
Mathematische Logik - WS14/15

Iosif Petrakis
petrakis@mathematik.uni-muenchen.de

January 14, 2015

These notes include part of the material discussed in the Tutorial and in the
Exercises that correspond to the lecture course “Logik” of Prof. Dr. Hans-
Dieter Donder. Of course, possible mistakes in these notes are not related to
Prof. Donder at all. Many extra, or optional exercises can be found here.

Please feel free to send me your comments, or your suggestions regarding these
notes.

The sign F denotes an interesting and non-trivial exercise. Usually such an
exercise is optional.

1

1. Inductive Definitions

The most characteristic example of an inductive (or recursive) definition is that
of a natural number. It can be given using the following two rules

0 ∈ N
n ∈ N

S(n) ∈ N
,

where S(n) denotes the successor of n. Note though, that this definition alone
does not determine a unique set; for example the rationals Q or the reals R
satisfy the same rules. We determine N by postulating that N is the least set
satisfying the above rules. We do so by stating the following induction axiom:

A(0)→ ∀n(A(n)→ A(S(n)))→ ∀n(A(n)),

where A is a formula representing a predicate on natural numbers. If A is any
formula, then the above principle is the well-known full induction principle on
natural numbers (if we restrict the range of A’s we get other weaker induction
principles). Its interpretation is the following: Suppose that A satisfies the
two rules, A(0) and ∀n(A(n) → A(S(n))), i.e., as it is usually said, A is a
“competitor” predicate to N, then, if we view A as the set of all objects such
that A(n), N ⊆ A, i.e., ∀n(A(n)), or more precisely, ∀x(N(x) → A(x)). A
consequence of this inductive characterization of N is that if we want to define
a function f : N→ X, where X is a set, it suffices to define it on 0, and provide
a rule G which gives the value of f on S(n) through the value of f on n. I.e.,
we have the following proposition:

Proposition 1. If X is a set, x0 ∈ X and G : X → X is a function, then there
exists a unique function f : N→ X such that f(0) = x0 and f(S(n)) = G(f(n)).

Proof. It is direct to see that the above defined f is a function with domain N
and range in X. To show its uniqueness we suppose that there exists g : N→ X
satisfying the above two conditions, and we apply the induction principle on
A(n) := (f(n) = g(n)) to show that ∀n(A(n)).

So, we cannot see an inductive definition without its corresponding induction
principle. If we consider now the inductive definition of a formula in Classical
Propositional Calculus

p ∈ P
p ∈ Form

φ ∈ Form

¬φ ∈ Form

φ, ψ ∈ Form

φ ∨ ψ ∈ Form
,

the corresponding full induction principle is

A(p)→ ∀φ(A(φ)→ A(¬φ))→ ∀φ,ψ(A(φ)→ A(ψ)→ A(φ ∨ ψ))→ ∀φ(A(φ)),

where A is any formula of our meta-language, for example this could be the lan-
guage of set theory. Some times in the bibliography one can find one more clause
in the above inductive definition of the form “there are no other formulas except

2

the ones determined by the previous rules”, and then the induction principle is
proved as a theorem. It is clear though, that the added rule is a disguised form
of the induction principle. Since this added rule is not also a formal statement,
we propose in these notes to understand an inductive definition as a pair

(Inductive Rules, Induction Principle).

Again, a consequence of this inductive characterization of Form is that if we
want to define a function F : Form→ X, where X is a set, it suffices to define
it on the prime formulas P , and then provide firstly a rule G¬ which gives the
value of F on ¬φ through the value of F on φ, and secondly a rule G∨ which
gives the value of F on φ ∨ ψ through the value of F on φ and ψ. I.e., we have
the following proposition:

Proposition 2. If X is a set, f : P → X, G¬ : X → X and G∨ : X ×X → X
are given functions, then there exists a unique function F : Form→ X satisfying

F (p) = f(p), for each p,

F (¬φ) = G¬(F (φ)),

F (φ ∨ ψ) = G∨(F (φ) ∨ F (ψ)).

Proof. Exercise 1.

Consider the function V : Form→ P(P), where P(P) denotes the power set
of P , and V (φ) is the set of propositional variables occurring in φ defined by

V (p) := {p},

V (¬φ) := V (φ),

V (φ ∨ ψ) := V (φ) ∪ V (ψ).

The unique existence of V is guaranteed by Proposition 2.

Exercise 2: Which are the functions f,G¬, G∨ that correspond to the function
V ?

The set 2 = {0, 1} (in the lecture course it is also written as {w, f}, or you can
see it elsewhere as {tt, ff}) is the simplest boolean algebra i.e., a complemented
distributive lattice, or a commutative ring with 1 in which every element is idem-
potent (p2 = p). These algebraic structures are very important in mathematical
logic and topology. So, we define on 2 the following operations:

¬0 = 1, ¬1 = 0, 0 ∨ b = b, 1 ∨ b = 1,

for each b ∈ 2. Also the ring operations are defined from ¬,∨ as follows:

b · c := b ∧ q,

b+ c := (b ∧ ¬c) ∨ (¬b ∧ c),

3

where b ∧ c := ¬b ∨ c.
We have now all the tools to understand how a truth valuation W : Form→ 2

works. If W : P → 2, G¬ = ¬, and G∨ = ∨ are given, then by Proposition 2
there exists a unique function W ∗ : Form→ 2 satisfying:

W ∗(p) = W (p), for each p,

W ∗(¬φ) = ¬W ∗(φ),

W ∗(φ ∨ ψ) = W ∗(φ) ∨W ∗(ψ),

where the ∨ on the left side of the last equality is the logical connective, and
the ∨ on the right side is the boolean operation.

Exercise 3: Give an example of a function F : Form → 2 which is not an
extension of a truth valuation.

We are in position now to fully grasp the formulation of the following proposition
given in the lecture course.

Proposition 3. If W1,W2 : P → 2 are truth valuations, then

∀φ(W1�V (φ) = W2�V (φ) →W ∗1 (φ) = W ∗2 (φ)).

Proof. Exercise 4.
Hint: Apply the induction principle corresponding to the inductive definition
of formulas on

A(φ) := W1�V (φ) = W2�V (φ) →W ∗1 (φ) = W ∗2 (φ),

using the definition of V (φ).

Exercise 5: (i) Given the field structure (R,+, ·, 0, 1) of the real numbers,
define inductively the set of rationals Q.
(ii) Which is the corresponding induction principle?

2. Classical Propositional Calculus

If φ ∈ Form, then it is called a tautology, if

∀W∈2P (W ∗(φ) = 1),

where XY denotes the set of all functions f : Y → X. A formula φ is called a
contradiction, if

∀W∈2P (W ∗(φ) = 0).

Exercise 6: (i) Give an example of a tautology, and an example of a contra-
diction.
(ii) Show that φ is a tautology iff ¬φ is a contradiction.

4

(iii) Explain why Proposition 3 guarantees that there is a (semantic) algorithm
deciding if a formula φ is a tautology or not. Although the notion of a Yes/No-
algorithm is not yet formally defined, what we mean by it is a recipe which
can be executed in a finite amount of time and provides effectively a Yes or
No-answer to a given question.
(iv) Describe explicitly the above algorithm for a specific formula φ of your
choice.
(v) After you learn the definition of a tautology in Classical Predicate Calculus,
try to guess if there is a similar (semantic) algorithm deciding if a formula in
Predicate Calculus is a tautology or not.

Proposition 4. If n ∈ N, Mn = 2{p0,...,pn} and F : Mn → 2, then

∃φ(V (φ) ⊆ {p0, . . . , pn} ∧ ∀W (W ∗(φ) = F (W�{p0,...,pn})).

The fact that the above proposition expresses the completeness of the connec-
tives {¬,∨}, that is the sufficiency of {¬,∨} in writing equivalent forms to all
formulas, is related to the general definition of a connective. Maybe more will
be added on that later.

Exercise 7. Show that the set of connectives {∧,→} is not complete.

Hint: Since {¬,∨} is a complete set of connectives, the set {¬,∧} is also
complete (why?). Then try to show that ¬ is not expressible within {∧,→}. If
{∧,→} was complete, there would exist some formula φ including p,∧,→ and
equivalent to ¬p i.e., ∀W (W ∗(φ) = W ∗(¬p)), for some fixed p ∈ P . Show that
this cannot happen.

3. The basic definitions of Classical Predicate Calculus

Exercise 8. Write down the Induction Principle that corresponds to the in-
ductive definition of L-terms1

v ∈ Var

v ∈ Term
,

c ∈ Konst

c ∈ Term
,

t1, . . . , tn ∈ Term, f ∈ Funkn

f(t1, . . . , tn) ∈ Term
,

where Funkn denotes the set of function symbols of L with arity n. Formulate
the theorem of recursive definition on Term which corresponds to Propositions 1
or 2.

Exercise 9. Write down the Induction Principle that corresponds to the in-
ductive definition of L-formulas

t1, t2 ∈ Term

t1 = t2 ∈ Form
,

t1, . . . , tn ∈ Term, R ∈ Reln

R(t1, . . . , tn) ∈ Form
,

1For simplicity we avoid the subscript L from the symbols Var,Konst,Term,Form.

5

φ ∈ Form

¬φ ∈ Form
,

φ, ψ ∈ Form

φ ∨ ψ ∈ Form
,

φ ∈ Form, x ∈ Var

∃xφ ∈ Form
,

where Reln denotes the set of relation symbols of L with arity n. Formulate the
theorem of recursive definition on Term which corresponds to Propositions 1
or 2. For that it will be helpful to write the last inductive rule as follows:

φ ∈ Form, xi ∈ Var

∃xi
φ ∈ Form

,

where Var = {xn | n ∈ N}.

4. The definition of L-sentences

As it is said in [2] p.75, the sentences are usually the most interesting formulas.
The others lead a second-class existence; they are used primarily as building
blocks for sentences.
First we define recursively the trivial concept “the set of variables occurring in
the term t”, V (t), by the clauses:

V (x) = {x}

V (c) = ∅

V (ft1, . . . , tn) =

n⋃
i=1

V (ti).

Next we define recursively the trivial concept “the set of variables occurring in
the formula φ”, V (φ), by the clauses:

V (t1 = t2) = V (t1) ∪ V (t2)

V (Rt1, . . . , tn) =

n⋃
i=1

V (ti)

V (¬φ) = V (φ)

V (∃xφ) = V (φ) ∪ {x}.

We define next intuitively the concept “the variable x occurs free in the formula
φ”, in symbols freex(φ), recursively as follows (p denotes an atomic formula):

freex(p)↔ x occurs in p.
freex(¬φ)↔ freex(φ).
freex(φ ∨ ψ)↔ freex(φ) or freex(ψ).
freex(∃xi

φ)↔ x 6= xi and freex(φ).

Formally we define the same object as a function

freex : FormL → 2

6

φ 7→ freex(φ)

by the following clauses

freex(p) :=

{
1 , if x ∈ V (p)
0 , ow,

freex(¬f) = freex(φ)

freex(φ ∨ ψ) = max{freex(φ), freex(ψ)} = freex(φ) ∨ freex(ψ)

freex(∃xi
φ) :=

{
freex(φ) , if x 6= xi
0 , x = xi.

Finally we define “x occurs free in φ” if and only if freex(φ) = 1 and “φ is an
L-sentence”, φ ∈ S(L), by

φ ∈ S(L)↔ ∀x∈VarL(x does not occur free in φ)

↔ ∀x∈VarL(freex(φ) = 0).

Exercise 10. (i) Describe the form of an L-sentence with respect to the
inductive definition of a formula.
(ii) Show that

(a) freex(φ ∧ ψ) = freex(φ ∨ ψ).
(b) freex(∀xi

φ) = freex(∃xi
φ).

5. The definition of A |= φ~x[a1, . . . , am]

(I) The interpretation of terms. If A is an L-structure, first one defines the
interpretation tA~x [a1, . . . , am] ∈ A of a term t whose variables are included in ~x
and a1, . . . , am ∈ A, where the variables in ~x are pairwise different, while this is
not necessarily the case for a1, . . . , am. Hence, the terms satisfy the condition

(†) V (t) ⊆ {x1, . . . , xm}.

Note that there is no meaning to define this concept for a variable not included
in ~x. This is in contrast to the line of definition considered in [1], the main
reference in the website of the lecture course. There one assigns an element of
A to every variable first, while in the lecture course a more “local” approach
is followed; we start from a term satisfying (†) and the general idea of the
definition is that each variable xi in t is going to be interpreted by ai. The
definitional clauses are the following

xi
A
~x [a1, . . . , am] := ai

cA~x [a1, . . . , am] := cA

7

(ft1 . . . tn)A~x [a1, . . . , am] := fAt1
A
~x [a1, . . . , am] . . . tn

A
~x [a1, . . . , am].

Note that the above is well-defined i.e.,

ft1 . . . tn satisfies (†)→ ∀i(ti satisfies (†)),

since

V (t) =

m⋃
i=1

V (ti) ⊆ {x1, . . . , xm} → ∀i(V (ti) ⊆ {x1, . . . , xm}).

A trivial induction on terms shows that tA~x [a1, . . . , am] ∈ A; the formula that
we would prove by induction is

∀t∈TermL
(V (t) ⊆ {x1, . . . , xm} → tA~x [a1, . . . , am] ∈ A).

If m = 0, then V (t) = ∅ and the above interpretation pertains only to terms
with no variables. Hence, the interpretation tA∅ which is equal to tA is exactly
the following:

cA∅ := cA

(ft1 . . . tn)A∅ := fAt1
A
∅ . . . tn

A
∅ .

(II) The satisfaction relation. The next step is to extend the interpretation
in A from the terms of L to its formulas. Again we do that “locally”. Namely,
we define the relation A |= φ~x[a1, . . . , am] for every formula φ satisfying

(∗) freex(φ) = 1→ x ∈ {x1, . . . , xm}.

The writing of the definitional clauses stresses the difference between the syn-
tactical =,¬,∨,∃ of the language L and the semantical “equality”, “not”, “or”,
“there exists” of our metalanguage (e.g., this could be the metalanguage of set
theory).

(G1) A |= (t1 = t2)~x[a1, . . . , am] iff t1
A
~x [a1, . . . , am] = t2

A
~x [a1, . . . , am].

By the previous analysis we have that t1
A
~x [a1, . . . , am], t2

A
~x [a1, . . . , am] ∈ A and

the definition says that these two elements of A are required to be equal. Note
that

freex(t1 = t2) = 1↔ x ∈ V (t1) ∪ V (t2) ⊆ {x1, . . . , xm}

shows that the above definition is well-defined.

(G2) A |= (Rt1 . . . tn)~x[a1, . . . , am] iff RA(t1
A
~x [a1, . . . , am] . . . tn

A
~x [a1, . . . , am])

i.e., the n-tuple (t1
A
~x [a1, . . . , am] . . . t1

A
~x [a1, . . . , am]) ∈ RA. Again the inclusion

V (Rt1, . . . , tn) =

n⋃
i=1

V (ti) ⊆ {x1, . . . , xm}

shows that (G2) is well-defined.

8

(G3) A |= ¬φ~x[a1, . . . , am] iff not A |= φ~x[a1, . . . , am].

Since
freex(¬φ) = 1↔ freex(φ) = 1,

(G3) is well-defined i.e., if ¬φ satisfies (∗), then φ satisfies (∗).

(G4) A |= (φ ∨ ψ)~x[a1, . . . , am] iff A |= φ~x[a1, . . . , am] or A |= ψ~x[a1, . . . , am].

Since freex(φ ∨ ψ) = freex(φ) ∨ freex(ψ), then freex(φ) = 1→ freex(φ ∨ ψ) = 1,
which implies that x ∈ {x1, . . . , xm}, by our hypothesis on (φ ∨ ψ). We work
similarly with ψ and we conclude that (G4) is also well-defined i.e.,

(φ ∨ ψ) satisfies (∗)→ φ, ψ satisfy (∗).

(G5a) A
z∈~x
|= (∃zψ)~x[a1, . . . , am] iff there exists some b ∈ A such that

A |= ψ~x[a1, . . . , ai−1, b, ai+1, . . . , am].

We show that in case z = xi, for some i, if ∃zψ satisfies the (∗) condition, so
does ψ; if freexi

(ψ) = 1, then we get automatically the required conclusion. If
x 6= xi and freex(ψ) = 1, then we get that freex(∃zψ) = 1, therefore by our
hypothesis on ∃zψ we get that x ∈ {x1, . . . , xm}.
The general idea of the definition is that in the interpretation-satisfaction
of the formula φ the object ai takes the place of every free occurrence of
xi in φ. If xi = z does not occur free, as in the case of ∃xi

ψ, we re-
quire that some object b takes the place of xi in ψ. Of course, the clause
(G5a) shows that although ~x remains the same, we are reduced to the re-
lation A |= ψ~x[a1, . . . , ai−1, b, ai+1, . . . , am] w.r.t. the possibly new element
(a1, . . . , ai−1, b, ai+1, . . . , am) of Am. But then we use the same pattern-
definition. This is a kind of “nestedness” of the general definition.

(G5b) A
z/∈~x
|= (∃zψ)~x[a1, . . . , am] iff there exists some b ∈ A such that

A |= ψz,~x[b, a1, . . . , am].

The only variable which can appear free in ψ and not in ∃zψ is z. Since by
hypothesis z /∈ ~x, we need to expand the vector of variables ~x to z, ~x, in order
to have a meaningful definition i.e.,

(∗)→ (∗∗)

(∗∗) freex(ψ) = 1→ x ∈ {z, x1, . . . , xm}.

In accordance to the general idea of the definition, since z cannot be interpreted
by some ai, since each ai replaces the free occurrence of xi and z /∈ ~x, we need
a new object in A to replace z. Since a formula is a finite object, the above
procedure ends i.e., although we are reduced in this case to larger vectors, this
cannot go on for ever because of the “finiteness” of the formulas. This is easier

9

to see if you work with specific examples of formulas.

Next we give two special cases of the above definition:

(A) m = 1. The corresponding (∗)-condition and clauses are:

(∗) freey(φ) = 1→ y = x.

(G1) A |= (t1 = t2)x[a] iff t1
A
x [a] = t2

A
x [a].

(G2) A |= (Rt1 . . . tn)x[a] iff RA(t1
A
x [a] . . . tn

A
x [a]).

(G3) A |= ¬φx[a] iff not A |= φx[a].

(G4) A |= (φ ∨ ψ)x[a] iff A |= φx[a] or A |= ψx[a].

(G5a) A
z=x

|= (∃zψ)x[a] iff there exists some b ∈ A : A |= ψx[b].

(G5b) A
z 6=x
|= (∃zψ)x[a] iff there exists some b ∈ A : A |= ψz,x[b, a].

(B) m = 0. The corresponding (∗)-condition is that φ ∈ S(L) i.e., φ is a
sentence. The definitional clauses are:

(G1) A |= t1 = t2 iff t1
A = t2

A.

(G2) A |= Rt1 . . . tn iff RA(t1
A . . . tn

A).

(G3) A |= ¬φ iff not A |= φ.

(G4) A |= (φ ∨ ψ) iff A |= φ or A |= ψ.

(G5s) A |= (∃xψ) iff there exists some b ∈ A : A |= ψx[b].

Note that when m = 0, both clauses (G5a) and (G5b) are reduced to (G5s), and
that since every free occurrence of x in φ has been replaced by b, no “capture”
is possible in the direction “if” of the last clause.

Exercise 11. If φ is a sentence of L and A is an L-structure, check the validity
or not of the following propositions:

(i) not (A |= φ and A |= ¬φ).
(ii) (A |= φ) or (A |= ¬φ).

Exercise 12. If A is an L-structure and a ∈ A, show the following:

(i) If φ, ψ are sentences of L, then

A |= φ→ ψ iff if A |= φ, then A |= ψ.

(ii) Does a similar condition hold for A |= (φ→ ψ)x[a]?
(iii) A |= (∀xφ→ φ)x[a].
(iv) A |= (∀xφ→ ∃xφ)x[a].

F Exercise 13. An L-formula is called positive, if it contains no ¬ symbol.

10

Show that for every positive L-formula there is an L-structure which satisfies
it.

6. L-expansions and the relation of logical consequence

Exercise 14. Let L = {R}, where R is a two-place relation symbol, and

A = (N, RA) is an L-Structure, where N = {0, 1, 2, . . .} and

RA = {(m,n) | m,n ∈ N and m < n}.

If f is an one-place function symbol and L = L ∪ {f}, then

(a) Find an L-expansion of A such that the following L-sentence holds

∀x∃y∃z(R(x, y) ∧R(y, z) ∧R(f(z), f(y))).

(b) In every L-expansion of A the following L-sentence holds

∀x∃y∃z(R(x, y) ∧R(y, z) ∧ ¬R(f(z), f(y))).

If T ⊆ S(L) and φ ∈ S(L), where S(L) denotes the sentences of L, then we
define the relation T |= φ, “φ is a logical consequence of T”, by

T |= φ :↔ ∀A(A |= T → A |= φ).

Similarly we define Φ |= φ, where Φ ⊆ FormL and φ ∈ FormL.

Exercise 15. If φ is a sentence of L, A is an L-structure, and T is an L-theory,
check the validity or not of the following:

(T |= φ) ∨ (T |= ¬φ).

Exercise 16. Check if for all L-sentences φ, ψ and θ the following hold or not:

(a) (φ ∨ ψ) |= θ if and only if (φ |= θ and ψ |= θ).

(b) (φ ∧ ψ) |= θ if and only if (φ |= θ or ψ |= θ).

Exercise 17. Show that
∃x∀yφ |= ∀y∃xφ.

Find an example of such a logical consequence from standard mathematics.
What about the converse logical consequence?

11

7. The relation of logical equivalence, prenex and Skolem normal
forms

If φ, ψ ∈ Form, we define φ |=| ψ, “φ is logically equivalent to ψ”, by

φ |=| ψ ↔ φ |= ψ and ψ |= φ

↔ ∀A(A |= φ if and only if A |= ψ).

Exercise 18. Show the following:

(i) ∀x∀yφ |=| ∀y∀xφ.

(ii) ∃x∃yφ |=| ∃y∃xφ.

(iii) ∀xφ |=| φ, if x /∈ FV(φ).

(iv) ∃xφ |=| φ, if x /∈ FV(φ).

(v) ∀x(φ ∧ ψ) |=| ∀xφ ∧ ∀xψ.

(vi) ∃x(φ ∨ ψ) |=| ∃xφ ∨ ∃xψ.

(vii) ∀x(φ ∨ ψ) |=| ∀xφ ∨ ψ, if x /∈ FV(ψ).

(viii) ∃x(φ ∧ ψ) |=| ∃xφ ∧ ψ, if x /∈ FV(ψ).

Exercise 23. Show the following:

(i) If φ |=| ψ, then ¬φ |=| ¬ψ.

(ii) If φ |=| ψ and φ′ |=| ψ′, then φ ∨ φ′ |=| ψ ∨ ψ′.
(iii) If φ |=| ψ, then ∃xφ |=| ∃xψ.

We define the set Sub(φ) of all subformulas of some formula φ recursively by:

Sub(p) := {p},

Sub(¬φ) := Sub(φ) ∪ {¬φ},

Sub(φ ∨ ψ) := Sub(φ) ∪ Sub(ψ) ∪ {φ ∨ ψ},

Sub(∃xφ) := Sub(φ) ∪ {∃xφ},

where p ∈ Prim, the set of prime formulas in Form.

Exercise 19. If σ ∈ Sub(φ) and σ′ ∈ Form, then

if σ |=| σ′, then φ[σ′/σ] |=| φ,

where φ[σ′/σ] is the formula resulting by substitution in φ of σ by σ′.

Exercise 20. Find the prenex normal form of the following formulas:

(i) ∀x(Rx→ ∀yS(x, y)).

12

(ii) ∀x(Rx→ ∃yS(x, y)).

(iii) ¬∃xRx ∨ ∀xSx.

Exercise 21. Find formulas φ, ψ which show the necessity of the variable
condition in Exercise 22(iii) (iv) (vii), and (viii), respectively.

Exercise 22. (a) In the exercise 3 of Blatt 4 we saw that a satisfiable pure ∀-
sentence without function symbols is also satisfiable by a finite structure. Find a
satisfiable pure ∀-sentence with two function symbols which cannot be satisfied
by a finite structure.
(b) Is there a satisfiable pure ∀-sentence with one function symbols which cannot
be satisfied by a finite structure?

8. The logical closure operator

If X is a set, and P(X) denotes the power set of X, a closure operator on X is
a function C

C : P(X)→ P(X)

A 7→ C(A),

satisfying the following properties:

(i) A ⊆ C(A).
(ii) A1 ⊆ A2 → C(A1) ⊆ C(A2).
(iii) C(C(A)) = C(A).

Exercise 23. Show that a closure operator C on X satisfies the following
properties (actually the only necessary condition is (ii)):

(i)
⋃
i∈I C(Ai) ⊆ C(

⋃
i∈I Ai).

(ii) C(
⋂
i∈I Ai) ⊆

⋂
i∈I C(Ai),

where (Ai)i∈I is a family of subsets of X indexed by a set I.

If we fix a 1st-order language L, then we define the logical operator C on S(L)
(with respect to our fixed language L) as the function

C : P(S(L))→ P(S(L))

T 7→ C(T),

and
C(T) := {φ ∈ S(L) | T |= φ}.

Exercise 24 . Show that the logical operator C is a closure operator on S(L).

13

A theory T is called closed, if C(T) = T , which is equivalent, because of property
(i) of a closure operator, to C(T) ⊆ T , in other words,

T |= φ→ φ ∈ T.

A special closure operator which is fundamental in general topology is defined
as follows: If X is a set, a topological closure operator on X is a function Cl

Cl : P(X)→ P(X)

A 7→ Cl(A),

satisfying the following properties:

(i) Cl is a closure operator.
(ii) Cl(∅) = ∅.
(iii) Cl(A ∪B) = Cl(A) ∪ Cl(B).

It is direct to see that the set

TCl := {X \ Cl(A) | A ⊆ X}

is a topology on X, and that the sets of the form A = Cl(A) are the closed sets
with respect to this topology. Conversely, if (X, T) is a topological space, then
the operator ClT defined by

A 7→ A,

where A ⊆ X and A denotes the T -closure of A i.e., the least T -closed set
including A, is a topological closure operator on X. We call the operator ClT
the topological closure operator induced by the topology T .

Exercise 25. Find a (simple) topological space (X, T) the induced topological
closure operator ClT of which does not satisfy the equalities in cases (i) and
(ii) of Exercise 22, respectively.

Thus, although a topological closure operator satisfies more properties than the
monotonicity condition (ii) of its definition, still these equalities do not hold in
general.

9. Kinds of 1st-order theories

A theory T is called consistent, if

∀φ∈S(L)(T 6|= (φ ∧ ¬φ))↔ @φ∈S(L)(T |= φ ∧ ¬φ).

A theory T is called inconsistent, if

∃φ∈S(L)(T |= (φ ∧ ¬φ)).

14

A theory T is called complete, if

∀φ∈S(L)(T |= φ ∨ T |= ¬φ).

Obviously, a closed theory is complete, if

∀φ∈S(L)(φ ∈ T ∨ ¬φ ∈ T).

A theory T is called incomplete, if

∃φ∈S(L)(T 6|= φ ∧ T 6|= ¬φ).

A theory T is called finitely axiomatizable, if

∃
F⊆finT

(T = C(F)),

where F ⊆fin T denotes that F is a finite subset of T .

Exercise 26. By the definition of the logical closure operator we have that

C(∅) = {φ ∈ S(L) | ∅ |= φ} = {valid sentences}.

(i) If T is a 1st-order theory, then

C(∅) ⊆ C(T) ⊆ S(L),

and C does not satisfy condition (iv) of a topological closure operator.
(ii) Find theories T1, T2 satisfying

C(T1) ∪ C(T2) (C(T1 ∪ T2),

i.e., C does not satisfy condition (v) of a topological closure operator.
(iii) The theory S(L) is the maximum closed L-theory, and it is also inconsis-
tent.
(iv) The theory S(L) is the only inconsistent closed L-theory.
(v) Give an example of an incomplete theory.

10. Some basic 1st-order theories

For simplicity we do not write the following axioms with the corresponding
universal quantifiers at their beginning.

1. Peano Arithmetic PA.
Language: L = (+, ·, S, 0).

Axioms:

15

1. ¬S(x) = 0.
2. S(x) = S(y)→ x = y.
3. x+ 0 = x.
4. x+ S(y) = S(x+ y).
5. x · 0 = 0.
6. x · S(y) = x · y + x.
7φ. φ(0)→ ∀x(φ(x)→ φ(S(x)))→ ∀xφ(x).

2. Partial Order O.
Language: L = (<).

Axioms:

1. ¬x < x.
2. x < y → y < z → x < z.
3. x < y → ¬y < x.

3. Linear Order LO.
Language: L = (<).

Axioms:

1. O.
2. x < y ∨ x = y ∨ y < x.

4. Dense Linear Order DLO.
Language: L = (<).

Axioms:

1. LO.
2. x < y → ∃z(x < z ∧ z < y).

5. Dense Linear Order without Endpoints DLO∗.
Language: L = (<).

Axioms:

1. DLO.
2. ∀x∃y,z(y < x ∧ x < z).

6. Ring R.
Language: L = (+, ·, 0).

Axioms:

1. Abelian group w.r.t. +.
2. x · (y · z) = (x · y) · z.
3. x · (y + z) = x · y + x · z.
4. (x+ y) · z = x · z + y · z.

7. Commutative Rings with Unit CR.
Language: L = (+, ·, 0, 1).

Axioms:

16

1. R.
2. x · y = y · x.
3. 1 · x = x.

8. Integral Domain ID.
Language: L = (+, ·, 0, 1).

Axioms:

1. CR.
2. x · y = 0→ x = 0 ∨ y = 0.

9. Field F.
Language: L = (+, ·, 0, 1).

Axioms:

1. ID.
2. x 6= 0→ ∃y(x · y = 1).

10. Field of characteristic p F(p).
Language: L = (+, ·, 0, 1).

Axioms:

1. F.
2. p · 1 = 0 ∧ (p− 1) · 1 6= 0 ∧ . . . ∧ 2 · 1 6= 0.

11. Field of characteristic 0 F(0).
Language: L = (+, ·, 0, 1).

Axioms:

1. F.
2p. p · 1 6= 0.

12. Ordered Field OF.
Language: L = (<,+, ·, 0, 1).

Axioms:

1. F.
2. LO.
3. x < y → x+ z < y + z.
4. 0 < x→ 0 < y → 0 < x · y.

13. Real closed Field RCF.
Language: L = (<,+, ·, 0, 1).

Axioms:

1. OF.
2. 0 < x→ ∃y(x = y · y).
32n+1. x2n+1 6= 0→ ∃y(x2n+1y

2n+1 + x2ny
2n + . . .+ x1y + x0 = 0).

14. Algerbraic Closed Field ACF.
Language: L = (+, ·, 0, 1).

17

Axioms:

1. F.
2n. xn 6= 0→ ∃y(xny

n + xn−1y
n−1 + . . .+ x1y + x0 = 0).

11. The finite spectrum of a sentence (Aufgabe 1, Blatt 5)

If φ is an L-sentence, then its finite spectrum is defined by

S(φ) := {|A| | A |= φ,A is finite,A is an L-structure}.

If X ⊆ N, it is called a spectrum, if there is some 1st-order language L and some
L-sentence φ such that

X = S(φ).

Exercise 27. Show that the following subsets of N are spectra.

(a) X1 = {2n+ 1 | n ∈ N}.
(b) X2 = {an+ b | n ∈ N}, where a, b ∈ N.

(c) X3 = {n2 | n ∈ N}.
(d) X4 = {n2 + 1 | n ∈ N}.
(e) X5 = {n ∈ N | n is a composite number}.
(f) X6 = {pn | n ∈ N, p is a prime number}.

Exercise 28. Show that the intersection or union of two spectra is a spectrum.
(it is an open problem if the complement of a spectrum is a spectrum).

12. Complete theories

Exercise 29. Give an example of an incomplete theory and an example of a
complete theory.

If A,B are L-structures we say that they are are elementarily equivalent, A ≡ B,
if they satisfy the same L-sentences. Actually the following hold:

A ≡ B↔ Th(A) = Th(B)

↔ ∀φ∈S(L)(A |= φ↔ B |= φ)

↔ A |= Th(B)

↔ B |= Th(A).

18

Exercise 30 Show that A ∼= B → A ≡ B, and give a counterexample to the
converse implication (Hint: use exercise 4, Blatt 7).

F Exercise 31. Suppose that (A,<) and (B,<) are are two dense linear orders
without endpoints (we keep for simplicity the same symbol for the order). Then
the following hold:

(i) There cannot be a finite dense linear order without endpoints i.e., the carrier
set cannot be finite.
(ii) Give an example of a countable dense linear order without endpoints.
(iii) Give an example of an uncountable dense linear order without endpoints.
(iv) If A,B are countable, then there exists e : A→ B which is 1-1 and onto B
satisfying

∀a1,a2∈A(a1 < a2 ↔ e(a1) < e(a2)).

(v) If A,B are countable a ∈ A and b ∈ B, then there exists eab : A→ B which
is 1-1 and onto B satisfying

∀a1,a2∈A(a1 < a2 ↔ eab(a1) < eab(a2)),

and
eab(a) = b.

13. Sequent Calculus

Exercise 32. Which of the following rules is correct? If so, find a derivation
of it.

Γφ1ψ1 Γφ2ψ2

Γ(φ1 ∨ φ2)(ψ1 ∨ ψ2)
,

Γφ1ψ1 Γφ2ψ2

Γ(φ1 ∨ φ2)(ψ1 ∧ ψ2)
.

Exercise 33. Show that the following rules are derivable:

φ ∨ ¬φ
,

Γφψ

Γ¬ψ¬φ
,

Γ(φ ∨ ψ) Γ¬φ
Γψ

,

19

Γ(φ→ ψ) Γφ

Γψ
,

Γφ

Γ¬¬φ
,

Γφ

Γ∃xφ
.

Γφ ψ

Γ∃xφ ψ
, x not free in Γψ.

Γφ

Γ∀xφ
, x not free in Γ.

Exercise 34. Derive the following sequents:

φ (φ ∨ ψ),

(φ ∨ ψ) ¬φ ψ.

Exercise 35. If T is an L-theory we define

T ∗ = {φ ∈ S(L) | T `L φ}.

If φ ∈ S(L) show that
T ∗ `L φ→ T `L φ.

14. Recursive functions

As in the lecture course notes we assume the principle of the excluded middle,
and the characteristic function KA of some A ⊆ Nk, where k ≥ 1, is defined by

KA(~n) :=

{
0 , if A(~n)
1 , ow.

Also, the projection functions Iki : Nk → N are defined by

Iki (~n) = Iki (n1, . . . , nk) = ni,

for every i ∈ {1, . . . , k}. Note that I11 = idN.

A recursive function f : N2 → N and a recursive function f : Nk → N, or

20

better the sets Rek2 and Rekk, where k ≥ 1, are defined simultaneously by the
following inductive rules:
(I)

+ ∈ Rek2 , · ∈ Rek2 , K< ∈ Rek2 ,

Iki ∈ Rekk
, 1 ≤ i ≤ k

(II)

G ∈ Rekn, H1, . . . ,Hn ∈ Rekk

Comp(G,H1, . . . ,Hn) ∈ Rekk
,

where

Comp(G,H1, . . . ,Hn)(n1, . . . , nk) = G(H1(n1, . . . , nk), . . . ,Hn(n1, . . . , nk)).

(III)

G ∈ Rekk+1
tot0

µG ∈ Rekk
, n ≥ 1,

where
Rekk+1

tot0 = {f ∈ Rekk+1 | ∀~n∈Nk∃m(f(~n,m) = 0}

and
µG(~n) := µm.G(~n,m) = 0.

Note 1: If we combine (I) and (II) we get e.g., that H1 +H2, H1 ·H2 ∈ Rekk.
Note 2: Every recursive function f ∈ Rekk defined above is total i.e., its
domain is the whole set Nk. If we drop the totality condition in (III), we get
the partial recursive functions.
Note 3: Exactly because the recursive functions are defined inductively, if we
want to show that for every f ∈ Rekk we have P (f), where P is any formula on
functions, we use the induction axiom that corresponds to the above definition
(Exercise 3, Blatt 9).
Note 4: Verify that every rule of the main definition expresses an algorithm
for finding the output f(~n), given the input ~n. The non-trivial fact is that every
algorithmic function (this is an intuitive notion) is recursive (Church-Turing
Thesis)!!!
Note 5: Each set Rekk is countable (but there is no recursive enumeration of
it). Thus, most of the functions Nk → N are not recursive.

You can use the following facts without proof in the exercises and in
the Klausur:

(I) If A ⊆ Nn is recursive and H1, . . . ,Hn ∈ Rekk, then

B = Comp(A,H1, . . . ,Hn) recursive ⊆ Nk,

21

where
B(~n)↔ A(H1(~n), . . . ,Hn(~n)).

(II) If A is a total recursive relation i.e., ∀~n∃mA(~n,m), then

F (~n) := µm.A(~n,m)

is recursive.

(III) Recursiveness is closed under arbitrary compositions.

(IV) The constant functions Fm : Nk → N, ~n 7→ m, are recursive.

(V) Recursiveness is closed under complements, ∩ and ∪.

(VI) ≥,≤,=, >,< are recursive.

(VII) Bounded quantification preserves recursiveness i.e., if A is recursive, then

B(~n,m)↔ ∃k<mA(~n, k)

C(~n,m)↔ ∀k<mA(~n, k)

are recursive.

(VIII) The definition by cases preserves recursiveness e.g., if R ⊆ Nk is recur-
sive, and G1, G2 ∈ Rekk, then

F (~n) :=

{
G1(~n) , if R(~n)
G2(~n) , ow

is in Rekk.

(IX) The functions π : N2 → N and π1, π2 : N→ N are recursive.

(X) The modified subtraction −· and the remainder r(m,n) are recursive.

(XI) The Wertverlaufsatz and especially the primitive recursion rule

b1 ∈ Rekk, b2 ∈ Rekk+2

f = Rek(b1, b2) ∈ Rekk+1
,

where
f(0, ~n) = b1(~n)

f(m+ 1, ~n) = b2(f(m,~n),m,~n).

If we consider no parameters, we get the following:

f(0) = b1 ∈ N

f(m+ 1) = b2(f(m),m).

Exercise 36. Show that the following functions are recursive:

(i) The predecessor of n.
(ii) f(n,m) = |n−m|.

22

(iii) g(n,m) = min(n,m).
(iv) h(n,m) = max(n,m).
(v) The factorial function f(n) = n!.
(vi) The quotient q(x, y) of the division of y by x, where x 6= 0.

Exercise 37. (i) Using the primitive recursion rule show that if f : Nn+1 → N
is recursive, then the functions

g(m,~a) =
∑
i≤m

f(i,~a)

h(m,~a) =
∏
i≤m

f(i,~a)

are recursive.
(ii) If G : Nn+1 → N is a recursive function, then the function F : Nn+1 → N
defined by

F (~a,m) =

{
µn ≤ m.G(~a, n) = 0 , if ∃n≤m(G(~a, n) = 0)
0 , ow

is recursive (do not use the µ-operator scheme).

Exercise 38. Let f(n) = g1(n), if n is a perfect cube, and f(n) = g2(n)
otherwise. Show that if g1, g2 are recursive, then f is also recursive.

Exercise 39. Let
h1(0, n) = f1(n)

h2(0, n) = f2(n)

h1(m+ 1, n) = g1(h1(m,n), h2(m,n), n)

h2(m+ 1, n) = g2(h1(m,n), h2(m,n), n)

Show that if f1, f2, g1, g2 are recursive, then h1, h2 are recursive.

Exercise 40. Show that the function of the Fibonacci numbers

f(0) = 0

f(1) = 1

f(n+ 2) = f(n) + f(n+ 1)

is recursive.

23

15. Recursively enumerable sets

An R ⊆ Nn is called recursively enumerable (r.e.) iff

∃Q⊆Nn+1(Q ∈ Rekn+1 ∧ ∀~a(R(~a)↔ ∃b∈N(Q(~a, b)))).

Verify that from the above definition we have an algorithm for answering only
Yes in the question if R(~a), and not generally one for answering No.

Exercise 41. Show the following:

(i) N is recursive.
(ii) If A,B are recursive sets, then A×B is recursive.
(iii) If R is recursive, then R,Nn \R are recursively enumerable.
(iv) If A,B are recursively enumerable sets, then A× B is recursively enumer-
able.

Exercise 42. (i) Show that if K ⊆ N is recursively enumerable and not recur-
sive, then K and N \K are infinite.
(ii) If Q1, Q2 ⊆ N are recursively enumerable, is Q1\Q2 recursively enumerable?
(iii) If Q ⊆ N is recursively enumerable and A ⊆ N is recursive, then Q \ A is
recursively enumerable.
(iv) Show that there are infinitely many recursively enumerable subsets of N
which are not recursive.

Exercise 43. (i) Suppose that R ⊆ N is recursively enumerable and k ∈ N.
Find a recursive function gR,k : N→ {0, 1} such that

∀n(gR,k(n) = 0)↔ k /∈ R.

(ii) Suppose that g : N → {0, 1} is recursive. Then, there is no decision proce-
dure to show

∀n(g(n) = 0) ∨ ∃n(g(n) = 1).

16. The Ackermann function

Aufgabe 44. Sei A : N2 → N definiert durch

A(0, y) = y + 1

A(x+ 1, 0) = A(x, 1)

A(x+ 1, y + 1) = A(x,A(x+ 1, y)).

(a) Zeigen Sei die folgende Eigenschaften von A:
(i) A(x, y) > y
(ii) A(x, y) < A(x, y + 1)

24

(iii) y < z → A(x, y) < A(x, z)
(iv) A(x+ 1, y) ≥ A(x, y + 1)
(v) A(x, y) > x
(vi) A(x, y) < A(x+ 1, y)
(vii) y < z → A(y, x) < A(z, x)

(b) Wenn r ≥ 0 und f : Nk → N, ist f höchstens vom Rang r genau dann wenn

∀~m f(~m) ≤ A(r,max (~m)).

Man zeige:
(i) Die konstante Funktion m ist höchstens vom Rang m.
(ii) Die Fuktion Iki ist höchstens vom Rang 0.
(iii) Die Funktion Succ(x) = x+ 1 ist höchstens vom Rang 1.
(iv) Sei h definiert durch

h(x1, . . . , xm) = g(f1(x1, . . . , xm), . . . , fk(x1, . . . , xm)).

Wenn g höchstens vom Rang s ist und fi höchstens vom Rang ri ist, für jeden
i, dann ist h höchstens vom Rang max {r1, . . . , rk, s}+ 2.
(v) Sei h definiert durch

h(0) = b

h(n+ 1) = f(h(n)).

Wenn f höchstens vom Rang s ist, dann ist h höchstens vom Rang s+ b+ 1.

25

References

[1] H. D. Ebbinghaus, J. Flum, and W. Thomas: Mathematical Logic, Springer-
Verlag, 1984.

[2] H. B. Enderton: A Mathematical Introduction to Logic, Academic Press,
1972.

[3] J. D. Monk: Mathematical Logic, Springer-Verlag, 1976.
[4] A.S. Troelstra and H. Schwichtenberg: Basic Proof Theory, 2nd edition,

Cambridge, 2000.

26

