Wintersemester 2015/2016 Blatt 12

Übungen zur Vorlesung "Logik", Probeklausur

Aufgabe 1. Der Rang $r(\phi)$ einer Formel ϕ ist definiert durch

$$\begin{split} r(\phi) &:= 0, \quad \phi \text{ Primformel} \\ r(\phi \Box \psi) &:= \max\{r(\phi), r(\psi)\} + 1, \quad \Box \in \{\land, \lor, \to\} \\ r(\exists x \phi[x/v]) &= r(\forall \phi[x/v]) := r(\phi) + 1. \end{split}$$

- (a) Definieren Sie eine Funktion $||.||: \mathcal{F} \to \mathbb{N}$ so dass $||\phi|| = \text{ die Anzahl von logischen Zeichen } \{\land, \lor, \to, \exists, \forall\} \text{ in } \phi.$
- (b) Zeigen Sie, dass für jede Formel ϕ

$$r(\phi) \le ||\phi||.$$

Aufgabe 2. (a)
$$\vdash \neg(\neg \phi \land \neg \psi) \rightarrow \psi \lor \phi$$

(b) $\vdash_m \phi \land \neg \psi \rightarrow \neg(\phi \rightarrow \psi)$.

Aufgabe 3. Sei $L=\{g\}$ mit gzweistelliges Funktionszeichen. Sei ϕ die Formel

$$\exists x \ \forall y \ g(x,y) \doteq y.$$

Geben Sie zwei Modelle \mathcal{A}, \mathcal{B} der Sprache L an mit ϕ gilt in \mathcal{A} , aber nicht in \mathcal{B} .

Aufgabe 4. Sei Σ eine Menge von Formeln. Wir definieren

$$\overline{\Sigma} := \{ \phi \in \mathcal{F} \mid \Sigma \vDash \phi \}.$$

Man zeige:

- (a) $\Sigma \subseteq \overline{\Sigma}$.
- (b) Wenn Σ_1, Σ_2 Mengen von Formeln sind mit $\Sigma_1 \subseteq \Sigma_2$, dann $\overline{\Sigma_1} \subseteq \overline{\Sigma_2}$.
- (c) $\overline{\overline{\Sigma}} = \overline{\Sigma}$.

Aufgabe 5. (a) Zeigen Sie, dass die faktorielle Funktion $n \mapsto n!$ rekursiv ist.

(b) Sei $f: \mathbb{N}^{k+1} \to \mathbb{N}$ rekursive Funktion. Zeigen Sie, dass die Funktion

$$g(\vec{n},m) := \prod_{i \leq m} f(\vec{n},i)$$

rekursiv ist.

(c) Seien $f: \mathbb{N} \to \mathbb{N}$ eine rekursive Funktion und $R \subseteq \mathbb{N}$.

Man beweise oder widerlege:

- (i) Wenn R rekursiv ist, dann ist f(R) rekursiv.
- (ii) Wenn R rekursiv aufzählbar ist, dann ist f(R) rekursiv aufzählbar.

Aufgabe 6. Seien $f_1, f_2 : \mathbb{N} \to \mathbb{N}, g_1, g_2 : \mathbb{N}^3 \to \mathbb{N}, \text{ und } h_1, h_2 : \mathbb{N}^2 \to \mathbb{N}$ definiert durch

$$h_1(0,n) = f_1(n)$$

$$h_2(0,n) = f_2(n)$$

$$h_1(m+1,n) = g_1(h_1(m,n), h_2(m,n), n)$$

$$h_2(m+1,n) = g_2(h_1(m,n), h_2(m,n), n).$$

Zeigen Sie, dass wenn f_1, f_2, g_1, g_2 rekursiv sind, dann sind h_1, h_2 rekursiv.

Abgabe. Donnerstag, 28. Januar 2016, in der Vorlesung.

Besprechung. Donnerstag, 28. Januar 2016, in der Übung.