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Abstract

The theory of C-spaces was analyzed in 2015 by Martín Escardó and Chuangjie Xu. The
analysis included the embedding in Limits spaces and Kleene-Kreisel-spaces and the
extraction of a computational content was studied. The construct of Bishop spaces was
designed in 1967 by Errett Bishop and elaborated in 2012 by Douglas Bridges. In 2015
the theory of Bishop spaces was developed by Iosif Petrakis and Bishop topologies were
further explored, which are defined as sets of functions.
The goal of this thesis is to compare these two theories. Analogies will be found
by investigating properties regarding C-spaces, which are already known for Bishop
spaces. Examples are the inductively definition of the least topology

⊔
P0 for a given

subbasis P0 ⊆ F(2N, X) as well as explicit examples and the embedding of every C-
space P = (X, P) as superset of

(
X, Constloc(2N, X)

)
and as subset of

(
X, F(2N, X)

)
.

This thesis also includes the definition of the product P × Q = (X × Y, P × Q) for
C-spaces P = (X, P) and Q = (Y, Q) as well as the relative C-space P|Y = (Y, P|Y) of
the C-space P = (X, P) for Y ⊆ X. Also properties of morphisms between C-spaces like
the Yoneda-lemma or the

⊔
-lifting of openness are explored.

After repeating those properties for Bishop-spaces the analysis focuses on relationships
between C-spaces and Bishop spaces. First, C- and Bishop-continuous functions between
2N and R will be compared and examined for commonalities. Therefore we can establish
wounding by means of this connections between general C-spaces and Bishop spaces.
Bishop- respectively C-spaces are defined by
FP =

{
f : X → R | ∀p ∈ P

(
f ◦ p ∈ Mor(C, R)

)}
and

PF =
{

p : 2N → X | ∀ f ∈ F
(

f ◦ p ∈ Mor(C, R)
)}

, which satisfy useful properties like
preserving products or relative spaces for a subset Y ⊆ X.
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Zusammenfassung

Die Theorie der C-Räume wurde 2015 von Martín Escardó und Chuangjie Xu analy-
siert. Dabei wurde unter anderem die Einbettung in Limit spaces und Kleene-Kreisel-
Räume und die Extrahierung eines rechnerischen Gehalts untersucht. Das Konstrukt der
Bishop-Räume wurde 1967 von Errett Bishop entworfen und 2012 von Douglas Bridges
ausgearbeitet. 2015 wurde daraus von Iosif Petrakis die Theorie der Bishop-Räume ent-
wickelt und Bishop-Topologien, welche als Mengen von Funktionen definiert werden,
untersucht.
Ziel dieser Masterarbeit ist der Vergleich dieser zwei Theorien. Dafür werden zunächst
einige Eigenschaften, die für Bishop-Räume bereits bekannt sind, für C-Räume verifi-
ziert und dadurch Analogien festgestellt. Als Beispiele sind die induktive Definition der
kleinsten Topologie

⊔
P0 zu einer gegebenen Subbasis P0 ⊆ F(2N, X) sowie explizite

Beispiele dazu und die Einbettung eines jeden C-Raumes P = (X, P) als Obermen-
ge von

(
X, Constloc(2N, X)

)
und als Teilmenge von

(
X, F(2N, X)

)
zu nennen. Außer-

dem werden das Produkt P ×Q = (X × Y, P× Q) zweier C-Räume P = (X, P) und
Q = (Y, Q) und der zugehörige C-Raum P|Y = (Y, P|Y) zum C-Raum P = (X, P) für
Y ⊆ X definiert und Eigenschaften von Morphismen zwischen C-Räumen, wie etwa das
Yoneda-Lemma oder die Erhebung von Offenheit bzgl.

⊔
erforscht.

Nachdem im Anschluss diese Eigenschaften für Bishop-Räume wiederholt werden, wer-
den Wechselwirkungen zwischen C-Räumen und Bishop-Räumen gesucht. Dafür wer-
den als erstes C- und Bishop-stetige Funktionen von 2N nach R miteinander verglichen
und auf Gemeinsamkeiten untersucht, um anschließend mit deren Hilfe Verbindungen
zwischen allgemeinen C- und Bishop-Räumen herzustellen. Durch die Mengen
FP =

{
f : X → R | ∀p ∈ P

(
f ◦ p ∈ Mor(C, R)

)}
und

PF =
{

p : 2N → X | ∀ f ∈ F
(

f ◦ p ∈ Mor(C, R)
)}

werden Bishop- bzw. C-Topologien
definiert, die nützliche Eigenschaften wie die Erhaltung von Produkten oder von zuge-
hörigen Räumen für eine Teilmenge Y ⊆ X besitzen.
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1 Introduction

The concept of constructive mathematics has already been developed in the early 20th

century with its best-known proponent being L. E. J. Brouwer. Here mathematics is
done with intuitionistic logic. But Brouwer could only convince a few companions of
his view that classical mathematics would be insufficient for a numerical meaning. The
difference between classical and intuitionistic logic is that while in classical logic we
work with stability axioms ∀~x(¬¬R~x −→ R~x), where R is a relation symbol distinct from
⊥, which allow the principle of indirect proofs, in intuitionistic logic we only work with
ex-falso-quodlibet axioms ∀~x(⊥ −→ R~x), where R again is a relation symbol distinct from
⊥. Here ⊥ denotes falsity and ¬A is defined by ¬A := (A −→ ⊥). More information
about classical and intuitionistic logic you find in [11].
Nowadays, many mathematicians have changed their opinion and constructive math-
ematics is practiced in many different fields of mathematics. A great deal to this E.
Bishop had with his book [3] published in 1967. His achievement, in contrast to Brouwer,
was that his system of constructive mathematics (BISH) does not contradict classical
mathematics. His approach is that if p is a proof of A in BISH, then there exists a classical
proof pc of Ac, where Ac is the classical reading of A.
For an example let A be the following statement: "If f : [0, 1]→ R is continuous, then
sup f exists." In BISH this holds by definition of continuity: A function f : [0, 1]→ R is
continuous if and only if it is uniformly continuous and sup f is shown to exist.
In classical mathematics, continuity of f is defined by pointwise continuity, and it is
shown that it is also uniformly continuous.
Based on Bishop’s work and on D. S. Bridge’s paper Reflections on function spaces, I.
Petrakis developed in [10] the theory of Bishop spaces in 2015. Here a Bishop space
consists of an inhabited set and a Bishop topology, which is defined as a set of functions.
Almost simultaneously, the theory of C-spaces was investigated by M. Erscardó and C.
Xu in [8], [13] and [14]. In their investigation, a C-space consists of an inhabited set and
a C-topology defined by a set of functions.
Since the usual definition of topology is non-constructive, this new approach is quite
interesting. These two definitions have similar approaches with the goal to construct a
topology by functions. The difference between the two theories is that within the theory
of Bishop spaces the critical set is the domain of the functions in the topology and the
codomain is R, while in the theory of C-spaces this set is the codomain and the domain
is the Cantor space 2N. Nevertheless, the respective dissertations already studied similar
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1 Introduction

aspects, which suggests a certain relationship.
This Thesis analyses wether there are further analogies in order to build a bridge between
the two theories. For this, we work with Bishop’s system of constructive mathematics
BISH. First, analogical results like in the theory of Bishop spaces are found in the theory
of C-spaces. After repeating some facts from [10], the morphisms between 2N and R

are investigated, since here we have an interface by taking the critical set equal to 2N in
the theory of Bishop spaces and equal to R in the theory of C-spaces. Afterwards, this
connection will be expanded for arbitrary Bishop respectively C-spaces. This expansion
will have some valuable properties w.r.t. the initial results.
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2 C-Spaces

2.1 Basic Definitions

2.1.1 Definition Here N is the set {0, 1, 2, . . . }. The set {1, 2, 3, . . . } is denoted by
N+.

2.1.2 Definition The Cantor space 2N is the set of all functions α : N → 2. We
denote an element α of 2N by α = (α0, α1, α2, . . . ), where αi ∈ {0, 1}, for all i ∈
N.

The standard metric ρ on the Cantor space is defined by

ρ (α, β) := inf
{

2−n | α =n β
}

for every α, β ∈ 2N. For n ∈ N and α = (α0, α1, α2, . . . ) and β = (β0, β1, β2, . . . ) ele-
ments of the Cantor space α =n β denotes, that it is αi = βi, for all
i ∈ {0, . . . , n− 1}.
This metric is constructively well-defined (see footnote in [10, page 146]).

2.1.3 Definition The set of all functions of type 2N → X, where X is a set, is de-
noted by F

(
2N, X

)
. We denote the set of all constant functions of type 2N → X by

Const
(
2N, X

)
, the constant function on 2N with value x ∈ X by x ∈ Const

(
2N, X

)
.

2.1.4 Definition A function f : (X, d) → (Y, b) between inhabited metric spaces X
and Y is called uniformly continuous if for every ε > 0 there exists ω f (ε) > 0 such that
for every x, y ∈ X

d (x, y) ≤ ω f (ε) −→ b
(

f (x) , f (y)
)
≤ ε.

The function ω f : R+ → R+, ε 7→ ω f (ε) is called the modulus of uniformly continuity for
f.
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2 C-Spaces

2.1.5 Definition Let C (X) be the set of uniformly continuous maps of an inhabited
metric space X i.e.,

C (X) =
{

t : 2N → X | t is uniformly continuous
}

.

2.1.6 Lemma

C
(

2N
)
=

{
t : 2N → 2N

∣∣∣∣∣ ∀m ∈N ∃nt(m) ∈N ∀α, β ∈ 2N(
α =nt(m) β −→ t (α) =m t (β)

) } .

Proof. Let t : 2N → 2N be a uniformly continuous map. Hence, for every ε > 0 there
exists a ωt (ε) > 0 such that for every α, β ∈ 2N it is

ρ (α, β) ≤ ωt (ε) −→ ρ
(
t (α) , t (β)

)
≤ ε

or
inf
{

2−n | α =n β
}
≤ ωt (ε) −→ inf

{
2−m | t (α) =m t (β)

}
≤ ε.

This means that for every m ∈N we can find nt(m) ∈N such that

α =nt(m) β −→ t (α) =m t (β) .

2.1.7 Definition We also denote C
(
2N
)

by C.

2.1.8 Corollary

C (R) =

{
t : 2N → R

∣∣∣∣∣ ∀ε > 0 ∃nt(ε) ∈N ∀α, β ∈ 2N(
α =nt(ε) β −→ |t(α)− t(β)| ≤ ε

)}

and
C (2) =

{
t : 2N → 2 | ∃nt ∈N ∀α, β ∈ 2N

(
α =nt β −→ t(α) = t(β)

)}
.

Since 2 ⊆ R we get C (2) ⊆ C (R).

The two sets C and C(R) will have crucial roles in this thesis. C is needed for the defini-
tion of C-spaces, while C(R) will be one of the analyzed sets in chapter 4.
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2 C-Spaces

2.1.9 Definition A C-space is a pair P = (X, P), where X is an inhabited set and P is a
so called C-topology i.e., P is a set of functions of type 2N → X, called probes, with the
following clauses, also called the probe axioms:
(CS1) All constant maps are in P i.e., x0 ∈ P for every x0 ∈ X.
(CS2) p ∈ P −→ t ∈ C −→ p ◦ t ∈ P,

2N
p∈P // X

2N

C3t

OO

p◦t∈P

==

(CS3) For all n ∈ N and for all families
{

ps ∈ P | s ∈ 2N
}

the unique map p : 2N →
X, p(sα) := ps(α), is in P.

For two C-spaces P = (X, P) and Q = (Y, Q) a map f : X → Y is called C-continuous or
a C-morphism between X and Y, if f ◦ p is in Q, for every p ∈ P.

X
f // Y

2N

P3p

OO

f ◦p∈Q

==

We also write f ∈ Mor(P ,Q).

2.1.10 Remark

• (CS1) implies Const
(
2N, X

)
⊆ P.

• In (CS2) we see that for every probe p ∈ P and for any uniformly contiuous map
t : 2N → 2N the composition p ◦ t is again a probe of P.

2.1.11 Proposition (CS3) is equivalent to
(CS′3) For all p0, p1 ∈ P the function p∗ : 2N → X, defined by p∗(iα) = pi(α), for i ∈ {0, 1},
is in P.

The proof of this proposition and other properties of C-spaces, that will not be repeated
in this thesis, are given in Chapter 3.3 of [13], Chapter 2 of [8] and Chapter 2.2 of
[14].

The goal is to attain a category of C-spaces. For this, we give the definition from [1],
before we search for a concrete category of C-spaces.
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2 C-Spaces

2.1.12 Definition The following data is required to produce a category:

• Objects: A, B, C, . . .

• Arrows: f , g, h, . . .

• For every object A there is an arrow 1A : A→ A, called the identity arrow of A.

• For each arrow f , there are given objects dom( f ) and cod( f ), called the domain and
codomain of f . To indicate A = dom( f ) and B = cod( f ), we write f : A→ B.

• For arrows f : A → B and g : B → C with cod( f ) = dom(g) there is an arrow
g ◦ f : A→ C, called the composite of f and g.

This data needs to satisfy the following conditions:

• Associativity: h ◦ (g ◦ f ) = (h ◦ g) ◦ f , for all f : A→ B, g : B→ C, h : C → D.

• Unity: f ◦ 1A = f = 1B ◦ f , for all f : A→ B.

2.1.13 Proposition We take the C-spaces as the objects and the C-continuous maps as the
arrows. Then we get the category of C-spaces, called CS.

Proof. • 1P = IdX.

• Let P = (X, P),Q = (Y, Q) and S = (Z, S) be C-spaces, q ∈ Mor(P ,Q) and
s ∈ Mor(Q,S). Then the composition s ◦ q : X → Z is in Mor(P ,S), since if we
fix some p ∈ P, we get that q ◦ p ∈ Q, thus

(s ◦ q) ◦ p = s ◦ (q ◦ p) ∈ S.

(Y, Q)

s∈Mor(Q,S)

!!
(X, P)

Mor(P ,Q)3q

==

s◦q∈Mor(P ,S) // (Z, S)

2N

P3p

OO

(s◦q)◦p∈S

66
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2 C-Spaces

2.1.14 Proposition The set C =
{

t : 2N → 2N | t is uniformly continuous
}

is a C-topology
on 2N.

Proof. We have to verify the three probe axioms:

(CS1) Let α : 2N → 2N, α 7→ α(α) = (α0, α1, α2, . . . ) be a continuous function. For all
α, β ∈ 2N it is α(α) = (α0, α1, α2, . . . ) = α(β), in particular α ∈ C.

(CS2) Let p ∈ C and t ∈ C i.e., for all m ∈ N there exists a np(m) ∈ N such that for all
α, β ∈ 2N it is

α =np(m) β −→ p(α) =m p(β)

and for all m ∈N there exists a nt(m) ∈N such that for all α, β ∈ 2N we get

α =nt(m) β −→ t(α) =m t(β).

Let now be m ∈N arbitrary. We choose np◦t(m) = nt
(
np(m)

)
∈N, then we first get for

all α, β ∈ 2N:
α =np◦t(m) β −→ t(α) =np(m) t(β).

Moreover, we know

t(α) =np(m) t(β) −→ p
(
t(α)

)
=m p

(
t(β)

)
.

Because of that we have found a np◦t(m) ∈N, such that for all α, β ∈ 2N it is

α =np◦t(m) β −→ (p ◦ t)(α) =m (p ◦ t)(β).

(CS′3) Let p0, p1 ∈ C i.e., for all m ∈ N there exists a np0(m) ∈ N such that for all
α, β ∈ 2N we get

α =np0 (m) β −→ p0(α) =m p0(β)

and for all m ∈N there exists a np1(m) ∈N such that for all α, β ∈ 2N it is

α =np1 (m) β −→ p1(α) =m p1(β).

We need to show that the function p∗ : 2N → 2N defined by p∗(iα) = pi(α), for i ∈ {0, 1}
is in C.
Let m ∈ N be arbitrary. We take ñp∗(m) := max

{
np0(m), np1(m)

}
. For α, β ∈ 2N with

α =ñp∗ (m) β we now get
α =np0 (m) β and α =np1 (m) β

and therefore

p∗(0α) = p0(α) =m p0(β) = p∗(0β) and p∗(1α) = p1(α) =m p1(β) = p∗(1β).

Thus for np∗(m) = max
{

np0(m), np1(m)
}
+ 1 we get the uniformly continuity of p∗.
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2 C-Spaces

2.1.15 Definition We call C = (2N, C) the Cantor C-space.

2.1.16 Proposition C (R) is a C-topology on R.

Proof. (CS1) Let a : 2N → R, α 7→ a(α) = a ∈ R be a continuous function. Let ε > 0.
For all α, β ∈ 2N we get

a(α) = a = a(β),

hence
|a(α)− a(β)| = 0 ≤ ε.

Therefore a ∈ C (R).

(CS2) Let t ∈ C (R) and s ∈ C i.e., for every ε > 0 there exists a nt(ε) ∈N such that for
all α, β ∈ 2N we get

α =nt(ε) β −→ |t(α)− t(β)| ≤ ε

and for every m ∈N there is a ns(m) ∈N such that for all α, β ∈ 2N we get

α =ns(m) β −→ s(α) =m s(β).

Let ε > 0 be arbitrary. We choose nt◦s(ε) := ns
(
nt(ε)

)
∈N, then for all α, β ∈ 2N with

α =nt◦s(ε) β it is
s(α) =nt(ε) s(β),

hence
|(t ◦ s)(α)− (t ◦ s)(β)| ≤ ε.

On this account t ◦ s ∈ C (R).

(CS′3) Let p0, p1 ∈ C (R) i.e., for every ε0 > 0 there exists a np0(ε0) ∈N such that for all
α, β ∈ 2N we get

α =np0 (ε0) β −→ |p0(α)− p0(β)| ≤ ε0

and for every ε1 > 0 there is a np1(ε1) ∈N such that for all α, β ∈ 2N it is

α =np1 (ε1) β −→ |p1(α)− p1(β)| ≤ ε1.

Let ε > 0 be arbitrary. We take ñp∗(ε) := max
{

np0(ε), np1(ε)
}

. For all α, β ∈ 2N with
α =ñp∗ (ε)

β we get
α =np0 (ε)

β and α =np1 (ε)
β

and accordingly
|p∗(0α)− p∗(0β)| = |p0(α)− p0(β)| ≤ ε

and
|p∗(1α)− p∗(1β)| = |p1(α)− p1(β)| ≤ ε,

hence for np∗(ε) := max
{

np0(ε), np1(ε)
}
+ 1 we get p∗ ∈ C (R).

15



2 C-Spaces

2.1.17 Definition The C-space Real is defined byR =
(
R, C (R)

)
.

2.1.18 Proposition For every inhabited metric space X the space
(
X, C(X)

)
is a C-space.

Proof. We just give a sketch here, since we follow the same procedure as in the proofs
before.

(CS1) Obviously, Const(2N, X) ⊆ C(X).

(CS2) We take ωp◦t(ε) := nt
(
ωp(ε)

)
as the modulus of uniformly continuity for p ◦ t,

for given moduli ωp(·) for p ∈ C(X) and nt(·) fot t ∈ C.

(CS′3) We choose ωp∗(ε) := max
{

ωp0(ε), ωp1(ε)
}
+ 1 as the modulus for p∗, for given

moduli ωp0(·) for p0 ∈ C(X) and ωp1(·) for p1 ∈ C(X), where p∗(iα) = pi(α), for
i ∈ {0, 1}.

2.1.19 Definition For an inhabited metric space X we denote the uniform C-space by
UC(X) =

(
X, C(X)

)
.

2.2 Inductively generated C-Spaces

As in chapter 3.4 of [10], we define the least C-topology generated by a given set
P0 ⊆ F

(
2N, X

)
.

2.2.1 Definition Let P0 ⊆ F
(
2N, X

)
. The least C-topology

⊔
P0 generated by P0 is defined

by the following clauses:

i) p0 ∈ P0 −→ p0 ∈
⊔

P0.

ii) x ∈ X −→ x ∈ ⊔ P0.

iii) p ∈ ⊔ P0 −→ t ∈ C −→ p ◦ t ∈ ⊔ P0.

iv) p0, p1 ∈
⊔

P0 −→ p∗ ∈ ⊔ P0, where p∗ is defined by p∗ (iα) = pi (α), for every
i ∈ {0, 1}.

We call P0 a subbase of
⊔

P0.

Obviously,
⊔

P0 is a C-topology. We also note that the rules of the inductive definition of⊔
P0 have finitely many premises.

These clauses induce the induction principle Indt on
⊔

P0:

∀p0 ∈ P0
(

A (p0)
)
−→

∀x ∈ X
(

A (x̄)
)
−→

16



2 C-Spaces

∀p ∈ ⊔ P0 ∀t ∈ C
(

A (p) −→ A (p ◦ t)
)
−→

∀p0, p1 ∈
⊔

P0
(

A (p0) −→ A (p1) −→ A (p∗)
)
−→

∀p ∈ ⊔ P0
(

A (p)
)
,

where A is a property on F
(
2N, X

)
. Therefore, if we start with a constructively gras-

pable subbase P0, the generated least C-topology
⊔

P0 ⊆ F
(
2N, X

)
is constructively

graspable.

2.2.2 Proposition Suppose P0, P1 ⊆ F
(
2N, X

)
andP = (X, P) a C-space.

i)
⊔

P0 ⊆ P←→ P0 ⊆ P.

ii) P0 ⊆ P1 −→
⊔

P0 ⊆
⊔

P1.

iii)
⊔

P0 ∪
⊔

P1 ⊆
⊔
(P0 ∪ P1) .

iv)
⊔
(
⊔

P0) =
⊔

P0.

v)
⊔
(P0 ∩ P1) ⊆

⊔
P0 ∩

⊔
P1.

Proof. i) By P0 ⊆
⊔

P0 ⊆ P, the (−→) direction follows immediately. The converse
direction we show by induction. For p0 ∈ P0 we get p0 ∈ P by our hypothesis.
Since P is a C-topology, x ∈ P for x ∈ X. If p ∈ ⊔

P0, such that p ∈ P, then
p ◦ t ∈ P, for every t ∈ C by definition. Suppose next that p0, p1 ∈

⊔
P0 such that

p0, p1 ∈ P. By definition, p∗ ∈ P.

ii) We use the (←−) implication of i) and get P0 ⊆ P1 ⊆
⊔

P1 −→
⊔

P0 ⊆
⊔

P1.

iii) Since P0, P1 ⊆ P0 ∪ P1, the claim follows directly.

iv)
⊔

P0 ⊆
⊔
(
⊔

P0) by definition and
⊔
(
⊔

P0) ⊆
⊔

P0 by i) and
⊔

P0 ⊆
⊔

P0.

v) We use again ii) and the fact that P0 ∩ P1 ⊆ P0, P1.

2.2.3 Proposition (
⊔

-lifting of morphisms) If h : (X,
⊔

P0) → (Y, Q), then h is C-
continuous if and only if for all p0 ∈ P0 it is h ◦ p0 ∈ Q i.e.,

∀p ∈
⊔

P0 (h ◦ p ∈ Q)←→ ∀p0 ∈ P0 (h ◦ p0 ∈ Q) .

17
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Proof. By definition of continuity we get h ◦ p ∈ Q, for all p ∈ ⊔ P0.
Let p0 ∈ P0, then since p0 ∈

⊔
P0 by i) we also get h ◦ p0 ∈ Q.

2N
p0∈P0 //

Q3h◦p

!!

X

h C-continuous

��
Y

The other direction is shown by induction. Our premise is that for all p0 ∈ P0 we have
h ◦ p0 ∈ Q. To prove the continuity of h we have to show that h ◦ p is in Q, for all
p ∈ ⊔ P0. By the induction principle Indt we need to prove:

i) ∀p0 ∈ P0 (h ◦ p0 ∈ Q).

ii) ∀x ∈ X (h ◦ x ∈ Q).

iii) ∀p ∈ ⊔ P0 ∀t ∈ C
(
h ◦ p ∈ Q −→ h ◦ (p ◦ t) ∈ Q

)
.

iv) ∀p0, p1 ∈
⊔

P0 (h ◦ p0 ∈ Q −→ h ◦ p1 ∈ Q −→ h ◦ p∗ ∈ Q) .

i) The claim follows exactly by our premise.

ii) Let x ∈ Const
(
2N, X

)
. Then h ◦ x ∈ Const

(
2N, Y

)
, thus h ◦ x ∈ Q, since Q is a

C-topology.

iii) Let p ∈ ⊔ P0 and t ∈ C. If h ◦ p ∈ Q, then h ◦ (p ◦ t) = (h ◦ p) ◦ t ∈ Q by (CS2) of
Q.

iv) Let p0, p1 ∈
⊔

P0. If h ◦ p0 ∈ Q and h ◦ p1 ∈ Q, then we get (h ◦ p∗) (iα) =
(h ◦ pi) (α) ∈ Q.

2.3 Examples of C-spaces

I We want to find the finest C-topology on X, in the sense of the smallest collection of
probes. We work similarly to section 3.3.3 in [13].

2.3.1 Definition A function p : 2N → X is called locally constant if there is a mp ∈N

such that for all α, β ∈ 2N it is

α =mp β −→ p (α) = p (β) .

mp denotes the modulus of local constancy of p. We write Constloc
(
2N, X

)
for the set of

locally constant functions 2N → X.

18



2 C-Spaces

2.3.2 Corollary Constloc
(
2N, 2

)
= C (2) .

2.3.3 Lemma Constloc
(
2N, X

)
is a C-topology on X, for any inhabited set X.

Proof. (CS1) Obviously it is Const
(
2N, X

)
⊆ Constloc

(
2N, X

)
.

(CS2) Let p ∈ Constloc
(
2N, X

)
and t ∈ C i.e., we find a mp ∈ N such that for all

α, β ∈ 2N it is
α =mp β −→ p (α) = p (β)

and for all m ∈N there exists a nt (m) ∈N such that for all α, β ∈ 2N we get

α =nt(m) β −→ t (α) =m t (β) .

We choose mp◦t = nt
(
mp
)
∈N, then for all α, β ∈ 2N it is

α =mp◦t β −→ t (α) =mp t (β)

and
t (α) =mp t (β) −→ p

(
t (α)

)
= p

(
t (β)

)
.

Therefore we have found a mp◦t ∈N such that for all α, β ∈ 2N it is

α =mp◦t β −→ (p ◦ t) (α) = (p ◦ t) (β) ,

hence p ◦ t is locally constant.

(CS′3) Let p0, p1 ∈ Constloc
(
2N, X

)
i.e., there are mp0 and mp1 ∈ N such that for all

α, β ∈ 2N we get(
α =mp0

β −→ p0 (α) = p0 (β)
)

and
(

α =mp1
β −→ p1 (α) = p1 (β)

)
.

We consider mp = max
{

mp0 , mp1

}
. Then for α =mp β we get α =mp0

β and α =mp1
β.

For p∗ : 2N → X, p∗ (iα) = pi (α), for every i ∈ {0, 1}, we see now

p∗ (0α) = p0 (α) = p0 (β) = p∗ (0β)

and
p∗ (1α) = p1 (α) = p1 (β) = p∗ (1β) .

Consequently, with the modulus of constancy mp∗ = max
{

mp0 , mp1

}
+ 1 we get p∗ ∈

Constloc
(
2N, X

)
.

It is trivial that Constloc
(
2N, 2N

)
⊆ C, hence every locally constant map on 2N is also

uniformly continuous.
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2 C-Spaces

2.3.4 Lemma For any C-space P = (X, P), every locally constant map 2N → X is in
P.

Proof. Let p : 2N → X be locally constant with m ∈N its modulus of constancy. We take
s ∈ 2m and define ps : 2N → X, ps (α) := p (sα), for α ∈ 2N. Now

ps (α) = p (sα) = p (sβ) = ps (β) ,

for any α, β ∈ 2N. Thus, ps is constant, hence in P. By (CS3) we get p ∈ P.

These two lemmas show that Constloc
(
2N, X

)
is the finest C-topology on X. Because of

that, for every C-topology P of X we have

Constloc

(
2N, X

)
⊆ P ⊆ F

(
2N, X

)
.

Since
⊔

∅ ⊆ Constloc
(
2N, X

)
by proposition 2.2.2 i), we get

⊔
∅ = Constloc

(
2N, X

)
.

2.3.5 Definition A C-space P = (X, P) is called discrete if for every C-space Q =
(Y, Q) all functions X → Y are continuous.

2.3.6 Proposition A C-space P = (X, P) is discrete if and only if P = Constloc
(
2N, X

)
i.e., Mor

((
X, Constloc(2N, X)

)
,Q
)
= F(X, Y).

Proof. Let (X, P) be a discrete C-space. According to lemma 2.3.3, we also consider the
C-space

(
X, Constloc

(
2N, X

) )
. Since (X, P) is discrete, the identity function

(X, P)→
(
X, Constloc

(
2N, X

) )
is continuous. By the definition of continuity we get that

every probe in P is also locally constant.
For the converse, letQ = (Y, Q) be a C-space and f : X → Y a map. For the discreteness
of
(
X, Constloc

(
2N, X

) )
we need to show the continuity of f . We prove this by induction

on p ∈ Constloc
(
2N, X

)
.

X
f // Y

2N

Constloc(X)3p

OO

f ◦p∈Q

==

(1) If p is constant, f ◦ p is also constant, therefore f ◦ p ∈ Q.

(2) Let p be written as p̃ ◦ t, where p̃ ∈ Constloc
(
2N, X

)
and t ∈ C, and with the

induction hypothesis f ◦ p̃ ∈ Q.
Then f ◦ p = f ◦ ( p̃ ◦ t) = ( f ◦ p̃) ◦ t ∈ Q.
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(3) Let p be defined by p (iα) = pi (α) , for i ∈ {0, 1}, where for p0, p1 ∈ Constloc
(
2N, X

)
we have the induction hypothesis f ◦ pi ∈ Q, for i ∈ {0, 1}. Since we get a α ∈ 2N

for every β ∈ 2N such that β = iα, where i is either 0 or 1, we conclude ( f ◦ p) (β) =
( f ◦ p) (iα) = ( f ◦ pi) (α), hence f ◦ p ∈ Q.

Because of the previous proposition we call Constloc
(
2N, X

)
also the discrete C-topology

of X.

II With the least C-topology
⊔

P0 we can construct many examples. We already have
seen that

⊔
∅ = Constloc

(
2N, X

)
. The following propositions will also yield

•
⊔

Id2N = C.

•
⊔

i = C(R), where i : 2N → R is defined by i(α) :=
∞
∑

n=0

αn
2n .

•
⊔
{πn | n ∈N} = C(2), where πn : 2N → 2 is defined by πn(α) := αn.

2.3.7 Proposition
⊔

Id2N = C.

Proof. Let P0 = Id2N : 2N → 2N.

i) We get that Id2N ∈
⊔

Id2N .

ii) The constant maps 2N → 2N are in
⊔

Id2N .

iii) We have to test the combinations of elements in
⊔

Id2N and elements in C. Since
s ◦ t is again in C, for s, t ∈ C, it suffices to look at simple compositions.
Let t ∈ C.

• Id2N ◦ t = t ∈ C, thus C ⊆ ⊔ Id2N .

• c ◦ t = c̃ for c, c̃ constant.

Since Id2N ∈ C and Const
(
2N
)
∈ C, we pool i)-iii) and get C ⊆ ⊔ Id2N .

iv) For p0, p1 ∈ C we get p∗ ∈ C, because C is a C-topology.

All together we get
⊔

Id2N = C.

2.3.8 Definition We define the function log2 : R+ → R by

log2(x) :=
ln(x)
ln(2)

, for x > 0,

where ln : R+ → R is defined in [4, page 57], by ln(x) :=
x∫

1
t−1dt, for x > 0.
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2.3.9 Proposition The following conditions are satisfied:

i) For the function E : R→ R+ defined by E(x) = 2x we get

E
(

log2(x)
)
= x, for x ∈ R+ and log2

(
E(y)

)
= y, for y ∈ R.

ii) log2(x · y) = log2(x) + log2(y), for x, y > 0.

Proof. i) By the definitions of log2 and E it is

E
(

log2(x)
)
= E

(
ln(x)
ln(2)

)
= 2

ln(x)
ln(2) = exp

(
ln(x)
ln(2)

· ln(2)
)
= exp

(
ln(x)

)
= x,

for x > 0, by [4, page 58] and

log2

(
E(y)

)
=

ln
(
E(y)

)
ln(2)

=
ln(2y)

ln(2)
=

ln
(

exp
(
y · ln(2)

))
ln(2)

=
y · ln(2)

ln(2)
= y,

for y ∈ R.

ii) By definition of log2 we get

log2(x · y) = ln(x · y)
ln(2)

=
ln(x) + ln(y)

ln(2)
=

ln(x)
ln(2)

+
ln(y)
ln(2)

= log2(x) + log2(y).

2.3.10 Proposition For the function i : 2N → R defined by

i(α) :=
∞

∑
n=0

αn

2n .

we get i ∈ C(R).

Proof. Let ε > 0. We choose ni(ε) := log2(
1
ε ) + 1, then for all α, β ∈ 2N with α =ni(ε) β

we get

|i(α)− i(β)| =
∣∣∣∣∣ ∞

∑
n=0

αn

2n −
∞

∑
n=0

βn

2n

∣∣∣∣∣ =
∣∣∣∣∣ ∞

∑
n=0

αn − βn

2n

∣∣∣∣∣ =
∣∣∣∣∣ ∞

∑
n=ni(ε)

αn − βn

2n

∣∣∣∣∣ ≤

≤
∞

∑
n=ni(ε)

≤1︷ ︸︸ ︷
|αn − βn|

2n ≤
∞

∑
n=ni(ε)

1
2n =

1
2ni(ε)−1

= ε,

hence i ∈ C(R).
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2.3.11 Proposition
⊔

i = C(R).

Proof. i) By definition, i ∈ ⊔ i.

ii) Obviously, Const(2N, R) ⊆ ⊔ i.

iii) Let t ∈ C. Then

(i ◦ t)(α) = i
(
t(α)

)
=

∞

∑
n=0

(
t(α)

)
n

2n .

Let ε > 0. We choose ni◦t(ε) := nt
(

log2(
1
ε ) + 1

)
, then for all α, β ∈ 2N with

α =ni◦t(ε) β we get
t(α) =log2(

1
ε )+1 t(β),

hence

|(i ◦ t)(α)− (i ◦ t)(β)| =
∣∣i(t(α))− i

(
t(β)

)∣∣ = ∣∣∣∣∣ ∞

∑
n=0

(
t(α)

)
n

2n −
∞

∑
n=0

(
t(β
)
)n

2n

∣∣∣∣∣ =
=

∣∣∣∣∣ ∞

∑
n=0

(
t(α)

)
n −

(
t(β)

)
n

2n

∣∣∣∣∣ =
∣∣∣∣∣∣

∞

∑
n=log2(

1
ε )+1

(
t(α)

)
n −

(
t(β)

)
n

2n

∣∣∣∣∣∣ ≤
≤

∞

∑
n=log2(

1
ε )+1

∣∣∣(t(α))n −
(
t(β)

)
n

∣∣∣
2n ≤ 1

2log2(
1
ε )+1−1

=
1

2log2(
1
ε )

= ε,

hence i ◦ t ∈ C(R). Therefore, by proposition 2.3.10 we conclude C(R) ⊆ ⊔ i.

iv) Since C(R) is a C-topology, we get no further elements of
⊔

i, hence C(R) =
⊔

i.

2.3.12 Definition The function πn : 2N → 2 is defined by πn(α) = αn, for any α ∈ 2N.⊔
{πn | n ∈N} we also denote by

⊔
n∈N

πn.

2.3.13 Proposition
⊔

n∈N

πn = C(2).

Proof. (⊇) Since C(2) = Constloc(2N, 2) by corollary 2.3.2 and since Constloc(2N, 2) is
the finest C-topology on 2, it is C(2) ⊆ ⊔

n∈N

πn.

(⊆) Let f ∈ ⊔
n∈N

πn. We use the induction principle Indt with the property A( f ) : f ∈

C(2).
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i) Let f ∈ {πn | n ∈N} i.e., there exists a n0 ∈ N such that f = πn0 . If α, β ∈ 2N

such that α =n0+1 β, then

πn0(α) = αn0 = βn0 = πn0(β),

hence f ∈ C(2).

ii) Let f ∈ Const(2N, 2). Since Const(2N, 2) ⊆ C(2), it is obviously f ∈ C(2).

iii) Let f = f̃ ◦ t, where f̃ ∈ ⊔
n∈N

πn, f̃ ∈ C(2) and t ∈ C i.e., there is a n f̃ ∈ N such

that for all α, β ∈ 2N we get

α =n f̃
β −→ f̃ (α) = f̃ (β)

and for every m ∈N exists a nt(m) ∈N such that for all α, β ∈ 2N it is

α =nt(m) β −→ t(α) =m t(β).

We choose n f̃ ◦t := nt(n f̃ ), then for all α, β ∈ 2N with α =n f̃ ◦t
β we get

t(α) =n f̃
t(β),

hence
( f̃ ◦ t)(α) = f̃

(
t(α)

)
= f̃

(
t(β)

)
= ( f̃ ◦ t)(β).

Because of that we get f = f̃ ◦ t ∈ C(2).

iv) Let f0, f1 ∈
⊔

n∈N

πn, f0, f1 ∈ C(2) such that f (iα) = fi(α), for i ∈ {0, 1} i.e., there

are n f0 , n f1 ∈N such that for all α, β ∈ 2N and for i ∈ {0, 1} we get

α =n fi
β −→ fi(α) = fi(β).

We choose ñ f := max
{

n f0 , n f1

}
, then for all α, β ∈ 2N with α =ñ f β and for

i ∈ {0, 1} we get
f (iα) = fi(α) = fi(β) = f (iβ),

hence for n f := max
{

n f0 , n f1

}
+ 1 it is f ∈ C(2).

III If (X, P1) and (X, P2) are C-spaces, then (X, P1 ∩ P2) is a C-space.

(CS1) Since Const
(
2N, X

)
⊆ P1 and Const

(
2N, X

)
⊆ P2 we get

Const
(

2N, X
)
⊆ P1 ∩ P2.

(CS2) Let p ∈ P1 ∩ P2 i.e., p ∈ P1 and p ∈ P2. Since P1 and P2 are C-topologies, we get
p ◦ t ∈ P1 and p ◦ t ∈ P2, for all t ∈ C, hence p ◦ t ∈ P1 ∩ P2.

(CS′3) Let p0, p1 ∈ P1 ∩ P2 i.e., p0, p1 ∈ P1 and p0, p1 ∈ P2. Now p∗ : 2N → X, defined by
p∗ (iα) = pi (α) for i ∈ {0, 1}, is in P1 and P2, hence p∗ ∈ P1 ∩ P2.
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IV For two C-spaces P = (X, P) and Q = (Y, Q) we define their product P ×Q :=
(X×Y, P×Q) by

P×Q :=
⊔
{(p, q) | p ∈ P, q ∈ Q} .

2.3.14 Proposition The product P ×Q satisfies the universal property for products i.e., for
every C-space T = (S, T) and for every f ∈ Mor (T ,P) and g ∈ Mor (T ,Q) there exists a
unique h ∈ Mor (T ,P ×Q), such that f = π1 ◦ h and g = π2 ◦ h are satisfied, where π1 and
π2 are the projections to X and Y, respectively.

S

f

}}

h

��

g

!!
X X×Y

π1
oo

π2
// Y

Proof. First we show that the projections are C-continuous. We prove this for π1, and for
π2 we use the same approach.
It suffices to verify that π1 ◦ (p, q) ∈ P for every p ∈ P and q ∈ Q. This follows
immediately, since π1 ◦ (p, q) = p ∈ P.

We define h : S→ X×Y by h (s) =
(

f (s) , g (s)
)
, for every s ∈ S. Then

f = π1 ◦ h and g = π2 ◦ h.

It is obvious that h is the only function with these properties. Finally we have to show
that h is C-continuous. First we see that f ◦ r ∈ P and g ◦ r ∈ Q, for every r ∈ T, since f
and g are C-continuous. For every r ∈ T we get

(h ◦ r) (α) = h
(
r (α)

)
=
(

f
(
r (α)

)
, g
(
r (α)

))
=
(
( f ◦ r) (α) , (g ◦ r) (α)

)
∈ P×Q,

hence h ∈ Mor (T ,P ×Q) .

2.4 Morphisms between C-spaces

In this section we investigate C-continuous functions. It will be demonstrated that
every probe of a C-topology is C-continuous. We will explore the consequences to
morphisms after restricting the domain or the codomain, before introducing impor-
tant topological terms like isomorphism and openness for the theory of C-spaces
later.

The following lemma is also proven in [8] and [14], but in a different way.
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2.4.1 Lemma (Yoneda) For any C-space P = (X, P) a map 2N → X is a probe if and only if
it is C-continuous i.e., ifP = (X, P) is a C-space, then P = Mor (C,P).

Proof. Let P = (X, P) be a C-space, f : 2N → X a map.
Let f be a probe on X i.e., f ∈ P. We consider an arbitrary t ∈ C. Since C is a C-topology
and f ◦ t ∈ P with (CS2) for P , we get the C-continuity of f by definition.

2N
f∈P // X

2N

C3t

OO

f ◦t∈P

;;

For the converse direction let f be C-continuous i.e., for C =
(
2N, C

)
and P = (X, P) it

is f ◦ t in P, for every t ∈ C.

2N
f C-continuous // X

2N

C3t

OO

f ◦t∈P

;;

We have to verify that f ∈ P. This is easy, by taking t = Id2N as the identity map, which
is clearly uniformly continuous.

2.4.2 Corollary The following hold:

C = Mor(C, C).
C(R) = Mor(C,R).

The result of the previous corollary is that C is the set of all C-continuous functions
between 2N and 2N, and C(R) the set of all C-continuous functions between R and
R.

2.4.3 Lemma Suppose that P = (X, P),Q = (Y, Q),P1 = (X, P1), P2 = (X, P2),Q1 =
(Y, Q1) and Q2 = (Y, Q2) are C-spaces. Then the following hold:

i) Const(X, Y) = {y | y ∈ Y} ⊆ Mor(P ,Q).

ii) If Q1 ⊆ Q2, then Mor(P ,Q1) ⊆ Mor(P ,Q2), while Q1 ( Q2 does not imply that
Mor(P ,Q1) ( Mor(P ,Q2). Moreover, we have that

Mor
(
P ,
(
Y, Constloc(2N, Y)

))
⊆ Mor(P ,Q) ⊆ Mor

(
P ,
(
Y, F(2N, Y)

))
.
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iii) If P1 ⊆ P2, then Mor(P2,Q) ⊆ Mor(P1,Q), while P1 ( P1 does not imply that
Mor(P2,Q) ( Mor(P1,Q). Moreover, we have that

Mor
((

X, F(2N, X)
)
,Q
)
⊆ Mor(P ,Q) ⊆ Mor

((
X, Constloc(2N, X)

)
,Q
)

.

Proof. i) Since y ◦ p ∈ Const(2N, Y), we get y ◦ p ∈ Q, for every p ∈ P.

ii) If h ∈ Mor(P ,Q1), then we get h ◦ p ∈ Q1 ⊆ Q2, for all p ∈ P i.e., h ∈ Mor(P ,Q2).
Since we have derived the double inclusion Constloc(2N, Y) ⊆ Q ⊆ F(2N, Y) for
every C-topology Q on Y, we get

Mor
(
P ,
(
Y, Constloc(2N, Y)

))
⊆ Mor(P ,Q) ⊆ Mor

(
P ,
(
Y, F(2N, Y)

))
.

Now we choose Q1 = Constloc(2N, Y) and Q2 = F(2N, Y). First we see that

Mor
(
P ,
(
Y, F(2N, Y)

))
= F(X, Y), (∗)

since h ◦ p ∈ F(2N, Y), for every p ∈ P and h ∈ F(X, Y).

X
h∈F(X,Y) // Y

2N

P3p

OO

h◦p∈F(2N,Y)

==

On the other hand

h ∈ Mor
(
P ,
(
Y, Constloc(2N, Y)

))
←→ ∀p ∈ P

(
h ◦ p ∈ Constloc(2N, Y)

)
.

If P = Constloc(2N, X), then

Mor
((

X, Constloc(2N, X)
)
,
(
Y, Constloc(2N, Y)

))
= F(X, Y).

X
h∈F(X,Y) // Y

2N

Constloc(2N,X)3p

OO

h◦p∈Constloc(2N,Y)

==

Hence, for P =
(
X, Constloc(2N, X)

)
we get the required equality

Mor(P ,Q1) = Mor(P ,Q2).
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iii) If h ∈ Mor(P2,Q), then we get h ◦ p2 ∈ Q, for every p2 ∈ P2. Hence, h ◦ p1 ∈ Q
for every p1 ∈ P1 ⊆ P2, thus h ∈ Mor(P1,Q).
By the double inclusion Constloc(2N, X) ⊆ P ⊆ F(2N, X) for every C-topology P
on X, we get

Mor
((

X, F(2N, X)
)
,Q
)
⊆ Mor(P ,Q) ⊆ Mor

((
X, Constloc(2N, X)

)
,Q
)

.

Now we take P1 = Constloc(2N, X) and P2 = F(2N, X). By proposition 2.3.6 we
know that

Mor
((

X, Constloc(2N, X)
)
,Q
)
= F(X, Y).

X
h∈F(X,Y) // Y

2N

Constloc(2N,X)3p

OO

h◦p∈Q

==

On the other hand

h ∈ Mor
((

X, F(2N, X)
)
,Q
)
←→ ∀p ∈ F(2N, X)(h ◦ p ∈ Q).

If Q = F(2N, Y), then by (∗) we get

Mor
((

X, F(2N, X)
)
,
(
Y, F(2N, Y)

))
= F(X, Y),

hence for Q =
(
Y, F(2N, Y)

)
we get the required equation.

2.4.4 Definition A function f : X → Y is an injection, written 1− 1, if for all x, y ∈ X
it is

f (x) = f (y) −→ x = y.

Obviously, then for every y ∈ f (X) there exists an unique x ∈ X such that f (x) = y, and
the inverse function f−1 : f (X)→ X is well-defined.
A function f : X → Y is surjective or onto if for every y ∈ Y there exists at least one x ∈ X
such that f (x) = y.
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2 C-Spaces

2.4.5 Definition Let P = (X, P) and Q = (Y, Q) be C-spaces. A C-morphism h ∈
Mor(P ,Q) is called C-monomorphism, or h ∈ Mono(P ,Q) if for every C-space S = (Z, S)
and for all k, l ∈ Mor(S ,P) it is

(h ◦ k = h ◦ l) −→ (k = l).

Z
k,l //// X h // Y

We call h a C-isomorphism between P and Q, if there is some j ∈ Mor(Q,P) such that
j ◦ h = IdX and h ◦ j = IdY.
A C-isomorphism between P and P is called C-automorphism of P .
We call h a C-epimorphism, if for every C-space S = (Z, S) and for every k, l ∈ Mor(Q,S)
it is

(k ◦ h = l ◦ h) −→ (k = l).

Z

X

k◦h

66

h //

l◦h

((

Y

k

==

l

!!
Z

We denote the set of the C-epimorphisms between P and Q by Epi(P ,Q).
If a C-epimorphism h is onto Y, we call it a C-set-epimorphism. The set of the C-set-
epimorohisms is denoted by setEpi(P ,Q).

2.4.6 Proposition h ∈ Mono(P ,Q) if and only if h ∈ Mor(P ,Q) and h is 1− 1.

Proof. If h is 1− 1, then for every k, l ∈ Mor(S ,P) with h ◦ k = h ◦ l we get

h
(
k(z)

)
= (h ◦ k)(z) = (h ◦ l)(z) = h

(
l(z)

)
,

hence k(z) = l(z) i.e., h ∈ Mono(P ,Q).
If h ∈ Mono(P ,Q) and if x1, x2 ∈ X such that h(x1) = h(x2), then for k = x1 and
l = x2 ∈ Mor(P ,Q) we get

h ◦ x1 = h ◦ x2,

hence x1 = x2 i.e., x1 = x2.
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2.4.7 Proposition A C-morphism h ∈ Mor(P ,Q) is a C-isomorphism if and only if h is a
C-monomorphism onto Y and h−1 ∈ Mor(Q,P).

Proof. If h ∈ Mor(P ,Q) is a C-isomorphism, then there exists a j ∈ Mor(Q,P) such
that j ◦ h = IdX and h ◦ j = IdY. If k, l ∈ Mor(S ,P) such that h ◦ k = h ◦ l, then we get

k = IdX ◦ k = (j ◦ h) ◦ k = j ◦ (h ◦ k) = j ◦ (h ◦ l) = (j ◦ h) ◦ l = IdX ◦ l = l,

hence h ∈ Mono(P ,Q).
If y ∈ Y, then for x := j(y) ∈ X we get

h(x) = h
(

j(y)
)
= (h ◦ j)(y) = IdY(y) = y,

hence h is onto Y.
If q ∈ Q, then, since j ∈ Mor(Q,P),

h−1 ◦ q = IdX ◦ (h−1 ◦ q) = (j ◦ h) ◦ (h−1 ◦ q) = j ◦ (h ◦ h−1) ◦ q = j ◦ IdY ◦ q = j ◦ q ∈ P,

hence h−1 ∈ Mor(Q,P).

The converse direction is obvious by choosing j := h−1 ∈ Mor(Q,P).

2.4.8 Proposition Let P and Q be C-spaces. If h ∈ Mor(P ,Q) such that h is 1− 1 and
onto Y, then h−1 ∈ Mor(Q,P) if and only if for every q ∈ Q there exists a p ∈ P such that
q = h ◦ p.

Proof. By definition, h−1 ∈ Mor(Q,P) if and only if h−1 ◦ q ∈ P, for every q ∈ Q.

Y
h−1∈Mor(Q,P) // X

2N

Q3q

OO

h−1◦q∈P

;;

If q ∈ Q, then we define p := h−1 ◦ q and we get that q = h ◦ p.
For the converse we have that h−1 ◦ q = h−1 ◦ (h ◦ p) = p.

Obviously, setEpi(P ,Q) ⊆ Epi(P ,Q). Classically we can show, that there is no C-
epimorphism in CS which is not a C-set-epimorphism:
Suppose there are C-spaces Q = (Y, Q),Q′ = (Y′, Q′) and a function k : Y → Y′ ∈
Epi(Q,Q′) which is not onto Y′. Because of that there exists some y′0 ∈ Y′ such that
y′0 /∈ k(Y). Let X be a set containing at least two points and P =

(
X, Constloc(2N, X)

)
.

If l ∈ Mor(Q′,P), then we define j : Y′ → X as follows: if y ∈ k(Y), then j(y) =

l(y), and j(y0) 6= l(y0). Since Mor
(
Q′,
(
X, Constloc(2N, X)

))
= F(Y′, X) we get that
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2 C-Spaces

j ∈ Mor(Q′,P). By the definition of k we have that l ◦ k = j ◦ k and at the same time
l 6= j.

Based on proposition 2.4.8 we define the openness of a C-morphism.

2.4.9 Definition Let P and Q be C-spaces. A C-morphism h ∈ Mor(P ,Q) is called
open, if for every q ∈ Q there exists a p ∈ P such that q = h ◦ p.

X h // Y

2N

P3p

OO

q∈Q

==

2.4.10 Proposition (
⊔

-lifting of openness) If P = (X, P),Q = (Y,
⊔

Q0) are C-spaces
and h ∈ setEpi(P ,Q), then

∀q0 ∈ Q0 ∃p ∈ P(q0 = h ◦ p) −→ ∀q ∈
⊔

Q0 ∃p ∈ P(q = h ◦ p).

Proof. i) If q = q0 ∈ Q0, then we just use our premise.

ii) For a constant function q : 2N → Y, we find, by the surjectivity of h, a x0 ∈ X such
that h(x0) = q(α) for any α ∈ 2N. Hence, if we define p : 2N → X, p(α) = x0 for
every α ∈ 2N, we get q = h ◦ p.

iii) If q = q0 ◦ t, where t ∈ C and q0 ∈
⊔

Q0 such that q0 = h ◦ p0 for some p0 ∈ P,
then

q = q0 ◦ t = (h ◦ p0) ◦ t = h ◦ (p0 ◦ t),

where p0 ◦ t ∈ P by (CS2).

iv) If q(iα) = qi(α) for i ∈ {0, 1}, where qi ∈
⊔

Q0 such that qi = (h ◦ pi) for some
pi ∈ P, i ∈ {0, 1}, then for p : 2N → X defined by p(iα) = pi(α), for i ∈ {0, 1}, we
get

q(iα) = qi(α) = (h ◦ pi)(α) = h
(

pi(α)
)
= h

(
p(iα)

)
= (h ◦ p)(iα),

hence q = h ◦ p.

2.4.11 Remark In the theory of C-spaces the
⊔

-lifting of openness can be shown
directly, while in the theory of Bishop spaces this takes more effort (see [10, page 56]).
The well-definability lemma and the U -lifting of openness need to be proven first, before
the

∨
-lifting of openness can be shown.
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2 C-Spaces

2.4.12 Proposition Let P = (X, P) be a C-space and e : X → Y a bijection. Then
there is a unique C-topology QP on Y such that e is a C-isomorphism between P and QP =
(Y, QP).

Proof. We define QP :=
{

ep | p ∈ P
}

, where ep = e ◦ p.

X e // Y

2N

P3p

OO

ep

==

Obviously, ep ∈ Const(2N, Y), for p ∈ Const(2N, X).
For any p ∈ P and t ∈ C it is

ep ◦ t = (e ◦ p) ◦ t = e ◦ (p ◦ t) = ep◦t.

For p∗ ∈ P defined by p∗(iα) = pi(α), for i ∈ {0, 1}, where pi ∈ P such that epi ∈ QP,
we get for i ∈ {0, 1}

ep∗(iα) = (e ◦ p∗)(iα) = (e ◦ pi)(α) = epi(α).

Hence, QP is a C-topology on Y.
Since for every p ∈ P it is ep = e ◦ p ∈ QP, we conclude e ∈ Mor(P ,QP).
Since for every ep ∈ QP there exists a p ∈ P such that ep = e ◦ p, we have that e is an
open C-morphism, hence by proposition 2.4.8 a C-isomorphism between P and QP.
Suppose now that Q is a C-topology on Y such that e is C-isomorphism between P and
Q = (Y, Q). Since e ∈ Mor(P ,Q), if we fix some p ∈ P, then there is a q ∈ Q such that
q = e ◦ p = ep i.e., QP ⊆ Q.
Since e is open, we have that for every q ∈ Q there exists a p ∈ P such that q = e ◦ p,
hence, if we fix some q ∈ Q, we have that q = e ◦ p = ep i.e., Q ⊆ QP.

2.5 Relative C-spaces

In this section we will study what happens if our set X is restricted to a subset Y ⊆
X. Is there a C-space on Y, depending on a given C-space on X? And if there is
one, which properties does it satisfy? How does it, for example, react with building
products?

2.5.1 Definition Let P = (X, P) be a C-space. For Y ⊆ X inhabited, we define the
C-space P|Y = (Y, P|Y) by the topology

P|Y :=
⊔

Q0,Y,

Q0,Y :=
{

p ∈ P | ∀α ∈ 2N
(

p(α) ∈ Y
)}

.
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P|Y is called the relative C-topology of P on Y, P|Y the relative C-space of P on Y. We denote
r : (X, P)→ (Y, P|Y).

2.5.2 Example C(R)|2 =
⊔ {

c ∈ C(R) | ∀α ∈ 2N
(
c(α) ∈ 2

)}
= C(2).

2.5.3 Lemma Let P = (X, P) be a C-space and P|Y = (Y, P|Y) the relative C-space, for
Y ⊆ X inhabited. If p|Y ∈ P|Y, then there exists a p ∈ P such that IdY ◦ p|Y = p, where
IdY : Y → X, IdY(y) = y. In particular, we get IdY ∈ Mor(P|Y,P).

2N
p∈P //

P|Y3p|Y
!!

X

Y

IdY

OO

Proof. We use the induction principle Indt with the property
A(p|Y) : ∃p ∈ P(IdY ◦ p|Y = p).

i) If p|Y ∈
{

p ∈ P | ∀α ∈ 2N
(

p(α) ∈ Y
)}

, then (IdY ◦ p|Y)(α) = p|Y(α) ∈ P.

ii) If p|Y ∈ Const(2N, Y), then we get IdY ◦ p|Y ∈ Const(2N, Y) ⊆ Const(2N, X) ⊆ P.

iii) Let q|Y ∈ P|Y with IdY ◦ q|Y = q ∈ P and t ∈ C, then

IdY ◦ (q|Y ◦ t) = (IdY ◦ q|Y) ◦ t = q ◦ t ∈ P,

since P is a C-topology.

iv) Let p0|Y, p1|Y ∈ P|Y with IdY ◦ pi|Y = pi ∈ P for i ∈ {0, 1}, then we get

(IdY ◦ p∗|Y)(iα) = IdY
(

p∗|Y(iα)
)
= IdY

(
pi|Y(α)

)
= (IdY ◦ pi|Y)(α) ∈ P,

where p∗|Y : 2N → Y is defined by p∗|Y(iα) = pi|Y(α), for i ∈ {0, 1}.

2.5.4 Proposition If P = (X,
⊔

P0) is a C-space, then the relative C-topology on some
inhabited Y ⊆ X is given by

(
⊔

P0)|Y :=
⊔

Q00,Y,

Q00,Y :=
{

p0 ∈ P0 | ∀α ∈ 2N
(

p0(α) ∈ Y
)}

.
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Proof. We need to show that
⊔

Q0,Y =
⊔

Q00,Y, where
Q0,Y =

{
p ∈ ⊔ P0 | ∀α ∈ 2N

(
p(α) ∈ Y

)}
.

(⊇) Since Q00,Y ⊆ Q0,Y, we get by proposition 2.2.2 ii) that
⊔

Q00,Y ⊆
⊔

Q0,Y.

(⊆) By proposition 2.2.2 i) it suffices to show that Q0,Y ⊆
⊔

Q00,Y. For this, let p ∈ Q0,Y
i.e., p ∈ ⊔ P0 such that for all α ∈ 2N it is p(α) ∈ Y.

i) If p ∈ P0, then obviously p ∈ Q00,Y, hence p ∈ ⊔Q00,Y.

ii) If p ∈ Const(2N, X) such that for all α ∈ 2N it is p(α) ∈ Y, then we get p ∈
Const(2N, Y) ⊆ ⊔Q00,Y.

iii) If q ∈ Q0,Y such that q ∈ ⊔Q00,Y and if t ∈ C is arbitrary, then q ◦ t ∈ ⊔Q00,Y by
(CS2) for

⊔
Q00,Y.

iv) Let p0, p1 ∈ Q0,Y such that p0, p1 ∈
⊔

Q00,Y. For p∗ : 2N → X defined by p∗(iα) =
pi(α) , for i ∈ {0, 1}, we get p∗ ∈ ⊔Q00,Y by (CS′3) for

⊔
Q00,Y.

This proposition yields the
⊔

-lifting of relativity. The next step is an investigation of
what happens to morphisms between restricted sets.

2.5.5 Proposition For C-spaces P = (X, P),S = (Y, S) and for inhabited sets A ⊆ X, B ⊆
Y the following hold:

i) P|A is the smallest C-topology Q on A satisfying the property IdA ∈ Mor(Q,P).

ii) If e : X → B, then e ∈ Mor(P ,S)←→ e ∈ Mor(P ,S|B).

iii) If e : X → Y, then e ∈ Mor(P ,S) −→ e|A ∈ Mor(P|A,S), where e|A : A → Y is
defined by e|A(a) = e(a) for every a ∈ A.

Proof. i) By lemma 2.5.3, IdA ∈ Mor(P|A,P).
Let Q be a C-topology on A such that IdA ∈ Mor(Q,P). This means that IdA ◦ q ∈
P for every q ∈ Q. Since we have already seen that IdA ◦ p|A ∈ P, for every
p|A ∈ P|A, we conclude P|A ⊆ Q.

ii) By definition,

e ∈ Mor(P ,S)←→ ∀p ∈ P(e ◦ p ∈ S)←→
←→ ∀p ∈ P(e ◦ p ∈ S|B)←→
←→ e ∈ Mor(P ,S|B).
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X e // B ⊆ Y

2N

P3p

OO

e◦p∈S|B

==

iii) By definition,

e ∈ Mor(P ,S)←→ ∀p ∈ P(e ◦ p ∈ S) −→
−→ ∀p|A ∈ P|A(e|A ◦ p|A ∈ S)←→
←→ e|A ∈ Mor(P|A,S).

X e // Y A
e|A // Y

2N

P3p

OO

s∈S

==

2N

P|A3p|A

OO

s∈S

==

This demonstrates that the restriction of the codomain does not affect the continuity of
a map, while the restriction of the domain preserves the continuity, but the expansion
backwards does not do so.

2.5.6 Proposition For C-spaces P = (X, P),S = (Y, S) and A ⊆ X, B ⊆ Y inhabited sets
we get (P× S)|A×B = P|A × S|B.

Proof. By definition,

(P× S)|A×B =
⊔{

h ∈ P× S | ∀α ∈ 2N
(
h(α) ∈ A× B

)}
=

=
⊔{

(p, s) ∈ P× S | ∀α ∈ 2N
(
(p, s)(α) ∈ A× B

)}
=

=
⊔{

(p, s) ∈ P× S | ∀α ∈ 2N
(

p(α) ∈ A, s(α) ∈ B
)}

=

=
⊔
{(p|A, s|B) | p|A ∈ P|A, s|B ∈ S|B} =

= P|A × S|B.

The result of this proposition is that relativity preserve products.
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The facts summed up in this chapter have already been explored in [10], therefore there
will be no proof here. We will merely be giving an overview of facts that are of interest for
this thesis, since analogical results for the theory of C-spaces were part of the previous
chapter. For a better reading, we use the same structure of chapter 2, even if this may
differ from the sequence of the items in [10].

3.1 Basic Definitions

3.1.1 Definition We denote the set of functions of type X → R by F (X, R). The
constant function on X with value a ∈ R is denoted by a, the set of all constant functions
of type X → R by Const (X, R).

3.1.2 Definition If a function Φ : R→ R is uniformly continuous on every bounded
subset B of R, then Φ is called Bishop continuous i.e., for every bounded subset B of R and
for every ε > 0 there exists ωΦ,B (ε) > 0 such that for all x, y ∈ B

|x− y| ≤ ωΦ,B (ε) −→ |Φ (x)−Φ (y)| ≤ ε.

The function ωΦ,B : R+ → R+, ε 7→ ωΦ,B (ε) is called a modulus of continuity for Φ on B.
A continuous function can also be written as a pair

(
Φ, (ωΦ,B)B⊆bR

)
. The set of Bishop

continuous functions is denoted by Bic (R). Similarly, by Bic (Y) we denote the set of
real-valued continuous functions defined on some Y ⊆ R such that they are uniformly
continuous on every bounded subset of Y.

3.1.3 Definition An inhabited metric space (X, d) is locally compact if each bounded
subset can be included in some compact subset of X. It is compact if it is complete and
totally bounded.

36



3 Bishop spaces

3.1.4 Definition If (X, d) is a locally compact metric space, a function f : X → R is
called Bishop continuous if it is uniformly continuous on every bounded subset of X i.e.,
for every bounded subset B of X and for every ε > 0 there exists ω f ,B (ε) > 0 such that
for all x, y ∈ B

d (x, y) ≤ ω f ,B (ε) −→ | f (x)− f (y)| ≤ ε.

The function ω f ,B : R+ → R+, ε 7→ ω f ,B (ε) is called the modulus of continuity of f on B.
The set of all Bishop continuous functions from X to R is denoted by Bic (X).

3.1.5 Definition If f , g ∈ F (X, R) , ε > 0, and Φ ⊆ F (X, R), we define

U (g, f , ε) :←→ ∀x ∈ X (|g(x)− f (x)| ≤ ε) ,

U (Φ, f ) :←→ ∀ε > 0 ∃g ∈ Φ
(
U(g, f , ε)

)
.

3.1.6 Definition A Bishop space is a pair F = (X, F), where X is an inhabited set and F
is a so called Bishop topology i.e., F is a set of functions of type X → R with the following
clauses
(BS1) All constant maps are in F i.e., a ∈ F for a ∈ R.
(BS2) f ∈ F −→ g ∈ F −→ f + g ∈ F.
(BS3) f ∈ F −→ Φ ∈ Bic (R) −→ Φ ◦ f ∈ F,

X
f //

F3Φ◦ f

!!

R

Φ∈Bic(R)

��
R

(BS4) f ∈ F (X, R) −→ U (F, f ) −→ f ∈ F.

3.1.7 Definition For two Bishop spaces F = (X, F) and G = (Y, G) a map h : X → Y
is called a Bishop morphism from F to G if g ◦ h is in F, for every g ∈ G.

X h //

F3g◦h
!!

Y

g∈G

��
R

We write h ∈ Mor (F ,G).

3.1.8 Definition The Bishop spaces as the objects together with the Bishop morphisms
as the arrows build the category of Bishop spaces BS.
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3.1.9 Remark (BS1) implies Const (X, R) ⊆ F.

3.1.10 Definition For ( fn)n∈N ⊆ F (X, R) we denote by fn
u−→ f that fn converges

uniformly to f i.e., for every ε > 0 there exists n0 ∈N such that for all n ≥ n0 and for all
x ∈ X

| fn (x)− f (x)| ≤ ε.

3.1.11 Proposition (BS4) is equivalent to
(BS′4) fn ⊆ F −→ f ∈ F (X, R) −→ fn

u−→ f −→ f ∈ F.

3.1.12 Proposition If F is a Bishop topology on X, then

• f g = ( f+g)2− f 2−g2

2 ,

• λ f ,

• − f ,

• max { f , g} = f+g+| f−g|
2 ,

• min { f , g} = −max {− f ,−g} and

• | f |

are in F, for every f , g ∈ F and λ ∈ R.

3.1.13 Definition The Cantor space is defined by the Bishop space C =
(
2N, Bic(2)N

)
.

3.1.14 Definition We call R =
(
R, Bic (R)

)
the Bishop reals.

3.1.15 Proposition For every compact metric space X, the set Cu(X, R) of all uniformly
continuous functions of type X → R is a topology, called by Bishop the uniform topology on X.
We denote this space by

U (X) =
(
X, Cu(X, R)

)
.
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3.2 Inductively generated Bishop spaces

3.2.1 Definition Let F0 ⊆ F (X, R). The least Bishop topology
∨

F0 generated by F0 is
defined by the following clauses:

i) f0 ∈ F0 −→ f0 ∈
∨

F0.

ii) a ∈ R −→ a ∈ ∨ F0.

iii) f ∈ ∨ F0 −→ g ∈ ∨ F0 −→ f + g ∈ ∨ F0.

iv) f ∈ ∨ F0 −→ Φ ∈ Bic (R) −→ Φ ◦ f ∈ ∨ F0.

v) ∀ε > 0
(

g ∈ ∨ F0 −→ U (g, f , ε)
)
−→ f ∈ ∨ F0.

We call F0 a subbase of
∨

F0.

These clauses induce the induction principle Ind∨ on
∨

F0:

∀ f0 ∈
∨

F0
(

P ( f0)
)
−→

∀a ∈ R
(

P (a)
)
−→

∀ f , g ∈ ∨ F0
(

P ( f ) −→ P (g) −→ P ( f + g)
)
−→

∀ f ∈ ∨ F0 ∀Φ ∈ Bic (R)
(

P ( f ) −→ P (Φ ◦ f )
)
−→

∀ f ∈ ∨ F0

(
∀ε > 0 ∃g ∈ ∨ F0

(
P (g)∧U (g, f , ε)

)
−→ P ( f )

)
−→

∀ f ∈ ∨ F0
(

P ( f )
)
,

where P is any property on F (X, R).

3.2.2 Proposition Suppose that F0, F1 ⊆ F (X, R) and F = (X, F) a Bishop space.

i)
∨

F0 ⊆ F←→ F0 ⊆ F.

ii) F0 ⊆ F1 −→
∨

F0 ⊆
∨

F1.

iii)
∨

F0 ∪
∨

F1 ⊆
∨
(F0 ∪ F1).

iv)
∨
(
∨

F0) =
∨

F0.

v)
∨
(F0 ∩ F1) ⊆

∨
F0 ∩

∨
F1.
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3.3 Examples of Bishop spaces

I Const (X, R) and F (X, R) are Bishop topologies on X. We call F (X, R) the discrete
Bishop topology on X.
For every Bishop topology F on some inhabited set X we get

Const (X, R) ⊆ F ⊆ F (X, R) .

II Through the least Bishop topology
∨

F0 we can construct Bishop topologies:∨
∅ = Const (X, R)∨

IdR = Bic (R)∨
n∈N

πn = Bic(2)N, where πn (α) = αnfor every α ∈ 2N.

III If (X, F1) and (X, F2) are Bishop spaces, then (X, F1 ∩ F2) is a Bishop space.

IV For two Bishop spaces F = (X, F) and G = (Y, G) we define their product F ×G =
(X×Y, F×G) by

F×G :=
∨

({ f ◦ π1 | f ∈ F} ∪ {g ◦ π2 | g ∈ G}) .

3.4 Morphisms between Bishop spaces

3.4.1 Lemma (Yoneda) If F = (X, F) is a Bishop space, then F = Mor(F ,R).

3.4.2 Corollary The following hold:

Bic(R) = Mor(R,R).

Bic(2)N = Mor(C,R).

3.4.3 Lemma Suppose that F = (X, F),G = (Y, G),F1 = (X, F1), F2 = (X, F2),G1 =
(Y, G1) and G2 = (Y, G2) are Bishop spaces. Then the following hold:

i) Const(X, Y) ⊆ Mor(F ,G).

ii) G1 ⊆ G2 −→ Mor(F ,G2) ⊆ Mor(F ,G1), while G1 ( G2 does not imply that
Mor(F ,G2) ( Mor(F ,G1). Moreover, we have that

Mor
(
F ,
(
Y, F(Y, R)

))
⊆ Mor(F ,G) ⊆ Mor

(
F ,
(
Y, Const(Y, R)

))
.
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iii) F1 ⊆ F2 −→ Mor(F1,G) ⊆ Mor(F2,G), while F1 ( F2 does not imply that
Mor(F1,G) ( Mor(F2,G). Moreover, we have that

Mor
((

X, Const(X, R)
)
,G
)
⊆ Mor(F ,G) ⊆ Mor

((
X, F(X, R)

)
,G
)

.

3.4.4 Remark In the proof of this lemma it is used that

Mor
(
F ,
(
Y, Const(Y, R)

))
= F(X, Y),

for any Bishop space F = (X, F).

3.4.5 Proposition (
∨

-lifting of morphisms) Suppose that F = (X, F) and
G0 = (Y,

∨
G0) are Bishop spaces. A function h : X → Y ∈ Mor(F ,G0) if and only if for all

g0 ∈ G0 it is g0 ◦ h ∈ F.

3.4.6 Definition Suppose that F ,G are Bishop spaces and h ∈ Mor(F ,G). We call h a
Bishop-monomorphism, or h ∈ Mono(F ,G), if

∀H
(
∀e, j ∈ Mor(H,F)(h ◦ e = h ◦ j −→ e = j)

)
.

We call h a Bishop-isomorphism between F and G if there is some e ∈ Mor(G,F) such
that e ◦ h = IdX and h ◦ e = IdY. A Bishop-isomorphism between F and F is called a
Bishop-automorphism of F . We call h a Bishop-epimorphism if

∀H
(
∀e, j ∈ Mor(G,H)(e ◦ h = j ◦ h −→ e = j)

)
.

We denote the set of the Bishop-epimorphisms between F and G by Epi(F ,G). We call h
a Bishop-set-epimorphism if it is onto Y. We denote the set of the Bishop-set-epimorphisms
between F and G by setEpi(F ,G).

3.4.7 Proposition

i) h ∈ Mono(F ,G) if and only if h ∈ Mor(F ,G) and h is 1− 1

ii) h ∈ Mor(F ,G) is a Bishop-isomorphism if and only if h is a Bishop-monomorphism onto
Y and h−1 ∈ Mor(G,F).

3.4.8 Proposition Suppose that F and G are Bishop spaces. If h ∈ Mor(F ,G) such that h
is 1− 1 and onto Y, then h−1 ∈ Mor(G,F) if and only if for every f ∈ F there exists a g ∈ G
such that f = g ◦ h.
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3 Bishop spaces

3.4.9 Definition We call a Bishop-morphism h ∈ Mor(F ,G) open if

∀ f ∈ F ∃g ∈ G( f = g ◦ h).

3.4.10 Lemma (Well-definability lemma) Suppose that X, Y are inhabited sets, h : X →
Y is onto Y, Θ ⊆ F(Y, R) and f : X → R. If f ∈ U (Θ ◦ h), then the function

f # : Y → R,

f #(y) = f #(h(x)
)

:= f (x),

for every y ∈ Y, is well-defined i.e.,

∀x1, x2 ∈ X
(
h(x1) = h(x2) −→ f (x1) = f (x2)

)
.

3.4.11 Proposition (U -lifting of openness) Suppose that X, Y are inhabited sets, h : X →
Y is onto Y, Φ ⊆ F(X, R) and Θ ⊆ F(Y, R). Then

∀φ0 ∈ Φ ∃θ0 ∈ Θ(φ0 = θ0 ◦ h) −→ ∀φ ∈ U (Φ) ∃θ ∈ U (Θ)(φ = θ ◦ h).

3.4.12 Proposition (
∨

-lifting of openness) If F = (X,
∨

F0),G = (Y, G) are Bishop
spaces and h ∈ setEpiBish(F ,G), then

∀ f0 ∈ F0 ∃g ∈ G( f0 = g ◦ h) −→ ∀ f ∈
∨

F0 ∃g ∈ G( f = g ◦ h).

3.4.13 Proposition If F = (X, F) is a Bishop space, and e : X → Y a bijection, there
is a unique Bishop topology GF on Y such that e is a Bishop isomorphism between F and
GF = (Y, GF).

3.5 Relative Bishop spaces

3.5.1 Definition If F = (X, F) is a Bishop space and Y ⊆ X is inhabited, the relative
topology on Y is defined by

F|Y :=
∨

G0,Y,

G0,Y := { f |Y | f ∈ F} .

We call the corresponding Bishop space F |Y = (Y, F|Y) the relative Bishop space of F on
Y. We denote r : (X, F)→ (Y, F|Y).
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3.5.2 Proposition If F = (X,
∨

F0) is a Bishop space, then the relative topology on some
inhabited Y ⊆ X is given by

(
∨

F0)|Y :=
∨

G00,Y,

G00,Y := { f0|Y | f0 ∈ F0} .

3.5.3 Proposition Suppose that F = (X, F),H = (Z, H) are Bishop spaces, and Y ⊆
X, B ⊆ Z are inhabited.

i) F|Y is the smallest topology G on Y satisfying the property IdY ∈ Mor(G,F).

ii) If e : X → B, then e ∈ Mor(F ,H)←→ e ∈ Mor(F ,H|B).

iii) If e : X → Z, then e ∈ Mor(F ,H) −→ e|Y ∈ Mor(F |Y,H).

3.5.4 Proposition If F = (X, F),G = (Y, G) are Bishop spaces and A ⊆ X, B ⊆ Y are
inhabited, then (F×G)|A×B = F|A ×G|B.
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4 Connections between C-spaces and Bishop spaces

In this chapter, the goal is to establish a relationship between the two theories. First,
we have a look at maps of type 2N → R, since we already have explored a C-space
with the critical set equal R and a Bishop space with the set equal 2N. After finding a
connection for these special maps we will try to expand the results for arbitrary C- and
Bishop spaces.

4.1 Continuous functions of type 2N → R

Here we analyse properties of the two sets

C(R) = Mor (C,R) =
{

f : 2N → R | ∀c ∈ C
(

f ◦ c ∈ C (R)
)}

and

Bic(2)N = Mor (C,R) =
{

f : 2N → R | ∀r ∈ Bic (R)
(

r ◦ f ∈ Bic (2)N
)}

.

2N
f∈Mor(C,R) // R 2N

f∈Mor(C,R) //

Bic(2)N3r◦ f

##

R

r∈Bic(R)

��
2N

C3c

OO

f ◦c∈C(R)

;;

R

4.1.1 Remark In corollary 2.4.2 and corollary 3.4.2 we have already demonstrated that(
R, Mor(C,R)

)
is a C-space and

(
2N, Mor(C,R)

)
is a Bishop space. Now we want to

investigate if the C-continuous functions of type 2N → R build a Bishop topology on
2N and the Bishop continuous functions between 2N and R a C-topology on R.
Before we can prove this, for the second clause of a Bishop topology we need that C(R),
the C-continuous functions between 2N and R, is closed under +.
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4 Connections between C-spaces and Bishop spaces

4.1.2 Lemma C (R) is closed under + i.e., f + g ∈ C (R) for every f , g ∈ C (R).

Proof. Let f , g ∈ C (R) i.e., there are n f and ng ∈N such that for all α, β ∈ 2N we get

α =n f β −→ f (α) = f (β)

and
α =ng β −→ g(α) = g(β).

We choose n f+g := max
{

n f , ng
}

, then for all α, β ∈ 2N with α =n f+g β we get

( f + g)(α) = f (α) + g(α) = f (β) + g(β) = ( f + g)(β),

hence f + g ∈ C (R).

4.1.3 Theorem
(
2N, Mor (C,R)

)
is a Bishop space.

Proof. (BS1) Let a ∈ Const
(
2N, R

)
. For every c ∈ C we get a ◦ c ∈ Const

(
2N, R

)
, hence

a ◦ c ∈ C (R). Consequently, a ∈ Mor (C,R).

(BS2) Let f , g ∈ Mor (C,R) i.e., for every c ∈ C it is

f ◦ c ∈ C (R) and g ◦ c ∈ C (R) .

Let now c ∈ C be arbitrary. Then

( f + g) ◦ c = f ◦ c + g ◦ c ∈ C (R)

by lemma 4.1.2.

(BS3) Let f ∈ Mor (C,R) and Φ ∈ Bic (R) i.e., for every c ∈ C and for every ε f ◦c > 0
there exists a n f ◦c(ε f ◦c) ∈N such that for all α, β ∈ 2N it is

α =n f ◦c(ε f ◦c) β −→ |( f ◦ c)(α)− ( f ◦ c)(β)| ≤ ε f ◦c

and for every bounded subset B of R and for every εΦ > 0 there is a ωΦ,B(εΦ) such that
for all x, y ∈ B we get

|x− y| ≤ ωΦ,B(εΦ) −→ |Φ(x)−Φ(y)| ≤ εΦ.

Let now ε > 0 be arbitrary and we choose n(Φ◦ f )◦c(ε) := n f ◦c
(
ωΦ,B(ε)

)
, then for all

α, β ∈ 2N with α =n(Φ◦ f )◦c(ε)
it is

|( f ◦ c)(α)− ( f ◦ c)(β)| ≤ ωΦ,B(ε),

and thus∣∣((Φ ◦ f ) ◦ c
)
(α)−

(
(Φ ◦ f ) ◦ c

)
(β)
∣∣ = ∣∣(Φ ◦ ( f ◦ c)

)
(α)−

(
Φ ◦ ( f ◦ c)

)
(β)
∣∣ =
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4 Connections between C-spaces and Bishop spaces

=
∣∣Φ(( f ◦ c)(α)

)
−Φ

(
( f ◦ c)(β)

)∣∣ ≤ ε,

hence Φ ◦ f ∈ Mor (C,R).

(BS′4) Let ( fn)n∈N ⊆ Mor(C,R) and f ∈ F(2N, R) such that fn
u−→ f i.e., for every εu > 0

there is a n0 ∈N such that for all n ≥ n0 and for every α ∈ 2N it is | fn(α)− f (α)| ≤ εu.
Since ( fn)n∈N ⊆ Mor(C,R), we get fn ◦ p ∈ C(R), for every p ∈ C and for every n ∈N

i.e., for every ε fn◦p > 0 there exists a n fn◦p(ε fn◦p) ∈N such that for all α, β ∈ 2N it is

α =n fn◦p(ε fn◦p) β −→ |( fn ◦ p)(α)− ( fn ◦ p)(β)| ≤ ε fn◦p.

We have to verify that f ∈ Mor(C,R). For this, let be ε > 0. We choose εu := 1
3 ε and

n f (ε) := n fn◦Id2N
( 1

3 ε), then for all α, β ∈ 2N with α =n f (ε) β we get

| fn(α)− fn(β)| = |( fn ◦ Id2N)(α)− ( fn ◦ Id2N)(β)| ≤ 1
3

ε,

for every n ∈N, hence for n ≥ n0 it is

| f (α)− f (β)| = | f (α) + fn(α)− fn(α) + fn(β)− fn(β)− f (β)| ≤

≤ | f (α)− fn(α)|︸ ︷︷ ︸
≤εu=

1
3 ε

+ | fn(β)− f (β)|︸ ︷︷ ︸
≤εu=

1
3 ε

+ | fn(α)− fn(β)|︸ ︷︷ ︸
≤ 1

3 ε

≤ ε.

4.1.4 Theorem
(
R, Mor(C,R)

)
is a C-space.

Proof. (CS1) Let a ∈ Const(2N, R) and r ∈ Bic(R). Then r ◦ a ∈ Const(2N, R), hence
r ◦ a ∈ Bic(2)N.

(CS2) Let f ∈ Mor(C,R) and t ∈ C i.e., for every r ∈ Bic(R), for every bounded subset
B of 2N and for every εr◦ f > 0 there exists a nr◦ f ,B(εr◦ f ) > 0 such that for all α, β ∈ B we
get

α =nr◦ f ,B(εr◦ f ) β −→ |(r ◦ f )(α)− (r ◦ f )(β)| ≤ εr◦ f

and for every m ∈N there is a n(m) ∈N such that for all α, β ∈ 2N it is

α =n(m) β −→ t(α) =m t(β).

Let B be a bounded subset of 2N and ε > 0. We choose nr◦( f ◦t)(ε) := n
(
nr◦ f ,B(ε)

)
, then

for all α, β ∈ B with α =nr◦( f ◦t)(ε)
β we get

t(α) =nr◦ f ,B(ε) t(β)

and hence∣∣(r ◦ ( f ◦ t)
)
(α)−

(
r ◦ ( f ◦ t)

)
(β)
∣∣ = ∣∣((r ◦ f ) ◦ t

)
(α)−

(
(r ◦ f ) ◦ t

)
(β)
∣∣ =
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=
∣∣(r ◦ f )

(
t(α)

)
− (r ◦ f )

(
t(β)

)∣∣ ≤ ε.

On this account, f ◦ t ∈ Bic(2)N.

(CS′3) Let f0, f1 ∈ Mor(C,R) such that f (iα) = fi(α), for i ∈ {0, 1} i.e., for every
r ∈ Bic(R) it is

r ◦ f0 ∈ Bic(2)N and r ◦ f1 ∈ Bic(2)N

i.e., for every bounded subset B of 2N and for every ε > 0 there are nr◦ f0(ε) and
nr◦ f1(ε) ∈N such that for all α, β ∈ B it is

α =nr◦ f0 (ε)
β −→ |(r ◦ f0)(α)− (r ◦ f0)(β)| ≤ ε

and
α =nr◦ f1

(ε) β −→ |(r ◦ f1)(α)− (r ◦ f1)(β)| ≤ ε.

Let B be a bounded subset of 2N and ε > 0. We choose ñr◦ f (ε) := max
{

nr◦ f0(ε), nr◦ f1(ε)
}

,
then for all α, β ∈ B with α =ñr◦ f (ε) β and for i ∈ {0, 1} we get

|(r ◦ f )(iα)− (r ◦ f )(iβ)| = |(r ◦ fi)(α)− (r ◦ fi)(β)| ≤ ε.

Hence for nr◦ f (ε) := max
{

nr◦ f0(ε), nr◦ f1(ε)
}
+ 1 is f ∈ Bic(2)N.

Since both sets 2N and R produce C- and Bishop spaces with the topologies Mor(C,R)
and Mor(C,R), a connection between the two topologies is likely. In the next theorem,
we will demonstrate that the C- and the Bishop continuous functions between 2N and R

are the same.

4.1.5 Theorem The following holds: Mor(C,R) = Mor(C,R).

Proof. (⊆) Let f ∈ Mor(C,R) i.e., for every t ∈ C we get f ◦ t ∈ C (R) i.e., for every
t ∈ C and for every ε > 0 there exists a n f ◦t(ε) ∈N such that for all α, β ∈ 2N it is

α =n f ◦t(ε) β −→ |( f ◦ t)(α)− ( f ◦ t)(β)| ≤ ε.

Let r ∈ Bic(R) i.e., for every bounded subset B of R and for every ε > 0 there exists a
ωr,B(ε) > 0 such that for all x, y ∈ B we get

|x− y| ≤ ωr,B(ε) −→ |r(x)− r(y)| ≤ ε.

We have to verify that r ◦ f ∈ Bic(2)N i.e., for every bounded subset B′ of 2N and for
every ε̃ > 0 we have to find a nr◦ f ,B′(ε̃) ∈N such that for all α, β ∈ B′ it is

α =nr◦ f ,B′ (ε̃)
β −→ |(r ◦ f )(α)− (r ◦ f )(β)| ≤ ε̃.
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Let B′ be a bounded subset of 2N and ε > 0. Let B := { f (α) | α ∈ B′}. We choose
nr◦ f ,B′(ε) := n f ◦Id2N

(ωr,B(ε), then for all α, β ∈ B′ with α =nr◦ f ,B′ (ε)
β we get

| f (α)− f (β)| = |( f ◦ Id2N)(α)− ( f ◦ Id2N)(β)| ≤ ωr,B(ε),

hence
|(r ◦ f )(α)− (r ◦ f )(β)| =

∣∣r( f (α)
)
− r
(

f (β)
)∣∣ ≤ ε.

Therefore f ∈ Mor(C,R).

(⊇) Let f ∈ Mor(C,R) i.e., for every r ∈ Bic(R) we get r ◦ f ∈ Bic(2)N i.e.,
for every r ∈ Bic(R), for every bounded subset B′ of 2N and for every ε > 0 there exists
a nr◦ f ,B′(ε) ∈N such that for all α, β ∈ B′ it is

α =nr◦ f ,B′ (ε)
β −→ |(r ◦ f )(α)− (r ◦ f )(β)| ≤ ε.

Let t ∈ C i.e., for every m ∈N there is a nt(m) ∈N such that for all α, β ∈ 2N we get

α =nt(m) β −→ t(α) =m t(β).

We have to verify that f ◦ t ∈ C (R) i.e., for every ε > 0 we need to find a n f ◦t(ε) ∈ N

such that for all α, β ∈ 2N it is

α =n f ◦t(ε) β −→ |( f ◦ t)(α)− ( f ◦ t)(β)| ≤ ε.

Let ε > 0. We choose n f ◦t(ε) := nt
(
nId2N◦ f ,B′(ε)

)
, then for all α, β ∈ 2N with α =n f ◦t(ε) β

we get
t(α) =nId

2N ◦ f ,B′ (ε)
t(β)

and accordingly

|( f ◦ t)(α)− ( f ◦ t)(β)| =
∣∣ f (t(α))− f

(
t(β)

)∣∣ ≤ ε,

hence f ∈ Mor(C,R).

4.1.6 Definition We use the notation Mor(C, R) := Mor(C,R) = Mor(C,R).

4.1.7 Corollary C(R) = Bic(2)N.

Proof. By corollary 2.4.2, corollary 3.4.2 and theorem 4.1.5 we get

C(R) = Mor(C,R) = Mor(C,R) = Bic(2)N.

After proving the equality of C- and Bishop continuous functions between 2N and R, we
also suggest a dependence between the C- and the Bishop continuous functions between
2N and 2N as well as between R and R.
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4.1.8 Proposition The following hold:

i) Mor(C, C) = Mor(C,C).

ii) Mor(R,R) = Mor(R,R).

Proof. i) This is exactly corollary 3.15 in [9].

ii) (⊆) Let f ∈ Mor(R,R) i.e., for every g ∈ Bic(R) we get g ◦ f ∈ Bic(R) i.e.,
for every g ∈ Bic(R), for every bounded subset B of R and for every εg◦ f ,B > 0
there exists a ωg◦ f ,B(εg◦ f ,B) > 0 such that for all x, y ∈ B it is

|x− y| ≤ ωg◦ f ,B(εg◦ f ,B) −→ |(g ◦ f )(x)− (g ◦ f )(y)| ≤ εg◦ f ,B.

R
f∈Mor(R,R) //

Bic(R)3g◦ f

##

R

g∈Bic(R)

��
R

Let t ∈ C(R) i.e., for every εt > 0 there exists a nt(εt) ∈ N such that for all
α, β ∈ 2N we get

α =nt(εt) β −→ |t(α)− t(β)| ≤ εt.

We have to show that f ◦ t ∈ C(R).

R
f∈Mor(R,R) // R

2N

C(R)3t

OO

f ◦t∈C(R)

;;

Let ε > 0. We choose n f ◦t(ε) := nt
(
ωIdR◦ f ,B(ε)

)
, then for all α, β ∈ 2N with

α =n f ◦t(ε) β we get
|t(α)− t(β)| ≤ ωIdR◦ f ,B(ε),

hence
|( f ◦ t)(α)− ( f ◦ t)(β)| =

∣∣ f (t(α))− f
(
t(β)

)∣∣ =
=
∣∣(IdR ◦ f )

(
t(α)

)
− (IdR ◦ f )

(
t(β)

)∣∣ ≤ ε.

(⊇) This direction will be seen by the example 4.2.15 iii).
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4.1.9 Definition We also write

Mor(C, C) := Mor(C, C) = Mor(C,C).
Mor(R, R) := Mor(R,R) = Mor(R,R).

4.2 Relationships between general C- and Bishop spaces by means of con-
tinuous functions

This section focuses on finding connections between the two theories for arbitrary spaces.
For this we define a set FP for a given C-topology P and a set PF for a given Bishop
topology F. We will notice that these sets again build a Bishop respectively a C-topology.
These relations also satisfy some interesting properties which will be explored in this
section.

4.2.1 Definition Let P = (X, P) be a C-space. We define

FP :=
{

f : X → R | ∀p ∈ P
(

f ◦ p ∈ Mor(C, R)
)}

.

X
f∈FP // R

2N

P3p

OO

f ◦p∈Mor(C,R)

==

4.2.2 Theorem FP = (X, FP) is a Bishop space.

Proof. (BS1) Let f ∈ Const(X, R) and p ∈ P. Then f ◦ p ∈ Const(2N, R) ⊆ Mor(C, R),
hence f ∈ FP.

(BS2) Let f , g ∈ FP i.e., f ◦ p ∈ Mor(C, R) and g ◦ p ∈ Mor(C, R), for every p ∈ P. Then

( f + g) ◦ p = f ◦ p + g ◦ p ∈ Mor(C, R),

since Mor(C, R) is a Bishop topology. On this account, f + g ∈ FP.

(BS3) Let f ∈ FP i.e., f ◦ p ∈ Mor(C, R) for every p ∈ P, and let Φ ∈ Bic(R). Then

(Φ ◦ f ) ◦ p = Φ ◦ ( f ◦ p) ∈ Mor(C, R),

hence Φ ◦ f ∈ FP.

(BS′4) Let ( fn)n∈N ⊆ FP and f ∈ F(X, R) such that fn
u−→ f i.e., for every εu > 0 there

exists a n0 ∈N such that for all n ≥ n0 and for every x ∈ X it is | fn(x)− f (x)| ≤ εu.
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4 Connections between C-spaces and Bishop spaces

Since ( fn)n∈N ⊆ FP, we get fn ◦ p ∈ Mor(C, R), for every p ∈ P and for every n ∈N.
We have to verify that f ∈ FP. For this, let p ∈ P. It suffices to show that ( fn ◦ p) u−→
( f ◦ p), since Mor(C, R) is a Bishop topology.
Let ε > 0. We choose n f ◦p(ε) := n0, then for every n ≥ n f ◦p(ε) and for every α ∈ 2N we
get p(α) ∈ X, hence

|( fn ◦ p)(α)− ( f ◦ p)(α)| =
∣∣ fn
(

p(α)
)
− f

(
p(α)

)∣∣ ≤ ε.

4.2.3 Definition We call FP = (X, FP) the related Bishop space of P = (X, P) and FP
the related Bishop topology of P.

4.2.4 Definition Let F = (X, F) be a Bishop space. We define

PF :=
{

p : 2N → X | ∀ f ∈ F
(

f ◦ p ∈ Mor(C, R)
)}

.

2N
p∈PF //

Mor(C,R)3 f ◦p

!!

X

f∈F

��
R

4.2.5 Theorem PF = (X, PF) is a C-space.

Proof. (CS1) Let p ∈ Const(2N, X). For every f ∈ F we get f ◦ p ∈ Const(2, R) ⊆
Mor(C, R), hence p ∈ PF.

(CS2) Let p ∈ PF and t ∈ C. For every f ∈ F it is

f ◦ (p ◦ t) = ( f ◦ p)︸ ︷︷ ︸
∈Mor(C,R)

◦ t ∈ Mor(C, R),

since Mor(C, R) is a C-space.

(CS′3) Let p0, p1 ∈ PF. For p∗ : 2N → X defined by p∗(iα) = pi(α), for i ∈ {0, 1}, we get
for every f ∈ F and for i ∈ {0, 1}

( f ◦ p∗)(iα) = ( f ◦ pi)(α) ∈ Mor(C, R),

hence p∗ ∈ PF.
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4 Connections between C-spaces and Bishop spaces

4.2.6 Definition We call PF = (X, PF) the related C-space of F = (X, F) and PF the
related C-topology of F.

Since we have found a link between C-spaces and Bishop spaces, we will transform
these results into the language of categories. After giving the definition of a functor from
[1] we will apply this for the categories CS and BS.

4.2.7 Definition A functor
F : C→ D

between categories C and D is a mapping of objects to objects and arrows to arrows,
such that the following conditions are satisfied:

i) F( f : A→ B) = F( f ) : F(A)→ F(B),

ii) F(1A) = 1F(A),

iii) F(g ◦ f ) = F(g) ◦ F( f ).

A

g◦ f

&&f //

F

��

B
g //

F

��

C

F

��
F(A)

F(g◦ f )

77F( f )
// F(B)

F(g)
// F(C)

4.2.8 Theorem Let P = (X, P) and Q = (Y, Q) be C-spaces and r ∈ Mor(P ,Q), hence
P and Q are objects and r : X → Y is an arrow of CS. Then β : CS → BS defined
by

β(X, P) = (X, FP),
β(r) = r,

is a functor between CS and BS.

Proof. i) For r ∈ Mor(P ,Q) it is r ◦ p ∈ Q for all p ∈ P.
Let f ∈ FQ, then f ◦ q ∈ Mor(C, R) for every q ∈ Q. We have to verify that
f ◦ β(r) ∈ FP.
Let p ∈ P, then(

f ◦ β(r)
)
◦ p = ( f ◦ r) ◦ p = f ◦ (r ◦ p)︸ ︷︷ ︸

∈Q

∈ Mor(C, R).
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4 Connections between C-spaces and Bishop spaces

2N

r◦p∈Q

$$

P3p

��
(X, P)

r∈Mor(P ,Q) //

β

��

(Y, Q)

β

��
(X, FP)

β(r)=r //

FP3 f ◦β(r)

$$

(Y, FQ)

f∈FQ

��
R

ii) By definition, β(Id(X,P)) = Id(X,P) = Id(X,FP).

iii) Let s : (Y, Q) → (Z, S) be a C-morphism between Q and a C-space S = (Z, S).
Then β(s ◦ r) = s ◦ r = β(s) ◦ β(r).

(X, P) r // (Y, Q)
s // (Z, S)

4.2.9 Theorem Let F = (X, F) and G = (Y, G) be Bishop spaces and h ∈ Mor(F ,G),
hence F and G are objects and h : X → Y is an arrow of BS. Then γ : BS → CS defined
by

γ(X, F) = (X, PF),
γ(h) = h,

is a functor between BS and CS.

Proof. i) For h ∈ Mor(F ,G) it is g ◦ h ∈ F for all g ∈ G.
Let p ∈ PF, then f ◦ p ∈ Mor(C, R) for every f ∈ F. We have to verify that
γ(h) ◦ p ∈ PG.
For this, let g ∈ G. Then

g ◦
(
γ(h) ◦ p

)
= g ◦ (h ◦ p) = (g ◦ h)︸ ︷︷ ︸

∈F

◦p ∈ Mor(C, R).
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4 Connections between C-spaces and Bishop spaces

R

(X, F)

F3g◦h

::

h //

γ

��

(Y, G)

g∈G

OO

γ

��
(X, PF)

γ(h)=h // (Y, PG)

2N

PF3p

OO

γ(h)◦p∈PG

::

ii) By definition, γ(Id(X,F)) = Id(X,F) = Id(X,PF).

iii) Let l : (Y, G) → (Z, H) be a Bishop morphism between G and a Bishop space
H = (Z, H). Then γ(l ◦ h) = l ◦ h = γ(l) ◦ γ(h).

(X, F) h // (Y, G)
l // (Z, H)

4.2.10 Remark The following hold:

i) β(X, P) = FP .

ii) γ(X, F) = PF .

4.2.11 Lemma LetP = (X, P) be a C-space and F = (Y, F) a Bishop space. Then

i) FP = Mor(P ,R).

ii) PF = Mor(C,F).

Proof. i) FP =
{

f : X → R | ∀p ∈ P
(

f ◦ p ∈ Mor(C, R)
)}

=

=

{
f : X → R | ∀p ∈ P

(
∀t ∈ C

(
( f ◦ p) ◦ t ∈ C(R)

))}
=

=

{
f : X → R | ∀p ∈ P

(
∀t ∈ C

(
f ◦ (p ◦ t) ∈ C(R)

))}
=

=
{

f : X → R | ∀p′ ∈ P
(

f ◦ p′ ∈ C(R)
)}

=

= Mor(P ,R).
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4 Connections between C-spaces and Bishop spaces

ii) PF =
{

p : 2N → Y | ∀ f ∈ F
(

f ◦ p ∈ Mor(C, R)
)}

=

=

{
p : 2N → Y | ∀ f ∈ F

(
∀g ∈ Bic(R)

(
g ◦ ( f ◦ p) ∈ Bic(2)N

))}
=

=

{
p : 2N → Y | ∀ f ∈ F

(
∀g ∈ Bic(R)

(
(g ◦ f ) ◦ p ∈ Bic(2)N

))}
=

=
{

p : 2N → Y | ∀ f ′ ∈ F
(

f ′ ◦ p ∈ Bic(2)N
)}

=

= Mor(C,F).

4.2.12 Proposition Let P = (X, P) be a C-space and F = (Y, F) a Bishop space. Then the
following hold:

i) P = P(FP).

ii) F = F(PF).

Proof. i) (⊆) Let p ∈ P. For f ∈ FP we get that f ◦ p′ ∈ Mor(C, R), for every p′ ∈ P,
especially it is f ◦ p ∈ Mor(C, R), hence p ∈ P(FP).

(⊇) By the previous lemma we get P(FP) = Mor
(
C,
(
X, Mor(P ,R)

))
. Let p ∈

P(FP), then it is
∀g ∈ Mor(P ,R)

(
g ◦ p ∈ Bic(2)N

)
.

Since g ∈ Mor(P ,R)←→ ∀h ∈ P
(

g ◦ h ∈ C(R)
)

we get

∀g
(
∀h ∈ P

(
g ◦ h ∈ C(R)

))(
g ◦ p ∈ Bic(2)N

)
.

By corollary 4.1.7 we conclude that p ∈ P.

ii) (⊆) Let f ∈ F. For p ∈ PF we get that f ′ ◦ p ∈ Mor(C, R), for every f ′ ∈ F,
especially it is f ◦ p ∈ Mor(C, R), hence f ∈ F(PF).

(⊇) By the previous lemma we get F(PF) = Mor
((

X, Mor(C,F)
)
,R
)

. Let f ∈

F(PF), then it is
∀g ∈ Mor(C,F)

(
f ◦ g ∈ C(R)

)
.

Since g ∈ Mor(C,F)←→ ∀h ∈ F
(
h ◦ g ∈ Bic(2)N

)
it is

∀g
(
∀h ∈ F

(
h ◦ g ∈ Bic(2)N

))(
f ◦ g ∈ C(R)

)
.
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4 Connections between C-spaces and Bishop spaces

By corollary 4.1.7 we conclude that f ∈ F.

4.2.13 Remark By the previous proposition we get

γ
(

β(X, P)
)
= (X, P) and

β
(
γ(X, F)

)
= (X, F),

hence β and γ are inverse functors.

(X, P)
β //

IdX

!!

(X, FP)

γ

��

(X, F)
γ //

IdX

!!

(X, PF)

β

��
(X, PFP) (X, FPF)

4.2.14 Proposition Let P1 = (X, P1) and P2 = (X, P2) be C-spaces, F1 = (Y, F1) and
F2 = (Y, F2) Bishop spaces. Then the following hold:

i) P1 ⊆ P2 −→ FP2 ⊆ FP1 .

ii) F1 ⊆ F2 −→ PF2 ⊆ PF1 .

Proof. i) By lemma 2.4.3 we get that Mor(P2,Q) ⊆ Mor(P1,Q) for any C-space Q,
hence by lemma 4.2.11 we get FP2 ⊆ FP1 .

ii) By lemma 3.4.3 we get that Mor(G,F2) ⊆ Mor(G,F1) for any Bishop space G,
hence by lemma 4.2.11 we get PF2 ⊆ PF1 .

This proposition yields that if P1 is a sub-C-topology of P2, then the related Bishop
topology FP1 is a superset of FP2 and respectively if F1 is a sub-Bishop topology of F2,
then the related C-topology PF1 is a superset of PF2 .

4.2.15 Examples of related C- and Bishop spaces

i) β(C) = β
(
(2N, C)

)
=
(
2N, Mor(C,R)

)
=
(
2N, Mor(C,R)

)
is the Bishop space C.

ii) γ(R) = γ

((
R, Bic(R)

))
=
(
R, Mor(C,R)

)
=
(
R, Mor(C,R)

)
is the C-spaceR.
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4 Connections between C-spaces and Bishop spaces

iii) β(R) = β

((
R, C(R)

))
=
(
R, Mor(R,R)

)
and on the other hand

β(R) = β
(
γ(R)

)
= R =

(
R, Mor(R,R)

)
.

iv) β

((
X, Constloc(2N, X)

))
=

(
X, Mor

((
X, Constloc(2N, X)

)
,R
))

=
(
X, F(X, R)

)
,

by proposition 2.3.6.

v) β

((
X, F(2N, X)

))
=

(
X, Mor

((
X, F(2N, X)

)
,R
))

=
(
X, Const(X, R)

)
.

vi) γ(C) = γ

((
2N, Bic(2)N

))
=
(
2N, Mor(C,C)

)
and on the other hand

γ(C) = γ
(

β(C)
)
= C =

(
2N, Mor(C, C)

)
.

vii) γ

((
X, Const(X, R)

))
=

(
X, Mor

(
C,
(
X, Const(X, R)

)))
=
(
X, F(2N, X)

)
by

remark 3.4.4.

viii) γ

((
X, F(X, R)

))
=

(
X, Mor

(
C,
(
X, F(X, R)

)))
=
(
X, Constloc(2N, X)

)
.

The following two propositions demonstrate that building related C- and Bishop spaces
preserve products.

4.2.16 Proposition LetP = (X, P) andQ = (Y, Q) be C-spaces. Then

FP×Q = FP ×FQ.

(X, P)

β

��

!!

(Y, Q)

}}
β

��

(X×Y, P×Q)

β

��
(X, FP)

  

(X×Y, FP×Q) (Y, FQ)

~~
(X×Y, FP × FQ)

��

IdX×Y

OO
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Proof. By the definitions of products and respective Bishop spaces we get

• P ×Q = (X×Y, P×Q), where P×Q =
⊔
{(p, q) | p ∈ P, q ∈ Q}.

• F(P×Q) =

(
X×Y,

{
f : X×Y → R | ∀(p, q) ∈ P×Q

(
f ◦ (p, q) ∈ Mor(C, R)

)} )
.

• FP = (X, FP), where FP =
{

fP : X → R | ∀p ∈ P
(

fP ◦ p ∈ Mor(C, R)
)}

.

• FQ = (Y, FQ), where FQ =
{

fQ : Y → R | ∀q ∈ Q
(

fQ ◦ q ∈ Mor(C, R)
)}

.

• FP ×FQ =

(
X×Y,

∨ (
{ fP ◦ π1 | fP ∈ FP} ∪ { fQ ◦ π2 | fQ ∈ FQ}

))
.

It suffices to investigate the Bishop topologies.∨ (
{ fP ◦ π1 | fP ∈ FP} ∪ { fQ ◦ π2 | fQ ∈ FQ}

)
=

=
∨ (
{( fP, fQ) : X×Y → R| fP ∈ FP, fQ ∈ FQ}

)
=

=
∨({

( fP, fQ) : X×Y → R | ∀p ∈ P, q ∈ Q
(
( fP, fQ) ◦ (p, q) ∈ Mor(C, R)

)} )
=

=
∨({

( fP, fQ) : X×Y → R | ∀(p, q) ∈ P×Q
(
( fP, fQ) ◦ (p, q) ∈ Mor(C, R)

)} )
=

=
∨

FP×Q =

= FP×Q.

4.2.17 Proposition Let F = (X, F) and G = (Y, G) be Bishop spaces. Then

P(F×G) = PF ×PG .

(X, F)

γ

��

!!

(Y, G)

}}
γ

��

(X×Y, F×G)

γ

��
(X, PF)

!!

(X×Y, PF×G) (Y, PG)

}}
(X×Y, PF × PG)

��

IdX×Y

OO
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Proof. By the definitions of products and respective C-spaces it is

• F × G = (X×Y, F×G), where

F×G =
∨ (
{ f ◦ π1 | f ∈ F} ∪ {g ◦ π2 | g ∈ G}

)
.

• P(F×G) = (X×Y, PF×G), where

PF×G =
{

p : 2N → X×Y | ∀( f , g) ∈ F×G
(
( f , g) ◦ p ∈ Mor(C, R)

)}
.

• PF = (X, PF), where PF =
{

pF : 2N → X | ∀ f ∈ F
(

f ◦ pF ∈ Mor(C, R)
)}

.

• PG = (Y, PG), where PG =
{

pG : 2N → Y | ∀g ∈ G
(

g ◦ pG ∈ Mor(C, R)
)}

.

• PF ×PG =
(
X×Y,

⊔
{(pF, pG) | pF ∈ PF, pG ∈ PG}

)
.

It suffices to analyze the C-topologies.⊔
{(pF, pG) | pF ∈ PF, pG ∈ PG} =

=
⊔ {

(pF, pG) | ∀ f ∈ F
(

f ◦ pF ∈ Mor(C, R)
)
, ∀g ∈ G

(
g ◦ pG ∈ Mor(C, R)

)}
=

=
⊔ {

(pF, pG) | ∀( f , g) ∈ F×G
(
( f , g) ◦ (pF, pG) ∈ Mor(C, R)

)}
=

=
⊔

PF×G =

= PF×G.

4.2.18 Lemma Let f ∈ F(X, R). Then

∀p ∈
⊔

P0
(

f ◦ p ∈ Mor(C, R)
)
←→ ∀p ∈ P0

(
f ◦ p ∈ Mor(C, R)

)
.

Proof. (−→) is clear, since P0 ⊆
⊔

P0.
(←−) We use the induction principle Indt.

i) For p ∈ P0 we just use our premise.

ii) For p ∈ Const(2N, X) it is f ◦ p ∈ Const(2N, R) ⊆ Mor(C, R).

iii) For p = p0 ◦ t, where p0 ∈
⊔

P0 such that f ◦ p0 ∈ Mor(C, R) and t ∈ C, it is

f ◦ p = f ◦ (p0 ◦ t) = ( f ◦ p0) ◦ t ∈ Mor(C, R).

iv) For p∗ : 2N → X defined by p∗(iα) = pi(α), where pi ∈
⊔

P0 such that f ◦ pi ∈
Mor(C, R), for i ∈ {0, 1} we get for α = iα̃ ∈ 2N

( f ◦ p∗)(α) = ( f ◦ p∗)(iα̃) = f
(

p∗(iα̃)
)
= f

(
pi(α̃)

)
= ( f ◦ pi)(α̃),

hence f ◦ p∗ ∈ Mor(C, R).
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4.2.19 Proposition LetP = (X,
⊔

P0) be a C-space, then F⊔ P0 = FP0 .

Proof. By the previous lemma we conclude

F⊔ P0 =
{

f : X → R | ∀p ∈
⊔

P0
(

f ◦ p ∈ Mor(C, R)
)}

=

=
{

f : X → R | ∀p ∈ P0
(

f ◦ p ∈ Mor(C, R)
)}

=

= FP0 .

This proposition yields the
⊔

-lifting of building related Bishop spaces.

4.2.20 Lemma Let p ∈ F(2N, X). Then

∀ f ∈
∨

F0
(

f ◦ p ∈ Mor(C, R)
)
←→ ∀ f ∈ F0

(
f ◦ p ∈ Mor(C, R)

)
.

Proof. (−→) is clear, since F0 ⊆
∨

F0.
(←−) We use the induction principle Ind∨.

i) For f ∈ F0 we just use our premise.

ii) For f ∈ Const(X, R) obviously f ◦ p ∈ Const(2N, R) ⊆ Mor(C, R).

iii) For f = f0 + g0 with f0, g0 ∈
∨

F0 such that f0 ◦ p ∈ Mor(C, R) and g0 ◦ p ∈
Mor(C, R) it is

f ◦ p = ( f0 + g0) ◦ p = ( f0 ◦ p) + (g0 ◦ p) ∈ Mor(C, R).

iv) For f = φ ◦ f0, where φ ∈ Bic(R) and f0 ∈
∨

F0 such that f0 ◦ p ∈ Mor(C, R) it is

f ◦ p = (φ ◦ f0) ◦ p = φ ◦ ( f0 ◦ p) ∈ Mor(C, R).

v) Suppose that ε > 0 and f0 ∈
∨

F0 such that f0 ◦ p ∈ Mor(C, R), and for every
x ∈ X it is | f0(x)− f (x)| ≤ ε. Then

f ◦ p = ( f ◦ p)− ( f0 ◦ p) + ( f0 ◦ p) =
(
( f − f0) ◦ p

)︸ ︷︷ ︸
≤ε

+( f0 ◦ p) ∈ Mor(C, R).
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4.2.21 Proposition Let F = (X,
∨

F0) be a Bishop space, then P∨ F0 = PF0 .

Proof. By the previous lemma we conclude

P∨ F0 =
{

p : 2N → X | ∀ f ∈
∨

F0
(

f ◦ p ∈ Mor(C, R)
)}

=

=
{

p : 2N → X | ∀ f ∈ F0
(

f ◦ p ∈ Mor(C, R)
)}

=

= PF0 .

The result of the previous proposition is the
∨

-lifting of building related C-spaces. By
the following proposition we verify that for inductively generated C- respectively Bishop
spaces we get inductively generated related Bishop respectively C-spaces.

4.2.22 Proposition Let P = (X,
⊔

P0) be a C-space and F = (Y,
∨

F0) a Bishop space.
Then there exist G(P0) ∈ F(X, R) and Q(F0) ∈ F(2N, X) such that

i) F⊔ P0 =
∨

G(P0),

ii) P∨ F0 =
⊔

Q(F0).

Proof. For G(P0) := FP0 and Q(F0) := PF0 the claim follows directly.

4.2.23 Corollary Let P = (X,
⊔

P0) be a C-space and F = (Y,
∨

F0) a Bishop space.
Then

i)
⊔

P0 =
⊔

Q
(
G(P0)

)
,

ii)
∨

F0 =
∨

G
(
Q(F0)

)
.

Proof. By proposition 4.2.12 and proposition 4.2.22 it is

i)
⊔

P0 = P(F⊔ P0 )
= P(∨

G(P0)
) = ⊔

Q
(
G(P0)

)
.

ii)
∨

F0 = F(P∨ F0 )
= F(⊔

Q(F0)
) = ∨

G
(
Q(F0)

)
.

Of course finer sets than G(P0) and Q(F0) can exist. Some have already been ana-
lyzed.
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4.2.24 Examples

• F⊔ Id2N
= FC = Mor(C, R) = Bic(2)N =

∨
n∈N

πn.

• F⊔ i = FC(R) = Mor(R, R) = Bic(R) =
∨

IdR.

• F⊔∅ = FConstloc(2N,X) = F(X, R) =
∨

F(X, R).

• F⊔F(2N,X) = FF(2N,X) = Const(X, R) =
∨

∅.

• P∨ IdR
= PBic(R) = Mor(C, R) = C(R) =

⊔
i.

• P ∨
n∈N

πn = PBic(2)N = Mor(C, C) = C =
⊔

Id2N .

• P∨∅ = PConst(X,R) = F(2N, X) =
⊔

F(2N, X).

• P∨ (X,R) = PF(X,R) = Constloc(2N, X) =
⊔

∅.

The following two propositions lead to the result that building related Bishop respec-
tively C-spaces also preserve relativation.

4.2.25 Proposition LetP = (X, P) be a C-space and Y ⊆ X. Then F(P|Y) = (FP)|Y.

(X, P)

β

��

r // (Y, P|Y)

β

��
(X, FP)

r //
(
Y, F(P|Y)

)
=
(
Y, (FP)|Y

)
Proof. By the definitions of related spaces and respective Bishop spaces it is

• P|Y =
⊔ {

p ∈ P | ∀α ∈ 2N
(

p(α) ∈ Y
)}

.

• F(P|Y) =
{

f : Y → R | ∀p|Y ∈ P|Y
(

f ◦ p|Y ∈ Mor(C, R)
)}

.

• FP =
{

f : X → R | ∀p ∈ P
(

f ◦ p ∈ Mor(C, R)
)}

.

• (FP)|Y =
∨ (
{ fP|Y | fP ∈ FP}

)
=

=
∨({

f : Y → R | ∀p ∈ P
(

f ◦ p ∈ Mor(C, R)
)} )

=

=
{

f : Y → R | ∀p ∈ P|Y
(

f ◦ p ∈ Mor(C, R)
)}

=

= F(P|Y).

62



4 Connections between C-spaces and Bishop spaces

4.2.26 Proposition Let F = (X, F) be a Bishop space and Y ⊆ X. Then P(F|Y) =
(PF)|Y.

(X, F)

γ

��

r // (Y, F|Y)

γ

��
(X, PF)

r //
(
Y, P(F|Y)

)
=
(
Y, (PF)|Y

)
Proof. By the definitions of related spaces and respective C-spaces we get

• F|Y =
∨ (
{ f |Y | f ∈ F}

)
.

• P(F|Y) =
{

p : 2N → Y | ∀ f |Y ∈ F|Y
(

f |Y ◦ p ∈ Mor(C, R)
)}

.

• PF =
{

p : 2N → X | ∀ f ∈ F
(

f ◦ p ∈ Mor(C, R)
)}

.

• (PF)|Y =
⊔{

p ∈ PF | ∀α ∈ 2N
(

p(α) ∈ Y
)}

=

=
⊔{

p : 2N → Y | ∀ f ∈ F
(

f ◦ p ∈ Mor(C, R)
)}

=

=
⊔{

p : 2N → Y | ∀ f ∈ F|Y
(

f ◦ p ∈ Mor(C, R)
)}

=

= P(F|Y).
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The following questions and facts need further elaboration:

i) The Tychonoff embedding theorem

The general Tychonoff embedding theorem for Bishop spaces says that a Bishop
space F = (X,

∨
F0) is completely regular if and only if F is topologically embed-

ded into the Euclidean Bishop space RF0 . This theorem is proven in [10, page 133].
To find an analogous theorem for C-spaces, definitions for apartness and for topo-
logical embedding are needed. The difficulty here is that the set X we are interested
in is the codomain of a probe in a C-space P = (X, P). It may is possible to solve
this problem by defining by means of the respective Bishop space.

A C-space P = (X, P) could be called completely regular if the Bishop space FP =
(X, FP) is completely regular i.e.,

∀ f ∈ FP
(

f (x) = f (y) −→ x = y
)
.

If P = (X, P),Q = (Y, Q) are C-spaces, a function e : X → Y could be a topological
embedding of P into Q if e is a C-isomorphism between P and Q|e(X).

It remains unclear, how the respective space, now called X (P0) =
(
X(P0), P(P0)

)
,

for a C-space P0 = (X,
⊔

P0), of the Euclidean Bishop space RF0 should look like
for C-spaces.
The respective general Tychonoff embedding theorem would read

Suppose that P0 = (X,
⊔

P0) is a C-space. Then, P is completely regular if and only if P
is topologically embedded into the C-space X (P0).

If one could prove that the existence of a Bishop-isomorphism e : X → RG(P0)

between FP0 and RG(P0)|e(X) is equivalent to the existence of a C-isomorphism
ẽ : X(P0)→ X betweenX (P0)|ẽ(X) andP0, then by means of the general Tychonoff
embedding theorem for Bishop spaces the respective general Tychonoff embedding
theorem for C-spaces could be verified by the following way:
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5 Open questions

P0 is completely regular

←→ FP0 = (X, F⊔ P0) =
(
X,
∨

G(P0)
)

is completely regular

←→ FP0 is topologically embedded into the Euclidian Bishop space RG(P0)

←→ ∃e : X → RG(P0) Bishop-isomorphism between FP0 and RG(P0)|e(X)

←→ ∃ẽ : X(P0)→ X C-isomorphism between X (P0)|ẽ(X) and P0

←→ P0 is topologically embedded into X (P0).

ii) Restrictions on X for C-spaces

While in this Thesis the definition of a C-space is just repeated, in [13] also a
derivation of how to get this specific definition is explained. The beginning is at
the definition of quasi-topological spaces introduced by Spanier in [12]:

A quasi-topological space is a set X endowed with a quasi-topology.
A quasi-topology on X assigns to each compact Hausdorff space K a set Q(K, X) of
functions of type K → X such that:

a) Const(K, X) ⊆ Q(K, X).

b) If t′ : K′ → K is continuous and q ∈ Q(K, X), then q ◦ t′ ∈ Q(K′, X).

c) If {ti : Ki → K}i∈I is a finite, jointly surjective family and q : K → X is a map
with q ◦ ti ∈ Q(Ki, X), for every i ∈ I, then q ∈ Q(K, X).

A function f : X → Y between quasi-topological spaces X and Y is called continuus
if f ◦ q ∈ Q(K, Y), for every q ∈ Q(K, X).

X
f continuous // Y

K

Q(K,X)3q

OO

f ◦q∈Q(K,Y)

==

By considering just one compact Hausdorff space, the Cantor space 2N, and by
restricting the jointly surjective finite families of continuous maps to the covering
families {conss}s∈2n , where conss : 2N → 2N is defined by conss(α) = sα, we get
the definition of a C-space. It also follows that the category CS is cartesian closed.

In comparison to Bishop spaces we note that for every functions in a Bishop
topology the critical set X performs as the domain, hence we have no restriction
on it.

In C-topologies we always start with the compact Hausdorff space 2N as the
domain and have C-continuous maps as probes. Since for continuous functions
the image of a compact set is again compact in classical mathematics, we should
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study the relation between the images of 2N under the probes and the compact
subsets of X.

iii) Fan functional

In this Thesis mainly results of [10] are studied in C-spaces. By means of the bridge
we have found that it is possible to transform the results of [13] into the theory of
Bishop spaces.

For example in chapter 3.5 the fan fuctional

fan : N2N →N,

which C-continuously calculates least moduli of uniform continuity, is defined.
Maybe this could help to study the FAN functional

FAN : Mor
(

2N,
(
N, F(N, R)

))
→N

Φ 7→ FAN (Φ)

∀α, β

(
α
(
FAN (Φ)

)
= β

(
FAN (Φ)

)
−→ Φ(α) = Φ(β)

)
mentioned in [10], chapter 8.

One could also try to find a fan functional

fan : RN → R,

which Bishop continuously calculates least moduli of uniform continuity in BS.

While the existence of exponentials has already been proven in the theory of C-
spaces, this is still an open question in the theory of Bishop spaces. It is expected
that BS is not cartesian closed, as it is the case in the category of topological spaces
Top. It would be interesting to determine cartesian closed subcategories of BS.
We denote the set of them by BSc. Now one could also investigate the following
points:

iv) Limit spaces and Kleene-Kreisel-spaces

The definition of limit spaces is given in [13], chapter 4 by:

A limit space is a set X together with a family of functions x : N∞ → X, written as
(xi)→ x∞ and called convergent sequences in X, satisfying the following conditions:

a) The constant sequence (x) converges to x.

b) If (xi) converges to x∞, then so does every subsequence of (xi).
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5 Open questions

c) If (xi) is a sequence such that every subsequence of (xi) contains a subse-
quence converging to x∞, then (xi) converges to x∞.

The collection of convergent sequences in X is called the limit structure on X. A
function f : X → Y of limit spaces is said to be continuous if it preserves convergent
sequences i.e., (

(xi)→ x∞
)
−→

(
( f xi)→ f x∞

)
.

The category of limit spaces and continuous maps is denoted by Lim.

By the lemmas 4.2.3 and 4.2.4 we get functors between Lim and CS:

• The functor G : Lim→ CS is given by

a) For any limit space X, the limit probes form a C-topology on X.

b) For any two limit spaces X and Y, a function X → Y is limit-continuous
if and only if it is continuous w.r.t. the limit probes.

• The functor F : CS→ Lim is given by

a) For any C-space X, the probe-continuous maps N∞ → X form a limit
structure on X.

b) For any two C-spaces X and Y, if a function X → Y is probe-continuous
then it is limit-continuous w.r.t. the above limit structures.

Now one could try to compose this functors with the functors β : CS → BS
and γ : BS → CS. Here we have to restrict the functors to βc : CS → BSc and
γc : BSc → CS. Then there is to verify if the compositions

βc ◦ G : Lim→ BSc and
F ◦ γc : BSc → Lim

are functors between the category Lim and BSc.
BSc

F◦γc

!!

γc

��
CS

βc

OO

F // Lim
G

oo

βc◦G

aa

After this, one could also investigate like in [13], chapter 4, if limit spaces may
form a reflective subcategory or an exponential ideal of Bishop spaces, if F ◦ γc :
BSc → Lim preserve finite products and if βc ◦ G : Lim→ BSc is cartesian closed.

In remark 4.2.13 we have demonstrated that β
(
γ(X, F)

)
= (X, F) for a Bishop

space F = (X, F). Does this equation also hold for βc and γc? If this would be the
case, then by lemma 4.2.10 of [13] we notice:
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If F = (X, F) is a Bishop space such that γc(X, F) is a discrete C-space, then(
(βc ◦ G) ◦ (F ◦ γc)

)
(X) = X.

If all the above questions can be answered by yes an analogous assertion for the
Kleene-Kreisel spaces defined in [13] can be made:

The Kleene-Kreisel spaces can be calculated within BSc by starting from the natural
numbers object and iterating products and exponentials.

v) In [10] the relationship between the category Top and the category of quasi-
topological spaces is explored. Now it would be interesting to see if a similar
relationship could exist between BS and another category. An approach could
be the investigation of the Bishop spaces generated by C-spaces. Do these spaces
again build a category? If this holds, then the suggestion is that this category
is cartesian closed and exponentials exist, since it is the case in the category of
C-spaces. One could also compare the cartesian closed subcategories of BS we
mentioned before with the Bishop spaces generated by C-spaces.

Of course this is just a small list of questions that can be worked out in the future.
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