
Logik - WS16/17

Iosif Petrakis
petrakis@math.lmu.de

December 16, 2016

These notes include part of the material discussed in the Exercises that cor-
respond to the lecture course “Logik” of Priv.-Doz. Dr. Josef Berger. Some
extra exercises and questions can be found here.

Please feel free to send me your comments, or your suggestions regarding
these notes.

1

.

2

1 Inductive sets

An inductive set X is determined by three rules, or axioms.

(i) The formation rules FormX for X, which determine the way the elements
of X are formed (in the literature they are also called the introduction rules
for X).

(ii) The induction principle IndX for X, which guarantees that X is the least
set satisfying its formation rules.

(iii) The recursion principle RecX for X, which determines the way functions
of type X → Y , where Y is any other set, are defined.

The importance of an inductive set lies on the following facts:

(a) Through FormX we have a concrete way to grasp and manipulate the
elements of X.

(b) Through IndX we have a powerful tool to prove the properties of X.

(c) Through RecX we have a concrete way to grasp and manipulate the
functions defined on X.

Notational convention 1: If X, Y, Z are sets, then the symbol

X → Y

denotes the set of all functions from X to Y , and the symbol

X → Y → Z

denotes the set
X → (Y → Z)

i.e., the functions from X to the set of functions from Y to Z. If h ∈ X →
Y → Z, then h(x) : Y → Z and we write

h(x)(y) =: h(x, y),

for every x ∈ X and y ∈ Y .

Notational convention 2: If P,Q,R are propositions, the proposition

P → Q→ R

means
if P and if Q, thenR.

3

1.1 The inductive set N of naturals

The most fundamental example of an inductive set is that of the set of natural
numbers N.
(i) FormN:

0 ∈ N ,
n ∈ N

Succ(n) ∈ N .

According to FormN, the elements of N are formed by the element 0 and by
the primitive, or given function Succ of type N → N. The principle FormN
alone does not determine a unique set; for example the rationals Q and the
reals R satisfy the same rules. We determine N by postulating that N is the
least set satisfying the above rules. This we do with the induction principle
for N.

(ii) IndN: If A is any property, or predicate on N, then

A(0)→ ∀n(A(n)→ A(Succ(n)))→ ∀n(A(n)).

The interpretation of IndN is the following: The hypotheses of IndN say that A
satisfies the two formation rules for N i.e., A(0) and ∀n(A(n)→ A(Succ(n))).
In this case A is a “competitor” predicate to N. Then, if we view A as the set
of all objects such that A(n), the conclusion of IndN guarantees that N ⊆ A,
i.e., ∀n(A(n)), or more precisely, ∀x(N(x) → A(x)). In other words, N is
“smaller” than A, and this is the case for any A.

(iii) RecN: If x0 ∈ X and g : X → X, there exists f : N→ X such that

f(0) = x0,

f(Succ(n)) = g(f(n)).

Note that the uniqueness of f with the above properties can be proved by
IndN; If h : N → X is a function satisfying the above two conditions, we
apply IndN on A(n) := (f(n) = g(n)) to show that ∀n(A(n)).

As an example of a function defined through RecN, we define the function
Double : N→ N by

Double(0) = 0,

Double(Succ(n)) = Succ(Succ(Double(n)))

i.e., X = N, x0 = 0 and g = Succ ◦ Succ.

4

Task 1: Show that Double(2) = Double(Succ(Succ(0))) = 4.

Task 2: Use RecN in order to define the function Add : N→ N→ N, where
Add(n,m) is the addition n+m of n,m.

1.2 The inductive set L∗ of L-words

(i) FormN:

NilL∗ ∈ L∗ ,
W ∈ L∗, s ∈ L
W ? s ∈ L∗ .

The word W ?s denotes the concatenation of the word W and the symbol s.

(ii) IndL∗ : If A is any property, or predicate on L∗, then

A(NilL∗)→ ∀W∈L∗∀s∈L(A(W)→ A(W ? s))→ ∀W∈L∗(A(W)).

(iii) RecL∗ : If x0 ∈ X, and if gs : X → X, for every s ∈ L, there is a function
f : L∗ → X such that

f(NilL∗) = x0,

f(W ? s) = gs(f(W)),

for every W ∈ L∗ and s ∈ L.

As an example of a function defined through RecL∗ , if W0 ∈ L∗ and if
gs(W) = W ? s, for every s ∈ L, we define the function fW0 : L∗ → L∗
by

fW0(NilL∗) = W0,

fW0(W ? s) = gs(fW0(W))

i.e., fW0(W) = W0 ? W is the concatenation of the words W0 and W (for
simplicity we use the same symbol for the concatenation of a word and a
symbol and the concatenation of two words).

An important example of a function defined on L∗ is the substitution function
Sub[W ′/z] : L∗ → L∗, where its value

Sub[W ′/z] =: W [W ′/z]

expresses the substitution of the letter z ∈ L occurring in W by the word
W ′. Using RecL∗ we define Sub[W ′/z] by

Sub[W ′/z](NilL∗) = NilL∗ [W
′/z] = NilL∗ ,

5

Sub[W ′/z](W ? s) = (W ? s)[W ′/z] =

{
W [W ′/z] ? s , if s 6= z
W [W ′/z] ? W ′ , s = z.

Note that W [W ′/z]?W ′ is the concatenation of the words W [W ′/z] and W ′.

We can now easily show the following facts.

Fact 1: If W1,W2 ∈ L∗, then

(W1 ? W2)[W ′/z] = W1[W ′/z] ? W2[W ′/z].

Fact 2: If W1,W2,W3 ∈ L∗, then

W1 ? (W2 ? W3) = (W1 ? W2) ? W3.

We can define inductively the membership z∈̇W and the non-membership
z /∈· W of an L-symbol z in an L-word W , respectively, as follows:

z ∈̇ W ? z ,
z ∈̇ W, s ∈ L
z ∈̇ W ? s

,

z /∈· NilL∗ ,
z /∈· W, z 6= s

z /∈· W ? s
.

Now we can easily prove the following expected fact.

Fact 3: ∀W∈L∗
(
∀z∈L(z /∈· W → ∀∆∈L∗(W [∆/z] = W))

)
.

Using the above facts one can show Lemma 1 of the lecture course notes.

1.3 The inductive set T of L-terms

(i) FormT :

v ∈ FV
v ∈ T ,

c ∈ Const
c ∈ T ,

f ∈ Funct(n), t1, . . . , tn ∈ T , n ∈ N
f(t1, . . . , tn) ∈ T

.

(ii) IndT :

∀v∈FV(A(v)) →
∀c∈Const(A(c)) →
∀n∈N∀f∈Funct(n)∀t1,...,tn∈τ (A(t1)→ . . .→ A(tn)→ A(f(t1, . . . , tn))) →
∀t∈T (A(t)).

6

(iii) RecT : If g : FV→ X, h : Const→ X and Ff,n : X × . . .×X → X, for
every f ∈ Funct(n) and n ∈ N, there is F : T → X such that

F (v) = g(v),

F (c) = h(c),

F (f(t1, . . . , tn)) = Ff,n(F (t1) . . . F (tn)).

Through RecT we define the complexity ||t|| of a term t as a function ||.|| :
T → N by the following conditions:

||u|| = ||c|| = 0,

||f(t1, . . . , tn)|| = 1 +
n∑
i=1

||ti||.

1.4 The inductive set F of L-formulas

(i) FormF :

⊥ ∈ F ,
R ∈ Rel(n), t1, . . . , tn ∈ T , n ∈ N

R(t1, . . . , tn) ∈ F
,

s, t ∈ T
s
.
= t ∈ F ,

φ, ψ ∈ F
φ � ψ ∈ F , � ∈ {∧,∨,→}.

φ ∈ F , v ∈ FV, x ∈ BV, x /∈· φ
4xφ[x/v] ∈ F

, 4 ∈ {∀,∃}.

(ii) IndF :

A(⊥)→
∀n∈N∀R∈Rel(n)∀t1,...,tn∈T (A(R(t1, . . . , tn))) →
∀s,t∈T (A(s

.
= t)) →

∀φ,ψ∈F(A(φ)→ A(ψ)→ A(φ � ψ))→
∀φ∈F∀v∈FV∀x∈BV(x /∈· φ→ A(φ)→ A(4xφ[x/v])) →
∀φ∈F(A(φ)).

7

(iii) RecF : If x0 ∈ X,

φRel : {R(t1, . . . , tn) | R ∈ Rel(n), t1, . . . , tn ∈ T , n ∈ N} → X,

φT : {s .
= t | s, t ∈ T } → X,

φ� : X ×X → X

φx,v,4 : X → X,

there is a function Φ : F → X such that

Φ(⊥) = x0,

Φ(R(t1, . . . , tn)) = φRel(R(t1 . . . tn)),

Φ(s
.
= t) = φT (s

.
= t),

Φ(φ � ψ) = φ�(Φ(φ),Φ(ψ)),

Φ(4xφ[x/v]) = φx,v,4(Φ(φ)).

Through RecF we define the complexity ||φ|| of a formula φ as a function
||.|| : F → N by the following conditions:

||⊥|| = ||R(t1, . . . , tn)|| = ||s .
= t|| = 0,

||φ � ψ|| = ||φ||+ ||ψ||+ 1,

||4xφ[x/v]|| = 1 + ||φ||.

2 Natural deduction

The second problem of Hilbert’s famous 1900-list was to find a proof of the
consistency of arithmetic. That is to show that there can be no derivation of
the absurdity ⊥ from the Peano axioms. It took more than 30 years to under-
stand in a concrete mathematical way all words appearing in the formulation
of this problem. The standard understanding regarding its “solution” in [3]
is the following:

There is no consensus on whether results of Gödel and Gentzen
give a solution to the problem as stated by Hilbert. Gödel’s
second incompleteness theorem, proved in 1931, shows that no
proof of its consistency can be carried out within arithmetic itself.
Gentzen proved in 1936 that the consistency of arithmetic follows
from the well-foundedness of the ordinal ε0.

8

The passage from proving mathematical theorems to treating mathematical
proofs as objects of mathematical study is a major conceptual step
that happened after 2.500 years of standard mathematical practice.
The Brouwer-Heyting-Kolmogoroff interpretation (BHK-interpretation for
short) of intuitionistic logic appeared before Gentzen’s definition and ex-
plains what it means to prove a logically compound statement in terms of
what it means to prove its components; the explanations use the notions of
construction and constructive proof as unexplained, primitive notions. The
notation

Π(p, φ)

means that p is a proof of formula φ. For quantifier-free formulas1 the clauses
of BHK are the following (see [2], p.55):

• For atomic formulas, except ⊥, the notion of proof is supposed to be
given.

• There is no p such that Π(p,⊥).

• Π(p, φ ∧ ψ) if and only if p = (p1, p2) and Π(p1, φ), Π(p2, ψ).

• Π(p, φ ∨ ψ) if and only if p = (1, p1) and Π(p1, φ), or p = (2, p2) and
Π(p2, ψ).

• Π(p, φ → ψ) if and only if for every proof q such that Π(q, φ), then
Π(p(q), ψ).

Note that in the previous clauses the “if” corresponds to “introduction” and
the “only if” to “elimination”.

Gentzen went further and gave an inductive definition of a concrete notion
of derivation based on the inductive definition of a first-order formula.

3 The Gödel-translation

The Gödel-translation is a translation of classical logic into intuitionistic (or
minimal) logic. It was invented by Gödel and independently by Gentzen in
1933. For this reason it is also called the Gödel-Gentzen translation.

1The clauses Π(p, ∀xφ[x/u]) and Π(p,∃xφ[x/u]) are related to a given domain on which
x varies, and we do not include them here.

9

Task 1: Explain why the range of the Gödel-translation ◦ is in the set of
formulas. You need to show the following:

∀x∀φ(x /∈· φ⇒ x /∈· φ◦).

Task 2: Explain why ◦ is not onto F .

Task 3: The negative formulas F− are defined by the following clauses:

P → ⊥ | ⊥ | φ ∧ ψ | φ→ ψ | ∀xφ[x/v],

where P denotes a prime formula. Check that the range of ◦ is in F−.

The most important feature of the Gödel-translation is that it is a proof
translation. This is expressed by the main theorem on the Gödel-translation:

Γ ` φ ⇔ Γ◦ `m φ◦.

Task 4: Use the above equivalence to show that classical, intuitionistic and
minimal logic are equiconsistent i.e., ` is consistent if and only if `i is con-
sistent if and only if `m is consistent

0 ⊥ ⇔ 0i ⊥ ⇔ 0m ⊥.

Task 5: Explain why
Γ ` φ◦ ⇒ Γ◦ `m φ◦,

for every φ ∈ F .

4 Recursive functions

Using the principle of the excluded middle the characteristic function 1A of
some A ⊆ Nk, where k ≥ 1, is defined by

1A(~n) :=

{
0 , if A(~n)
1 , ow.

Also, the projection functions prki : Nk → N are defined by

prki (~n) = prki (n1, . . . , nk) = ni,

for every ~n ∈ Nk and i ∈ {1, . . . , k}.

10

Definition 1. The sets of recursive functions Rec(k) of type Nk → N, where
k ≥ 1, are defined simultaneously by the following inductive rules:
(I)

+ ∈ Rec(2)
,
· ∈ Rec(2)

,
1< ∈ Rec(2)

,

prki ∈ Rec(k)
, 1 ≤ i ≤ k

(II)

g ∈ Rec(n), h1, . . . , hn ∈ Rec(k)

Comp(g, h1, . . . , hn) ∈ Rec(k)
,

where
Comp(g, h1, . . . , hn)(~n) = g(h1(~n), . . . , hn(~n)).

(III)

g ∈ Adm(k+1)

gµ ∈ Rec(k)
,

where
Adm(k+1) := {g ∈ Rec(k+1) | ∀~n∈Nk∃m(g(~n,m) = 0)}

and
gµ(~n) := µm : g(~n,m) = 0.

Note that:

1. pr1
1 = idN, where idN denotes the identity function on N.

2. If we combine (I) and (II) we get e.g., that h1 +h2, h1 ·h2 ∈ Rec(k). I.e.,
the case k = 2 is essential to the formation of new elements of Rec(k),
where k ≥ 1.

3. Using (III) we get new elements of Rec(2) i.e.,

g ∈ Adm(3)

gµ ∈ Rec(2)
.

4. Because of this interaction between the distinct Rec(k)’s we say that
the sets Rec(k) are defined simultaneously.

11

5. Every recursive function f ∈ Rec(k) is total i.e., its domain is the whole
set Nk. If we drop the admissiblity condition in (III), we get the partial
recursive functions.

6. Exactly because the recursive functions are defined inductively, if we
want to show that for every f ∈ Rec we have P (f), where P is any
formula on functions and

Rec :=
∞⋃
k=1

Rec(k),

we can use the induction axiom that corresponds to the above defini-
tion.

7. Verify that every rule of the main definition expresses an algorithm
for finding the output f(~n), given the input ~n. The non-trivial issue is
that every algorithmic function (this is an intuitive notion) is recursive
(Church-Turing Thesis)!!!

8. Because of the clauses used in the main definition each set Rec(k) is
countable (but there is no algorithmic enumeration of it). Although it
is not trivial to exhibit a non-recursive function, because of cardinality
issues most of the functions Nk → N are not recursive

If A ⊆ Nk is recursive, we write A ∈ REC(k).

We can use the following:

1. From a recursive set and some recursive functions we can define a
new recursive set, their composition. Namely, if A ∈ REC(n) and
h1, . . . , hn ∈ Rec(k), then

B = Comp(A, h1, . . . , hn) ∈ REC(k)

where
B(~n)↔ A(h1(~n), . . . , hn(~n)).

2. From an appropriate recursive relation we can define a recursive func-
tion. Namely, if A ⊆ Nk+1 is an admissible recursive relation i.e.,

∀~n∈Nk∃mA(~n,m),

12

and in this case we write A ∈ ADM(k+1), then the function aµ defined
by

aµ(~n) := µm : A(~n,m)

is in Rec(k).

3. Recursiveness is closed under arbitrary compositions.

4. The constant functions mk : Nk → N, defined by ~n 7→ m, are recursive.

5. Recursiveness is closed under complements, ∩ and ∪.

6. The relations ≥,≤,=, >,< are recursive.

7. Bounded quantification preserves recursiveness i.e., if A ∈ REC(k+1),
then

B(~n,m)↔ ∃k<mA(~n, k)

C(~n,m)↔ ∀k<mA(~n, k)

are in REC(k+1). By the same argument we get that if A ∈ REC(2),
then

B(m)↔ ∃k<mA(m, k)

C(m)↔ ∀k<mA(m, k)

are in REC(1).

8. The definition by cases preserves recursiveness e.g., if A ∈ REC(k) and
g1, g2 ∈ Rec(k), then

f(~n) :=

{
g1(~n) , if A(~n)
g2(~n) , ow

is in Rec(k). This is a way to get a new recursive function from a given
recursive relation and two recursive functions, where the order (the
number k) of the functions and the recursive relations is the same.

9. −· ∈ Rec(2).

10. π ∈ Rec(2), π1, π2 ∈ Rec(1).

13

We shall use the following:

1. The successor function S(n) = n+ 1 is in Rec(1).

2. If A ∈ REC(2) and g ∈ Rec(1), then

B(m)↔ ∃k<g(m)A(m, k)

C(m)↔ ∀k<g(m)A(m, k)

are in REC(1).

3. If A = {n1, . . . , nk} is a finite subset of naturals, then A ∈ REC(1).

14

References

[1] Homotopy Type Theory: Univalent Foundations of Mathematics, The
Univalent Foundations Program, Institute for Advanced Study, Prince-
ton, 2013.

[2] A.S. Troelstra and H. Schwichtenberg: Basic Proof Theory, 2nd edition,
Cambridge, 2000.

[3] https://en.wikipedia.org/wiki/Hilbert’s−second−problem

[4] H. Schwichtenberg and S. Wainer: Proofs and Computations, Perspectives
in Logic. Assoc. Symb. Logic and Cambridge University Press, 2012.

15

