

Prof. Dr. Hans-Dieter Donder Iosif Petrakis Summer Term 2013 25.07.2013

Modelle der Mengenlehre Exam-Results

Exercise 1: a. The axiom of foundation is the following formula

 $\forall_x (\exists_y (y \in x) \to \exists_y (y \in x \land \neg \exists_z (z \in x \land z \in y))).$

□ True

 \Box False

□ True

□ Foundation

- **b.** ZF $\vdash \exists_x (x \in x)$.
- c. The following axiom of ZF proves the formula

 $\forall_x (x \notin y \lor y \notin x).$

d. (Kard $\in V$) \vee (On - Kard $\notin V$).

Exercise 2: The operations below are between ordinals. **a.** $\operatorname{rn}(y) < \operatorname{rn}(x) \to y \in x$. **b.** $\operatorname{rn}(\omega \cdot \omega + \omega) = \operatorname{rn}(\omega \cdot \omega + \omega + 1)$. **c.** $\omega \cdot \omega + \omega \in V_{\omega \cdot \omega + \omega + 1}$. **c.** $\omega \cdot \omega + \omega \in V_{\omega \cdot \omega + \omega + 1}$. **d.** $\{\operatorname{rn}(x) \mid x \in^{\mathbb{R}_{\mathbb{R}}} \mathbb{R}\}$ is bounded in On.

□ True

Exercise 3: a. If $\lambda > \omega$ is a limit ordinal, there exists the immediate previous limit ordinal to λ.

b. If
$$F : \text{On} \to \text{On}$$
 is increasing i.e., $\forall_{\alpha,\beta\in\text{On}}(\alpha < \beta \to F(\alpha) < F(\beta))$, then
$$\exists_{\alpha\in\text{On}}(F(\alpha) < \alpha).$$

c. If $F_1, F_2 : \text{On} \to \text{On such that}$

 $\{\alpha \in \text{On} \mid F_1(\alpha) = \alpha\}$ is a closed and unbounded class, $\{\beta \in On \mid F_2(\beta) = \beta\}$ is a closed and unbounded class.

Then the class

$$\{\gamma \in \text{On} \mid F_1(\gamma) = F_2(\gamma) = \gamma\}$$
 is closed and unbounded.

d. Please give an example of an unbounded class of ordinals which is not closed.

The successor ordinals

Exercise 4: **a.** The transitive closure of $\{0, 1, \{\omega\}\}$ is

b. If λ is a limit ordinal, then $V_{\lambda} \models$ Infinity axiom.

c. cf(ω_{ω}) = ω .

d. $\omega_3^{\mathrm{cf}(\omega_3)} \leq \omega_3.$

Exercise 5: The following relations and formulas are absolute for transitive models of ZF⁻: **a.** $x \in u \times v$.

	□ True
b. $x \in \operatorname{dom}(r)$.	True
c. α is a limit ordinal.	
	□ True
d. $u = \mathcal{P}(v)$.	

 \Box False

True

 $\Box \omega \cup \{\omega, \{\omega\}\}$

 $\hfill\square$ False

□ True

□ False

 \Box False

□ False

Exercise 6 : a. $V \neq L$.	
	$\hfill\square$ Undecidable in ZF
b. HOD is an inner model of ZF.	
	\Box True in ZF
c. There is no well-ordering on $(\bigcup \mathcal{P}(\omega))^{\text{HOD}}$.	
	\Box False in ZF
a. $\nabla_{n\in\omega}(L_n \subsetneq V_n).$	\Box False in ZF
Exercise 7: a. $\operatorname{Con}(\operatorname{ZF}) \to \operatorname{Con}(\operatorname{ZF} + V \neq L).$	
	□ True
b. $V = L \rightarrow V = \text{HOD}.$	
	□ True
c. $V = L \rightarrow \neg \text{GCH}.$	
d . $\operatorname{Con}(\operatorname{ZFC}) \to \operatorname{Con}(\operatorname{ZFC} + V \neq L)$	
	□ True
Exercise 8 : a. $u \in Def(u)$.	
	□ True
b. $x_1, \ldots, x_n \in u \to \{x_1, \ldots, x_n\} \in \mathrm{Def}(u).$	
	□ True
c. $x, y \in \text{Def}(u) \to x \cup y \notin \text{Def}(u).$	
d u is transitivo $\rightarrow u \in \text{Dof}(u) \land \text{Dof}(u)$ is transitivo	∟ False
a. u is transitive $\neg u \subseteq Der(u) \land Der(u)$ is transitive.	🗅 True

Exercise 9: Suppose that $\langle \mathbb{P}, \leq, 1 \rangle$ is a set of conditions contained in a countable and transitive model M of ZFC.

a. For every $p \in \mathbb{P}$ and every G generic over M it holds $K_G(\{\langle \emptyset, p \rangle\}) = \emptyset$.

□ False

b. Suppose that $p, q \in \mathbb{P}$ such that p, q are incompatible. Then there exists G generic over M such that $p \notin G$.

□ True

c. If G is \mathbb{P} -generic over M and

$$\forall_{p \in \mathbb{P}} \exists_{q_1, q_2 \in \mathbb{P}} (q_1 \leq p \land q_2 \leq p \land q_1, q_2 \text{ are incompatible}),$$

then $G \in M$.

 $\hfill\square$ False

 \Box False

d. If G is generic over M and

 $\forall_{p,q\in\mathbb{P}} (p \le q \lor q \le p),$

then $G \notin M$.

Exercise 10: Suppose that M is a countable transitive model for ZFC, \mathbb{P} is the set of the finite partial functions from ω to 2 i.e.,

$$\mathbb{P} = \{ p \mid p \subset \omega \times 2 \land |p| < \omega \land p \text{ is a function} \},\$$

while $p \leq q \leftrightarrow p \supseteq q$. Also, G is P-generic over M and Φ is a name for $\bigcup G$.

a. $\emptyset \Vdash \Phi$ is a function from $\hat{\omega}$ to $\hat{2}$.

b. $\emptyset \Vdash \hat{1} \in \operatorname{rng}(\Phi)$.

c. $\{<0,1>,<2,1>\} \Vdash \Phi(\hat{1}) \neq \hat{0}.$

d. {< 0, 0 >, < 10, 1 >, < 11, 1 >} $\vdash \Phi(\hat{1}) = \hat{0}$.

□ False

 $q \in \mathbb{P}(P \leq q \vee q \leq P),$

D True

□ True

□ False