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These notes include part of the material discussed in the Exercises that cor-
respond to the lecture course “Logik” of Dr. habil. Josef Berger. Some extra
exercises and questions can be found here.

Please feel free to send me your comments or your suggestions regarding
these notes.
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1. Inductive Definitions

The most characteristic example of an inductive (or recursive) definition is
that of a natural number. It can be given using the following two rules

0 ∈ N
n ∈ N

S(n) ∈ N
,

where S(n) denotes the successor of n. Note though, that this definition
alone does not determine a unique set; for example the rationals Q or the
reals R satisfy the same rules. We determine N by postulating that N is
the least set satisfying the above rules. We do so by stating the following
induction axiom:

A(0)→ ∀n(A(n)→ A(S(n)))→ ∀n(A(n)),

where A is a formula representing a predicate on natural numbers. If A is any
formula, then the above principle is the well-known full induction principle on
natural numbers (if we restrict the range of A’s we get other weaker induction
principles). Its interpretation is the following: Suppose that A satisfies the
two rules, A(0) and ∀n(A(n) → A(S(n))), i.e., as it is usually said, A is
a “competitor” predicate to N, then, if we view A as the set of all objects
such that A(n), N ⊆ A, i.e., ∀n(A(n)), or more precisely, ∀x(N(x) → A(x)).
A consequence of this inductive characterization of N is that if we want to
define a function f : N → X, where X is a set, it suffices to define it on 0,
and provide a rule G which gives the value of f on S(n) through the value
of f on n. I.e., we have the following recursive definition theorem:

Proposition 1. If X is a set, x0 ∈ X and G : X → X is a function,
then there exists a unique function f : N → X such that f(0) = x0 and
f(S(n)) = G(f(n)).

Proof. It is direct to see that the above defined f is a function with domain
N and range in X. To show its uniqueness we suppose that there exists
g : N → X satisfying the above two conditions, and we apply the induction
principle on A(n) := (f(n) = g(n)) to show that ∀n(A(n)).

So, we cannot see an inductive definition without its corresponding induc-
tion principle, which in turn proves the corresponding recursive definition
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theorem. If we consider the inductive definition of a term of a first-order
language L

v ∈ FV

v ∈ τ
c ∈ Konst

c ∈ τ
f ∈ Funk(n), t1, . . . , tn ∈ τ

f(t1, . . . , tn) ∈ τ
,

the corresponding full induction principle is

∀v∈FV(A(v)) ∧
∀c∈Konst(A(c)) ∧
∀n∈N∀f∈Funk(n)∀t1,...,tn∈τ (A(t1) ∧ . . . ∧ A(tn)→ A(f(t1, . . . , tn))) →
∀t∈τ (A(t)),

where A is any formula of our meta-language, for example this could be the
language of set theory. Some times in the bibliography one can find one
more clause in the above inductive definition of the form “there are no other
formulas except the ones determined by the previous rules”, and then the
induction principle is proved as a theorem. It is clear though, that the added
rule is a disguised form of the induction principle. So we understand an
inductive definition as a pair

(Inductive Rules, Induction Principle).

Again, a consequence of this inductive characterization of τ is the following
recursive definition theorem.

Proposition 2. If X is any given set, h : FV → X, g : Konst → X and
Gf : X × . . . × X → X, for every f ∈ Funk(n), then there exists a unique
function F : τ → X such that:

F (v) = h(v),

F (c) = g(c),

F (f(t1, . . . , tn)) = Gf (F (t1) . . . F (tn)),

for every v ∈ FV , c ∈ Konst, f ∈ Funk(n) and t1, . . . , tn ∈ τ .
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Question 1: If s ∈ τ and v ∈ FV it is because of the previous proposition
that we can define the function

[s/v] : τ → τ,

t 7→ [s/v](t) := t[s/v].

Which are the functions h, g,Gf in this case?

Question 2: Formulate the recursive definition theorem that corresponds to
the inductive definition of formulas.

Question 3: There are many inductive definitions in mathematics. Try to
think of some. If you take for example the definitional clauses of a topologi-
cal space, which is the inductively defined notion that arises naturally from
them?

2. Natural deduction

The second problem of Hilbert’s famous 1900-list was to find a proof of the
consistency of arithmetic. It took more than 30 years to understand in a
concrete mathematical way all words appearing in the formulation of this
problem. The standard understanding regarding its “solution” in [2] is the
following:

There is no consensus on whether results of Gödel and Gentzen
give a solution to the problem as stated by Hilbert. Gödel’s
second incompleteness theorem, proved in 1931, shows that no
proof of its consistency can be carried out within arithmetic itself.
Gentzen proved in 1936 that the consistency of arithmetic follows
from the well-foundedness of the ordinal ε0.

The passage from proving mathematical theorems to treating mathematical
proofs as objects of mathematical study is a major conceptual step
that happened after 2.500 years of standard mathematical practice.
The Brouwer-Heyting-Kolmogoroff interpretation (BHK-interpretation for
short) of intuitionistic logic appeared before Gentzen’s definition and ex-
plains what it means to prove a logically compound statement in terms of
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what it means to prove its components; the explanations use the notions of
construction and constructive proof as unexplained, primitive notions. The
notation

Π(p, φ)

means that p is a proof of formula φ. For quantifier-free formulas the clauses
of BHK are the following (see [1], p.55):

• For atomic formulas, except ⊥, the notion of proof is supposed to be
given.

• There is no p such that Π(p,⊥).

• Π(p, φ ∧ ψ) if and only if p = (p1, p2) and Π(p1, φ), Π(p2, ψ).

• Π(p, φ ∨ ψ) if and only if p = (1, p1) and Π(p1, φ), or p = (2, p2) and
Π(p2, ψ).

• Π(p, φ→ ψ) if and only if for every proof q, if Π(q, φ), then Π(p(q), ψ).

• The clauses Π(p,∀xφ[x/u]) and Π(p,∃xφ[x/u]) are related to a given
domain on which x varies, and we do not include them here.

Note that in the previous clauses the “if” corresponds to “introduction” and
the “only if” to “elimination”.

Gentzen went further and gave a recursive definition of a concrete notion of
derivation based on the inductive definition of a formula.

We say that a formula φ is derivable in minimal logic, if there is a derivation
of φ by no assumptions according to the definitional clauses of the main
definition of the lecture course notes, without the use of any ⊥-rule, and we
write

Hm(D, φ, ∅), or `m φ.

Moreover, Σ `m φ if and only if Hm(D, φ,∆), for some ∆ ⊆ Σ. If we add to
the previous rules the intuitionistic ⊥-rule, we get intuitionistic logic with

Hi(D, φ,∆), `i φ, Σ `i φ

defined accordingly, while if we add to the rules of minimal logic the classical
⊥-rule, we get classical logic where

Hc(D, φ,∆), `c φ, Σ `c φ

5



are denoted without a subscript

H(D, φ,∆), ` φ, Σ ` φ,

and they are defined accordingly. Note that

Σ `m φ⇒ Σ `i φ,

Σ `m φ⇒ Σ ` φ.
Question 4: Explain why

Σ `i φ⇒ Σ ` φ.

3. Exercise 3(b), Blatt 3

We show by induction on n that

∀n∈N(∀φ1,...,φn,φ∈F({φ1, . . . , φn} ` φ⇔ `
n∧
i=1

φi → φ)),

where
1∧
i=1

φi := φ1,

n+1∧
i=1

φi := (
n∧
i=1

φi) ∧ φn+1.

For n = 1 our goal-formula becomes

∀σ,φ∈F({σ} ` φ⇔ ` σ → φ).

We fix σ, φ and the equivalence

{σ} ` φ⇔ ` σ → φ

follows by Exercise 3(a), for Σ = ∅. Our inductive hypothesis is the following

∀φ1,...,φn,φ∈F({φ1, . . . , φn} ` φ⇔ `
n∧
i=1

φi → φ),
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and we show

∀φ1,...,φn,φn+1,φ∈F({φ1, . . . , φn, φn+1} ` φ⇔ `
n+1∧
i=1

φi → φ).

For that we fix φ1, . . . , φn, φn+1, φ and we have that

{φ1, . . . , φn, φn+1} ` φ⇔

{φ1, . . . , φn} ∪ {φn+1} ` φ
3(a)⇔

{φ1, . . . , φn} ` φn+1 → φ
(∗)⇔

`
n∧
i=1

φi → (φn+1 → φ)
(∗∗)⇔

` (
n∧
i=1

φi) ∧ φn+1 → φ⇔

`
n+1∧
i=1

φi → φ,

where (∗) is by the inductive hypothesis on φ1, . . . , φn and φn+1 → φ, and
(∗∗) is by Lemma 7(b) of the lecture course notes and the immediate to see
fact that if ` σ ↔ ψ, then ` σ ⇔ ` ψ.

4. The Gödel-translation

The Gödel-translation is a translation of classical logic into intuitionistic (or
minimal) logic. It was invented by Gödel and independently by Gentzen in
1933. For this reason it is also called the Gödel-Gentzen translation.

Question 5: Explain why the range of the Gödel-translation ◦ is in the set
of formulas. You need to show the following:

∀x∀φ(x /∈ φ⇒ x /∈ φ◦),

where x ∈ φ denotes that the symbol x occurs in the string φ.

Question 6: Explain why ◦ is not onto F .
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Question 7: The negative formulas F− are defined by the following clauses:

P → ⊥ | ⊥ | φ ∧ ψ | φ→ ψ | ∀xφ[x/v],

where P denotes a prime formula. Check that the range of ◦ is in F−. One
can show that all negative formulas are i-stable i.e.,

`i ¬¬θ → θ,

for every θ ∈ F−. Hence Exercise 1 of Blatt 4, expressing that all formulas
φ◦ in the range of ◦ are i-stable, is a special case of this fact.

The most important feature of the Gödel-translation is that it is a proof
translation. This is expressed by the main theorem on the Gödel-translation:

Γ ` φ ⇔ Γ◦ `i φ◦.

Question 8: Use the above equivalence to show that classical and intuition-
istic logic are equiconsistent i.e., if ` is consistent, then `i is consistent, and
if `i is consistent, then ` is consistent

0 ⊥ ⇔ 0i ⊥.

Question 9: Explain why

Γ ` φ◦ ⇒ Γ◦ `i φ◦,

for every φ ∈ F .

5. Blatt 6

Aufgabe 2. (d) We suppose that Σ ∪ {φ} � ψ i.e., for all A and b we have
that A � (Σ ∪ {φ})[b]⇒ A � ψ[b], and we show that Σ � φ→ ψ i.e., for all
A and b we show that A � Σ[b]⇒ A � (φ→ ψ)[b]. For that we fix A and b,
we suppose that A � Σ[b] and A � φ[b], and we show that A � ψ[b]. Since
A � Σ[b] and A � φ[b], we get that A � (Σ ∪ {φ})[b], therefore by our initial
hypothesis we conclude that A � ψ[b].

For the converse implication we suppose that Σ � φ→ ψ i.e., for allA and
b we have that A � Σ[b] ⇒ A � (φ → ψ)[b], and we show that Σ ∪ {φ} � ψ
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i.e., for all A and b we show that A � (Σ ∪ {φ})[b]⇒ A � ψ[b]. For that we
fix A and b, we suppose that A � (Σ ∪ {φ})[b] and we show that A � ψ[b].
Since A � (Σ ∪ {φ})[b], we get that A � Σ[b] and A � φ[b], therefore by our
initial hypothesis we conclude that A � ψ[b].

(e) First we show that � φ ∨ ψ → ¬(¬φ ∧ ¬ψ)) i.e., for every A and b, if
A � (φ ∨ ψ)[b], then A � (¬(¬φ ∧ ¬ψ)))[b]. For that it suffices to show that
A 2 (¬φ ∧ ¬ψ)[b]. Suppose next that A � (¬φ ∧ ¬ψ)[b] i.e., A � ¬φ[b] and
A � ¬ψ[b], or equivalently A 2 φ[b] and A 2 ψ[b], which contradicts our
initial hypothesis that A � φ[b] or A � ψ[b].

Next we show that � ¬(¬φ ∧ ¬ψ)) → φ ∨ ψ i.e., for every A and b, if
A � (¬(¬φ ∧ ¬ψ)))[b], then A � (φ ∨ ψ)[b]. The hypothesis is equivalent to
A 2 (¬φ ∧ ¬ψ)[b] i.e., it is impossible that A � ¬φ[b] and A � ¬ψ[b], or
equivalently it is impossible that A 2 φ[b] and A 2 ψ[b]. Therefore, A � φ[b]
or A � ψ[b].

Aufgabe 3. We show by induction on t that

∀t∈τ (∀s∈τ∀v∈FV∀b((t[s/v])Ab = tAbŝv)).

If t = w, we have that

(w[s/v])Ab =

{
sAb , if w = v
b(w) , if w 6= v,

and

wAbŝv = bŝv(w) =

{
ŝ = sAb , if w = v
b(w) , if w 6= v,

If t = c, then cA
bŝv

= ĉ = cAb = (c[s/v])Ab .

If t = f(t1, . . . , tn) and (t1[s/v])Ab = t1
A
bŝv
, . . . , (tn[s/v])Ab = tn

A
bŝv

, then

(f(t1, . . . , tn)[s/v])Ab = (f(t1[s/v], . . . , tn[s/v]))Ab

= f̂((t1[s/v])Ab , . . . , (tn[s/v])Ab )

= f̂(t1
A
bŝv
, . . . , tn

A
bŝv

)

= (f(t1, . . . , tn))Abŝv .
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6. Blatt 8

Aufgabe 4. We define #t ∈ N recursively as follows:

#v := 0 =: #c,

#f(t1, . . . , tn) := (
n∑
i=1

#ti) + 1,

where #t expresses the number of function symbols occuring in t. In analogy
to Proposition 6 we show the following:

Let T : τ → 2 = {0, 1} such that

∀t∈τ (∀σ∈τ (#σ < #t→ T (σ) = 1)→ T (t) = 1).

Then
∀t∈τ (T (t) = 1).

Proof We fix some t ∈ τ . If #t = 0, then we get directly by our hypothesis
that T (t) = 1, since the implication ∀σ∈τ (#σ < #t → T (σ) = 1) holds
trivially (it is impossible that #σ < 0, therefore the implication is true).

Suppose next that #t > 0, and let’s assume that T (t) = 0. Hence the
hypothesis ∀σ∈τ (#σ < #t→ T (σ) = 1) cannot hold, therefore

∃σ∈τ (#σ < #t ∧ T (σ) = 0).

If #σ = 0, then we reach the contradiction T (σ) = 0 = 1. If #σ > 0, we
repeat the previous step and we get

∃σ1∈τ (#σ1 < #σ ∧ T (σ1) = 0).

Again, either we reach the contradiction T (σ1) = 0 = 1, or we repeat the
procedure. It is clear that after at most a finite number of steps n (can you
determine n?) we reach a contradiction of the form T (σn) = 0 = 1.
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7. Recursive functions

Using the principle of the excluded middle the characteristic function 1A of
some A ⊆ Nk, where k ≥ 1, is defined by

1A(~n) :=

{
0 , if A(~n)
1 , ow.

Also, the projection functions prki : Nk → N are defined by

prki (~n) = prki (n1, . . . , nk) = ni,

for every ~n ∈ Nk and i ∈ {1, . . . , k}.

Definition 3. The sets of recursive functions Rec(k) of type Nk → N, where
k ≥ 1, are defined simultaneously by the following inductive rules:
(I)

+ ∈ Rec(2)
,
· ∈ Rec(2)

,
1< ∈ Rec(2)

,

prki ∈ Rec(k)
, 1 ≤ i ≤ k

(II)

g ∈ Rec(n), h1, . . . , hn ∈ Rec(k)

Comp(g, h1, . . . , hn) ∈ Rec(k)
,

where
Comp(g, h1, . . . , hn)(~n) = g(h1(~n), . . . , hn(~n)).

(III)

g ∈ Adm(k+1)

gµ ∈ Rec(k)
,

where
Adm(k+1) := {g ∈ Rec(k+1) | ∀~n∈Nk∃m(g(~n,m) = 0)}

and
gµ(~n) := µm : g(~n,m) = 0.
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Note that:

1. pr11 = idN, where idN denotes the identity function on N.

2. If we combine (I) and (II) we get e.g., that h1 +h2, h1 ·h2 ∈ Rec(k). I.e.,
the case k = 2 is essential to the formation of new elements of Rec(k),
where k ≥ 1.

3. Using (III) we get new elements of Rec(2) i.e.,

g ∈ Adm(3)

gµ ∈ Rec(2)
.

4. Because of this interaction between the distinct Rec(k)’s we say that
the sets Rec(k) are defined simultaneously.

5. Every recursive function f ∈ Rec(k) is total i.e., its domain is the whole
set Nk. If we drop the admissiblity condition in (III), we get the partial
recursive functions.

6. Exactly because the recursive functions are defined inductively, if we
want to show that for every f ∈ Rec we have P (f), where P is any
formula on functions and

Rec :=
∞⋃
k=1

Rec(k),

we can use the induction axiom that corresponds to the above defini-
tion.

7. Verify that every rule of the main definition expresses an algorithm
for finding the output f(~n), given the input ~n. The non-trivial issue is
that every algorithmic function (this is an intuitive notion) is recursive
(Church-Turing Thesis)!!!

8. Because of the clauses used in the main definition each set Rec(k) is
countable (but there is no algorithmic enumeration of it). Although it
is not trivial to exhibit a non-recursive function, because of cardinality
issues most of the functions Nk → N are not recursive
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If A ⊆ Nk is recursive, we write A ∈ REC(k).

We can use the following:

1. From a recursive set and some recursive functions we can define a
new recursive set, their composition. Namely, if A ∈ REC(n) and
h1, . . . , hn ∈ Rec(k), then

B = Comp(A, h1, . . . , hn) ∈ REC(k)

where
B(~n)↔ A(h1(~n), . . . , hn(~n)).

2. From an appropriate recursive relation we can define a recursive func-
tion. Namely, if A ⊆ Nk+1 is an admissible recursive relation i.e.,

∀~n∈Nk∃mA(~n,m),

and in this case we write A ∈ ADM(k+1), then the function aµ defined
by

aµ(~n) := µm : A(~n,m)

is in Rec(k).

3. Recursiveness is closed under arbitrary compositions.

4. The constant functions mk : Nk → N, defined by ~n 7→ m, are recursive.

5. Recursiveness is closed under complements, ∩ and ∪.

6. The relations ≥,≤,=, >,< are recursive.

7. Bounded quantification preserves recursiveness i.e., if A ∈ REC(k+1),
then

B(~n,m)↔ ∃k<mA(~n, k)

C(~n,m)↔ ∀k<mA(~n, k)

are in REC(k+1). By the same argument we get that if A ∈ REC(2),
then

B(m)↔ ∃k<mA(m, k)

C(m)↔ ∀k<mA(m, k)

are in REC(1).
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8. The definition by cases preserves recursiveness e.g., if A ∈ REC(k) and
g1, g2 ∈ Rec(k), then

f(~n) :=

{
g1(~n) , if A(~n)
g2(~n) , ow

is in Rec(k). This is a way to get a new recursive function from a given
recursive relation and two recursive functions, where the order (the
number k) of the functions and the recursive relations is the same.

9. −· ∈ Rec(2).

10. π ∈ Rec(2), π1, π2 ∈ Rec(1).

We shall use the following:

1. The successor function S(n) = n+ 1 is in Rec(1).

2. If A ∈ REC(2) and g ∈ Rec(1), then

B(m)↔ ∃k<g(m)A(m, k)

C(m)↔ ∀k<g(m)A(m, k)

are in REC(1).

3. If A = {n1, . . . , nk} is a finite subset of naturals, then A ∈ REC(1).
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