L,
and T C S(L). Note then that also T C S(L) (Why?). Then the following
equivalence holds:

T is L—satisfiable < T is L—satisfiable.

13



7. On the relation of logical equivalence

If ¢, € Form, we define ¢ H 1, “¢ is logically equivalent to ¢”, by

dHY < oEYand Y=o
& Yo (U |= ¢ if and only if A = v).

Exercise 22. Show the following:

(i) VaVyo H ¥y V2.

(i) 30350 H FyFad

(iii) Vo0 H ¢, if « ¢ FV (o).

(iv) 3o0 H ¢, if 2 ¢ FV(9).

(V) Va(@ A1) H Vo AV

(Vi) Fo(@ V) H Fod V Iuth.

(vii) Voo V) HVad Vb, if o ¢ FV ().
(viil) 3o(p A ) H Fud A2, if 2 ¢ FV(1)).

Exercise 23. Show the following:

(i) If ¢ H ¥, then —¢ H —0.
(i) If ¢ H ¢ and ¢/ H ¢/, then ¢V ¢/ H ¢V /.
(iii) If ¢ H ¢, then 3,6 H J.9.

We define the set Sub(¢) of all subformulas of some formula ¢ recursively by:

Sub(p) := {p},

Sub(—¢) := Sub(¢) U {—¢},
Sub(¢ V 1) := Sub(¢) USub(1)) U {¢ V ¥},
Sub(3,¢) := Sub(¢) U {3.¢},

where p € Prim, the set of prime formulas in Form.

Exercise 24. If o € Sub(¢) and ¢’ € Form, then
if o H o', then ¢[o’ /o] H ¢,

where ¢[o’ /o] is the formula resulting by substitution in ¢ of o by o’.

Exercise 25. Find the prenex normal form of the following formulas:
(i) Vo (Rz — V,S(z,v)).
(i) V4 (Rx — 3,5(z, y)).

14



(iii) =3, Rz V ¥V, Sz.

Exercise 26. Find formulas ¢, which show the necessity of the variable
condition in Exercise 22(iii) (iv) (vii), and (viii), respectively.

8. On first-order theories

If X is a set, and P(X) denotes the power set of X, a closure operator on X is

a function C
C:P(X)—=PX)

A C(A),
satisfying the following properties:

(i) 4 C C(A).
(i) A1 C Ay = C(A1) C C(A).
(iii) C(C(A)) = C(A).

Exercise 27. Show that a closure operator C' on X satisfies the following
properties (actually the only necessary condition is (ii)):

(1) Uier C(Ai) € CU;er Ai)-
(i) C(Nies Ai) € Nies C(A),
where (4;);cs is a family of subsets of X indexed by a set I.

If we fix a 1st-order language L, then we define the logical closure operator C
on S(L) (with respect to our fixed language L) as the function

C:P(S(L)) = P(S(L))
T+ C(T),

and

CT):={0eS(L)|TE ¢}
As we know by exercise 3 of Blatt 4 the operator C' is a closure operator on
S(L).
A theory T is called closed, if C(T') = T, which is equivalent, because of property
(i) of a closure operator, to C(T') C T, in other words,

TE¢p—¢eT.

A special closure operator which is is fundamental in general topology is defined
as follows: If X is a set, a topological closure operator on X is a function Cl

Cl: P(X) - P(X)
A ClL(A),

15



satisfying the following properties:

(i) Clis a closure operator.
(i) CL(0) = 0.
(iii) Cl(AU B) = CIl(A) U CI(B).

It is direct to see that the set
T :={X\Cl(A) | AC X}

is a topology on X, and that the sets of the form A = Cl(A) are the closed sets
with respect to this topology. Conversely, if (X, 7)) is a topological space, then
the operator Cly defined by

A A,
where A € X and A denotes the T-closure of A i.e., the least T-closed set
including A, is a topological closure operator on X. We call the operator Cly
the topological closure operator induced by the topology T .

Exercise 28. Find a (simple) topological space (X, T) the induced topological
closure operator Cly of which does not satisfy the equalites in cases (i) and (ii)
of Exercise 27, respectively.

Thus, although a topological closure operator satisfies more properties than
the monotonicity condition (ii) of its definition, still these equalities do not hold
in general.

A theory T is called consistent, if
Voesw) (T = (9 A=9)) < Byes)(T = ¢ A=),
A theory T is called inconsistent, if
Foes) (T = (¢ A —9)).

A theory T is called complete, if

Voes)(T E VT = —9).
Obviously, a closed theory is complete, if

Voes) (@ €TV ¢ €T).
A theory T is called incomplete, if

Fpes)(T O NT B o).
A theory T is called finitely aziomatizable, if

3 (T'=C(F)),

rcfing
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where F' Qﬁn T denotes that F' is a finite subset of T'.

Exercise 29. By the definition of the logical closure operator we have that
C0)={¢pe€S(L)|0E ¢} = {valid sentences}.
(i) If T is a 1st-order theory, then
C(0)y Cco(T) C S,

and C does not satisfy condition (iv) of a topological closure operator.
(ii) Find theories Ty, Ty satisfying
C(Tl) @] C(TQ) - C(Tl @] TQ),

i.e., C' does not satisfy condition (v) of a topological closure operator.

(iii) The theory S(L) is the maximum closed L-theory, and it is also inconsistent.
(iv) The theory S(L) is the only inconsistent closed L-theory.

(v) Give an example of an incomplete theory.

Exercise 30. If 2 is an L-structure, then we define the theory of 2 by

Th(2) == {6 € S(L) | A = o).

(i) Th(2A) is a closed theory.
(ii) Th(2l) is a complete theory.

A theory T is called satisfiable if there is some L-structure 2 that satisfies T'
ie.,

(A ET).
In this case we say that 2 is a model of T. Clearly, T is satisfiable if and only
if 3,(T £ 6).

Next exercise shows that a closed, satisfiable theory is complete if and only
if it is the theory of some model of it.

Exercise 31. Suppose that T is a satisfiable and closed theory. Then the
following are equivalent:

(i) T is complete.
(ii) If 2 and B are any models of T', then

Th(2() = Th(A).
(iii) If 2 is any model of T, then
T = Th().

Note that you need the hypothesis “T" is closed” in direction (i) — (iii), but
not in the direction (i) — (ii).
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9. On isomorphism of L-structures

Exercise 32. Show that < is not definable in 2% = (R, +,0) i.e., there is no
1st-order formula of the language L = (4,0) with free variables z and y, such
that

Vaybe]R(a <be AU ': ¢Iyy[a7 bD

What about the definability of < in B = (R,-,1)?
Relate these facts with Exercise 3 of Blatt 5.

Exercise 33. If Pr is the set of prime numbers and
e:Pr— Pr

is a function 1-1 and onto Pr, then

(i) There exists a unique automorphism é of the structure (N, -, 1) extending e.
(ii) Show that addition is not definable within (N,-,1) (first formulate this
question accordingly).

10. Some basic 1st-order theories

1. Peano Arithmetic PA.
Language: L = (+,-,5,0).

Axioms:

1. =S(z) =0.

2. S(z)=8Sy) »z=y.

3. z+0=uz.

4. 4 S(y) = S(z+y).

5. 2-0=0.

6. 2-Sy) =z -y+=.

7o 9(0) = Va(o(z) = &(S(2))) = V().

2. Partial Order O.
Language: L = (<).
Axioms:

1. ~z <.
2.z<y—y<z—zxz <z
J.r<y—wy<uw.

3. Linear Order LO.
Language: L = (<).
Axioms:

1. O.
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2.z<yVax=yVy<uz.

4. Dense Linear Order DLO.
Language: L = (<).
Axioms:

1. LO.
20rx<y—I(z<zAz<y).

5. Dense Linear Order without Endpoints DLO".
Language: L = (<).
Axioms:

1. DLO.
2. Vo3 (y<z Az <z).

6. Ring R.

Language: L = (+,-,0).
Axioms:

1. Abelian group w.r.t. +.
sz (y-z)=(z-y) 2
cx-(y+z2)=z-y+ax-z
(x4+y) z=z-z2+y-z

NV

7. Commutative Rings with Unit CR.
Language: L = (+,-,0,1).

Axioms:

8. Integral Domain ID.
Language: L = (+,-,0,1).
Axioms:

1. CR.

2.2 y=0—=2=0vVy=0.
9. Field F.

Language: L = (+,-,0,1).
Axioms:

1. ID.
2.2#0—>3y(z-y=1).

10. Field of characteristic p F(p).
Language: L = (+,-,0,1).

Axioms:
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1. F.
2.p-1=0A(p—1)-1£0A...A2-1#0.
11. Field of characteristic 0 F(0).
Language: L = (+,-,0,1).

Axioms:

1. F.

2,. p-1#0.

12. Ordered Field OF.
Language: L = (<,+,-,0,1).
Axioms:

1. F.

2. LO.
.r<y—x+z<y+z=z.

4. 0<z=>0<y—=0<2-y.

13. Real closed Field RCF.

Language: L = (<, +,-,0,1).

Axioms:

1. OF.

2 0<z—Iylz=y-y).

32n+1- Top+1 7é 0— Hy($27l+1y2n+l + l‘gnan +...+ 21yt 20 = O)

14. Algerbraic Closed Field ACF.
Language: L = (+,-,0,1).
Axioms:

1. F.
2n. T £ 0 = Fy(@py" + Ty Yy + .+ Ty + 20 = 0).

11. On the theory DLO*

Exercise 34. Suppose that (A4, <) and (B, <) are are two dense linear orders
without endpoints (we keep for simplicity the same symbol for the order). Then
the following hold:

(i) There cannot be a finite dense linear order without endpoints i.e., the carrier
set cannot be finite.
(ii) Give an example of a countable dense linear order without endpoints.
(iii) Give an example of an uncountable dense linear order without endpoints.
(iv) If A, B are countable, then there exists e : A — B which is 1-1 and onto B
satisfying

Var.asealar < ag <> e(ar) < e(as)).
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(v) If A, B are countable a € A and b € B, then there exists ey : A — B which
is 1-1 and onto B satisfying

Varasealar < ag > eqp(a1) < eqp(az)),

and
eab(a) = b.

12. On the Compactness Theorem

Compactness Theorem: If T is a finitely satisfiable L-theory, then T is
satisfiable.

The converse of the compactness theorem hods trivially, while its name is due to
its equivalence to the compactness of a suitable topological space (see e.g., [1]).

Completeness Theorem: If T' is an L-theory, and ¢ € S(L) then
ThooTEs,

where T+ ¢ means that ¢ is derivable from 7" w.r.t. an appropriate concept of
derivation. Actually, the simpler direction (—) is called the Soundness Theorem
and the non-trivial direction (+) is Godel’s completeness theorem.

An L-theory T is syntactically consistent, if

Bocs) (T H o A—g).

The next simple exercise shows that completeness is stronger than compact-
ness.

Exercise 35. (i) If T is an L-theory, then
T is syntactically consistent <« T is satisfiable.

(ii) Show that the completeness theorem implies the compactness theorem.

It is not an accident that in the lecture course the compactness theorem is
proved independently from the completeness theorem. The compactness theo-
rem is a fundamental result of model theory, a branch of mathematical logic not
concerned with formal provability but only with satisfiability (see [1], Chapter
2). On the other hand, the completeness theorem requires a fixed formal proof
system in order to be even formulated, while we have seen that there is a purely
semantic proof of the compactness theorem.

The compactness theorem has many important model-theoretic conse-
quences.
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Exercise 36. (i) If C' is the logical closure operator on S(L), then

C(T)={peS(L)|T k ¢}
= U {¢es@)|FE¢)

pcfing

(ii) If T is satisfiable, then C'(T') is satisfiable.
(iii) If T is satisfiable, then

T is complete <> C(T) is € —maximal,

where C is the inclusion relation on the set of satisfiable L-theories.

(ii) If L = (+,0,-,1) is the 1st-order language of fields, and F(0), F(p) are
the theories of fields of characteristic 0 and of characteristic p, respectively (see
section 10), then show that, if ¢ € S(L)

F0) F ¢ = BnenVpsa(F(p) = ¢)-

Exercise 37. Suppose that T is an L-theory.

(i) If T has arbitrary large finite models, then T" has an infinite model.

(ii) Show that if all models of T' are finite, then the set of their cardinalities is
bounded.

(iii) Show that there is no T having models exactly all L-structures with a finite
carrier.

(iv) Show that if Funky, # 0, there is some T having models only with infinite
carrier.

(v) Show that there is no finite theory T having models exactly all L-structures
with infinite carrier, since if some ¢ € S(L) holds in every infinite L-structure,
then there is some m € N such that ¢ holds in every finite L-structure of
cardinality > m.

Exercise 38. Suppose that L is a first-order language with a single constant

symbol and a binary relation symbol <. Recall that a well-ordering (D, <p) is

a total ordering such that each non-empty subset of D has a <p-least element.
Show that there is no L-theory T such that

A= (A,<*) =T < Ais a well-ordering.

(Hint: Assume that exists such a theory T, adjoin countably many new
constants, extend T' with appropriate infinitely many new L-sentences, and use
the compactness theorem to reach a contradiction.)

Exercise 39. Suppose that  is a cardinal such that £ > max(Xg, |L|), and
T C S(L) with an infinite model. Then T has a model 2 such that |A| > &.
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13. On the relation of elementary equivalence

If A, B are L-structures we say that they are are elementarily equivalent, A = ‘B,
if they satisfy the same L-sentences. Actually the following hold:

2 = B < Th(2A) = Th(B)
© Voes) (A E o B = 9)
< A = Th(B)
< B | Th().

Exercise 40. (i) If |L| = k > Ny, and 2, B range over L-structures, then
V(|24 > Ng = VasxIn (Bl =1 A A=DB)).

(ii) Show that A = B — A = B, and give a counterexample to the converse
implication.

Exercise 41. If F = (F,+,0,-,1,<) is an ordered field, an x € F is called
positive, if 0 < z. A positive x is called an infinitesimal, if

vnEN(l‘ < ﬂ_l)a

wheren =1+14...4 1. A positive x is called infinitely large, if
—_—

anN(ﬂ < (E)

Obviously,  is an infinitesimal iff 2! is infinitely large. An ordered field F

is called Archimedean, if it contains no infinitesimals, while it is called non-
Archimedean, if it contains infinitesimals.

(i) Using the compactness theorem show that there exists a non-Archimedean
ordered field R which is elementarily equivalent to the Archimedean ordered
field R ie., R =R.
(ii) Since the existence of an infinitely large positive element can be given by
the sentence

(x>0 A Vpen(n <))

why this doesn’t contradict the result R = R?
(iii) Show that the 1st-order theory DLO* (section 11) is not c-categorical i.e.,
not all models of DLO* of cardinality ¢ (the cardinality of R) are isomorphic.

Exercise 42. If 91 = (N, 4,0, -, 1) we define a non-standard model of arithmetic
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to be a structure 2 such that 2 = 91 and A 2 1. Then the following hold:

(i) There exist uncountable non-standard models of arithmetic.
(ii) There exist countable non-standard models of arithmetic.

Exercise 43. If 1< = (N,+,0,-,1,<) we define a non-standard model of
arithmetic with order to be a structure 2 such that A = 91< and A 2 N<.
Then the following hold:

(i) There exist uncountable non-standard models of arithmetic with order.

(ii) There exist countable non-standard models of arithmetic with order.

(iii) If 2 is a countable non-standard models of arithmetic with order, then the
following hold:

(a) <% is a total ordering.

(b) <® is not a complete ordering, i.e., there is a <®-bounded subset of 2
without having a <*-least upper bound in 2.

(¢) There is an infinite <*-decreasing sequence in 2.

(d) An element of A outside the copy of N in 2 is called a non-standard number
of 2, while an element of the copy of N in 2 is called a standard number of 2.
Show that a non-standard number of 2 generates a countable set of copies of
Z in 2.

(e) If a is a non-standard number of 2 and if m,n are fixed positive numbers,
there is a non-standard number b of 2 such that n - a and m - b differ by a
standard number of 2.

(iv) Show that between the standard numbers of 2 and any copy of Z in 2
there exists another copy of Z <*-between them.

(v) Show that between any two copies of Z in 2 there exists another copy of Z
<% between them.

(vi) Using the main idea of Cantor’s proof of the Ng-categoricity of DLO*
(section 11) show that there is a unique, up to isomorphism, countable
non-standard model of arithmetic with order.

(vil) Use Exercise 1, Blatt 8, to show that there are uncountably many
non-isomorphic countable non-standard models of arithmetic (alone). ILe.,
there is a big difference in the amount of countable non-standard models
between the structures 91 and 91<.

14. On Sequent Calculus

Exercise 44. Which of the following rules is correct? If so find a derivation of it.

L19p1 Tarho
L(p1 V o) (11 V 4ha)’

L19p1 Tparho
D(f1V ¢2) (1 Aha)
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Exercise 45. Show that the following rules are derivable:
¢V g’

Loy
I’

L¢pvy) I'~¢
T ’

L¢—4) T
Ty ’

¢
To

Iy Ty
INCYSDE

I'v,.¢
Toe(t)

Exercise 46. Derive the following sequents:

¢ (¢ V1),
(@ V) —¢ .

15. On Recursive functions

Exercise 47. Show that the following functions are recursive:
(i) The predecessor of n.

(i) f(n,m) = [n —m|.

(iii) min(n,m).

(iv) max(n, m).
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Exercise 48. (i) Using the primitive recursion scheme (p.42 of the lecture
course notes) show that if f : N"*! — N is recursive, then the functions

g(m,@) = > f(i,a)

i<m

i<m
are recursive.
(ii) If G : N**! — N is a recursive function, then the function F : N**! — N
defined by

P(@,m) = { un <m.G(@n)=0 ,if 3,<,,(G(@,n)=0)

a,m
’ 0 , OW

is recursive (do not use the p-operator scheme).

Exercise 49. Show that the if f is recursive, then the function on N? defined
by
O(m) =

frtm) = f(f(.. f(m)...)

——
n

~

is recursive.

Exercise 50. Let f(n) = ¢g1(n), if n is a perfect cube, and f(n) = g2(n)
otherwise. Show that if g;, g2 are recursive, then f is also recursive.

Exercise 51. Let
h1(0,n) = fi(n)
h2(0,n) = fa(n)
ha(m+1,m) = g (ha(m, ), ha(m, ), n)
ha(m + 1,n) = ga(h1(m,n), ha(m,n),n)

Show that if f1, f2, g1, g2 are recursive, then hq, ho are recursive.

Exercise 52. Show that the function of the Fibonacci numbers

~
—
=

) =0

is recursive.
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16. On Recursively enumerable sets
An R C N" is called recursively enumerable (r.e.) iff
Jocnnt1 (@ € Rek™ ™ AVZ(R(@) +» Then(Q(@,))))).

Verify that from the above definition we have an algorithm for answering only
Yes in the question if R(a@), and not generally one for answering No.

Exercise 53. Show the following:

(i) N is recursive.

(ii) If A, B are recursive sets, then A x B is recursive.

(iii) If R is recursive, then R,N™\ R are recursively enumerable.

(iv) If A, B are recursively enumerable sets, then A x B is recursively enumerable.

Exercise 54. Show that the following are equivalent:

(i) R is recursive and infinite.
(ii) There exists f : N — N recursive and strictly monotone such that R =

ng(f)-

Exercise 55. (i) Suppose that R C N is recursively enumerable and & € N.
Find a recursive function gg i : N — {0, 1} such that

Vo(grix(n) =0) < k ¢ R.

(ii) Suppose that g : N — {0, 1} is recursive. Then, there is no decision proce-
dure to show

Vu(g(n) =0) Vv 3n(g(n) =1).

(iii) One can use the above to show that a = 0 is not decidable in the set of
computable reals.

17. On representable sets

Consider the definition of a representable set in a theory T as it is given in p.47
of the lecture notes and extend the definition of a weakly representable subset
of N (p.51 of the lecture notes) to a subset of N in the obvious way.

Exercise 56. If T is a consistent theory and A C N" is representable in T,
then A and A€ (the complement of A) are weakly representable in 7.

Exercise 57. An R C N" is called definable iff there is an Lo-formula (p.48) ¢

such that
(mi,...,mE) €ERNEO(Smys--s8my)-
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Show that if A is representable, then A is definable.

Exercise 58. A formula ¢ is called bounded, or X, if its quantifiers (if there
are any) are all bounded, and it is called Xy, if it is of the form Jz¢, where ¢ is
bounded.

(i) Show that if ¢ is a ¥q-sentence of Lg, then
NE®—= NFE o,

i.e., a Yj-sentence is true iff it is provable.
(ii) Each X;-set i.e., definable by some X;-formula, is weakly representable.

18. Miscellaneous

Exercise 59. If 2l = (Q, +, <), show that there is no (+, <)-formula with z as
free variable such that

VaEQ(a ENe2 |: ¢w[a])

In other words, we cannot define N from Q by a 1st-order formula.

Exercise 60. Let L = Lo U {c}, where ¢ is a new constant symbol, and T is
the L-theory which includes exactly the following formulas:

O0<ec

S(0) <e
S(5(0)) < ¢

Is T' complete? If not, do we need Godel’s incompleteness theorem for that?

Exercise 61. (i) Show that if KX C N is recursively enumerable and not
recursive, then K and N\ K are infinite.

(ii) If Q1, Q2 C N are recursively enumerable, is )1 \ Q2 recursively enumerable?
(iii) If @ C N is recursively enumerable and A C N is recursive, then @ \ A is
recursively enumerable.

(iv) How many recursive, recursively enumerable, and not recursively enumer-
able sets are there?

(v) Show that there are infinitely many recursively enumerable subsets of N
which are not recursive.

Exercise 62. (i) If A C N is recursive and f : N — N is a recursive bijection,
then f(A) is recursive.
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(ii) Is the set {n3 | n € N} recursive?

Exercise 63. If 21 = (N,0,+, .5, -, <), then show that Th(91) is not recursive.
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