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Abstract

Chu categories were first introduced to generate ∗-autonomous categories from closed symme-
tric monoidal categories. A special case of the Chu construction, so called Chu spaces were
used later on in other areas of mathematics, e.g game theory or quantum logic. In this thesis
we present an overview of the theory of Chu categories, as well as a few examples in which the
Chu construction actually relates to topics that are not related at first sight. Furthermore we
examine the relation of the Chu construction to other categorical notions, especially whether
the existence of certain objects, like for example products, in the base category implies the
existence of such objects in the Chu category.

Another important tool in category theory are so-called Grothendieck constructions, which
have already been examined in relation to Chu categories. We strengthen this relationship by
giving a Grothendieck construction that can be associated to any Chu category and is in fact
equivalent.

At last we present a few generalizations of Chu categories, e.g. the generalized Chu
category which has its origin in the examination of the category of predicates.

Zusammenfassung

Chu-Kategorien wurden eingeführt, um aus einer geschlossenen, symmetrisch monoidalen
Kategorie eine ∗-autonome Kategorie zu gewinnen. Später wurden Chu-Räume, ein Spezialfall
der Chu-Kategorie, in anderen Bereichen der Mathematik wie Spieltheorie oder Quantenlo-
gik genutzt. In dieser Arbeit wollen wir zum einen einen Überblick über die Chu-Konstruktion
sowie einige Beispiele geben, in welchen die Chu-Konstruktion auch in scheinbar nicht verwand-
ten Fachbereichen angewendet werden kann. Ebenso untersuchen wir das Verhältnis der Chu-
Konstruktion zu anderen kategoriellen Konstruktionen, insbesondere ob sich die Existenz von
Objekten wie z.B. Produkten in der zugrunde liegenden Kategorie auch auf die Chu-Kategorie
vererbt.

Ein weiteres wichtiges Hilfsmittel in der Kategorientheorie sind sogenannte Grothendieck-
Konstruktionen, welche schon in Zusammenhang mit Chu-Räumen untersucht wurden. Wir
vertiefen diesen Zusammenhang und geben eine Grothendieck-Konstruktion, welche zu jeder
gegebenen Chu-Kategorie vollführt werden kann und zu dieser äquivalent ist.

Zu guter Letzt geben wir noch einige Verallgemeinerungen der Chu-Kategorie an, z.B.
die verallgemeinerte Chu-Kategorie, welche der Untersuchung der Kategorie der Prädikate
entsprang.
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Chapter 1

Introduction

Chu categories were introduced by P.-H. Chu in his master’s thesis Constructing ∗-autono-
mous categories, which formed the appendix of the book ∗-Autonomous Categories by M.
Barr [Bar79]. Later on, with the emergence of linear logic, an invention by J.-Y. Girard,
a “logic behind logic”, as he calls it in his paper [Gir87], it was shortly after discovered by
R. Seely, that ∗-autononmous categories are in a crucial relationship to linear logic. A
special kind of Chu categories, the so called Chu spaces have found their way into theoretical
physics and theoretical computer science, where they are used to model systems with quantum
features [Abr12] and game theory.

1.1 A (brief) history of the Chu construction
A (not complete) historical overview of the developments of the theories used to define the
Chu construction as well as related topics is summarized in the following table.

1964 F. Lawvere introduces cartesian closed categories in his paper [Law64], in which
he establishes the cartesian closed category of sets as an alternative foundation to
set theory and therefore lays the foundation for category theory as a base theory for
mathematics.

1979 M. Barr introduces ∗-autonomous categories in his paper [Bar79] and H.-P. Chu
introduces his Chu categories in his master’s thesis which forms the appendix to this
paper.

1987 J.-Y. Girard introduces linear logic, a logic in which the usual implication A⇒ B
is broken into two operations, !A and A( B, where the cut-axiom no longer holds,
so A&A ( B is not the same as A ( B. The classical implication can then be
expressed through !A( B.

1989 R. A. G. Seely discovers in his paper [See] that Chu categories can be used to model
parts of linear logic.

1991 Chu spaces are first used under the term “games” by Y. Lafont and T. Streicher
in their paper [LS91].

1.2 Goals & structure of this thesis
The goals of this thesis are twofold.
• We want to present the usefulness of the Chu construction as the correct frameworks

for certain questions arising in mathematics, e.g. how to represent the notion of a
topological space using a certain Chu space.

• Secondly we want to present the rich theory surrounding the Chu construction itself, as
the Chu construction itself exhibits interesting properties depending on the properties
of the category it is built upon.
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The thesis is structured in the following way.

2 The Chu construction
In this chapter we introduce symmetric monoidal categories as well as ∗-autonomous
categories. Furthermore we introduce cartesian closed categories, a special kind of closed
symmetric monoidal categories and discuss their relation to λ-calculi, who are special kinds
of type theories. We then present the definition of the Chu construction over a cartesian
closed category and an object γ ∈ C0. Lastly we specify Chu spaces, which are objects of
the category Chu(Set, X) for an arbitrary set X.

3 Chu representations
In this chapter we present a few examples of representations of categories like the category
Top of topological spaces or the affine category Aff(C , c) over a category C with an object
c ∈ C0. All of these representations are distinct from the strict representation we present
in section 4.2. By constructing the representation of the category of topological spaces we
demonstrate that non-cartesian closed categories can be embedded into Chu constructions.

4 The Chu functors
In this chapter we construct the strict representation of a cartesian closed category C into
its Chu construction with an arbitrary object γ ∈ C0. We then make the rules of assigning
the Chu category to an object, C0 3 γ 7→ Chu(C , γ) and to a pair (C , γ) 7→ Chu(C , γ)
rigorous by the internal and the global Chu functor.

5 The Chu construction and categorical constructions
In this chapter we discuss the interaction of the Chu category with the dual category and
the product category of two cartesian closed categories, C ,D . To be more precise we
want to show that the product category of two Chu categories Chu(C , γ) × Chu(D , δ)is
isomorphic to th Chu(C ×D , (γ, δ)). As the opposite category of a cartesian closed
category need not be cartesian closed, we define the coChu construction.

6 The Chu construction and limits
In this chapter we discuss the interaction of the Chu construction with limits. We start
by dissecting the interaction of the Chu construction with products, one of the simplest
form of limits. Finally we prove that Chu(C , γ) is bicomplete if the base category C is
bicomplete.

7 Generalizations of the Chu construction
In this chapter we present various generalizations of the Chu construction. Our first
generalization is the generalized Chu category, which allows arrows a × x → Γ0(y) for a
fixed endofunctor Γ: C → C instead of just arrows a×x→ γ. Next we generalize the Chu
category via a Grothendieck construction which allows us to imitate the Chu construction
in categories which are not cartesian closed. Then we generalize the Chu construction
to products with arbitrary many factors using the previously obtained Grothendieck
construction. At last we find a Grothendieck construction equivalent to the generalized
Chu category.

8 The Chu construction and topoi
As Chu spaces are objects of a category Chu(Set,K) and Set is the prime example of a
topos, we want to examine whether the category Chu(Set,K) is a topos. To this end we
dissect the hypothetical subobject classifier in Chu(Set,K) and finish by concluding from
this discussion that such a subobject classifier can not exist, ergo Chu(Set,K) is not a
topos.

8
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1.3 Contributions & Material
The main contribution of this thesis does not lie within the proof of a special theorem, but
in presenting the material surrounding Chu categories in a unified fashion.

2 The Chu construction
This chapter consists entirely of presentation of known results. Our approach to symmetric
monoidal categories and ∗-autonomous categories is due to [Bar79] and [BW20]. For our
definition of cartesian closed categories we use [Awo10], but his definition of a cartesian
closed category is the same as in [BW20]. Our definition of a Chu space is due to [Abr18].

3 Chu representations
The material of this chapter is due to [Pet21], we simply gave proofs where they were
omitted in this text.

4 The Chu functors
The material in this chapter is due to [Pet21], we simply gave proofs where they were
omitted in this text.

5 The Chu construction and categorical constructions
The lemma of the first section is due to [Man17], we only altered the proof slightly. The
material of sections 5.2 – 5.6 is due to our own work which was inspired by correspondence
with the advisor of this thesis, I. Petrakis.

6 The Chu construction and limits
The material of the first section we came up with after reading [Man17]. The material
of the second section is due to [Man17], although we alter his proof using an equivalent
characterisation of bicompleteness due to [Awo10].

7 Generalizations of the Chu construction
The material of the first four sections, is either due to [Pet21] or originated from correspon-
dence with the author, I. Petrakis. The last three sections are due to our own work,
which was again incited by I. Petrakis.

8 The Chu construction and topoi
The material of this chapter is due to our own work which was incited by I. Petrakis.

All illustrations in this thesis were created by the author using the TikZ-package.



Chapter 2

The Chu construction

The Chu construction first arose as a way to generate ∗-autonomous categories, which them-
selves are special forms of closed symmetric monoidal categories. Hence we start by introducing
these special kinds of categories.

2.1 Symmetric monoidal categories
Definition 2.1 (Symmetric monoidal categories). Let C be a closed category. It is
symmetric monoidal if there exists a bifunctor ⊗ : C × C → C and an object >. We often
write A ⊗ B instead of ⊗0(A,B) for A,B ∈ C0. Furthermore, if (f, f ′) : (C,D) → (E,F ) is
an arrow in C × C , we write f ⊗ f ′ instead of ⊗1(f, f ′). The bifunctor ⊗ and > must fulfil
the following axioms.
(SMC1) For all A,B,C ∈ C0 there must exist an isomorphism

aA,B,C : A⊗ (B ⊗ C)
∼=−−→ (A⊗B)⊗ C.

(SMC2) For all A ∈ C0 there must exist an isomorphism rA : A⊗>
∼=−−→ A.

(SMC3) For all A,B ∈ C0 there must exist an isomorphism sA,B : A⊗B
∼=−−→ B ⊗A.

(SMC4) For all A,B ∈ C0 the diagram

A⊗ (>⊗B) (A⊗>)⊗B

A⊗B

aA,>,B

(1A⊗rA)◦(1A⊗s>,B) rA⊗1B

commutes.

(SMC5) For all A,B,C,D ∈ C0 the diagram

A⊗
(
(B ⊗ C)⊗D

)
A⊗

(
B ⊗ (C ⊗D)

)
(A⊗B)⊗ (C ⊗D)

(
A⊗ (B ⊗ C)

)
⊗D

(
(A⊗B)⊗ C

)
⊗D

aA,B⊗C,D

1A⊗aB,C,D aA,B,C⊗D

aA⊗B,C,D

aA,B,C⊗1D

commutes.

(SMC6) For all A,B ∈ C0 we have sA,B ◦ sB,A = 1A⊗B.

(SMC7) For all A,B,C ∈ C0 we have that

A⊗ (B ⊗ C) A⊗ (C ⊗B) (A⊗ C)⊗B

(A⊗B)⊗ C C ⊗ (A⊗B) (C ⊗A)⊗B

aA,B,C

1A⊗sB,C aA,C,B

sA,C⊗1B

sA⊗B,C aC,A,B

commutes.
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Chapter 2 The Chu construction 11

Remark 2.2. Some authors (for example M. Barr in [BW20]) define a monoidal category
without the axiom (SCM2) and instead only require there to be an additional isomorphism
>⊗A→ A which has to be equal to rA ◦s>,A in the case that the category is also symmetric.

Definition 2.3 (Closed symmetric monoidal categories). A symmetric monoidal category
is said to be closed if for every A ∈ C0 the functor A⊗ - : C → C defined by

(A⊗ - )0(B) = A⊗B,
(A⊗ - )1(f) = 1A ⊗ f

has a right adjoint denoted by A( - . We call this right adjoint the internal hom-functor.

We shall illuminate these rather abstract notions at the example of the category of sets.

Example 2.4 (The category Set). We first define the category Set. Its objects are sets A
and its arrows are functions f : A → B between sets. Now we establish a closed symmetric
monoidal structure on Set. For this we need to define ⊗,>,(. Let A,B be arbitrary sets.
We then let

A⊗B = {(a, b) | a ∈ A& b ∈ B}, the product set ,
> = 1 = {∅}, the one-object set ,

A( B = {f : A→ B}, the function set .

This establishes the desired structure and gives a first idea why A( B is called the “internal
hom”1. The elements of A( B are exactly the elements of HomSet(A,B).

This example gives a slightly false impression, as A( B naively “is equal” to the Hom-set
HomSet(A,B), but this can not hold in general, as this would mean that the objects of a closed
symmetric monoidal category are always sets. A less illustrative, but more accurate approach
is to observe that the internal hom has similar properties as the “ordinary” Hom. We have
introduced the internal hom A( - as the right adjoint of A⊗ - . But as the ordinary Hom
can be made a functor HomC ( - , - ) : C op×C → Set, it is sensible to ask whether a similar
result holds for the internal hom. And unsurprisingly, we have - ( - : C op×C → C . A
proof of this can be found in [nLa21b, Proposition 3.1]

Now originally the Chu construction was used to obtain a ∗-autonomous category from a
closed symmetric monoidal category. But before we can define ∗-autonomous categories we
need to examine( a little further.

Lemma 2.5. Let C be a closed symmetric monoidal category and A,B,C ∈ C0. Then there
exists a unique arrow cA,B,C : (A( B) ⊗ (B ( C) → (A( C) adjoint to a composition of
evaluations.2

Proof: As A⊗ - is the left adjoint of A( - , we know that for every B,C ∈ C0 there exists
an isomorphism

HomC (A⊗B,C) ∼= HomC (B,A( C).

We use this by setting B = A⊗C and considering the identity 1A(C . The identity corresponds
to an arrow eA,C : A ⊗ (A( C) → C, which we shall call the evaluation of A and C. Now
we can consider the following compositions of arrows.

A⊗ (A( B)⊗ (B( C)
eA,B⊗1B(C−−−−−−−−→ B ⊗ (B( C)

eB,C−−−→ C.

By using the left-adjointness we obtain a unique arrow cA,B,C : (A( B)⊗(B( C)→ (A(
C). q.e.d.

1As Set also carries a cartesian closed structure, we will later denote A( B by BA.
2We will give a sufficient definition of evaluations in the proof.
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An ∗-autonomous category is a category of the following type.

Definition 2.6 (∗-autonomous categories). A closed symmetric monoidal category C is
a ∗-autonomous category, if there exists a duality functor ( - )∗ : C op → C , such that for all
A,B ∈ C there exists an isomorphism dA,B : A( B → B∗( A∗.3 This isomorphism has to
adhere to the following condition.
(∗-AC1) Let A,B,C ∈ C0 be given. Define s := sB∗(A∗,C∗(B∗ to be the isomorphism from

property (SMC3) of symmetric monoidal categories. Then the diagram

(A( B)⊗ (B( C) A( C

(B∗( A∗)⊗ (C∗( B∗) C∗( A∗

dA,B⊗dB,C

cA,B,C

dA,C

cC∗,B∗,A∗◦s

has to commute, where the arrows are those arising from the definition of a symmetric
monoidal category.

We are not going to use this general approach, but instead focus our attention on cartesian
closed categories, an even stronger notion of a category, which we will describe next.

2.2 Cartesian closed categories
Definition 2.7 (Products). Let C be a category, I be an arbitrary set and ci be a family
of objects of C , indexed by I. A product of (ci)i∈I is an object P together with arrows
pri : P → ci, fulfilling the following universal property.

Let C ∈ C0 be an object of C together with an arrow fi : C → ci for every i ∈ I. Then
there exists a unique arrow F : C → P such that for every i ∈ I the diagram

C

P ci

F

fi

pri

commutes.

Remark 2.8. It can be shown that products are unique up to unique isomorphism, if they
exist, which justifies writing

∏
i∈I ci for the product. We will not denote the arrows pri of

the product explicitly, except when it is required to evade confusion. If I is the set with two
elements we write a1 × a2 instead of

∏
i∈I ai.

Definition 2.9 (Exponentials). Let C be a category such that for all objects c1, c2 ∈ C0

the product c1 × c2 exists. Suppose we are given a, b ∈ C0. An exponential of b and a is an
object ba ∈ C0 together with an arrow evalb,a : ba × a → b fulfilling the following universal
property.

Let d ∈ C0 be an object with an arrow f : d × a → b. Then there exists a unique
f̂ : d→ ba making the diagram

ba × a b

d× a

evalb,a

ff̂×1a

3We write A∗ instead of ( - )∗0(A) for an object A.
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commute. The arrow f̂ is called the transpose of f whereas evalb,a is called the
evaluation morphism.

Definition 2.10 (Terminal objects). Let C be a category. A terminal object of C is a
object > such that for every C ∈ C0 there exists a unique arrow !C : C → >.

Definition 2.11 (Cartesian closed categories). A category C is cartesian closed, if it
fulfills the following requirements.
• The category C admits all finite products, i.e. for every finite set I and all families

(ci)i∈I of objects of C the product
∏
i∈I ci exists.

• For all objects a, b ∈ C0 the exponential ba exists.

• There exists a terminal object > ∈ C0.

Remark 2.12. If class of objects of a cartesian closed category is non-empty, the requirement
that there exists a terminal object > can be dropped, as any product over the empty set,∏
i∈∅ ci already is a terminal object. So the last condition can be seen as a way to ensure that

C actually contains objects and the empty set must not be considered when talking about
cartesian closed categories.

The way one obtains that a cartesian closed category is in fact a closed symmetric monoidal
category is the obvious one. We state this as the following lemma.

Lemma 2.13. Let C be a cartesian closed category. The bifunctor ⊗ : C × C → C is given
by (A,B) 7→ A × B, and the object > is the terminal object of the category C . The right
adjoint of (A× - ) : C → C is given by the functor B 7→ BA.

Proof (sketch): The conditions (SMC1) – (SMC7) with the exception of (SMC2) are obvious,
as all the products involved are naturally isomorphic. The condition (SMC2) will be proven
as lemma 6.15. To see that the functors (A × - ) and ( - )A are adjoint, one needs to prove
that

HomC (A×B,D) ∼= HomC (B,DA)

for all B,D ∈ C0. But this isomorphism is given by sending an arrow f : A × B → D to its
transpose f̂ : B → DA. q.e.d.

2.3 Typed λ-calculus
J. Lambek and P. J. Scott introduced a special kind of type theory, so called “typed λ-
calculus” in their paper [LS84] and related these calculi to cartesian closed categories. In this
section, we aim to give a short overview of the topic.

We are going to modify the version of J. Lambek and P. J. Scott, as they introduce
cartesian closed categories as positive intuitionistic propositional calculi and require them to
have a weak natural numbers object, which we did not do. Therefore we will follow [BW20].

Definition 2.14 (Typed λ-calculi). A typed λ-calculus is a formal theory consisting of
three classes of types, terms, and equations. We will reserve the membership symbol “∈” for
the metalanguage to symbolize that a term is of a given type, so we would for example write
a ∈ A for the expression “a is of type A”. These types, terms and equations have to adhere
to the following axioms.
Types:

(λ-Ty1) There exist a type 1, which we call basic type.

(λ-Ty2) If A and B are types, there exist types A×B and BA. We call A×B the product
type and BA the function type.
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Terms:
(λ-Tm1) For each type A there exist countably many terms xAi , i = 1, 2, . . . of type A,

which we call variables of type A. We will not always denote the variables by xAi ,
but sometimes by x ∈ A, if the circumstances are understood.

(λ-Tm2) There exists a term ∗ of type 1.

(λ-Tm3) If a ∈ A, b ∈ B and c ∈ A × B, there exists a term 〈a, b〉 of type A × B and two
terms πA,B(c) ∈ A, π′A,B(c) ∈ B.

(λ-Tm4) If f ∈ BA and a ∈ A, then there exists a term εB,A(f, a) ∈ B.

(λ-Tm5) If x ∈ A and φ(x) ∈ B, then λx∈Aφ(x) ∈ BA.
Before we move on we define what it means for a variable to be bound in a term. A variable
x is bound in φ(x), if φ(x) is of the form λx∈Aψ(x) for a term ψ. A variable x is free in φ(x)
if it is not bound. A term a is substitutable for x in φ(x) if all free variables in a are free in
φ(a).
Equations:

(λ-Eq1) Equations are of the form a =X a′, where a and a′ are terms of the same type A
and X is a finite collection of variables such that all occurences of free variables
in a and a′ are contained in X.

(λ-Eq2) The equations a =X a′ are symmetric and transitive, which means that if we
are given equations a =X a′, a′ =X a′′ where a, a′, a′′ ∈ A and X contains all
free variables of a, a′, a′′, then a′ =X a, a =X a′′. Furthermore the equations are
reflective, ergo we have a =X a for all terms of such that X contains all free
variables of a.

(λ-Eq3) Let a =X a′ be an equation and X ⊆ Y . Then a =Y a′. We will abbreviate this
rule by

a =X a′

a =Y a′
.

(λ-Eq4) Let a, b ∈ A and f ∈ BA. Furthermore let φ(x), φ′(x) ∈ B. Suppose we are given
equations a =X b and φ(x) =X∪{x} φ

′(x). We then obtain equations εB,A(f, a) =X

εB,A(f, b) and λx∈Aφ(x) =X λx∈Aφ
′(x). We abbreviate these rules by

a =X b

εB,A(f, a) =X εB,A(f, b)
and

φ(x) =X∪{x} φ
′(x)

λx∈Aφ(x) =X λx∈Aφ
′(x)

.

(λ-Eq5) The following list of equations has to hold.

• For all a ∈ 1 we have a =X ∗.
• For all a ∈ A, b ∈ B we have the equations π(〈a, b〉) =X a and π′(〈a, b〉) =X b.
• For all c ∈ A×B we have 〈π(c), π′(c)〉 =X c.
• For all terms φ(x) ∈ B such that a is substitutable for x holds the equation

εB,A
(
λx∈Aφ(x), a

)
=X φ(a).

• For all f ∈ BA with a variable x such that x is not free in f holds the equation

λx∈AεB,A(f, x) =X f.

• Let φ(x) ∈ B and x′ be a term substitutable for x in φ(x) such that x′ is not
free in φ(x). Then the equation λx∈Aφ(x) =X λx′∈Aφ(x′) holds.
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One way of obtaining a typed λ-calculus is by creating it from a cartesian closed category.
This is done in the following way.

Lemma 2.15. Let C be a cartesian closed category. We obtain the internal language L(C )
of C in the following manner.
• The types are the objects of C , where the type 1 is the terminal object > and the tyes
A×B and BA correspond to the product and the exponential respectively.

• The terms of L(C ) are the ones required to exist by λ-Tm1 – λ-Tm5.

• The equations of L(C ) are the ones required to exist by λ-Eq1 – λ-Eq5.
This internal language is a typed λ-calculus.

Proof: See [LS86, Section 11]. One only needs to consider the fact that we do not demand the
existence of weak natural number objects in our cartesian closed categories and the existence
of the basic type N in a typed λ-calculus as well as the existence of I( - , - , - ). q.e.d.

On the other hand we can also generate a cartesian closed category from a given typed λ
calculus L.

Lemma 2.16. Let L be a typed λ-calculus. We construct a cartesian closed category C(L) in
the following way.
• The objects of C(L) are the types of L.
• The arrows of C(L) are (equivalence classes of) pairs (x ∈ A, φ(x)), where x is a
variable of type A and φ(x) is term of type B with only free variable x. An equivalence
(x ∈ A, φ(x)) = (x′ ∈ A,ψ(x′)) is given if and only if φ(x) ={x} ψ(x).

• The identity arrows 1A are obtained by the pairs (x ∈ A, x). The composition of two
arrows (x ∈ A, φ(x)) : A→ B, (y ∈ B,ψ(y)) : B → C is given by (x ∈ A,ψ(φ(x))) : A→
C.

Now the cartesian closed structure of C(L) is given as follows.
• The terminal object is the basic type 1.

• The arrow !A : A→ 1 is given by (x ∈ A, ∗).
• The projection prA : A × B → A is given by (z ∈ A × B, π(z)), and the projection
prB : A×B → B is given by (z ∈ A×B, π′(z)).
• The unique arrow q : C → A×B stemming from two arrows (z ∈ C, φ(z)) : C → A, (z ∈
Z,ψ(z)) : C → B is the arrow (z ∈ C, 〈φ(z), ψ(z)〉).
• The unique arrow from an object C to the exponential BA given by an arrow (z ∈
C ×A, φ(z)) : C ×A→ B is the arrow (x ∈ C, λy∈Aφ(〈x, y〉)).
• The evalution morphism for an exponential, evalB,A : BA ×A→ B is given by

evalB,A =
(
y ∈ BA ×A, εB,A

(
π(y), π′(y)

))
.

Proof: See [LS86, Secion 11]. Again one needs to consider the differing definitions of typed
λ-calculi and cartesian closed categories. q.e.d.

Now the main result is to show that typed λ-calculi and cartesian closed categories are
“essentially the same”. For this one first constructs the category of typed λ-calculi, which
requires the notion of a morphism between λ-calculi. To this end we define translations.

Definition 2.17 (Translations). Let L,L′ be given typed λ-calculi, we define a translation
Φ: L → L′ by the following data:
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(Trl1) If A is a type of L, then Φ(A) is a type of L′. Furthermore if a ∈ A is a term of
type A in L, then Φ(a) is a term of type Φ(A) in L′. Additionally, for all variables
xAi we require Φ(xAi ) = x

Φ(A)
i and if a contains no free variables, so does Φ(a).

(Trl2) The translation preserves the type constructors, i.e. we have Φ(1L) = 1L′ and for
all types A,B in L we have Φ(A× B) = Φ(A)× Φ(B) where the product type on
the right hand side is in L. We also require Φ(BA) = Φ(B)Φ(A). The term forming
operators are preserved up to equality, i.e.

Φ(πA,B(c)) = πΦ(A),Φ(B)(Φ(c)),Φ(λx∈Aφ(x)) = λΦ(x)∈Φ(A)Φ(φ(x)).

(Trl3) The translation preserves equalities, that is if we are given an equality a =X b in
L, we obtain an equality Φ(a) =Φ(x) Φ(b). Here the set Φ(X) is given as

Φ(X) = {Φ(x) | x ∈ X}.

With this definition we can define the category of λ-calculi.

Definition 2.18. The category λ -Calc consist of the following data.
• Its objects are λ-calculi L.
• Its arrows Φ: L → L′ are translations.

Now we only need the category of cartesian closed categories, ccCat. We will discuss this
category later in section 4.4 with greater detail, but in now suffices to know that its objects are
cartesian closed categories C and its arrows are product preserving functor F : C → C ′, those
are functors that for every a, b ∈ C there exists an isomorphism Fab : F0(a×b)→ F0(a)×F0(b).
With this at hand we can state the main result.

Theorem 2.19. Consider the functor L : ccCat→ λ -Calc assigning to each cartesian closed
category C its internal language L(C ). Consider also the functor C : λ -Calc → ccCat
assigning to each typed λ-calculus the cartesian closed category C(L). Then L,C are inverse
functors, hence

ccCat ∼= λ -Calc .

2.4 The Chu construction over a cartesian closed category
Definition 2.20 (The Chu category over a ccc). Let C be a cartesian closed category
and γ ∈ C0. Then the Chu category Chu(C , γ) is defined by the following data:
• The objects of Chu(C , γ) are triplets (a, f, x) such that a, x ∈ C0 and f : a × x → γ is

an arrow in C .

• The arrows of Chu(C , γ) are pairs (φ+, φ−) : (a, f, x)→ (b, g, y) where φ+, φ− are arrows
φ+ : a→ b, φ− : y → x such that the diagram

a× y a× x

b× y γ

1a×φ−

φ+×1y f

g

commutes. Sometimes we call arrows in Chu(C , γ) Chu morphisms.

• The composition of two arrows (φ+, φ−) : (a, f, x) → (b, g, y) and (ψ+, ψ−) : (b, g, y) →
(c, h, z) is given by

(ψ+, ψ−) ◦ (φ+, φ−) = (ψ+ ◦ φ+, φ− ◦ ψ−).
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• The identities are given by 1(a,f,x) = (1a,1x) for (a, f, x) ∈ Chu(C , γ)0.

Theorem 2.21. Let C be a cartesian closed category and γ ∈ C0. Then Chu(C , γ) is a
category.

Proof: We show that the definition of Chu(C , γ) gives indeed a category. For this we show
the following:

1. Well-definedness: Let (a, f, x), (b, g, y), (c, h, z) ∈ Chu(C , γ)0 be given and assume we
have two arrows

φ = (φ+, φ−) : (a, f, x)→ (b, g, y), ψ = (ψ+, ψ−) : (b, g, y)→ (c, h, z).

Then the arrow ψ ◦ φ : (a, f, x)→ (c, h, z) is well-defined.

2. Associativity: For (a, f, x), (b, g, y), (c, h, z), (d, j, s) ∈ Chu(C , γ)0 and

θ = (θ+, θ−) : (a, f, x)→ (b, g, y), ψ = (ψ+, ψ−) : (b, g, y)→ (c, h, z),

φ = (φ+, φ−) : (c, h, z)→ (d, j, s)

holds the following equality:

(φ ◦ ψ) ◦ θ = φ ◦ (ψ ◦ θ).

3. Identity: For any (a, f, x) ∈ Chu(C , γ)0 exists an arrow 1(a,f,x) : (a, f, x) → (a, f, x),
such that for any (b, g, y), (c, h, z) ∈ Chu(C , γ)0 and θ = (θ+, θ−) : (a, f, x)→ (b, g, y), ψ =
(ψ+, ψ−) : (c, h, z)→ (a, f, x) the equalities

1(a,f,x) ◦ ψ = ψ and θ ◦ 1(a,f,x) = θ

hold.
Ad 1: Suppose these objects and arrows are given. As ψ+ ◦ φ+ : a → c and φ− ◦ ψ− : z → x
it remains to check the commutativity of the diagram

a× z a× x

c× z γ.

1a×(φ−◦ψ−)

(ψ+◦φ+)×1z f

h

But we can compute

f ◦
(
1a × (φ− ◦ ψ−)

)
= f ◦ (1a × φ−) ◦ (1a × ψ−)

= g ◦ (φ+ × 1y) ◦ (1a × ψ−) (as (φ+, φ−) is a Chu morphism)
= g ◦ (1b × ψ−) ◦ (φ+ × 1z) (by [Pet21, p. 2] )
= h ◦ (ψ+ × 1z) ◦ (φ+ × 1z) (as (ψ+, ψ−) is a Chu morphism)
= h ◦

(
(ψ+ ◦ φ+)× 1z

)
. (Associativity in C )

Hence the composition is well-defined.
Ad 2: Let the objects and arrows required be given. The composition is defined through
(φ ◦ ψ) = (φ+ ◦ ψ+, ψ− ◦ φ−). So we can easily compute

(φ ◦ ψ) ◦ θ = (φ+ ◦ ψ+, ψ− ◦ φ−) ◦ (θ+, θ−) (by definition)
=
(
(φ+ ◦ ψ+) ◦ θ+, θ− ◦ (ψ− ◦ φ−)

)
(by definition)

=
(
φ+ ◦ (ψ+ ◦ θ+), (θ− ◦ ψ−) ◦ φ−

)
(Associativity in C )
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= (φ+, φ−) ◦ (ψ+ ◦ θ+, θ− ◦ ψ−) (by definition)
= φ ◦ (ψ ◦ θ). (by definition)

Ad 3: Let (a, f, x) ∈ Chu(C , γ)0. We set 1(a,b,x) := (1a,1x). First we have to show that the
diagram

a× x a× x

a× x γ

1a×1x

1a×1x f

f

commutes. But this follows trivially. So 1(a,f,x) defined as above is indeed an arrow in
Chu(C , γ)1. Now let the arrows θ = (θ+, θ−) : (a, f, x)→ (b, g, y) and ψ = (ψ+, ψ−) : (c, h, z)→
(a, f, x) be given. We then conclude

θ ◦ 1(a,f,x) = θ ◦ (1x,1x) (definition of 1(a,f,x))

= (θ+ ◦ 1a,1x ◦ θ−)

= (θ+,1x ◦ θ−) (definition of 1a)
= (θ+, θ−) = θ, (defintion of 1x)

1(a,f,x) ◦ ψ = (1a,1x) ◦ ψ (definition of 1(a,f,x))

= (1a ◦ ψ+, ψ− ◦ 1x)

= (ψ+, ψ− ◦ 1x) (definition of 1a)
= (ψ+, ψ−) = ψ. (defintion of 1x)

q.e.d.

2.5 Chu spaces
In many other areas of mathematics, for example when examining physical systems, one
restricts ones interest to the special case of Chu spaces. These are objects of Chu categories
Chu(Set,K) where K ∈ Set0. It is immediate that the objects of Chu(Set,K) are sets
themselves, so a Chu space is a set itself. It can be described in the following way.

Definition 2.22 (Chu spaces). Let K be a set. A Chu space over K is a triple (A, f,X)
where A,X are sets and f : A×X → K. The category of Chu spaces over K is Chu(Set,K).

Now we can apply various set-theoretical notions to Chu spaces. In the following we denote
by KA for sets K,A the function space

KA := {h : A→ K}.

Definition 2.23 (separable/extensional/normal Chu spaces). Let (A, f,X) be a Chu
space over B. We then call (A, f,X)
• separable, if f̂ : A→ XB, defined through the clause

∀a ∈ A ∀b ∈ B
(
f̂(a)

)
(b) = f(a, b)

is an injection,
• extensional, if f̌ : B → XA, defined through the clause

∀a ∈ A ∀b ∈ B
(
f̌(b)

)
(a) = f(a, b)

is an injection,
• biextensional, if (A, f,B) is both separable and extensional,
• normal, if B ⊆ XA and f : A×B → X is given by f(a, b) = b(a).



Chapter 3

Chu representations

In this chapter we give various examples of embeddings of categories arising in other areas of
mathematics into Chu categories.

3.1 A Boolean representation of Top

We want to show to model the theory of topological spaces using our Chu construction. For
this we present the approach of [Pet21]. First we define the following category.

Definition 3.1 (Category of topological spaces). The category of topological spaces Top
is defined as follows.
• The objects of Top are pairs (X,TX) where X is a set and TX ∈ P(X) is a topology on
X.4

• The arrows φ : (X1, T1)→ (X2, T2) are continuous maps.

Remark 3.2. In the following we let 2 be the set containing exactly two elements, 0 and 1.

Definition 3.3. Let ETop : Top→ Chu(Set,2) be defined through the following clauses.
• For (X,T ) ∈ Top0 we set ETop

0 (X,T ) = (X,∈X,T , T ) where ∈X,T is defined as follows.

∈X,T : X × T → 2,

(x,G) 7→

{
1, x ∈ G,
0, x 6∈ G.

• If f : (X,T ) → (Y, S) is a continuous map, we define ETop
1 (f) := (f, f−1), where

f−1 : S → T is the map assigning to each open set U ⊆ Y its preimage under f ,
f−1(U).

Proposition 3.4. The rule ETop : Top→ Chu(Set,2) is a functor.

Proof: The well-definedness can be seen, as ETop
0 (X,T ) ∈ Chu(Set,2) and (f, f−1) : (X,∈X,T

, T )→ (Y,∈Y,S , S). The commutativity of the diagram

X × S X × T

Y × S 2

1X×f−1

f×1S ∈X,T
∈Y,S

is immediate. We show that ETop fulfils the axioms of a functor.
• Preservation of identities: Let (X,T ) ∈ Top be given. Then 1X is the usual identity on
X. We see 1−1

X (U) = U , so ETop
1 (1X) = (1X ,1T ). Furthermore 1

ETop
0 (X,T )

= (1X ,1T ),
which proves the hypothesis.

4We denote by P(X) the power set P(X) = {U ⊆ X}.

19
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• Compatibility with composition: Assume we are given (X,T ), (Y, S), (Z, V ) ∈ Top and
arrows f : (X,T )→ (Y, S), g : (Y, S)→ (Z, V ). Then

ETop
1 (g ◦ f) = (g ◦ f, (g ◦ f)−1) = (g ◦ f, f−1 ◦ g−1) = (g, g−1) ◦ (f, f−1)

= ETop
1 (g) ◦ ETop

1 (f). q.e.d.

Now we specify what we mean when we call a functor a representation.

Definition 3.5. Let A ,B be categories and F : A → B be a functor.
• The functor F is injective (surjective) on objects, if F0 is injective (surjective).

• The functor F is injective (surjective) on arrows, if F1 is injective (surjective).

• The functor F is faithful, if for every a, b ∈ C0 the map

F(a,b) : HomC (a, b)→ HomD

(
F0(a), F0(b)

)
,

f 7→ F1(f)

is an injection.

• If F(a,b) is an surjection for every a, b ∈ C0, then F is full.

• The functor F is an embedding if F is injective on objects and faithful.

• The functor F is a representation if F is a full embedding.

• The functor F is a strict representation if F is injective on arrows and a representation.

Theorem 3.6. The functor ETop : Top→ Chu(Set,2) is a representation, i.e. a full embedding.

Proof: We check the following:
First we have to check that for every (X,T ), (Y, S) ∈ Top0 the arrow ETop

((X,T ),(Y,S)) is a

bijection. For our convenience we shall write ETop
(X,Y ) instead of ETop

((X,T ),(Y,S)). By definition

ETop
(X,Y ) : Top1

(
(X,T ), (Y, S)

)
→ Chu(Set,2)1

(
(X,∈X,T , T ), (Y,∈Y,S , S)

)
maps f to ETop

1 (f). We check injectivity and surjectivity separately.
Injectivity: Suppose we have f : (X,T )→ (Y, S), g : (X,T )→ (Y, S) with ETop

1 (f) = ETop
1 (g).

This means (f, f−1) = (g, g−1), so f = g, so injectivity is proven.
Surjectivity: Suppose we have φ ∈ Chu(Set,2)1

(
(X,∈X,T , T ), (Y,∈Y,S , S)

)
. This means we

have φ = (φ+, φ−) such that

X × S X × T

Y × S 2

1X×φ−

φ+×1S ∈X,T
∈Y,S

commutes. By the definition of Chu(Top,2) we know that φ+ : X → Y is an arrow in Top.
We seek to show that φ− = (φ+)−1. For this we employ a topological argument. Let G ∈ S
be an open set. Consider (φ+)−1(G). Choose y ∈ (φ+)−1(G). Then

1 =∈Y,S ◦(φ+ × 1S)(y,G) =∈X,T ◦(1X × φ−)(y,G).

This means that y ∈ φ−(G). As this works with all y ∈ (φ+)−1(G), we have the inclusion
(φ+)−1(G) ⊂ φ−(G). To see φ−(G) ⊂ (φ+)−1(G), simply observe that if x ∈ φ−(G) for any
x, then

1 =∈X,T ◦(1X × φ−)(x,G) =∈Y,S ◦(φ+ × 1S)(x,G),
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so x ∈ (φ+)−1(G). This shows φ− = (φ+)−1, and we have

(φ+, φ−) = ETop
1 (φ+).

So we have shown that ETop
(X,Y ) is a bijection. Next we show the injecitivity on objects. This

can be seen rather simply. If

ETop
0 (X,T ) = (X,∈X,T , T ) = (Y,∈Y,S , S) = ETop

0 (Y, S),

then X = Y and S = T . This shows that ETop is a full embedding. q.e.d.

Next we shall examine the remarks of [Pet21, p. 7].

• The category Top is not a cartesian closed category, hence we can not use the Chu
representation of a cartesian closed category.

Self-explanatory. A treatment of the question what (usable) cartesian closed subcategories
of Top exist can be found in [Ste67].

• The definition of ∈X,T is classical.

This stems from the fact that we use the law of the excluded middle, (x ∈ G)∨¬(x ∈ G),
in the definiton of ∈X,T , an assumption that does not always hold in intuitionistic logic.

• (X,∈X,T , T ) is separable if and only if T is T0.

Assume (X,∈X,T , Y ) is a separable Chu space. This means that

x 7→
(
∈̂X,T (x) : T → 2

U 7→∈X,T (x, U)

)
is an injection. Now assume we are given x, y ∈ X with x 6= y. Hence ∈̂X,T (x) 6=
∈̂X,T (y), so we obtain a U ∈ T such that ∈X,T (x, U) 6=∈X,T (y, U), which means that
either x ∈ U ∧ y 6∈ U or x 6∈ U ∧ y ∈ U .
On the contrary, assume T is T0. This means that for every x, y ∈ X with x 6= y there
exists U ∈ T such that either x 6∈ U ∧ y ∈ U or y 6∈ U ∧ x ∈ U . This already means
that ∈X,T (x, U) 6=∈X,T (y, U), so ∈̂X,T (x) 6= ∈̂X,T (y).

• (X,∈X,T , T ) is always extensional.

To see this we have to show that

U 7→
(
∈̌X,T (U) : X → 2

x 7→∈X,T (x, U)

)
is an injection. To see this, assume we have U, V ∈ T with U 6= V . Without loss of
generality there exists x ∈ X with x ∈ U, x 6∈ V , otherwise switch U and V . Hence
∈X,T (x, U) 6=∈X,T (x, V ) and ∈̌X,T (U) 6= ∈̌X,T (V ).

• The special properties of a topology T on a set X play no role in the above, i.e. this
representation applies to more general categories.

One sees that the only time the property of a category was used, was when the additional
data gained from the fact that f : X → Y is continuous was defined to acquire a map
f−1 : S → T . But this additional requirement can be demanded independently from the
fact that T is a topology.
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3.2 A normal Chu representation of Aff(Set, X)

We first define the affine category over an arbitrary category.

Definition 3.7 (The affine category). Let C be an arbitrary category and c ∈ C0. The
affine category Aff(C , c) is defined as follows.
• The objects of Aff(C , c) are pairs (A,F ) where A ∈ C0 and F ⊆ HomC (A, c).
• The arrows h : (A,F ) → (B,G) are arrows h ∈ C1 such that for every g ∈ G we have
g ◦ h ∈ F .

We seek to show that the rule (A,F ) 7→ (A, evalA,F , F ) defines a full embedding of
Aff(Set, X) into Chu(Set, X). First we show that this is a functor.

Proposition 3.8. The rule Aff : (A,F ) 7→ (A, evalA,F , F ) defines a functor Aff(Set, X) →
Chu(Set, X).

Proof: One sees that the rule is well defined for objects as (A, evalA,F , F ) ∈ Chu(Set, X),
because A,F ∈ Set, by the definition of Aff(Set, X) and evalA,F : A × F → X by definition
as

evalA,F : A× F → X, evalA,F (x, f) = f(x)

for F ⊆ Set1(A,X). To see that the rule is well-defined for arrows, one takes an arrow
h : (A,F ) → (B,G) in Aff(Set, X). This is a morphism h : A → B such that g ◦ h ∈ F for
every g ∈ G. We define Aff1(h) = (h, h̃) where

h̃ : G→ F, g 7→ g ◦ h.

We have to check the commutativity of the diagram

A×G B ×G

A× F X.

h×1G

1A×h̃ evalB,G

evalA,F

As we have (
evalA,F ◦(1A × h̃)

)
(a, g) = evalA,F (a, g ◦ h) = (g ◦ h)(a)

= g
(
h(a)

)
= evalB,G(h(a), g) =

=
(
evalB,G ◦(h× 1G)

)
(a, g)

for every (a, g) ∈ A×G, it follows that evalA,F ◦(1A×h̃) = evalB,G ◦(h×1G). Hence Aff1(h)
is well-defined. We check the functoriality.
Preservation of identities: Let (A,F ) ∈ Aff(Set, X)0. Then 1(A,X) = 1A. We compute

Aff1(1A) = (1A, 1̃A) (1)
= (1A,1F ), (2)

where we used in the step from (1) to (2) that 1̃A : F → F, g 7→ g ◦ 1A = g is the identity .
Compatibility with composition: Assume we are given (A,F ), (B,G), (C,H) ∈ Aff(Set, X)0

and α : (A,F )→ (B,G), β : (B,G)→ (C,H). As

Aff1(β ◦ α) = (β ◦ α, (̃β ◦ α)),

it remains to show that (̃β ◦ α) = α̃ ◦ β̃. To see this we observe that for all h ∈ H we have
(̃β ◦ α)(h) = h ◦ β ◦ α, similarly (α̃ ◦ β̃)(h) = h ◦ β ◦ α, so we have (̃β ◦ α) = α̃ ◦ β̃. This
finalizes the proof that Aff is a functor. q.e.d.
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Theorem 3.9. The functor Aff is a full embedding.

Proof: We first have to show that the rule

Aff(A,F ),(B,G) : Aff(Set, X)1

(
(A,F ), (B,G)

)
→ Chu(Set, X)1

(
(A, evalA,F , F ), (B, evalB,G, G)

)
,

f 7→ Aff1(f)

is a bijection for every (A,F ), (B,G) ∈ Aff(Set, X)0. We show injectivity and surjectivity
separately.
Injectivity: Let f, g ∈ Aff(Set, X)1((A,F ), (B,G)) such that f 6= g. Then

Aff1(f) = (f, f̃) 6= (g, g̃) = Aff1(g),

since f 6= g.
Surjectivity: Let h ∈ Chu(Set, X)1((A, evalA,F , F ), (B, evalB,G, G)) be given. Then h is a
pair (h1, h2) of arrows h1 : A → B, h2 : G → F . We seek to show that h2 = h̃1. To this end
we use the commutativity of the diagram

A×G B ×G

A× F X.

h1×1G

1A×h2 evalB,G

evalA,F

This means that for any (a, g) ∈ A×G we have

(evalA,F ◦(1A × h2))(a, g) = evalA,F (a, h2(g)) = h2(g)(a)

= g(h1(a)) = (g ◦ h1)(a) = evalB,G(h1(a), g)

= (evalB,G ◦(h1 × 1G))(a, g).

So h2(g)(a) = g ◦ h1(a) for all a ∈ A and g ∈ G, therefore h2(g) = g ◦ h1 = h̃1(g). At last we
show that the rule is injective on objects. But this is immediate, because if

(A, evalA,F , F ) = (B, evalB,G, G),

we already have A = B,G = F . q.e.d.

3.3 A Chu representation of Sub(C , γ)

Definition 3.10 (Category of subobjects). Let C be an arbitrary category and γ ∈ C0.
The category of subobjects Sub(C , γ) is defined by the following clauses.
• Its objects are monomorphism f ∈ C1 such that the codomain of f is γ.

• Let i : a ↪→ γ, j : b ↪→ γ be objects of Sub(C , γ).5 An arrow f : i → j is an arrow
f : a→ b such that

a b

γ

f

i j

commutes.
5We denote monomorphisms by the arrow “ ↪→”.
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Now we present the representation of Sub(C , γ) given in [Pet21, p.59].

Definition 3.11. Let C be a cartesian closed category. We define ESub(C ,γ) : Sub(C , γ) →
Chu(C , γ) by the following rules.

• Let i : a ↪→ γ be an object of Sub(C , γ). We then set ESub(C ,γ)
0 (i) := (a, i◦pra,>). Here

> denotes the terminal object of C .

• Let f : i→ j be an arrow in Sub(C , γ). We then define ESub(C ,γ)
1 (f) := (f,1>).

Proposition 3.12. Let C be a cartesian closed category. Then ESub(C ,γ) : Sub(C , γ) →
Chu(C , γ) is a functor.

Proof: We first check that ESub(C ,γ) is well-defined. For this let i : a ↪→ γ be an object of
Sub(C , γ). Then i ◦ pra : a×> → γ, so (a, i ◦ pra,>) ∈ Chu(C , γ)0.

Next let f : a → b be an arrow in Sub(C , γ) with i : a ↪→ γ, j : b ↪→ γ, such that i =

j ◦ f . Then ESub(C ,γ)
1 (f) = (f,1>). As f : a → b and 1> : > → >, it remains to check the

commutativity of the diagram

a×> b×>

a×> γ.

f×1>

1a×1> j◦prb

i◦pra

To see this we use lemma 6.15. Therefore we know that a×> ∼= a, b×> ∼= b and we obtain
the diagram

a b

a×> b×>

a×> γ

a γ,

∼=
f

1a

∼=

j

f×1>

1a×1> j◦prb

i◦pra∼=
i

=

where the outer rectangle commutes, as i = j ◦ f by definition. But this immediately implies
the commutativity of the inner rectangle. Next we check the functoriality.
Preservation of identities: Let i : a ↪→ γ be an object of Sub(C , γ). Then 1i = 1a, as
i ◦ 1a = 1a ◦ i = i. We compute

E
Sub(C ,γ)
1 (1a) = (1a,1>) = 1(a,i◦pra,>) = 1

E
Sub(C ,γ)
0 (i)

.

Compatibility with composition: Assume we are given i : a ↪→ γ, j : b ↪→ γ, k : c ↪→ γ and
f : a→ b, g : b→ c such that

a b c

γ

i

f

j

g

k

commutes. Then

E
Sub(C ,γ)
1 (g◦f) = (g◦f,1>) = (g◦f,1>◦1>) = (g,1>)◦(f,1>) = E

Sub(C ,γ)
1 (g)◦ESub(C ,γ)

1 (f).

So ESub(C ,γ) is indeed a functor. q.e.d.
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Theorem 3.13. Let C be a cartesian closed category. Then ESub(C ,γ) is a full embedding.

Proof: The injectivity on objects is immediate, because if (a, i ◦ pra,>) = (b, j ◦ pra,>),
then i ◦ pra = j ◦ prb = pra, as a = b, and therefore i = j, as pra is an isomorphism.

It remains to show the bijectivity of the rule f 7→ E
Sub(C ,γ)
1 (f) for f ∈ Sub(C , γ)1(a, b)

for arbitrary a, b ∈ Sub(C , γ)0.
• Injectivity: Assume we have

E
Sub(C ,γ)
1 (f) = (f,1>) = (g,1>) = E

Sub(C ,γ)
1 .

Then f = g, which proves the injectivity.

• Surjectivity: Assume we are given φ = (φ+, φ−) : (a, i ◦ pra,>) → (b, j ◦ prb,>). This
means that φ+ : a → b and φ− : > → >, so φ− = 1>. Therefore φ+ ∈ Sub(C , γ)1 and
φ = E

Sub(C ,γ)
1 (φ+).

So ESub(C ,γ) is a full embedding. q.e.d.
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The Chu functors

In this section we want to examine some rules that can be connected to the Chu construction,
i.e. the following:
• Firstly we want to find a functor C → Chu(C , γ) for every cartesian closed category and

every γ ∈ C0 that fully represents the structure of the category C in Chu(C , γ). For this
we construct the functor EC ,γ , which is a strict representation in the sense discussed in
the previous chapter.
• Secondly we want to find a functor C → Cat, which assigns to each γ ∈ C0 the associated

Chu category Chu(C , γ).
• Lastly we want to find a way to assign not only to γ but to each pair (C , γ), where C

is a cartesian closed category and γ ∈ C0, the associated Chu construction Chu(C , γ).
For this cause we define a version of the Grothendieck construction, whose objects are
exactly pairs of this kind.

4.1 Extending functors to Chu categories
In the present section we suppose we are given a functor F : C → D . We then want to examine
under which conditions this functor extends to a functor Chu(C , γ)→ Chu(D , δ). To this end
we define the following kind of functors.

Definition 4.1 (Product preserving functors). Let F : C → D be a functor. Then F is
product preserving, if there exists a unique isomorphism Fab : F0(a) × F0(b) → F0(a × b) for
every a, b ∈ C0 such that

F0(a)× F0(b)

F0(a) F0(a× b) F0(b)

Fab

prF0(a) prF0(b)

F1(prb)F1(pra)

(3)

commutes.

Remark 4.2. Even though we demand the arrow Fab to be unique, it suffices to find an arrow
Fab : F0(a) × F0(b) → F0(a × b) that makes the diagram (3) commute, as any such arrow is
necessarily unique, which can be seen as follows. Assume we have another isomorphism
F̃ab : F0(a) × F0(b) → F0(a × b) that makes (3) commute, then we have the commutative
diagrams

F0(a× b)

F0(a) F0(a)× F0(b) F0(b)

F1(prb)F1(pra)

F̃−1
ab

prF0(a) prF0(b)

and
F0(a× b)

F0(a) F0(a)× F0(b) F0(b).

F1(prb)F1(pra)

F−1
ab

prF0(a) prF0(b)

So by the universal property of the product we have F−1
ab = F̃−1

ab , and therefore Fab = F̃ab.

26
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Proposition 4.3. For every a, a′, b, b′ ∈ C0 and every f : a→ a′, g : b→ b′ in C1 the rectangle

F0(a)× F0(b) F0(a′)× F0(b′)

F0(a× b) F0(a′ × b′)

F1(f)×F1(g)

Fab Fa′b′

F1(f×g)

(4)

commutes.

Proof: We consider the diagram

F0(a)× F0(b)

F0(a′)× F0(b′)

F0(a) F0(a× b) F0(b)

F0(a′) F0(a′ × b′) F0(′b).

Fab

prF0(a)

prF0(b)

F1(f)×F1(g)

F1(f) F1(f×g)

F1(prb)F1(pra)

F1(g)

prF0(a′)

F1(prb′ )F1(pra′ )

Fa′b′

prF0(b′)

To show that the rectangle (4) commutes, it suffices to show that

F1(f)× F1(g) = F−1
a′b′ ◦ F1(f × g) ◦ Fab.

This we will prove using the universal propert of the product. Via definition we have the
following implication:

prF0(a′) = F1(pra′) ◦ Fa′b′ ,
prF0(b′) = F1(prb′) ◦ Fa′b′

}
⇒

{
prF0(a′) ◦F

−1
a′b′ = F1(pra′),

prF0(b′) ◦F
−1
a′b′ = F1(prb′).

(5)

So we compute

prF0(a′) ◦F
−1
a′b′ ◦ F1(f × g) ◦ Fab = (prF0(a′) ◦F

−1
a′b′) ◦ F1(f × g) ◦ Fab (by associativity)

= F1(pra′) ◦ F1(f × g) ◦ Fab (proven in (5))
= (F1(pra′) ◦ F1(f × g)) ◦ Fab (by associativity)
=
(
F1(f) ◦ F1(pra)

)
◦ Fab (definition of F1(f × g))

= F1(f) ◦ (F1(pra) ◦ Fab) (by associativity)
= F1(f) ◦ prF0(a), (definition of Fab)

prF0(b′) ◦F
−1
a′b′ ◦ F1(f × g) ◦ Fab = (prF0(b′) ◦F

−1
a′b′) ◦ F1(f × g) ◦ Fab (by associativity)

= F1(prb′) ◦ F1(f × g) ◦ Fab (proven in (5))
= (F1(prb′) ◦ F1(f × g)) ◦ Fab (by associativity)
=
(
F1(g) ◦ F1(prb)

)
◦ Fab (definition of F1(f × g))

= F1(g) ◦ (F1(prb) ◦ Fab) (by associativity)
= F1(g) ◦ prF0(b) . (definition of Fab)

So F−1
a′b′ ◦F1(f×g)◦Fab fulfils the requirement of the product, and by uniqueness we conclude

F−1
a′b′ ◦ F1(f × g) ◦ Fab = F1(f)× F1(g).

q.e.d.
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Next we want to prove the following statement:

Proposition 4.4. If G : D → E also preserves products and Gcd is the canonical isomorphism
Gcd : G0(c) × G0(d) → G0(c × d) for c, d ∈ D0, then G ◦ F also preserves products and for
every a, b ∈ C0 we have that

(G ◦ F )ab = G1(Fab) ◦GF0(a)F0(b).

Proof: For a, b ∈ C0 we obtain the following diagrams, where Fab and (G ◦ F )ab are unique:

F0(a)× F0(b)

F0(a) F0(a× b) F0(b)

prF0(b)prF0(a)

Fab

F1(pra) F1(prb)

and
G0(F0(a))×G0(F0(b))

G0(F0(a)) G0

(
F0(a× b)

)
G0(F0(b)).

prG0(F0(b))prG0(F0(a))

(G◦F )ab

(G◦F )1(pra) (G◦F )1(prb)

We apply the functor G on the first diagram to obtain the diagram

G0

(
F0(a)× F0(b)

)
G0

(
F0(a)

)
G0

(
F0(a× b)

)
G0

(
F0(b)

)
.

G1(prF0(b))G1(prF0(a))

G1(Fab)

G1(F1(pra)) G1(F1(prb))

As G : D → E is a product preserving functor and F0(a), F0(b) ∈ D0, we also have a
commutative diagram

G0

(
F0(a)

)
×G0

(
F0(b)

)
G0

(
F0(a)

)
G0

(
F0(a)× F0(b)

)
G0

(
F0(b)

)
.

prG0(F0(b))prG0(F0(a))

GF0(a)F0(b)

G1(prF0(a)) G1(prF0(b))

This gives rise to a bigger commutative diagram

G0

(
F0(a)

)
×G0

(
F0(b)

)
G0

(
F0(a)× F0(b)

)
G0

(
F0(a)

)
G0

(
F0(a× b)

)
G0

(
F0(b)

)
.

prG0(F0(b))prG0(F0(a))
GF0(a)F0(b)

G1(prF0(b))G1(prF0(a)) G1(Fab)

G1(F1(pra)) G1(F1(prb))

This allows us to conclude that

prG0(F0(b)) = G1(prF0(b)) ◦GF0(a)F0(b)

= (G ◦ F )1(prb) ◦G1(Fab) ◦GF0(a)F0(b)

prG0(F0(a)) = G1(prF0(a)) ◦GF0(a)F0(b)

= (G ◦ F )1(pra) ◦G1(Fab) ◦GF0(a)F0(b).

So G1(Fab) ◦GF0(a)F0(b) fulfils the requirements and G ◦ F preserves products. q.e.d.
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This allows us to define a functor Chu(C , γ)→ Chu(D , δ), given a functor F : C → D .

Definition 4.5. Let C ,D be cartesian closed categories, F : C → D be a product preserving
functor and γ ∈ C0, δ ∈ D0 with an arrow ψ : F0(γ) → δ. We define F∗ : Chu(C , γ) →
Chu(D , δ) in the following way:

(F∗)0(a, f, b) =
(
F0(a), ψ ◦ F1(f) ◦ Fab, F0(b)

)
,

(F∗)1(φ+, φ−) = (F1(φ+), F1(φ−)).

Theorem 4.6. F∗ : Chu(C , γ)→ Chu(D , δ) is a functor.

Proof: Let C ,D be cartesian closed categories, γ ∈ C0, δ ∈ D0 and F : C → D be a product
preserving functor with canonical isomorphisms Fab : F0(a)×F0(b)→ F0(a× b) for a, b ∈ C0.
We seek to show that F∗ is a functor.
Well-definedness: We show that (F∗)0(a, f, x) ∈ Chu(C , δ)0 for all (a, f, x) ∈ Chu(C , γ)0. It
immediately follows that F0(a), F0(x) ∈ D0. Now ψ ◦ F1(f) ◦ Fab : F0(a) × F0(b) → δ, as
desired.

Now we seek to show that the image of arrows is as desired. Let (φ+, φ−) : (a, f, x) →
(b, g, y) be given. We first show that F1(φ+) : F0(a)→ F0(b) and F1(φ−) : F0(y)→ F0(x).This
is immediate from the definition of F and φ+, φ−. It remains to show that the diagram

F0(a)× F0(y) F0(a)× F0(x)

F0(b)× F0(y) δ

1F0(a)×F1(φ−)

F1(φ+)×1F0(y) ψ◦F1(f)◦Fax
ψ◦F1(g)◦Fby

commutes. To this end it suffices to show that

F1(g) ◦ Fby ◦ (F1(φ+)× 1F0(a)) = F1(f) ◦ Fax ◦ (1F0(a) × F1(φ−)).

As we already know that g ◦ (φ+ × 1y) = f ◦ (1a × φ−), we have

F1(g) ◦ Fby◦(F1(φ+)× 1F0(y))

= F1(g) ◦ Fby ◦ (F1(φ+)× F1(1y))

= F1(g) ◦ F1(φ+ × 1y) ◦ Fay (by proposition 4.3)
= F1(g ◦ (φ+ × 1y)) ◦ Fay
= F1(f ◦ (1a × φ−)) ◦ Fay
= F1(f) ◦ F1(1a × φ−) ◦ Fay
= F1(f) ◦ Fax ◦ (F1(1a)× F1(φ−)) (by proposition 4.3)
= F1(f) ◦ Fax ◦ 1F0(a) × F1(φ−),

as desired.
Preservation of composition: Suppose we are given φ = (φ+, φ−) : (a, f, x) → (b, g, y) and
θ = (θ+, θ−) : (b, g, y)→ (c, h, z). We seek to show that (F∗)1(θ ◦ φ) = (F∗)1(θ) ◦ F1(φ). One
quickly sees

(F∗)1(θ ◦ φ) =
(
F1((θ ◦ φ)+), F1((θ ◦ φ)−)

)
=
(
F1(θ+ ◦ φ+), F1(φ− ◦ θ−)

)
=
(
F1(θ+) ◦ F1(φ+), F1(φ−) ◦ F1(θ−)

)
=
(
F1(θ+), F1(θ−)

)
◦
(
F1(φ+), F1(φ−)

)
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= (F∗)1(θ) ◦ (F∗)1(φ),

as desired.
Preservation of unity: Let (a, f, x) ∈ Chu(C , γ) be arbitray. Then

(F∗)1(1(a,f,x)) =
(
F1(1a), F1(1x)

)
(definition of 1(a,f,x))

=
(
1F0(a),1F0(x)

)
(functoriality of F )

= 1(F0(a),ψ◦F1(f)◦Fax,F0(x))

= 1(F∗)0(a,f,x). q.e.d.

4.2 Strict representations of a cartesian closed category C into
Chu(C , γ)

We want to define a a functor EC ,γ : C → Chu(C , γ) for a cartesian closed category C
and γ ∈ C0 that transfers all the information of C into Chu(C , γ), i.e. that is a strict
representation. We do this in the following way:

Definition 4.7. Let C be a cartesian closed category and γ ∈ C0. We define EC ,γ : C →
Chu(C , γ) by the following clauses:
• For all a ∈ C0 we set EC ,γ

0 (a) = (a, evalγ,a, γ
a).

• For all f : a→ b in C we set EC ,γ
1 (f) = (f, ĥ) : (a, evalγ,a, γ

a)→ (b, evalγ,b, γ
b) where

h = evalγ,b ◦(1γb × f). We will denote ĥ by f− to aid the simplicity of the notation.

Proposition 4.8. EC ,γ : C → Chu(C , γ) defined as above for a cartesian closed category C
and an arbitrary γ ∈ C0 is a covariant functor and a strict representation of C in Chu(C , γ).

Proof: We shall proceed along the following steps:
1. Show that EC ,γ is well-defined.
2. Show that EC ,γ

0 is an injection.
3. Show that EC ,γ

1 is an injection.
4. Show that for every a, b ∈ C0 the map

EC ,γ
(a,b) : HomC (a, b)→ HomChu(C ,γ)

(
EC ,γ

0 (a), EC ,γ
0 (b)

)
is a bijection.

These three steps are sufficient as a proof for all the statements made in proposition 4.8.

Ad step 1: We can see, that EC ,γ
0 (a) = (a, evalγ,a, γ

a) ∈ Chu(C , γ), as a, γa ∈ C and
evalγ,a : a × γa → γ (up to an isomorphism). Now suppose we are given a, b ∈ C0 with an
arrow f : a→ b). We have to show that

(f, f−) : (a, evalγ,a, γ
a)→ (b, evalγ,b, γ

b).

That is, we want that f : a→ b and f− : γb → γa make the diagram

a× γb a× γa

b× γb γ

1a×f−

f+×1
γb evalγ,a

evalγ,b

commute. For this we first have to examine the definition of f−. The arrow f− is defined
as the transpose f = ĥ of the arrow h = evalγ,b ◦(1γb × f). This immediately yields, that
f− : γb → γa. The commutativity follows immediately from the definition of the transpose.
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Ad step 2: If we assume that we are given a, a′ ∈ C0 with EC ,γ
0 (a) = EC ,γ

0 (a′), it follows that
(a, evalγ,a, γ

a) = (a′, γγ,a′ , γ
a′) and therefore a = a′.

Ad step 3: Suppose we are given two arrow f : a → b, g : a → b in C such that f 6= g. We
need to show that EC ,γ

1 (f) 6= EC ,γ
1 (g). Assume the contrary. Then (f, ĥ1) = (g, ĥ2), where

ĥ1 = evalγ,b ◦(f × 1γb) and ĥ2 = evalγ,b ◦(g × 1γb). But this immediately implies f = g,
contrary to the assumption f 6= g. So EC ,γ

1 (f) 6= EC ,γ
1 (g).

Ad step 4: Suppose we are given a, b ∈ C0 and two arrows f, g : a → b such that EC ,γ
1 (f) =

EC ,γ
1 (g). Then (f, f−) = (g, g−) and by extension f = g. This shows the injectivity.
To see the surjectivity, we assume we have an arrow g ∈ HomChu(C ,γ)

(
EC ,γ

0 (a), EC ,γ
0 (b)

)
.

This arrow consists of g+, g− such that g+ : a→ b, g− : γb → γa and the rectangle

a× γb a× γa

b× γb γ

1a×g−

g+×1
γb evalγ,a

evalγ,b

commutes. We seek to show that we automatically have g− = ĥ for h = evalγ,b ◦(g+ × 1γb).
Since we have that evalγ,a ◦(1a× g−) = h, we automatically have from the uniqueness of the
transpose that g− = ĥ. q.e.d.

4.3 The internal Chu functor
Now we want to define the rule that assigns to each γ ∈ C0 for a given cartesian closed
category C its Chu category Chu(C , γ). Before we can do this we need to define the category
of locally small categories.

Definition 4.9. The category Cat is defined by the following clauses:
• Its objects are locally small categories.
• The arrows of Cat are functors F : C → D where C ,D ∈ Cat0.
• The composition of arrows is the composition of functors.

Definition 4.10 (The internal (local) Chu functor). Let a cartesian closed category C
be given. We define the rule ChuC : C → Cat in the following way.
• Let γ ∈ C0. Then

ChuC
0 (γ) = Chu(C , γ).

• Let u : γ → δ be an arrow in C . We define the functor

ChuC
1 (u) =: u∗ : Chu(C , γ)→ Chu(C , δ)

by the following clauses:

(u∗)0(a, f, b) = (a, u ◦ f, b), (u∗)1(φ+, φ−) = (φ+, φ−)

for all (a, f, b) ∈ Chu(C , γ)0 and all (φ+, φ−) ∈ Chu(C , γ)1.

Proposition 4.11. Let C be a cartesian closed category. Then ChuC : C → Cat is a functor.
If u : δ ↪→ γ is a monomorphism in C , then u∗ is a full embedding.

Proof: We first show that ChuC : C → Cat is a functor. We have to show the following three
properties:

1. The functor ChuC is well-defined.
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2. For δ, γ, χ ∈ C0 and u : δ → γ,w : γ → χ we have

ChuC
1 (w ◦ u) = ChuC

1 (w) ◦ ChuC (u).

3. For any γ ∈ C0 we have ChuC (1γ) = 1ChuC
0 (γ).

Ad 1: As C is a locally small category, we immediately can conclude that Chu(C , γ) is a
locally small category, because

HomChu(C ,γ)

(
(a, f, x), (b, g, y)

)
⊆ HomC (a, b)×HomC (y, x).

It remains to show that for u : δ → γ the functor u∗ : Chu(C , δ)→ Chu(C , γ) is well-defined.
So let u be given. By definition we have

ChuC
1 (u) = u∗ : Chu(C , δ)→ Chu(C , γ),

where (u∗)0(a, f, b) = (a, u ◦ f, b) and (u∗)1(φ+, φ−) = (φ+, φ−). We see that this is well
defined, as u◦f : a×x→ γ, so (a, u◦f, x) ∈ Chu(C , γ)0. Assume we are given (a, f, x), (b, g, y) ∈
Chu(C , δ)0 and φ = (φ+, φ−) : (a, f, y)→ (b, g, y). Then (φ+, φ−) : (a, u ◦ f, x)→ (b, u ◦ g, y),
as φ+ : a→ b and φ− : y → x. Furthermore, the diagram

a× y a× x

b× y γ

1a×φ−

φ+×1y u◦f
u◦g

still commutes, so the condition on Chu morphisms is satisfied. So u∗ is indeed an arrow in
Cat1.
Ad 2: Now consider ChuC

1 (w ◦ u) = (w ◦ u)∗. We have(
(w ◦ u)∗

)
0
(a, f, x) = (a,w ◦ u ◦ f, x),(

(w ◦ u)∗
)

1
(φ) = φ

for all (a, f, x) ∈ Chu(C , δ)0 and φ ∈ C1. Analogously, we have

(w∗)0

(
(u∗)0(a, f, x)

)
= (w∗)0(a, u ◦ f, x) = (a,w ◦ u ◦ f, x),

(w∗)1

(
(u∗)1(φ)

)
= (w∗)1(φ) = φ,

so ChuC
1 (w ◦ u) = ChuC

1 (w) ◦ ChuC
1 (u) holds.

Ad 3: We have ChuC
1 (idγ) = (1γ)∗, where(

(1γ)∗
)

0
(a, f, b) = (a,1γ ◦ f, b) = (a, f, b),(

(1γ)∗
)

1
(φ) = φ.

From this we see that ChuC
1 (1γ) = 1ChuC

0 (γ).

At last we want to show that u∗ is a full embedding if u : δ ↪→ γ is a monomorphism. One
can immediately see, that for any (a, f, x), (b, g, y) ∈ Chu(C , δ)0 we have

HomChu(C ,γ)

(
(a, f, x), (b, g, y)

)
= HomChu(C ,δ)

(
(a, u ◦ f, x)(b, u ◦ g, y)

)
,

since (u∗)1(φ) = φ for all φ ∈ Chu(C , γ)1. So it remains to show that u∗ is injective on the
objects. Assume (a, u ◦ f, x) = (b, u ◦ g, y). Then a = b, x = y and u ◦ f = u ◦ g implies f = g,
as u is a monomorphism. So (a, f, x) = (b, g, y). q.e.d.



Chapter 4 The Chu functors 33

4.4 The Grothendieck category
Before we can define the global Chu functor, we need a specific construction. For this cause
we define the following variant of the Grothendieck category.

We begin by making the entity of all cartesian closed categories a category.

Definition 4.12 (The category ccCat). The category ccCat is defined by the following
clauses.
• The objects of ccCat are cartesian closed categories C .
• An arrow F : C → D in ccCat is a product preserving functor.
• The identity of a cartesian closed category is idC , as in Cat.

Definition 4.13 (The Grothendieck category). Let ccCat be the category of cartesian
closed categories and idccCat : ccCat→ Cat be the full embedding as a subcategory. Then the
category Groth(ccCat, idccCat) is defined by the following data:
• The objects of Groth(ccCat, idccCat) are given by pairs (C , γ), where C is a cartesian

closed category and
γ ∈ [idccCat]0(C ) = C0.

• The arrows of Groth(ccCat, idccCat) are given by pairs (F, φ) : (C , γ) → (D , δ), where
F : C → D is a product preserving functor and φ : F0(γ)→ δ is an arrow in D .
• The identity of (C , γ) is given by (idC ,1γ).

Lemma 4.14. The category Groth(ccCat, idccCat) defined above is a category.

Proof: Associativity: Let

(F, φ) : (C , γ)→ (D , δ), (G,ψ) : (D , δ)→ (E , ε),

(H,χ) : (E , ε)→ (J , κ)

be given. We compute(
(H,χ) ◦ (G,ψ)

)
◦ (F, φ) =

(
H ◦G,χ ◦H1(ψ)

)
◦ (F, φ)

=
(
(H ◦G) ◦ F, (χ ◦H1(ψ)) ◦ (H ◦G)1(φ)

)
=
(
H ◦ (G ◦ F ), χ ◦ (H1(ψ)) ◦ (H ◦G)1(φ))

)
=
(
H ◦ (G ◦ F ), χ ◦H1(ψ ◦ (G)1(φ))

)
= (H,χ) ◦ (G ◦ F,ψ ◦G1(φ))

= (H,χ) ◦
(
(G,ψ) ◦ (F, φ)

)
Identity: Let (C , γ) ∈ Groth(ccCat, idccCat)0. Let (D , δ), (E , ε) ∈ Groth(ccCat, idccCat)0 with
arrows (F, φ) : (C , γ)→ (D , δ) and (G,ψ) : (E , ε)→ (C , γ) be given. Then

(F, φ) ◦ 1(C ,γ) = (F, φ) ◦ (idC ,1γ) (by definition)

= (F ◦ idC , φ ◦ F1(1γ))

= (F, φ ◦ 1F0(γ)) (definition of idC )

= (F, φ),

1(C ,γ) ◦ (G,ψ) = (idC ,1γ) ◦ (G,ψ) (by definition)

= (idC ◦G,1γ ◦ idC
0 (ψ))

= (G,1γ ◦ ψ)

= (G,ψ). q.e.d.
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4.5 The global Chu functor
We seek to define a rule that assigns to a pair (C , γ) of a cartesian closed category C and an
object γ ∈ C its Chu category Chu(C , γ). For this we use the approach of [Pet21].

Definition 4.15. We define the rule Chu : Groth(ccCat, idccCat)→ Cat in the following way.
• For all (C , γ) ∈ Groth(ccCat, idccCat)0 we set Chu0(C , γ) = Chu(C , γ).
• For all arrows (F, φ) : (C , γ) → (D , δ) in Groth(ccCat, idccCat) we set Chu1(F, φ) = F∗,

where F∗ is defined in definition 4.5.

Lemma 4.16. The rule Chu : Groth(ccCat, idccCat) defined as above gives rise to a functor.

Proof: We prove this by checking the preservation of composition and identities.
Preservation of Composition: Assume we are given arrows (F, φ) : (C , γ) → (D , δ) and
(G,ψ) : (D , γ)→ (E , ε). Then Chu1((G,ψ)◦ (F, φ)) = (G◦F )∗ and Chu1(G,ψ)◦Chu1(F, φ) =
G∗ ◦ F∗. So we need to show

(G ◦ F )∗ = G∗ ◦ F∗.
It remains to check the following two conditions:
• For all (a, f, b) ∈ Chu(C , γ) holds

((G ◦ F )∗)0(a, f, b) = (G∗)0

(
(F∗)0(a, f, b)

)
.

• For all (φ+, φ−) : (a, f, b)→ (c, g, d) holds

((G ◦ F )∗)1(φ+, φ−) = (G∗)1

(
(F∗)1(φ+, φ−)

)
.

So assume (a, f, b) ∈ Chu(C , γ) is given. Then

((G ◦ F )∗)0(a, f, b) = ((G ◦ F )0(a), (ψ ◦G1(φ)) ◦ (G ◦ F )1(f) ◦ (G ◦ F)ab, (G ◦ F )0(b))

= (G0(F0(a)), ψ ◦G1(φ) ◦G1(F1(f)) ◦ (G ◦ F )ab, (G ◦ F )0(b))

= (G0(F0(a)), ψ ◦G1(φ) ◦G1(F1(f)) ◦ (G)1(Fab) ◦GF0(a)F0(b), (G ◦ F )0(b))

= (G0(F0(a)), ψ ◦G1(φ ◦ F1(f) ◦ Fab) ◦GF0(a)F0(b), G0(F0(b)))

= (G∗)0(F0(a), φ ◦ F1(f) ◦ Fab, F0(b))

= (G∗)0((F∗)0(a, f, b)).

Now assume we are given (φ+, φ−) : (a, f, b)→ (c, g, d). Then

((G ◦ F )∗)1(φ+, φ−) =
(
(G ◦ F )1(φ+), (G ◦ F )1(φ−))

=
(
G1(F1(φ+)), G1(F1(φ−))

)
= (G∗)1

(
F1(φ+), F1(φ−)

)
= (G∗)1

(
(F∗)1(φ+, φ−)

)
.

Preservation of identity: Assume we are given (C , γ) ∈ Groth(ccCat, idccCat). We need to
prove that Chu1(1(C ,γ)) = 1Chu(C ,γ). By definition we have Chu1(1(C ,γ)) = (idC )∗. To see
that (idC )∗ = 1Chu(C ,γ), it suffices to check the equalities(

(idC )∗
)

0
(a, f, x) = (a, f, x) and

(
(idC )∗

)
1
(φ+, φ−) = (φ+, φ−)

for all objects (a, f, x) ∈ Chu(C , γ)0 and all arrows φ = (φ+, φ−) : (a, f, x, ) → (b, g, y) in
Chu(C , γ). Using definition 4.5 we can compute(

(idC )∗
)

0
(a, f, x) =

(
(idC ,1γ)∗

)
1
(a, f, x) = (idC

0 (a),1γ ◦ idC
1 (f) ◦ idC

ab, x) = (a, f, x)

and (
(idC )∗

)
1
(φ+, φ−) = (φ+, φ−).

So Chu is indeed a functor. q.e.d.
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4.6 A covariant Grothendieck functor
Let P = (P0,P1) : C → Cat. We imitate the definition given in [Pet20a, Definition 7]. So we
define a category

∫
(C ,P) in the following way:

Definition 4.17 (The Grothendieck functor). The covariant Grothendieck functor is
defined by the following clauses.
• Objects: The objects of

∫
(C ,P) are given as pairs of objects (a, x), where a ∈ C0 and

x ∈
(
P0(a)

)
0
.

• Morphisms: Assume we are given (a, x), (b, y) ∈
∫

(C ,P)0. A morphism is a pair
(f, φ) : (a, x) → (b, y), where f : a → b is an arrow in C and φ : (P1(f))0(x) → y is
an arrow in P0(b). One can visualize this as in figure 4.1.

Cat

C
a

b

x

P0(a)

(P1(f))0(x)
φ−−→ y

P0(b)
f

Figure 4.1: Illustration regarding the arrows in
∫

(C ,P)

• Composition: Assume we are given (a, x), (b, y), (c, z) ∈
∫

(C ,P)0 and (f, φ) : (a, x) →
(b, y), (g, ψ) : (b, y)→ (c, z). Then we set

(g, ψ) ◦ (f, φ) = (g ◦ f, ψ ◦ (P1(g))1(φ)),

where ψ ◦ (P1(g))1(φ) : (P1(g ◦ f))0(x)→ z. We could visualize this as in figure 4.2.
• Identity: We set 1(a,x) = (1a,1x) and see that this fulfils the required conditions.

Remark 4.18. Finally we want to compare the Grothendieck construction with the Grothen-
dieck functor.
Objects: The objects of the Grothendieck category are given as pairs (C , γ), where C is a

cartesian closed category and γ ∈ C0. The objects of the Grothendieck functor on the
other hand are given as pairs (a, x) where a ∈ C0 for an arbitrary category C and
x ∈ P0(a).

Arrows: The arrows of the Grothendieck category are pairs (F, f) : (C , γ) → (D , δ), where
F : C → D is a product preserving functor and f : F0(γ) → δ is an arrow in D . The
arrows of the covariant Grothendieck functor on the other hand are given by pairs
(F, f) : (a, x)→ (b, y), where F : a→ b is an arrow in C and f : (P1(F ))0(x)→ y is an
arrow in P0(b).

Hence we can observe the following.

If we take C = ccCat, the category of cartesian closed categories and
let P be the inclusion functor ι : ccCat ↪→ Cat, then we can recover the
Grothendieck category from the Grothendieck functor as

∫
(ccCat, ι).
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Cat

C
a

b

c

f

g

x

P0(a)

(P1(f))0(x)
φ−−→ y

P0(b)

(P1(g ◦ f))0(x)
(P1(g))1(φ)−−−−−−−→ (P1(g))0(y)

ψ−−→ z

P0(c)

Figure 4.2: Illustration regarding the composition in
∫

(C ,P)



Chapter 5

The Chu construction and categorical
constructions

In this chapter we want to dissect the interplay of the Chu construction with various constructions
using categories, i.e. the opposite category or product categories.

5.1 Chu and duality
When working with the opposite category there are two ways to approach this problem.
On one hand we can examine the opposite of the Chu category, Chu(C , γ) op, and on the
other hand we can examine the Chu construction over the opposite category, Chu(C op, γ).
As we have only defined the Chu construction over cartesian closed categories C and the
opposite category C op need not be closed for a cartesian closed category C , we need a greater
framework for the latter approach.

For this reason we start by discussing the opposite category Chu(C , γ) op and work on the
latter approach in sections 5.2 to 5.5.

Lemma 5.1. Let C be a cartesian closed category and γ ∈ C0. Then the Chu category is
isomorphic to its dual,

Chu(C , γ) ∼= Chu(C , γ) op .

Proof: We have to find a covariant functor F : Chu(C , γ) → Chu(C , γ) op and a covariant
functor G : Chu(C , γ) op → Chu(C , γ) such that F ◦G = idChu(C ,γ) op and G ◦ F = idChu(C ,γ).
We define these functors in the following way.
• The functor F is defined by the following clauses: Let (a, f, x) ∈ Chu(C , γ). Then
F0(a, f, x) = (x, f, a). If (φ+, φ−) : (a, f, x) → (b, g, y) is an arrow in Chu(C , γ), we set
F1(φ+, φ−) = (φ−, φ+).
• The functor G is defined as follows: Let (a, f, x) ∈ Chu(C , γ) op. Then G0(a, f, x) =

(x, f, a). If (ψ+, ψ−) : (a, f, x)→ (b, g, y) is an arrow in Chu(C , γ), we set G1(ψ+, ψ−) =
(ψ−, ψ+).

One can see that these definitions are indeed allowed: If (a, f, x) ∈ Chu(C , γ), then (x, f, a) ∈
Chu(C , γ) op, as f : a × x → γ and therefore (x, f, a) ∈ Chu(C , γ)0 and Chu(C , γ)0

op =
Chu(C , γ)0. So let (φ+, φ−) : (a, f, x) → (b, g, y) be an arrow in Chu(C , γ). This means that
φ+ : a→ b and φ− : y → x such that the diagram

a× y a× x

b× y γ

1a×φ−

φ+×1y f

g

commutes. We have to check that F1(φ+, φ−) : (x, f, a)→ (y, g, b) is an arrow in Chu(C , γ) op.
So we have to show that (φ−, φ+) : (y, g, b)→ (x, f, a) is an arrow in Chu(C , γ). By definition

37
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we have φ− : y → x and φ+ : a→ b, and the diagram

y × a y × b

x× a γ

1y×φ+

φ−×1a g

f

commutes as the diagram of (φ+, φ−) commutes. Similarly, the well-definedness of G can be
shown in the following way: If (a, f, x) ∈ Chu(C , γ)0

op, then (x, f, a) ∈ Chu(C , γ)0. Now let
(ψ+, ψ−) : (a, f, x) → (b, g, y) be an arrow in Chu(C , γ) op. This means that ψ+ : b → a and
ψ− : x→ y, where

b× x b× y

a× x γ

1b×ψ−

ψ+×1x g

f

commutes. But this is also the diagram required for (ψ−, ψ+) : (x, f, a) → (y, g, b) to be an
arrow in Chu(C , γ). So F,G are well-defined. It remains to check their functoriality.
• Compatibility with identities: Suppose we are given (a, f, x) ∈ Chu(C , γ)0. Then
1(a,f,x) = (1a,1x) and F1(1(a,f,x)) = (1x,1a) = 1(x,f,a). Conversely, let (a, f, x) ∈
Chu(C , γ)0

op be given. Then 1(a,f,x)) = (1a,1x) and G1(1(a,f,x)) = (1x,1a) = 1(x,f,a).
• Compatibility with composition: Suppose we are given arrows

(φ+, φ−) : (a, f, x)→ (b, g, y), (ψ+, ψ−) : (b, g, y)→ (c, h, z)

in Chu(C , γ). To reduce confusion we will denote the composition in Chu(C , γ) op by
◦ op. We compute

F1

(
(ψ+, ψ−) ◦ (φ+, φ−)

)
= F1(ψ+ ◦ φ+, φ− ◦ ψ−) = (φ− ◦ ψ−, ψ+ ◦ φ+)

= (φ−, φ+) ◦ (ψ−, ψ+) = (ψ−, ψ+) ◦ op(φ−, φ+)

= F1(ψ+, ψ−) ◦ op F1(φ+, φ−).

Conversely, suppose we are given arrows

(φ+, φ−) : (a, f, x)→ (b, g, y), (ψ+, ψ−) : (b, g, y)→ (c, h, z)

in Chu(C , γ) op. Then we can compute

G1

(
(ψ+, ψ−) ◦ op(φ+, φ−)

)
= G1

(
(φ+, φ−) ◦ (ψ+, ψ−)

)
= G1(φ+ ◦ ψ+, ψ− ◦ φ−)

= (ψ− ◦ φ−, φ+ ◦ ψ+) = (ψ−, ψ+) ◦ (φ−, φ+)

= G1(ψ+, ψ−) ◦G1(φ+, φ−).

Lastly we show that G ◦ F = idChu(C ,γ) and F ◦ G = idChu(C ,γ) op . Let (a, f, x) ∈ Chu(C , γ)0.
Then

(G ◦ F )0(a, f, x) = G0

(
F0(a, f, x)

)
= G0(x, f, a) = (a, f, x).

Now suppose we are given an arrow (φ+, φ−) : (a, f, x)→ (b, g, y) in Chu(C , γ). Then

(G ◦ F )1(φ+, φ−) = G1

(
F1(φ+, φ−)

)
= G1(φ−, φ+) = (φ+, φ−).

The equality for F ◦G = idChu(C ,γ) op follows identically. q.e.d.
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5.2 The dual Chu construction
Now we want to consider the category C op for a given cartesian closed category C . But if
we wanted to construct Chu(C , γ) for γ ∈ C0, we would run into the problem that C op is ad
hoc not cartesian closed. So we need a different construction. We do this by analysing the
key ingredients of the Chu construction and dualizing them. Those ingredients are
• A cartesian closed category C .
• A specific object γ ∈ C0.
• Triplets (a, f, x) with f : a× x→ γ.
So we first dualize the notion of a product. We then arrive at the notion of a coproduct,

which we recall to be the following.

Definition 5.2 (Coproducts). Let C be an arbitrary category and (cn)n∈I be a family of
objects in C indexed by the set I. A coproduct of (cn)n∈I is an object C ∈ C0 together with
arrows in : cn → C satisfying the following universal property.

Let a ∈ C0 with an arrow gn : cn → a for each n ∈ I be given. Then there exists a
unique arrow g : C → a such that for each n ∈ I the diagram

a

cn C
in

gn
g

commutes.

Definition 5.3 (Initial objects). Let C be an arbitrary category. An initial object of C is
an object ⊥ ∈ C0 such that for every c ∈ C0 there exists exactly one arrow, ¡c : ⊥ → c.

Remark 5.4. The coproduct of (cn)n∈I is determined up to unique isomorphism, if it exists,
therefore we shall write

∐
n∈I ci instead of C. If I is the set containing only two elements, we

write c1 + c2 for the coproduct.

The dualization of the Chu construction is given as such:

Definition 5.5 (coChu categories). Let C be a category with binary coproducts, denoted
by +. Then the dual Chu category coChu(C , ξ) for ξ ∈ C0 is the category defined as such:
• Objects: The objects of coChu(C , ξ) are pairs (c, f, x) with c, x ∈ C0 and f : ξ → c+ x.
• Arrows: The arrows of coChu(C , ξ) are pairs (φ+, φ−) : (c, f, x) → (d, g, y) of arrows
φ+ : d→ c, φ− : x→ y. These arrows have to make the diagram

ξ c+ x

d+ y c+ y

f

g 1c+φ−

φ++1y

commute. The identity arrow is simply (1c,1x).
• Composition: Let arrows

(φ+, φ−) : (c, f, x)→ (d, g, y),

(ψ+, ψ−) : (d, g, y)→ (e, h, z)

be given. We then set (ψ+, ψ−) ◦ (φ+, φ−) := (φ+ ◦ ψ+, ψ− ◦ φ−).

We start by showing the following lemma.
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Lemma 5.6. Let C be a category with coproducts. Then for a, b, c, d, e, f ∈ C0 and g+g′ : a+
b→ c+ d, h+ h′ : c+ d→ e+ f we have

(h+ h′) ◦ (g + g′) = (h ◦ g) + (h′ ◦ g′).

Proof: We know that we have the commutative diagrams

a a+ b b

c c+ d d

ia

g g+g′

ib

g′

ic id

and
c c+ d d

e e+ f f.

ic

h h+h′

id

h′

ie if

As both (h+ h′) ◦ (g + g′) and (h ◦ g) + (h′ ◦ g′) make the diagram

a a+ b b

e e+ f f.

ia

h◦g

ib

h′◦g′

ie if

commute, we have the desired equality. q.e.d.

Proposition 5.7. Let C be a category with binary coproducts and γ ∈ C0. Then coChu(C , γ)
is a well-defined category.

Proof: We shall show that the composition is well-defined. For this let the arrows (φ+, φ−),
(ψ+, ψ−) as described in definition 5.5 be given. We have to check the commutativity of the
diagram

ξ c+ x

e+ z c+ z.

f

h 1c+(ψ−◦φ−)

(φ+◦ψ+)+1z

To this end we use the commutative diagrams of each arrow and compose them into a big
diagram

c+ x c+ y

ξ d+ y

e+ z d+ z.

1c+φ−

g

f

h 1d+ψ−

φ++1y

ψ++1z

This can be expanded into the commutative diagram

c+ x c+ y

ξ d+ y c+ z

e+ z d+ z.

1c+(ψ+◦φ−)

1c+φ−

1c+ψ−

g

f

h 1d+ψ−

φ++1y

ψ++1z

(φ+◦ψ+)+1z

φ++1z
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This yields the desired equality. q.e.d.

Next we will quickly mimic the standard functors associated to the Chu construction for
the coChu construction.

5.3 The dual Chu representation
To define a dual Chu representation, we first examine which prerequisites a category had to
fulfil to employ the Chu representation. Such a category needed to be cartesian closed, but
we only needed the existence of binary products and exponential. As the coproduct is the
notion dual to the product, we need a notion dual to the exponential.

Definition 5.8 (Coexponentials). Let C be a category with coproducts and a, x ∈ C0. A
coexponential of a, x is an object xa with an arrow coeva,x : a → xa + x such that for every
b ∈ C0 and f : a→ b+ x there exists an unique arrow f̌ : xa→ b that makes

a xa+ x

b+ x

coeva,x

f
f̌+1x

commute.

This allows us to define the dual to the Chu representation.

Theorem 5.9. Let C be a category with binary coproducts and coexponentials and γ ∈ C0.
We define a contravariant functor CC ,γ : C → coChu(C , γ) via

CC ,γ
0 (a) = (a, coevγ,a,

aγ),

CC ,γ
1 (f : a→ b) = (f, ȟ),

where h = (1aγ + f) ◦ coevγ,a and ȟ arises from the commutative diagram

γ bγ + b

aγ + a

aγ + b.

coevγ,b

coevγ,a

ȟ+1b

1 aγ+f

(6)

Proof: We first show that these definitions are well-defined. By definition we have that
coevγ,a : γ → aγ + a, so it remains to check CC ,γ

1 (f). Let f : a → b be given. We have to
check that CC ,γ

1 (f) = (f, ȟ) : (b, coevγ,b,
bγ) → (a, coevγ,a,

aγ) is an arrow in coChu(C , γ).
This means to check that

f : a→ b and ȟ : bγ → aγ

as well as the arrow condition. The first condition is immediate by the definition of the arrow
f , so it remains to show the second condition. As h : γ → aγ + b, we have by definition of the
coexponential that ȟ : bγ → aγ. By definition of h the diagram (6) commutes, so (f, ȟ) is an
arrow in coChu(C , γ).

We proceed by showing that CC ,γ is indeed a functor C op → coChu(C , γ). For his we
check the following:
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• Compatibility with composition: Let two arrows in C , f : a → b, g : b → c be given. We
have to check that CC ,γ

1 (g ◦ f) = CC ,γ
1 (f) ◦ CC ,γ

1 (g). As we have

CC ,γ
1 (g ◦ f) = (g ◦ f, ȟ1),

CC ,γ
1 (f) ◦ CC ,γ

1 (g) = (f, ȟ2) ◦ (g, ȟ3) = (g ◦ f, ȟ2 ◦ ȟ3)

where

h1 = (1aγ + g ◦ f) ◦ coevγ,a, h2 = (1aγ + f) ◦ coevγ,a,
h3 = (1bγ + g) ◦ coevγ,b,

it remains to show that ȟ1 = ȟ2 ◦ ȟ3. To this end we show that both h = ȟ1 + 1c and
h = (ȟ2 ◦ ȟ3) + 1c make the diagram

γ cγ + c

aγ + a

aγ + c

coevγ,c

coevγ,a

h

1 aγ+(g◦f)

(7)

commute. For the arrow ȟ1 + 1c this is immediate by definition, so we divert our
attention to (ȟ2 ◦ ȟ3) + 1c. It is immediate that

(ȟ2 ◦ ȟ3) + 1c = (ȟ2 + 1c) ◦ (ȟ1 + 1c),

and we have a diagram

cγ + c bγ + c

γ bγ + b aγ + c

aγ + a aγ + b

ȟ3+1c

ȟ2+1c
coevγ,c

coevγ,b

coevγ,a

1bγ+g

ȟ2+1b

1 aγ+f

1 aγ+g

where the two squares on the left commute, so we can establish that

(ȟ2 + 1c) ◦ (ȟ3 + 1c) ◦ coevγ,c = (ȟ2 + 1c) ◦ (1bγ + g) ◦ coevγ,b
= (ȟ2 + g) ◦ coevγ,b
= (1aγ + g) ◦ (ȟ2 + 1b) ◦ coevγ,b
= (1aγ + g) ◦ (1aγ + f) ◦ coevγ,a
= (1aγ + (g ◦ f)) ◦ coevγ,a,

which gives us the commutativity of (7) in the case h = (ȟ2 ◦ ȟ3) + 1c, so by the
uniqueness of h we have

(ȟ2 ◦ ȟ3) + 1c = ȟ1 + 1c,

as desired.
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• Preservation of identities: Let a ∈ C0 be given. We consider CC ,γ
1 (1a). By definition

we have
CC ,γ

1 (1a) = (1a, ȟ)

for h = (1aγ + 1a) ◦ coevγ,a. We can immediately verify that h = coevγ,a, so we have
to check that

γ aγ + a

aγ + a

coevγ,a

coevγ,a
1aγ+1a

commutes. But this is immediate, so we have ȟ = 1aγ .
So CC ,γ is a functor C op → coChu(C , γ). q.e.d.

As EC ,γ was a full embedding of C into Chu(C , γ), we would like to have a dual statement
to this. Fortunately, the following holds.

Proposition 5.10. CC ,γ is a full embedding of C op into coChu(C , γ).

Proof: We first show that CC ,γ is injective on objects. This is immediate, as if

(a, coevγ,a,
aγ) = (b, coevγ,b,

bγ),

we already have a = b.
Next we show that CC ,γ

(a,b) is an bijection for all a, b ∈ C . For this we have to be a little
careful, as we have

CC ,γ
(a,b) : HomC op(a, b) = HomC (b, a)→ HomcoChu(C ,γ)

(
(a, coevγ,a,

aγ), (b, coevγ,b,
bγ)
)

with f 7→ CC ,γ
1 (f).

• Injectivity: Let f, g : b→ a be given. We then have

CC ,γ
1 (f) = (f, ȟ) = (g, ̌)

= CC ,γ
1 (g)

for unique arrows h, j : aγ → bγ, which are not necessary for the further argument, as we
already have that f = g.
• Surjectivity: Let (φ+, φ−) : (a, coevγ,a,

aγ)→ (b, coevγ,b,
bγ)
)
be given. We want to find

f : b→ a such that CC ,γ
1 (f) = (φ+, φ−). To this end it suffices to show that ȟ = φ− for

h = (1bγ + φ+) ◦ coevγ,b. We simply have to show that (φ− + 1a) ◦ coevγ,a = h. But
this is immediate from the commutativity of the diagram

γ aγ + a

bγ bγ + a,

coevγ,a

coevγ,b φ−+1a

1bγ+φ+

which is given by the arrow (φ+, φ−).
So CC ,γ is a full embedding of C op into coChu(C , γ). q.e.d.
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5.4 A dual of the internal Chu functor
As the internal functor ChuC is a functor C → Cat we want to define a functor coChuC : C op →
Cat.

Theorem 5.11. Let C be a category with coproducts. The rule coChuC : C op → Cat defined
by coChuC

0 (γ) = coChu(C , γ) and

coChuC
1 (u : δ → γ) = u∗ : coChu(C , γ)→ coChu(C , δ),

(u∗)0(a, f, x) = (a, f ◦ u, x),

(u∗)1(φ+, φ−) = (φ+, φ−),

is a covariant functor.

Proof: Let C be given. To show the well-definedness, it remains to check coChuC
1 is a functor,

as coChu(C , γ) ∈ Cat0 for all γ ∈ C .
So let u : δ → γ be given. We have to prove that u∗ is a functor. To this end we observe

that (a, f ◦u, b) ∈ coChu(C , δ) for (a, f, x) ∈ Chu(C , γ)0, as f ◦u : δ → a+x. To see that any
arrow (φ+, φ−) : (a, f, x) → (b, g, y) is also an arrow (a, f ◦ u, x) → (b, g ◦ u, y), one only has
to see that

(1a + φ−) ◦ f ◦ u = (φ+ + 1b) ◦ g ◦ u,

as already (1a + φ−) ◦ f = (φ+ + 1b) ◦ g. The compatibility with composition and the
preservation of identities are now immediate, so coChuC : C op → Cat is indeed a functor

q.e.d.

Proposition 5.12. If u : δ → γ is an epimorphism, then u∗ is a full embedding.

Proof: For any (a, f, x), (b, g, y) ∈ coChu(C , γ)0 we have

HomChu(C ,γ)

(
(a, f, x), (b, g, y)

)
= HomChu(C ,δ)

(
(a, f ◦ u, x)(b, g ◦ u, y)

)
,

since (u∗)1(φ) = φ for all φ ∈ coChu(C , γ)1. So it remains to show that u∗ is injective on the
objects. Assume (a, f ◦u, x) = (b, g ◦u, y). Then a = b, x = y and f ◦u = g ◦u implies f = g,
as u is an epimorphism. So (a, f, x) = (b, g, y). q.e.d.

5.5 The global coChu functor
Before we can define a global Chu functor, we first examine the global Chu functor. This was
a functor

Chu : Groth(ccCat, idccCat)→ Cat,

where
• Groth is the covariant Grothendieck construction,
• ccCat is the category of cartesian closed categories,
• idccCat is the full embedding ccCat ↪→ ccCat.

We would like to keep the covariant Grothendieck construction in our definition of the global
coChu functor, so it remains to modify ccCat and idccCat.

Definition 5.13. We denote by cocCat the category defined as such:
• Objects: Categories C with finite coproducts and coexponentials and initial objects.
• Arrows: Covariant coproduct preserving functors F : C → D .

The composition is defined in the usual way and the identities are simply the identity functors.
We call objects C ∈ cocCat0 cocartesian closed categories.
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Next we have to deal with coproduct preserving functors.

Definition 5.14. Let C ,D be cocartesian closed categories. A functor F : C → D is coproduct
preserving, if for every a, b ∈ C0 there exists a unique isomorphism F ab that makes the diagram

F0(a) F0(a+ b) F0(b)

F0(a) + F0(b)

F1(ia)

iF0(a)
Fab

F1(ib)

iF0(b)

(8)

commute.

Remark 5.15. Analogously to the case of product preserving functors one only needs to find
an isomorphism F ab making the diagram (8) commute, as such an isomorphism is unique by
the universal property of the coproduct.

Lemma 5.16. Let C ,D be cocartesian closed categories and a, b, c, d ∈ C0 such that φ : a→ b
and ψ : c→ d. Let F : C → D be a coproduct preserving functor. Then the diagram

F0(a+ c) F0(a) + F0(c)

F0(b+ d) F0(b) + F0(d)

Fac

F1(φ+ψ) F1(φ)+F1(ψ)

F bd

commutes.

Proof: It suffices to show that

F0(a) F0(a+ c) F0(c)

F0(b) F0(b) + F0(d) F0(d)

F1(ia)

F1(φ) Ξ

F1(ic)

F1(ψ)

iF0(b) iF0(d)

(9)

commutes for Ξ = (F1(φ) +F1(ψ)) ◦F ac, as Ξ = F bd ◦F1(φ+ψ) is the unique arrow making
the diagram commute. But this can be checked directly. We know that

F0(a) F0(a+ c) F0(c)

F0(b) F0(b) + F0(d) F0(d)

iF0(a)

F1(φ) F1(φ)+F1(ψ)

iF0(c)

F1(ψ)

iF0(b) iF0(d)

and
F0(a) F0(a+ c) F0(c)

F0(a) + F0(c)

F1(ia)

iF0(a)
Fac

F1(ic)

iF0(c)

commute, so we can combine the two diagrams to form a bigger, still commutative diagram

F0(a+ c)

F0(a) F0(a) + F0(c) F0(c)

F0(b) F0(b) + F0(d) F0(d).

Fac

F1(ia)

iF0(a)

F1(φ) F1(φ)+F1(ψ)

iF0(c)

F1(ψ)

F1(ic)

iF0(b) iF0(d)

But the outermost vertices of the diagram with the arrows gives the desired commutative
diagram (9) q.e.d.
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Remark 5.17. Just as in the case of product preserving functors, if two functors F : C → D
and G : D → E are coproduct preserving, then G ◦ F is coproduct preserving and we have

(G ◦ F )ab = GF0(a)F0(b) ◦G1(F ab).

Furthermore we have the following lemma.

Lemma 5.18. Let C ,D be cocartesian closed categories and γ ∈ C0, δ ∈ D0. Let F : C → D
be a coproduct preserving functor and F ab be the canonical isomorphisms of F for a, b ∈ C0

and ψ : δ → F0(γ) be an arrow. The rule

F ∗ : coChu(C , γ)→ coChu(D , δ),

(F ∗)0(a, f, b) = (F0(a), F ab ◦ F1(f) ◦ ψ,F0(b)),

(F ∗)1(φ+, φ−) = (F1(φ+), F1(φ−))

is a functor.

Proof: We first show the well-definedness. As F ab ◦ F1(f) ◦ ψ : δ → F0(a) + F0(b), we have(
F0(a), F ab ◦F1(f)◦ψ, F0(b)

)
∈ coChu(D , δ)0. Now let an arrow (φ+, φ−) : (a, f, x)→ (b, g, y)

be given. We have to check that (F1(φ+), F1(φ−)) is well defined, i.e. that

δ F0(a) + F0(x)

F0(b) + F0(y) F0(a) + F0(y)

Fax◦F1(f)◦ψ

F by◦F1(g)◦ψ 1F0(a)+F1(φ−)

F1(φ+)+F1(1y)

commutes. This can be computed as follows: First we observe that we have a commutative
diagram

F0(γ) F0(a+ x)

F0(b+ y) F0(a+ y).

F1(f)

F1(g) F1(1a+φ+)

F1(φ++1y)

(10)

By lemma 5.16 we have commutative diagrams

F0(a+ x) F0(a) + F0(x)

F0(a+ y) F0(a) + F0(y).

Fax

F1(1a+φ−) F1(1a)+F1(φ−)

Fay

and
F0(b+ y) F0(b) + F0(y)

F0(a+ y) F0(a) + F0(y).

F by

F1(φ++1y) F1(φ+)+F1(1y)

Fay

(11)

So we can compute(
1F0(a) + F1(φ−)

)
◦ F ax ◦ F1(f) ◦ ψ =

(
F1(1a) + F1(φ−)

)
◦ F ax ◦ F1(f) ◦ ψ (12)

= F ay ◦ F1(1a + φ−) ◦ F1(f) ◦ ψ (13)
= F ay ◦ F1(φ+ + 1y) ◦ F1(g) ◦ ψ (14)

=
(
F1(φ+) + F1(1y

)
◦ F by ◦ F1(g) ◦ ψ, (15)

where we used the commutativity of the left diagram of (11) in (12) = (13), the commutativity
of (10) in (13) = (14) and finally he commutativity of the right diagram of (11) in (14) = (15).
It remains to check the axioms of a functor.
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• Compatibility with composition: Let

(φ+, φ−) : (a, f, x)→ (b, g, y) and (ψ+, ψ−) : (b, g, y)→ (c, h, z)

be given. We have to check that (F ∗)1(φ+ ◦ψ+, ψ− ◦φ−) = (F ∗)1(ψ+, ψ−)◦F1(φ+, φ−).
But this can be computed by

(F ∗)1(φ+ ◦ ψ+, ψ− ◦ φ−) = (F1(φ+ ◦ ψ+), F1(ψ− ◦ φ−))

=
(
F1(φ+) ◦ F1(ψ+), F1(ψ−) ◦ F1(φ−)

)
=
(
F1(ψ+), F1(ψ−)

)
◦
(
F1(φ+), F1(φ−)

)
= F1(ψ+, ψ−) ◦ F1(φ+, φ

−).

• Preservation of identities: Let (a, f, x) ∈ coChu(C , γ). Then

F1(1a,1x) = (F1(1a), F1(1x)) = (1F0(a),1F0(x))

by definition.
So F ∗ : coChu(C , γ)→ coChu(D , δ) is indeed a functor. q.e.d.

It remains to find the adequate Grothendieck construction. Unfortunately we can not
use the standard embedding cocCat ↪→ Cat, but we have to use the modified embedding
ι op : cocCat ↪→ Cat, which sends a cocartesian closed category C to its dual category C op.
This motivates the following definition.

Definition 5.19. Let cocCat be the category of cartesian closed categories and ι op : cocCat ↪→
Cat be the embedding described above. Then the category Groth(cocCat, ι op) it defined by
the following data:
• The objects of Groth(cocCat, ι op) are given by pairs (C , γ), where C is a cocartesian

closed category and
γ ∈ [ι op]0(C ) = (C op)0 = C0.

• The arrows of Groth(cocCat, ι op) are given by pairs (F, θ) : (C , γ) → (D , δ), where
F : C → D is a coproduct preserving functor and ψ : δ → F0(γ) is an arrow in D .
• The identity of (C , γ) is given by (idC ,1γ).

Proposition 5.20. The category Groth(cocCat, ι op) defined above is indeed a category.

Proof: We have to check well-definedness, associativity and the existence of identities.
Well-definedness: Suppose we are given two arrows in Groth(cocCat, ι op), (F, θ) : (C , γ) →
(D , δ) and (G,ω) : (D , δ)→ (E , ε). We have to prove that (G,ω)◦(F, θ) = (G◦F,G1(θ)◦ω) is
an arrow (C , γ)→ (E , ε). As G◦F : C → E it remains to show that θ◦G1(ω) : ε→ G0(F0(γ)).
But as ω : ε→ G0(δ) and G1(θ) : G0(δ)→ G0(F0(γ)) this is immediate.
Associativity: Suppose we are given three arrows,

(F, θ) : (C , γ)→ (C , δ), (G,ω) : (D , δ)→ (E , ε),

(H, ν) : (E , ε)→ (F , µ)

in Groth(cocCat, ι op). We have to show that(
(H, ν) ◦ (G,ω)

)
◦ (F, θ) = (H, ν) ◦

(
(G,ω) ◦ (F, θ)

)
.

To this end we simply compute(
(H, ν) ◦ (G,ω)

)
◦ (F, θ) =

(
(H ◦G,H1(ω) ◦ ν

)
◦ (F, θ)
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=
(
(H ◦G) ◦ F, (H ◦G)1(θ) ◦H1(ω) ◦ ν

)
=
(
H ◦ (G ◦ F ), H1(G1(θ) ◦ ω) ◦ ν

)
= (H, ν) ◦

(
G ◦ F,G1(θ) ◦ ω

)
= (H, ν) ◦

(
(G,ω) ◦ (F, θ)

)
.

This proves the associativity.
Existence of identities: Suppose we are given an object (C , γ) of Groth(cocCat, ι op). We want
to show that 1(C ,γ) = (idC ,1γ). For this reason let two arrows (F, θ) : (C , γ) → (D , δ) and
(E, ν) : (B, ω)→ (C , γ) be given. We compute

(F, θ) ◦ (idC ,1γ) = (F ◦ idC , F1(1γ) ◦ θ) = (F,1F0(γ) ◦ θ)
= (F, θ),

(idC ,1γ) ◦ (E, ν) = (idC ◦E, idC
1 (ν) ◦ 1γ) = (E, ν ◦ 1γ)

= (E, ν),

so (idC ,1γ) fulfils the properties of the identity. q.e.d.

With this category at hand we can make the rule (C , γ) 7→ coChu(C , γ) a functor.

Theorem 5.21. We define the rule coChu : Groth(cocCat, ι op)→ Cat in the following way.
• For all (C , γ) ∈ Groth(cocCat, ι op)0 we set coChu0(C , γ) = coChu(C , γ).
• For all arrows (F, θ) : (C , ξ) → (D , δ) in Groth(cocCat, ι op) we set coChu1(F, θ) = F ∗,
where F ∗ is defined in lemma 5.18.

Proof: To see that coChu is a functor, we need to prove the compatibility with compositions
and identities.
Compatibility with composition: Suppose we are given two arrows (F, θ) : (C , γ)→ (D , δ) and
(G,ω) : (D , δ)→ (E , ε) in Groth(cocCat, ι op). We have to show that

coChu1

(
(G,ω) ◦ (F, θ)

)
= (G ◦ F )∗ = G∗ ◦ F ∗ = coChu1(G,ω) ◦ coChu1(F, θ). (16)

To prove this it suffices to check that (G ◦ F )∗0(a, f, x) = (G∗ ◦ F ∗)0(a, f, x) and (G ◦
F )∗1(φ+, φ−) = (G∗ ◦ F ∗)1(φ+, φ−) for all arrows (φ+, φ−) in Chu(C , γ).
• We begin by considering the objects. We compute that

(G ◦ F )∗0(a, f, x)

=
(
(G ◦ F )0(a), (G ◦ F )ab ◦ (G ◦ F )1(f) ◦G1(θ) ◦ ω, (G ◦ F )0(x)

)
=
(
G0(F0(a)), GF0(a)F0(b) ◦G1(F ab) ◦G1(F1(f)) ◦G1(θ) ◦ ω,G0(F0(x))

)
=
(
G0(F0(a)), GF0(a)F0(b) ◦G1(F ab ◦ F1(f) ◦ θ) ◦ ω,G0(F0(x))

)
= G∗0

(
F0(a), F ab ◦ F1(f) ◦ θ, F0(x)

)
= G∗0

(
F ∗0 (a, f, x)

)
= (G∗ ◦ F ∗)0(a, f, x).

This proves the desired equality.
• Next we consider the arrows. Let (φ+, φ−) : (a, f, x)→ (b, g, y) be an arrow in coChu(C , γ).

Then

(G ◦ F )∗1(φ+, φ−) =
(
(G ◦ F )1(φ+), (G ◦ F )1(φ−)

)
=
(
G1(F1(φ+)), G1(F1(φ−))

)
= G∗1

(
F1(φ+), F1(φ−)

)
= (G∗ ◦ F ∗)1(φ+, φ−).
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This proves the equality (16).
Preservation of Identities: Suppose we have (C , γ) ∈ Groth(cocCat, ι op)0. We then have to
check that coChu1(1(C ,γ)) = 1coChu(C ,γ). It suffices to check this equality on objects and
arrows. We first observe that

coChu1(1(C ,γ)) = coChu1(idC ,1γ) = (idC )∗.

• Suppose we have (a, f, x) ∈ coChu(C , γ)0. We then compute

(idC )∗0(a, f, x) =
(

idC
0 (a), (idC )ax ◦ idC

1 (f) ◦ 1γ , idC
0 (x)

)
= (a, (idC )ax ◦ f, x).

But we can observe that (idC )ax = 1a+x, as 1a×x makes the diagram

idC
0 (a) idC

0 (a+ x) idC
0 (x)

a a+ x x

a+ x

idC
1 (ia) idC

1 (ix)

ia

ia

1a+x

ix

ix

commute. So we have (idC )ax ◦ f = f , which finalizes the proof of (idC )∗0(a, f, x) =
(a, f, x).
• To see the equality on arrows, suppose we have an arrow (φ+, φ−) : (a, f, x) → (b, g, y)

in coChu(C , γ). We then compute

(idC )∗1(φ+, φ−) =
(

idC
1 (φ+), idC

1 (φ−)
)

= (φ+, φ−).

So we have proven that coChu1(1(C ,γ)) = 1coChu(C ,γ). q.e.d.

5.6 Products of Chu categories
We want to relate the category Chu(C , γ) × Chu(D , δ) to the category Chu(C ×D , (γ, δ)).
The objects of the Chu category Chu(C ×D , (γ, δ)) are triplets ((c, d), f, (x, y)) where

(c, d), (x, y) ∈ (C ×D)0 and f : (c, d)× (x, y)→ (γ, δ).

The objects in the category Chu(C , γ) × Chu(D , δ) on the other hand are given as pairs(
(a, f, x), (b, g, y)

)
, where (a, f, x) ∈ Chu(C , γ)0 and (b, g, y) ∈ Chu(D , δ)0. The first step

towards a isomorphism between the two categories would be a functor between the two. We
establish such a functor in the following theorem.

Theorem 5.22. There exists a functor

F : Chu
(
C ×D , (γ, δ)

)
→ Chu(C , γ)× Chu(D , δ).

Proof: We divide this task into three steps:
• Step 1: Mapping the objects.
• Step 2: Mapping the arrows.
• Step 3: Checking the functoriality.

Regarding step 1: Suppose we are given
(
(a, b), f, (x, y)

)
∈ Chu(C ×D , (γ, δ))0. This means

that f is an arrow
f : (a, b)× (x, y)→ (γ, δ).

We wish to extrapolate two arrows f1 : a× x → γ and f2 : b× y → δ. For this we remember
the definition of the product category.
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Definition 5.23 (Product categories). Let C ,D be categories. Then the product category
is defined as such:
• Its objects are pairs (c, d) where c ∈ C0 and d ∈ D0.
• Its arrows are pairs (f1, f2) : (a, b)→ (c, d), where f1 : a→ c and f2 : b→ d.

To make this useful in our context, we have to relate the product (a, b) × (x, y) to (a ×
x, b× y). For this we make the following observation.

Lemma 5.24 (Product categories of cartesian closed categories). Let C ,D be cartesian
closed categories. Consider the product category C ×D , and elements (c, d), (c′, d′) ∈ (C ×D)0.
Then (c, d)× (c′, d′) ∼= (c× c′, d× d′).

Proof: For this we first visualize that the product category C ×D is actually cartesian closed.
Suppose we are given (c, d), (c′, d′) ∈ (C ×D)0. To define the product we need an object
P = (p1, p2) ∈ (C ×D)0 and projections pr1 : P → (c, d), pr2 : P → (c′, d′) such that for ever
object (e, f) ∈ (C ×D)0 with morphisms q = (q1, q2) : (e, f) → (c, d), t = (t1, t2) : (e, f) →
(c′, d′) there exists an unique arrow u = (u1, u2) : (e, f)→ (p1, p2) such that

(e, f)

(c, d) (p1, p2) (c′, d′)

(t1,t2)(q1,q2)

(u1,u2)

pr2pr1

commutes. We show that we can use (p1, p2) = (c× c′, d× d′) and

pr1 = (prC
1 , pr

D
1 ), pr2 = (prC

2 , pr
D
2 ),

where prC
1 : c×c′ → c, prC

2 : c×c′ → c′ are given through the product in C and prD
1 : d×d′ →

d, prD
2 : d × d′ → d′ are given through the product in D . One can see that this satisfies the

required conditions as it makes

e (e, f) f

c′ (c′, d′) d′

c (c, d) d

c× c′ (c× c′, d× d′) d× d′

q1

t1

(q1,q2)

(t1,t2)

πDπC

q2

t2

πD

prD
2

prC
1

πDπC

pr1 prD
1

prC
2

πDπC

pr2

πC

commute. So as (c×c′, d×d′) satisfies all the requirements of a product, we obtain a canonical
isomorphism (c, d)× (c′, d′) ∼= (c× c′, d× d′). q.e.d.

So we now have our desired map F1 :
(
(a, b), f, (x, y)

)
→
(
(a, f1, x), (b, f2, y)

)
, as we have

(a, b) × (x, y) = (a × x, b × y), so the arrow f is by definition a pair (f1, f2) of arrows
f1 : a× x→ γ, f2 : b× y → δ. So we can proceed to the next step.

Regarding step 2: We are given
(
(a, b), f, (x, y)

)
,
(
(a′, b′), f ′, (x′, y′)

)
∈ Chu(C ×D , (γ, δ))0

and an arrow φ :
(
(a, b), f, (x, y)

)
→
(
(a′, b′), f ′, (x′, y′)

)
. We want to map this arrow to an

arrow
(Φ1,Φ2) :

(
(a, f1, x), (b, f2, y)

)
→
(
(a′, f ′1, x

′), (b′, f ′2, y
′)
)
.
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We start by dissecting φ. This arrow is actually a tuple (φ+, φ−) of arrows

φ+ : (a, b)→ (a′, b′), φ− : (x′, y′)→ (x, y),

making the diagram

(a, b)× (x′, y′) (a, b)× (x, y)

(a′, b′)× (x′, y′) (γ, δ)

1(a,b)×φ−

φ+×1(x′,y′) f

f ′

(17)

commute. We can further dissect φ+, φ− into

φ+
1 : a→ a′, φ+

2 : b→ b′,

φ−1 : x′ → x, φ−2 : y′ → y.

This allows us to define Φ1 := (φ+
1 , φ

−
1 ),Φ2 := (φ+

2 , φ
−
2 ). We have to check the commutativity

of the diagrams

a× x′ a× x

a′ × x′ γ

1a×φ−1

φ+
1 ×1x′ f1

f ′1

and
b× y′ b× y

b′ × y′ δ.

1b×φ+
2

φ−2 ×1y′ f2

f ′2

This means to check that f1 ◦ (1a×φ−1 ) = f ′1 ◦ (φ+
1 ×1x′) and f2 ◦ (1b×φ+

2 ) = f ′2 ◦ (φ−2 ×1y′).
But these two conditions are equivalent to the commutativity of the diagram (17), as we shall
see. The commutativity of the diagram (17) means that

f ◦ (1(a,b) × φ−) = f ′ ◦ (φ+ × 1(x′,y′)). (18)

But as we have discussed before, f = (f1, f2) so this equation can equivalently be formulated
as

(f1, f2) ◦ (1(a,b) × φ−) = (f ′1, f
′
2) ◦ (φ+ × 1(x′,y′)).

Our next goal shall be to show that

(1(a,b) × φ−) = (1a × φ−1 ,1b × φ
−
2 ) and (φ+ × 1(x′,y′)) = (φ+

1 × 1x′ , φ
+
2 × 1y′). (19)

We do this in a more general context.

Lemma 5.25. Let C ,D be cartesian closed categories. Let (a, b), (c, d), (a′, b′), (c′, d′) ∈
(C ×D)0 and φ = (φ1, φ2) : (a, b)→ (a′, b′), ψ = (ψ1, ψ2) : (c, d)→ (c′, d′) be arrows. Then

φ× ψ = (φ1, φ2)× (ψ1, ψ2) = (φ1 × ψ1, φ2 × ψ2).

In a sense this lemma can be seen as an extension of lemma 5.24 to arrows. Furthermore
the equalities only hold up to unique isomorphisms, but as the product of objects is only
chosen up to unique isomorphisms, this distinction will be dropped to not artificially inflate
the notation and complexity.

Proof: Suppose we are given arrows and objects as in the lemma. By the uniqueness of the
arrow φ× ψ making

(a, b) (a, b)× (c, d) (c, d)

(a′, b′) (a′, b′)× (c′, d′) (c′, d′)

φ

pr2pr1

φ×ψ ψ

pr′1 pr′2
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commute, it suffices to prove that (φ1×ψ1, φ2×ψ2) also makes the diagram commute. From
lemma 5.24 we obtain canonical isomorphisms making the diagram

(a× c, b× d)

(a, b) (a, b)× (c, d) (c, d)

(a′, b′) (a′, b′)× (c′, d′) (c′, d′)

(a′ × c′, b′ × d′)

∼= pr2pr1

φ

pr2pr1

φ×ψ ψ

pr′1 pr′2

∼=

pr2pr1

commute. By pre- and postcomposing with these isomorphisms (φ1 × ψ1, φ2 × ψ2) also
makes this diagrams commute, but as we remarked before, we drop these isomorphisms for
convenience, so

(φ1 × ψ1, φ2 × ψ2) = φ× ψ.

q.e.d.

This lemma gives the desired equalities of (19), hence we can compute

(f1, f2) ◦ (1(a,b) × φ−) = (f1, f2) ◦ (1a × φ−1 ,1b × φ
−
2 )

= (f1 ◦ (1a × φ−1 ), f2 ◦ (1b × φ−2 )),

(f ′1, f
′
2) ◦ (φ+ × 1(x′,y′)) = (f ′1, f

′
2) ◦ (φ+

1 × 1x′ , φ
+
2 × 1y′)

= (f ′1 ◦ (φ+
1 × 1x′), f2 ◦ (φ+

2 × 1y′)).

This means that the equality (18) can be reformulated as

(f1 ◦ (1a × φ−1 ), f2 ◦ (1b × φ−2 )) = (f ′1 ◦ (φ+
1 × 1x′), f

′
2 ◦ (φ+

2 × 1y′)).

This means nothing else than

f1 ◦ (1a × φ−1 ) = f ′1 ◦ (φ+
1 × 1x′),

f2 ◦ (1b × φ−2 ) = f2 ◦ (φ+
2 × 1y′),

our desired two equalities. Before we move on to the last step, we summarize what we have
already collected about our functor. Suppose we are given

((a, b), (f1, f2), (x, y)), ((a′, b′), (f ′1, f
′
2), (x′, y′)) ∈ Chu(C ×D , (γ, δ))0

and an arrow

φ = (φ+, φ−) = ((φ+
1 , φ

+
2 ), (φ−1 , φ

−
1 )) : ((a, b), (f1, f2), (x, y))→ ((a′, b′), (f ′1, f

′
2), (x′, y′)).

Then

F0((a, b), (f1, f2), (x, y)) = ((a, f1, x), (b, f2, y)),

F1(φ) = ((φ+
1 , φ

−
1 ), (φ+

2 , φ
−
2 )).

Regarding Step 3: We now check the functoriality of the map. For this we check the following:
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• Preservation of identities: We now check that

F0(1((a,b),(f1,f2),(x,y))) = 1F0((a,b),(f1,f2),(x,y)).

We first observe that

1((a,b),(f1,f2),(x,y)) = (1(a,b),1(x,y)) = ((1a,1b), (1x,1y)).

By the laws defined above we then have

F0(1((a,b),(f1,f2),(x,y))) = ((1a,1x), (1b,1y)). (20)

On the other hand we have F0((a, b), (f1, f2), (x, y)) = ((a, f1, x), (b, f2, y)), so

1F0((a,b),(f1,f2),(x,y)) = 1((a,f1,x),(b,f2,y))

= (1(a,f1,x),1(b,f2,y))

= ((1a,1x), (1b,1y)),

which gives us the desired equality.
• Compatibility with composition: Suppose we are given three objects

((a, b), (f1, f2), (x, y)), ((a′, b′), (f ′1, f
′
2), (x′, y′)),

((a′′, b′′), (f ′′1 , f
′′
2 ), (x′′, y′′))

in Chu(C ×D , (γ, δ))0 and two arrows

φ = ((φ+
1 , φ

+
2 ), (φ−1 , φ

−
2 )) : ((a, b), (f1, f2), (x, y))→ ((a′, b′), (f ′1, f

′
2), (x′, y′)),

ψ = ((ψ+
1 , ψ

+
2 ), (ψ−1 , ψ

−
2 )) : ((a′, b′), (f ′1, f

′
2), (x′, y′))→ ((a′′, b′′), (f ′′1 , f

′′
2 ), (x′′, y′′)).

Then we compute

F1(ψ ◦ φ) = F1

(
((ψ+

1 , ψ
+
2 ), (ψ−1 , ψ

−
2 )) ◦ ((φ+

1 , φ
+
2 ), (φ−1 , φ

−
2 ))
)

= F1

(
((ψ+

1 ◦ φ
+
1 , ψ

+
2 ◦ φ

+
2 ), (φ−1 ◦ ψ

−
1 , φ

−
2 ◦ ψ

−
2 ))
)

=
(
(ψ+

1 ◦ φ
+
1 , φ

−
1 ◦ ψ

−
1 ), (ψ+

2 ◦ φ
+
2 , φ

−
2 ◦ ψ

−
2 )
)

=
(
(ψ+

1 , ψ
−
1 ), (ψ+

2 , ψ
−
2 )
)
◦
(
(φ+

1 , φ
−
1 ), (φ+

2 , φ
−
2 )
)

= F1(ψ) ◦ F1(φ).

This finishes the proof that F is a functor. q.e.d.

Our next goal is to define an inverse functor. For this we first define our functor G in
an “inverse” way, so if we are given ((a, f, x), (b, g, y)), ((a′, f ′, x′), (b′, g′, y′)) ∈ (Chu(C , γ) ×
Chu(D , δ))0 and

φ =
(
φ+

1 , φ
−
1 ), (φ+

2 , φ
−
2 )
)

: ((a, f, x), (b, g, y))→ ((a′, f ′, x′), (b′, g′, y′)),

then we set

G0

((
(a, f, x), (b, g, y)

))
=
(
(a, b), (f, g), (x, y)

)
,

G1(φ) =
(
(φ+

1 , φ
+
2 ), (φ−1 , φ

−
2 )
)
.

Theorem 5.26. The rule G defined above is a functor

G : Chu(C , γ)× Chu(D , δ)→ Chu(C ×D , (γ, δ))

and is the inverse of F .
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Proof: By the lemmata shown above one can see that this is well-defined. We check the
axioms of a functor.
• Preservation of identities: We have 1((a,f,x),(b,g,y)) = (1a,1x), (1b,1y)), and

G1

((
(1a,1x), (1b,1y)

))
= ((1a,1b), (1x,1y))

= 1((a,b),(f,g),(x,y)) = 1G0(((a,f,x),(b,g,y))).

• Compatibility with composition: Suppose we are given arrows

Φ = ((Φ+
1 ,Φ

−
1 ), (Φ+

2 ,Φ
−
2 )) :

(
(a, f, x), (b, g, y)

)
→
(
(a′, f ′, x′), (b′, g′, y′)

)
,

Ψ = ((Ψ+
1 ,Ψ

−
1 ), (Ψ+

2 ,Ψ
−
2 )) :

(
(a′, f ′, x′), (b′, g′, y′)

)
→
(
(a′′, f ′′, x′′), (b′′, g′′, y′′)

)
.

Then we can compute

G1(Ψ ◦ Φ) =G1

(
(Ψ+

1 ◦ Φ+
1 ,Φ

−
1 ◦Ψ−1 ), (Ψ+

2 ◦ Φ+
2 ,Φ

−
2 ◦Ψ−2 )

)
=
(
(Ψ+

1 ◦ Φ+
1 ,Ψ

+
2 ◦ Φ+

2 ), (Φ−1 ◦Ψ−1 ,Φ
−
2 ◦Ψ−1 )

)
=
(
(Ψ+

1 ,Ψ
+
2 ), (Ψ−1 ,Ψ

−
2 )
)
◦
(
(Φ+

1 ,Φ
+
2 ), (Φ−1 ,Φ

−
2 )
)

= G1(Ψ) ◦G1(Φ).

It remains to show that G ◦F = idChu(C×D ,(γ,δ)) and F ◦G = idChu(C ,γ)× idChu(D ,δ). But this
is immediate, as for any

(
(a, b), (f, g), (x, y)

)
∈ Chu(C ×D , (γ, δ))0 and

φ = ((φ+
1 , φ

+
2 ), (φ−1 , φ

−
2 )) ∈ Chu(C ×D , (γ, δ))

one can verify

(G ◦ F )0

(
(a, b), (f, g), (x, y)

)
= G0((a, f, x), (b, g, y)) =

(
(a, b), (f, g), (x, y)

)
,

(G ◦ F )1

(
φ
)

= G1

(
(φ+

1 , φ
−
1 ), (φ+

2 , φ
−
2 )
)

=
(
(φ+

1 , φ
+
2 ), (φ−1 , φ

−
2 )
)
.

Analogously, given
(
(a, f, x), (b, g, y)

)
∈ (Chu(C , γ)× Chu(D , δ))0 and

ψ =
(
(ψ+

1 , ψ
−
1 ), (ψ+

2 , ψ
−
2 )
)
∈ (Chu(C , γ)× Chu(D , δ))1

one can immediately verify

(F ◦G)0

(
(a, f, x), (b, g, y)

)
= F1

(
(a, b), (f, g), (x, y)

)
=
(
(a, f, x), (b, g, y)

)
,

(F ◦G)1(ψ) = F1

(
(ψ+

1 , ψ
+
2 ), (ψ−1 , ψ

−
2 )
)

=
(
(ψ+

1 , ψ
−
1 ), (ψ+

2 , ψ
−
2 )
)
.

This shows that F,G are inverse functors. q.e.d.

We shall sum up our results in a theorem.

Theorem 5.27. Let C ,D be cartesian closed categories with γ ∈ C0, δ ∈ D0. Then the
category Chu(C , γ)× Chu(C , δ) consists of the following data:
• The objects are given by triplets ((a, a′), (f, f), (b, b′)) where (a, a′), (b× b′) ∈ (C ×D)0

and (f, f ′) : (a× b, a′ × b′)→ (γ, δ).
• The arrows are given by

(
(φ+, ψ+), (φ−, ψ−)

)
:
(
(a, a′), (f, f ′), (b, b′)

)
→
(
(c, c′), (g, g′), (d, d′)

)
where

φ+ : a→ c, φ− : d→ b,

ψ+ : a′ → c′ ψ− : d′ → b′.
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The Chu construction and limits

6.1 Chu and products
We want to compute the product in Chu(C , γ) of a cartesian closed category C and an object
γ ∈ C0. Unfortunately we need that C has binary coproducts if we want to construct the
product in the Chu category.

Lemma 6.1. Let C be a cartesian closed category with binary coproducts and γ ∈ C0.
Then the category Chu(C , γ) has products and the product of two objects (a, f, x), (b, g, y)
in Chu(C , γ) is given by

(a, f, x)× (b, g, y) = (a× b, F, x+ y)

for a to be determined arrow F : (a× b)× (x+ y)→ γ.

Before we prove this lemma we find an equivalent expression for a× b× (x+ y).

Lemma 6.2. Let C be a cartesian closed category with all finite coproducts and a, b, c, d ∈ C0.
Then

a× (b+ c) ∼= (a× b) + (a× c).

Proof: It suffices to show that a × (b + c) satisfies the universal property of the coproduct
(a× b) + (a× c). So we first have to find arrows ia×b : a× b→ a× (b+ c) and ia×c : a× c→
a× (b+ c). We define ia×b := 1a × ib and ia×c := 1a × ic. It remains to show that for every
object O ∈ C0 with arrows l1 : a×b→ O and l2 : a×c→ O we find an arrow l : a×(b+c)→ O
making the diagram

O

a× b a× (b+ c) a× c
ia×b

l1

l

ia×c

l2

commute. We can transpose the arrows l1, l2 to obtain arrows l̂1 : b → Oa, l̂2 : b → Oa. By
the universal property of the coproduct b + c we obtain a unique arrow l̂1 + l̂2 making the
diagram

Oa

b b+ c c

l̂1

ib

l̂1+l̂2

l̂2

ic

commute. Hence we obtain an arrow l := evalO,a ◦
(
(l̂1 + l̂2)× 1a

)
: a× (b+ c)→ O. This is

the desired arrow making the first diagram commute. q.e.d.

Proof of lemma 6.1: So let C be a cartesian closed category with coproducts and γ ∈ C0.
Let (a, f, x), (b, g, y) ∈ Chu(C , γ)0 be given. We first want to define an arrow a×b×(x+y)→ γ.
By the preceding lemma we know that a × b × (x + y) ∼= (a × b × x) + (a × b × y), so it

55
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suffices to find two arrows ρ1 : (a × b × x) → γ and ρ2 : (a × b × y) → γ to obtain an arrow
F : (a× b× x) + (a× b× y). As the product is associative, we have a× b× x ∼= (a× x)× b,
therefore we obtain an arrow pra×x : a × b × x → a × x. So we define ρ1 := f ◦ pra×x.
Analogously we have a× b× y ∼= (b× y)× a, and we obtain prb×y : a× b× y → b× y, hence
we can set ρ2 := g ◦ prb×y. Therefore we obtain the desired arrow F : a× b× (x+ y)→ γ. So
(a× b, F, x+ y) ∈ Chu(C , γ)0.

It remains to show that (a× b, F, x+y) is a product of (a, f, x) and (b, g, y). First we have
to define the projections. We set

pr(a,f,x) = (pr+
(a,f,x), pr

−
(a,f,x)) := (pra, ix) : (a× b, F, x+ y)→ (a, f, x),

pr(b,g,y) = (pr+
(b,g,y), pr

−
(b,g,y)) := (prb, iy) : (a× b, F, x+ y)→ (b, g, y),

where the projections pra, prb and the inclusions ix, iy on the right hand side of the definition
stem from the given product and coproduct. Next we prove the universal property of the
product. For this let an object (u, q, w) ∈ Chu(C , γ)0 together with arrows

(φ+, φ−) : (u, q, w) : (a, f, x), (ψ+, ψ−) : (u, q, w)→ (b, g, y)

be given. We want to find a unique arrow (Φ+,Φ−) : (u, q, w)→ (a× x, F, x+ y) making the
diagram

(u, q, w)

(a, f, x) (a× b, F, x+ y) (b, g, y)

(Φ+,Φ−)

(ψ+,ψ−)(φ+,φ−)

pr(b,g,y)pr(a,f,x)

(21)

commute. But as we have φ+ : u → a, ψ+ : u → b and φ− : x → w,ψ− : y → w we obtain
arrows Φ+ : u→ a× b,Φ− : x+ y → w making the diagrams

u

a a× b b

ψ+φ+

Φ+

prbpra

and
w

x x+ y y

φ−

ix

Φ−
ψ−

iy

commute. So by definition (Φ+,Φ−) makes the diagram (21) commute. It remains to check
that (Φ+,Φ−) is a Chu morphism, i.e. the diagram

u× (x+ y) (a× b)× (x+ y)

u× w γ

Φ+×1x+y

1u×Φ− F

q

commutes. As u× (x+ y) ∼= (u× x) + (u× y), we have a coproduct structure on this object,
therefore it suffices to check the commutativity on the summands of the coproduct, so we
only have to check the commutativity of the diagrams

u× x a× b× x

u× w γ

1u×φ−

Φ+×1x

ρ1

q

and
u× y a× b× y

u× w γ.

1u×ψ−

Φ+×1y

ρ2

q

But this is immediate from the definitions. So (a× b, F, x+y) is the desired product. q.e.d.
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6.2 The Chu construction preserves bicompleteness
As we have seen in the preceding section, it does not suffice that C has products if Chu(C , γ)
is to have products too. Now the next question is whether the existence of a limit and its dual
suffices. To answer this question in a positive way we present a variation of the approach of
[Man17]. We begin with the fundamental definitions.

Definition 6.3 (Diagrams of type I ). Let I be a small category and C be an arbitrary
category. A diagram of type I is a functor D : I → C .

Definition 6.4 (Cones over diagrams, morphisms of cones). Let D : I → C be a
diagram of type I . Then a cone over D is an object C together with a family of morphisms
fi : C → D0(i) for every object i ∈ I0 such that for all i, j ∈ I0 and all arrows α : i → j in
I the diagram

C

D0(i) D0(j)

fi fj

D1(α)

commutes. We denote the cone by (C, (fi)i∈I0). Let two cones (C, (fi)i∈I0), (E, (gi)i∈I0) be
given. A morphism of cones is a morphism α : C → E such that for every i ∈ I0 the diagram

C E

D0(i)

α

fi gi

commutes.

Definition 6.5 (Limits of diagrams). Let D : I → C be a diagram of type I . A limit of
D is a cone (L, (li)i∈I0) such that for every cone (C, (fi)i∈I0) there exists a unique morphism
of cones FC : L→ C.

Remark 6.6. To make the notation less clunky we shall write Di instead of D0(i) for a
diagram D : I → C .

Remark 6.7. Many fundamental concepts of category theory can be expressed as limits or
colimits. Take for example the product of two objects a × b in an arbitrary category C .
This product can be interpreted as the following limit: Let I be the category with two
objects •1, •2 and only the identity morphisms. We can then define a functor D : I → C by
setting D0(•1) = a and D0(•2) = b. Then a limit of D is an object P together with arrows
pra : P → a, pr2 : P → b such that for every L ∈ C0 and arrows l1 : L → a, l2 : L → b, there
exists a unique arrow l : L→ P such that

L

a P b

l

l2l1

prbpra

commutes. So P is the product a × b. Terminal objects can also be considered as limits.
For this we consider the diagram 0 : 0 → C , where 0 is the category without objects and
morphisms. Now the limit of 0 is an object > together with exactly one morphism !c : c→ >
for every c ∈ C0, hence > is the terminal object.
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Definition 6.8 (Cocones under diagrams, morphisms of cocones). Let D : I → C
be a diagram of type I . Then a cocone under D is an object C together with a family of
morphisms fi : Di → C for every object i ∈ I0 such that for all i, j ∈ I0 and all arrows
α : i→ j in I the diagram

C

D0(i) D0(j)

fi fj

D1(α)

commutes. We denote the cocone by (C, (fi)i∈I0). Let two cocones (C, (fi)i∈I0), (E, (gi)i∈I0)
be given. A morphism of cocones is a morphism α : C → E such that for every i ∈ I0 the
diagram

C E

Di

α

fi gi

commutes.

Definition 6.9 (Colimits of diagrams). Let D : I → C be a diagram of type I . A
colimit of D is a cocone (L, (li)i∈I0) such that for every cocone (C, (fi)i∈I0) there exists a
unique morphism of cones, GC : C → L.

Remark 6.10. One can show that limits and colimits of diagrams D : I → C are unique if
they exists, so we denote the limit of D by lim←−i∈I

Di and the colimit by lim−→i∈I
Di.

Definition 6.11 ((Bi-/Co-)complete categories). Let C be a category.
• The category C is complete if for all small categories I with finite I0 and every diagram
D : I → C the limit lim←−i∈I

Di exists.
• The category C is cocomplete if for all small categories I with finite I0 and every

diagram D : I → C the colimit lim−→i∈I
Di exists.

• The category C is bicomplete if it is both complete and cocomplete.

A very important class of limits are the so called pullbacks.

Definition 6.12 (Pullbacks, Pushouts). Let C be an arbitrary category and I be the
category given by

•1 •2 •3.f

1•1 1•2

g

1•3

A pullback is a limit of a diagram D : I → C . A pushout is a colimit of a diagram D : I op →
C .

Now the following theorem allows us to further identify the notion of bicompleteness.

Theorem 6.13. Let C be a category. Then the following statements are equivalent.
1. The category C is bicomplete.
2. The category C has a terminal and initial objects as well as all pullbacks and pushouts.
3. The category C has all equalizers, coequalizers as well a finite products and coproducts.

Proof: The equivalence of the first and the third statement is proven in [Awo10, Proposition
5.21]. The equivalence of the second and the third statement is proven in [Awo10, Proposition
5.14]. q.e.d.
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With these notions we can state the main theorem of this section.

Theorem 6.14. Let C be a cartesian closed category and γ ∈ C0. Consider the following two
statements

1. The category C is bicomplete.
2. The category Chu(C , γ) is bicomplete.

Then the first statement implies the second.

Before we prove this theorem we need the following lemmata.

Lemma 6.15. Let C be a cartesian closed category and a ∈ C . Let > be the terminal object
of C . Then a×> ∼= a.

Proof: Let C be a cartesian closed category, and > its terminal object. We wish to show that
pra : a × > → a is an isomorphism for every object a of C . We have the universal property,
that for every object d of C and every arrow f : d→ a (we need not choose an arrow d→ >,
as this arrow is unique) there exists f̃ : d→ a×> such that

d

a a× 1 >

f

f̃

∃!

pra pr>

∃!

commutes. We apply this to the special case f = 1a. Here we obtain an arrow 1̃a : a→ a×>,
such that pra ◦1̃a = 1a. Furthermore, 1̃a◦pra : a×> → a×>, and 1̃a◦pra = 1a×> = 1a×1>,
a proposition we shall now prove. We know that 1a×> is the unique arrow that makes the
diagram

a×>

a a×> >

pra
pr>

1a×>

pra pr>

commute. But 1̃a ◦ pra also fulfils that requirement as

pra ◦1̃a ◦ pra = (pra ◦1̃a) ◦ pra (associativity)

= 1a ◦ pra (definition of 1̃a)
= pra,

pr> ◦1̃a ◦ pra = pr>,

since pr> ◦1̃a ◦ pra : a × > → >, and the arrow a × > → > is unique. So by uniqueness of
1a×> we have

1̃a ◦ pra = 1a×>.

Therefore pra is an isomorphism. q.e.d.

Lemma 6.16. Let C be a cartesian closed category with an initial object ⊥. For every x ∈ C0

let ¡x : ⊥ → x be the unique arrow. Then ⊥× x ∼= ⊥ via pr⊥.

Proof: Let x ∈ C0. Consider the product ⊥ × x with projections prx : ⊥ × x → x and
pr⊥ : ⊥ × x → ⊥. So pr⊥ : ⊥ × x → ⊥ is an element of HomC (⊥ × x → ⊥). But by the
definition of the exponential and the initial element we have

HomC (⊥× x,⊥) ∼= HomC (⊥,⊥x) = {¡⊥x},
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so pr⊥ is the only element of Hom(⊥× x,⊥). Analogously we have

HomC (⊥× x,⊥× x) ∼= HomC (⊥, (⊥× x)x) = {¡(⊥×x)x},

so there exists only one arrow ⊥×x→ ⊥×x, the identity arrow. But as ¡⊥×x ◦ pr⊥ : ⊥×x→
⊥× x, we necessarily have ¡⊥×x ◦ pr⊥ = 1⊥×x. Similarly we have pr⊥ ◦ ¡⊥×x = 1⊥. q.e.d.

Lemma 6.17. Let C ,D be cartesian closed categories and F : C → D be an isomorphism.
Let

R A

B C

f

g h

i

be a commutative diagram with R,A,B,C ∈ C0, f, g, h, i ∈ C1 and where R is a pullback.
Then

F0(R) F0(A)

F0(B) F0(C)

F1(f)

F1(g) F1(h)

F1(i)

is a commutative diagram and F0(R) is a pullback.

Proof: Let C ,D as well as the isomorphism F : C → D and

R A

B C

f

g h

i

as in the lemma be given. The diagram

F0(R) F0(A)

F0(B) F0(C)

F1(f)

F1(g) F1(h)

F1(i)

commutes as

F1(h) ◦ F1(f) = F1(h ◦ f) = F1(i ◦ g) = F1(i) ◦ F1(g).

To see that F0(R) is a pullback, let L ∈ D and l1 : L→ F0(A), l2 : L→ F0(B) be given such
that

L

F0(R) F0(A)

F0(B) F0(C)

l1

l2

F1(f)

F1(g) F1(h)

F1(i)
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commutes. Using F−1, we obtain the commutative diagram

F−1
0 (L)

R A

B C.

F−1
1 (l1)

F−1
1 (l2)

f

g h

i

One computes

h ◦ F−1
1 (l1) = F−1

1

(
F1(h)

)
◦ F−1

1 (l1) = F−1
1

(
F1(h) ◦ l1

)
= F−1

1

(
F1(i) ◦ l2)

= F−1
1

(
F1(i)

)
◦ F−1

1 (l2).

As R is a pullback we obtain a unique ρ : F−1
0 (L)→ R making

F−1
0 (L)

R A

B C.

F−1
1 (l1)

F−1
1 (l2)

ρ

f

g h

i

commute. Now F1(ρ) : L→ F0(R) and

L

F0(R) F0(A)

F0(B) F0(C)

l1

l2

F1(ρ)

F1(f)

F1(g) F1(h)

F1(i)

commutes as
F1(f) ◦ F1(ρ) = F1(f ◦ ρ) = F1

(
F−1

1 (l1)
)

= l1

and
F1(g) ◦ F1(ρ) = F1(g ◦ ρ) = F1

(
F−1

1 (l2)
)

= l2.

The arrow F1(ρ) is necessarily unique, as ρ is unique. So F0(R) is a pullback. q.e.d.

Lemma 6.18. Let C be an arbitrary category and

A B

C D

f

g h

i

be a commutative diagram with A,B,C,D ∈ C0, f, g, h, i ∈ C1 where A is a pullback. Then

A B

C D

f
g

i

h

is a commutative diagram where f, g, h, i ∈ C1
op and A is a pushout in C op.
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Proof: Let C and the diagram as in the lemma be given. It is immediate from the definition
of C op, that

A B

C D

f
g

i

h

is a commutative diagram if the arrows are considered to be in C op. To see that it is a
pushout, Let L ∈ C op with li : B → L, l2 : C → L such that

L

A B

C D

l1

fl2
g

i

h

commutes. By definition of C op this is the diagram

L

A B

C D

l1

l2

f

g

i

h

when considered in C . As A is a pullback, we obtain a unique ρ : L→ A such that

L

A B

C D

l1

l2

ρ

f

g

i

h

commutes. But if we consider ρ as an arrow in C op, we obtain the commutative diagram

L

A B

C D.

ρ

l1

fl2
g

i

h

As ρ is unique, we obtain that A is a pushout in C op. q.e.d.

Remark 6.19. A similar result can be shown if we consider a pushout instead of a pullback
in C . The proof of this case is nearly identical to the case shown above. We shall denote this
result in the following corollary.
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Corollary 6.20. Let C be an arbitrary category and

A B

C D

f
g

i

h

be a commutative diagram with A,B,C,D ∈ C0, f, g, h, i ∈ C1 where A is a pushout. Then

A B

C D

f

g h

i

is a commutative diagram where f, g, h, i ∈ C1
op and P is a pullback in C op.

Lemma 6.21. Let C be a cartesian closed category and A,B,C, γ ∈ C0. Suppose we are
given two arrows

f : A→ B, g : B → C

in C , and set
h1 := evalγ,C ×(1γC × (g ◦ f)).

If we set
h2 := evalγ,C ◦(1γC × g) and h3 := evalγ,B ◦(1γB × f),

then ĥ1 = ĥ3 ◦ ĥ2.

Proof: By definition we have the commutative diagrams

γA ×A γ

γB ×A γB ×B,

evalγ,A

ĥ3×1A
1
γB
×f

evalγ,B

γB ×B γ

γC ×B γC × C,

evalγ,B

ĥ2×1B
1
γC
×g

evalγ,C

γA ×A γ

γC ×A γC × C,

evalγ,A

ĥ1×1A
1
γC
×(g◦f)

evalγ,C

These can be fitted in a larger diagram,

γC ×A γC ×B γC × C

γB ×A γB ×B

γA ×A γ.

evalγ,C

1
γC
×f

ĥ2×1A

evalγ,B

evalγ,A

1
γC
×g

ĥ2×1B
1
γB
×f

ĥ3×1A

1
γC
×(g◦f)

ĥ1×1A
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To prove that ĥ1 = ĥ3 ◦ ĥ2, it suffices to prove that

evalγ,A ◦
(
(ĥ3 ◦ ĥ2)× 1A

)
= evalγ,C ◦(1γC × (g ◦ f)).

To see this we compute

evalγ,C ◦(1γC × (g ◦ f)) = evalγ,C ◦(1γC × g) ◦ (1γC × f)

= evalγ,B ◦(ĥ2 × 1B) ◦ (1γC × f)

= evalγ,B ◦(1γB × f) ◦ (ĥ2 × 1A)

= evalγ,A ◦(ĥ3 × 1A) ◦ (ĥ2 × 1A)

= evalγ,A ◦
(
(ĥ3 ◦ ĥ2)× 1A

)
. q.e.d.

Lemma 6.22. Let C be a cartesian closed category and A,B,C,D ∈ C0. Suppose we are
given f : B×A→ C and g : D → B. If we consider h := f ◦(g×1A), then ĥ = f̂ ◦g : D → CA.

Proof: Let A,B,C,D ∈ C0 and f, g ∈ C1 as in the lemma be given. Set h := f ◦ (1A × g),
then ĥ is defined as the unique arrow making

CA ×A C

D ×A

evalC,A

f◦(g×1A)
ĥ×1A

commute. Now we see that this can be dissected into the larger commutative diagram

CA ×A C

B ×A

D ×A.

evalC,A

f
f̂×1A

g×1A

ĥ×1A

This immediately shows that ĥ = f̂ ◦ g. q.e.d.

Lemma 6.23. Let C be a cartesian closed category with γ ∈ C0 and let the diagram

P x1

x2 y

π1

π2

ψ2

ψ1

with P, x1, x2, y ∈ C0 be given, where P is a pushout. Then we obtain a diagram

γP γx1

γx2 γy,

where γP is a pullback.
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Proof: Let C and γ as in the lemma be given. Suppose we have the diagram

P x1

x2 y

π1

π2

ψ2

ψ1

with P, x1, x2, y ∈ C0 where P is a pushout. Our first task is to find arrows p1 : γP →
γx1 , p2 : γP → γx2 , s1 : γx1 → γy, s2 : γx2 → γy such that

γP γx1

γx2 γy

p1

p2 s1

s2

commutes. As we have πi : xi → P for i = 1, 2, we can define pi as the transpose of
evalγ,P ◦(1γP × πi) : γP × xi → γ. So we already have the arrows

γP γx1

γx2 γy.

p1

p2

To define the arrows si : γxi → γy for i = 1, 2 we take si to be the transpose of evalγ,xi ◦(1γxi×
ψi) : γxi × y → γ. Now we have the diagram

γP γx1

γx2 γy

p1

p2 s1

s2

and it remains to check its commutativity. But this is lemma 6.21 for both cases. It remains
to check that γP is a pullback. For this let R ∈ C0 with r1 : R → γx1 and r2 : R → γx2 be
given, where s1 ◦ r1 = s2 ◦ r2. We have to check that there exists a unique arrow ρ : R→ γP

such that
R

γP γx1

γx2 γy

ρ

r1

r2

p1

p2 s1

s2

commutes. Such an arrow ρ : R→ γP must be given as the transpose of an arrow $ : R×P →
γ. Now we can transpose $ to an arrow % : P → γR. So our next goal is to find arrows
α1 : x1 → γR, α2 : x2 → γR such that

γR x1

x2 y

α1

α2

ψ2

ψ1
(22)

commutes, as we then obtain % : P → γR from the fact that P is a pushout. We have arrows
ri : R → γxi for i = 1, 2, which have to be given as arrows R × xi → γ, which themselves
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can be transposed into arrows αi : xi → γR. It remains to check that α1 ◦ ψ1 = α2 ◦ ψ2. We
already know that s1 ◦ r1 = s2 ◦ r2, so we know that we find an arrow q : R× y → γ such that
q̂ = s1 ◦ r1 = s2 ◦ r2. Now we want to show that if we transpose q with respect to R, we get
q̂ = α1 ◦ψ1 and q̂ = α2 ◦ψ2. We know that s1 and s2 are defined as the unique arrows making

γy × y γ

γx1 × y γx1 × x1

evalγ,y

1γx1×ψ1

s1×1y evalγ,x1
and

γy × y γ

γx1 × y γx2 × x2

evalγ,y

1γx2×ψ2

s2×1y evalγ,x2

commute. We can expand these commutative diagrams to commutative diagrams

γy × y γ

γx1 × y γx1 × x1

R× y

evalγ,y

1γx1×ψ1

s1×1y evalγ,x1

r1×1y

q̂×1y

r1×ψ1

and

γy × y γ

γx2 × y γx2 × x2

R× y.

evalγ,y

1γx2×ψ2

s2×1y evalγ,x2

r2×1y

q̂×1y

r2×ψ2

So by using evalγ,y ◦(q̂ × 1y) we can conclude that

q = evalγ,x2 ◦(r2 × ψ2) = evalγ,x1 ◦(r1 × ψ1). (23)

By definition of the αi we have the commutative diagrams

R× γR γ

R× x1 γx1 × x1

evalγ,R

1R×α1

r1×1x1

evalγ,x1
and

R× γR γ

R× x2 γx2 × x2.

evalγ,R

1R×α2

r2×1x2

evalγ,x2

If we tranpose q with regard to R and use the equality (23), we see that q̂ is the unique arrow
making the diagrams

R× γR γ

R× y γx1 × x1

evalγ,R

r1×ψ1

1R×q̂ evalγ,x1
and

R× γR γ

R× y γx2 × x2

evalγ,R

r2×ψ2

1R×q̂ evalγ,x2

commute. As r1 × ψ1 = (r1 × 1x1) ◦ (1R × ψ1) and r2 × ψ2 = (r2 × 1x2) ◦ (1R × ψ2) we can
see that q̂ = α1 ◦ ψ1 = α2 ◦ ψ2 as desired, as the commutativity of the preceding diagrams is
equivalent to the commutativity of

R× γR γ

R× x1 γx1 × x1

R× y

evalγ,R

r1××1x1

1R×α1 evalγ,x1

1R×ψ1

r1×ψ1

1R×q̂ and

R× γR γ

R× y γx2 × x2

R× y.

evalγ,R

r2×ψ2

1R×α2 evalγ,x2

1R×ψ2

r2×ψ2

1R×q̂
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So we have shown that (22) commutes, so we obtain an arrow % : P → γR such that

γR

P x1

x2 y

%

α1

π1

π2

α2

ψ2

ψ1

commutes, as P is a pushout. Now we use this % to obtain our ρ : R → γP . To prove the
commutativity of

R

γP γx1

γx2 γy

ρ

r1

r2

p1

p2 s1

s2

it suffices to show r1 = p1 ◦ ρ and r2 = p2 ◦ ρ. The arrow ρ is the unique arrow making

γP × P γ

R× P R× γR

evalγ,P

1R×%

ρ×1P evalγ,R

commute, and the arrows p1, p2 are the unique arrows making

γx1 × x1 γ

γP × x1 γP × P

evalγ,x1

1
γP
×π1

p1×1x1 evalγ,P and
γx2 × x2 γ

γP × x2 γP × P

evalγ,x2

1
γP
×π2

p2×1x2 evalγ,P

commute. As we have seen before, r1, r2 are the unique arrows making

R× γR γ

R× x1 γx1 × x1

evalγ,R

1R×α1

r1×1x1

evalγ,x1
and

R× γR γ

R× x2 γx2 × x2

evalγ,R

1R×α2

r2×1x2

evalγ,x2

commute. Hence we obtain the commutative diagrams

R× γR γ

R× x1 γx1 × x1

evalγ,R

1R×(%◦π1)

r1×1x1

evalγ,x1
and

R× γR γ

R× x2 γx2 × x2

evalγ,R

1R×(%◦π2)

r2×1x2

evalγ,x2

since αi = % ◦ πi for i = 1, 2. Now we can use lemma 6.21 on 1R × (g ◦ π1) and obtain
r1 = p1 ◦ ρ, as well as r2 = p2 ◦ ρ. This shows that γP is a pushout. q.e.d.
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Remark 6.24. If C is a cartesian closed category, γ ∈ C0 and

P x1

x2 y

π1

π2

ψ2

ψ1

is a commutative diagram where P is a pushout, then we label the diagram obtained in the
previous lemma

γP γx1

γx2 γy.

γπ1

γπ2 γψ1

γx2

Lemma 6.25. Let C be a cartesian closed category and

P A

B C

i

h f

g

be a commutative diagram of objects P,A,B,C ∈ C0 such that P is a pushout. Let R ∈ C0 be
arbitrary. Then

R× P R×A

R×B R× C

1R×i

1R×h 1R×f

1R×g

is a commutative diagram where R× P is a pushout.

Proof: Let the diagram as in the lemma be given and R ∈ C0 be arbitrary. To see that

R× P R×A

R×B R× C

1R×i

1R×h 1R×f

1R×g

is a commutative diagram it suffices to check that (1R × i) ◦ (1R × f) = (1R × h) ◦ (1R × g).
We can immediately compute that

(1R × i) ◦ (1R × f) = 1R × (i ◦ f) and (1R × h) ◦ (1R × g) = 1R × (h ◦ g).

Now 1R × (i ◦ f) and 1R × (h ◦ g) are the unique arrows making

R R× C C

R R× P P

1R

prCprR

1R×(i◦f) i◦f
prPprR

and
R R× C C

R R× P P

1R

prCprR

1R×(h◦g) h◦g
prPprR

commute. But as prR ◦
(
1R × (h ◦ g)

)
= 1R ◦ prR and

prP ◦
(
1R × (i ◦ f) = (i ◦ f) ◦ prC = (h ◦ g) ◦ prC

prP ◦
(
1R × (h ◦ g)),
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we know that
R R× C C

R R× P P

1R

prCprR

1R×(h◦g) i◦f
prPprR

commutes, and by uniqueness we obtain 1R × (i ◦ f) = 1R × (h ◦ g). Now we want to show
that R× P is a pushout. For this let γ ∈ C0 as well as φ : R×A→ γ and ψ : R×B → γ be
given, so that

γ

R× P R×A

R×B R× C

1R×i

φ

ψ
1R×h 1R×f

1R×g

commutes. Now by transposing h1 := φ ◦ (1R × f) and h2 := ψ ◦ (1R × g), we obtain
ĥ1 = φ̂ ◦ f : C → γR and ĥ2 = ψ̂ ◦ g : C → γR by lemma 6.22. Furthermore we have ĥ1 = ĥ2

as h1 = h2. Hence we obtain the commutative diagram

γR

P A

B C.

i

φ̂

h
ψ̂

f

g

As P is a pushout, this yields a unique arrow ι : P → γR such that

γR

P A

B C.

ι

i

φ̂

h
ψ̂

f

g

commutes. Now this ι is given as the transpose of r := evalγ,R ◦(ι × 1R) : P × R → γ. Our
next goal is to show that r is the unique arrow making

γ

R× P R×A

R×B R× C

r

1R×i

φ

ψ
1R×h 1R×f

1R×g

commute. By employing lemma 6.22 again, we obtain, by setting q1 := r ◦ (1R × i and
q2 := r ◦ (1R × h), the equalities

q̂1 = r̂ ◦ i = ι ◦ i = φ̂ and q̂2 = r̂ ◦ h = ι ◦ h = ψ̂,
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therefore we obtain q1 = φ, q2 = ψ. To see that r is unique we use the isomorphism

HomC (R× P, γ) ∼= HomC (P, γR).

As ι is unique in HomC (P, γR) and every other arrow r′ making the above diagram commute
would transpose to ι, we already have r = r′. So R× P is a pushout. q.e.d.

Proof of theorem 6.14: By the theorem 6.13 it suffices to check only that the existence
of pullbacks and pushouts as well as an initial object and a terminal object in one of the
categories implies their existence in the other.
Proof of 1.⇒2.: Suppose C is bicomplete. We first show that Chu(C , γ) has an initial and
a terminal object. As C is bicomplete, there exists a terminal object > ∈ C0 and an initial
object ⊥ ∈ C0. Let c ∈ C0. We denote the unique arrow c → > with !c and the unique
arrow ⊥ → c by ¡c. Then the initial object of Chu(C , γ) is (⊥, T,>), where T is defined
as follows. Let pr⊥ : > × ⊥ → ⊥ be the isomorphisms from the previous lemma. Then
T := ¡γ ◦ pr⊥. Now we have to show that given (a, f, x) ∈ Chu(C , γ) there exists a unique
¡(a,f,x) : (⊥, T,>) → (a, f, x). As we have ¡a : ⊥ → a and !x : x → >, we set ¡(a,f,x) := (¡a, !x).
It remains to check that

⊥× x ⊥×>

a× x γ

1⊥×!x

¡a×1x T
f

(24)

commutes and that ¡(a,f,x) is unique. To see that (24) commutes it suffices to show that

T ◦ (1⊥×!x) ◦ ¡⊥×x = f ◦ (¡a×1x) ◦ ¡⊥×x,

as ⊥
∼=−−→ ⊥ × x via ¡⊥×x. But this is immediate as both these arrows have domain γ and

codomain ⊥, but there can only be one arrow ⊥ → γ. To see the uniqueness of ¡(a,f,x),
let an arrow (φ+, φ−) : (b, g, y) → (a, f, x) in Chu(C , γ) be given. We have to show that
(φ+, φ−) ◦ ¡(b,g,y) = ¡(a,f,x). One computes

(φ+, φ−) ◦ ¡(b,g,y) = (φ+, φ−) ◦ (¡b, !y)

= (φ+ ◦ ¡b, !y ◦ φ−)

= (¡a, !x) = ¡(a,f,x),

which yields the desired result.
To see that Chu(C , γ) has a terminal object, we employ that Chu(C , γ) op ∼= Chu(C , γ),

which was proven in lemma 5.1. Therefore (>, T,⊥) is the terminal object of Chu(C , γ).
Now we show that Chu(C , γ) has pullbacks. For this let

(a1, f1, x1)

(a2, f2, x2) (b, g, y)

(φ+,φ−)

(ψ+,ψ−)

(25)

be given. We first have to find (P, h,R) ∈ Chu(C , γ)0 with arrows (π+
1 , π

−
1 ) : (R, h, P ) →

(a1, f1, x1) and (π+
2 , π

−
2 ) : (R, h, P )→ (a2, f2, x2). For this one first dissects diagram (25) into

the diagrams
a1

a2 b

φ+

ψ+

and
x1

x2 y.

φ−

ψ−
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Therefore we obtain a pullback R ∈ C0 together with morphisms π+
1 : R→ a1, π

+
2 : R→ a2 as

well as a pushout P ∈ C0 with morphisms π−1 : x1 → P, π−2 : x2 → P such that the diagrams

R a1

a2 b

π+
1

π+
2

φ+

ψ+

and
P x1

x2 y

π−1

π−2 φ−

ψ−

commute. It remains to find an arrow h : P ×R→ γ. It suffices to find an arrow P → γR, as
we then can take its transpose. By lemma 6.23 we know that

γP γx1

γx2 γy

γπ
−
1

γπ
−
2 γψ

−

γψ
−

is a commutative diagram where γP is a pullback. Now we can make R a cone over

γx1

γx2 γy
γφ
−

γψ
−

by defining R→ γx1 by f̂1 ◦ π+
1 and R→ γx2 by f̂2 ◦ π+

2 . So we obtain

R γx1

γx2 γy.

f̂1◦π+
1

f̂2◦π+
2 γφ

−

γψ
−

(26)

It remains to show that this diagram is commutative. We know that f̂1 and f̂2 are defined as
the arrows making

γx1 × x1 γ

a1 × x1

evalγ,x1

f̂1×1x1 f1

and
γx2 × x2 γ

a2 × x2

evalγ,x2

f̂2×1x2 f2

commute. On the other hand γφ
− and γψ

− are defined as the unique arrows making the
diagrams

γy × y γ

γx1 × y γx1 × x1

evalγ,y

1γx1×φ−

γφ
−×1y evalγ,x1

and
γy × y γ

γx2 × y γx2 × x2

evalγ,y

1γx2×ψ−

γψ
−×1y evalγ,x2

commute. As π+
1 : R→ a1 and π+

2 : R→ a2, we know that f̂1 ◦ π+
1 and f̂2 ◦ π2 are the unique

arrows making

γx1 × x1 γ

a1 × x1

R× x1

evalγ,x1

f̂1×1x1 f1

π+
1 ×1x1

f1◦(π+
1 ×1x1 )

and

γx2 × x2 γ

a2 × x2

R× x2

evalγ,x2

f̂2×1x2 f2

π+
2 ×1x2

f2◦(π+
2 ×1x2 )
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commute. Using φ− and ψ− we obtain commutative diagrams

γx1 × y γx1 × x1 γ

a1 × y a1 × x1

R× y R× x1

1γx1×φ− evalγ,x1

1a1×φ
−

f̂1×1y f̂1×1x1 f1

1R×φ−

π+
1 ×1y π+

1 ×1x1

f1◦(π+
1 ×1x1 )

and

γx2 × y γx2 × x2 γ.

a2 × y a2 × x2

R× y R× x2

1γx2×ψ− evalγ,x2

1a2×ψ
−

f̂2×1y f̂2×1x2 f2

1R×ψ−
π+

2 ×1y π+
2 ×1x2

f2◦(π+
2 ×1x2 )

If we can now show that

f1 ◦ (π+
1 × 1x1) ◦ (1R × φ−) = f2 ◦ (π+

2 × 1x2) ◦ (1R × ψ−),

we are finished, as then γφ− ◦ f̂1 ◦ π−1 and γψ− ◦ f̂2 ◦ π+
2 are defined by the same exponential

equation, hence are the same by the uniqueness of a solution. So we compute

f1 ◦ (π+
1 × 1x1) ◦ (1R × φ−) = f1 ◦ (1a1 × φ−) ◦ (π+

1 × 1y)

= f2 ◦ (φ+ × 1y) ◦ (π+
1 × 1y)

= f2 ◦
(
(φ+ ◦ π+

1 )× 1y
)

= f2 ◦
(
(ψ+ ◦ π+

2 )× 1y
)

= f2 ◦ (ψ+ × 1y) ◦ (π+
2 × 1y)

= f2 ◦ (1a2 × ψ−) ◦ (π+
2 × 1y)

= f2 ◦ (π+
2 × 1x2) ◦ (1R × ψ−).

Therefore (26) commutes, and as γP is a pullback, we obtain a unqiue arrow ρ : R→ γP such
that

R

γP γx1

γx2 γy

f̂1◦π+
1

f̂2◦π+
2

ρ

γπ
−
1

γπ
−
2 γψ

−

γψ
−

commutes. Now we can transpose ρ to obtain an arrow h : P × R → γ. So (R, h, P ) ∈
Chu(C , γ) and by definition the diagram

(R, h, P ) (a1, f1, x1)

(a2, f2, x2) (b, g, y)

(π+
1 ,π
−
1 )

(π+
2 ,π
−
2 ) (φ+,φ−)

(ψ+,ψ−)
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commutes. It remains to show that (R, h, P ) is indeed a pullback. For this let (Q, v,W ) ∈
Chu(C , γ) together with morphisms

(ξ+
1 , ξ

−
1 ) : (Q, v,W )→ (a1, f1, x1) and (ξ+

2 , ξ
−
2 ) : (Q, v,W )→ (a2, f2, x2)

be given, such that

(Q, v,W ) (a1, f1, x1)

(a2, f2, x2) (b, g, y)

(ξ+
1 ,ξ
−
1 )

(ξ+
2 ,ξ
−
2 ) (φ+,φ−)

(ψ+,ψ−)

commutes. We then have to find a unique arrow (µ+, µ−) : (Q, v,W )→ (R, h, P ) such that

(Q, v,W )

(R, h, P ) (a1, f1, x1)

(a2, f2, x2) (b, g, y)

(ξ+
1 ,ξ
−
1 )

(ξ+
2 ,ξ
−
2 )

(µ+,µ−)

(π+
1 ,π
−
1 )

(π+
2 ,π
−
2 ) (φ+,φ−)

(ψ+,ψ−)

commutes. As R is a pullback and P is a pushout, we obtain arrows µ+ : Q→ R, µ− : P →W
such that the diagrams

Q

R a1

a2 b

ξ+
1

ξ+
2

µ+

π+
1

π+
2

φ+

ψ+

and

W

P x1

x2 y

ξ−1

ξ−2

µ−

π−1

π−2 φ−

ψ−

commute. It remains to check that (µ+, µ−) : (Q, v,W )→ (R, h, P ) is an arrow in Chu(C , γ),
i.e. that

Q× P R× P

Q×W γ

µ+×1P

1Q×µ− h

v

commutes. We already know that (ξ+
1 , ξ

−
1 ) and (ξ+

2 , ξ
−
2 ) are arrows in Chu(C , γ), so the

diagrams

Q× x1 a1 × x1

Q×W γ

ξ+
1 ×1a1

1Q×ξ−1 f1

v

and
Q× x2 a2 × x2

Q×W γ

ξ+
2 ×1x2

1Q×ξ−2 f2

v

commute. Furthermore we know that (ξ+
1 , ξ

−
1 ) = (π+

1 , π
−
1 ) ◦ (µ+, µ−) as well as (ξ+

2 , ξ
−
2 ) =

(π+
2 , π

−
2 ) ◦ (µ+, µ−). This allows us the derive that

f2 ◦ (ξ+
2 × 1x2) = f2 ◦

(
(π+

2 ◦ µ
+)× 1x2

)
= f2 ◦ (π+

2 × 1x2) ◦ (µ+ × 1x2)

= h ◦ (1R × π−2 ) ◦ (µ+ × 1x2)
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= h ◦ (µ+ × 1P ) ◦ (1Q × π−2 ),

because (π+
2 , π

−
2 ) is an arrow in Chu(C , γ). Furthermore we can compute

v ◦ (1Q × ξ−2 ) = v ◦
(
1Q × (µ− ◦ π−2 )

)
= v ◦ (1Q × µ−) ◦ (1Q × π−2 ).

We can also do these computations with ξ+
1 in place of ξ+

2 and ξ−1 in place of ξ−2 and obtain

f1 ◦ (ξ+
1 × 1x1) = f1 ◦

(
(π+

1 ◦ µ
+)× 1x1

)
= f1 ◦ (π+

1 × 1x1) ◦ (µ+ × 1x1)

= h ◦ (1R × π−1 ) ◦ (µ+ × 1x1)

= h ◦ (µ+ × 1P ) ◦ (1Q × π−1 )

as well as
v ◦ (1Q × ξ−1 ) = v ◦

(
1Q × (µ− ◦ π−1 )

)
= v ◦ (1Q × µ−) ◦ (1Q × π−1 ).

Now we can use lemma 6.25 in the following way. First we get the commutative diagram

Q× P Q× x1

Q× x2 Q× y,

1Q×π−1

1Q×π−2

1Q×ψ−

1Q×φ−

whereQ×P is a pushout. So we have f2◦(ξ+
2 ×1x2) : Q×x2 → γ and f1◦(ξ+

1 ×1x1) : Q×x1 → γ
such that

γ

Q× P Q× x1

Q× x2 Q× y,

1Q×π−1

f1◦(ξ+
1 ×1x1 )

1Q×π−2
f2◦(ξ+

2 ×1x2 )

1Q×ψ−

1Q×φ−

commutes. Now by the preceding computations we know that both

γ

Q× P Q× x1

Q× x2 Q× y,

h◦(µ+×1P )

1Q×π−1

f1◦(ξ+
1 ×1x1 )

1Q×π−2

f2◦(ξ+
2 ×1x2 )

1Q×ψ−

1Q×φ−

and

γ

Q× P Q× x1

Q× x2 Q× y,

v◦(1Q×µ−)

1Q×π−1

f1◦(ξ+
1 ×1x1 )

1Q×π−2

f2◦(ξ+
2 ×1x2 )

1Q×ψ−

1Q×φ−

commute, so we by uniqueness we get the desired equality

h ◦ (µ+ × 1P ) = v ◦ (1Q × µ−),

so (µ+, µ−) : (Q, v,W ) → (R, h, P ) is an arrow in Chu(C , γ). It is necessarily unique, as µ+

and µ− are unique. We have now shown that (R, h, P ) is a pullback.
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To see that Chu(C , γ) has pushouts, let a diagram6

(a1, f1, x1)

(a2, f2, x2) (b, g, y)

(φ+,φ−)

(ψ+,ψ−)

with (a1, f1, x1), (a2, f2, x2), (b, g, y) ∈ Chu(C , γ)0 and (φ+, φ−), (ψ+, ψ−) ∈ Chu(C , γ)1 be
given. Now we can turn this into a diagram

(x1, f1, a1)

(x2, f2, a2) (y, g, b)

(φ−,φ+)

(ψ−,ψ+)

as Chu(C , γ) = Chu(C , γ) op by lemma 5.1. By the preceding paragraph we obtain (R, h, P ) ∈
Chu(C , γ)0 and (π+

1 , π
−
1 ), (π+

2 , π
−
2 ) ∈ Chu(C , γ)1 such that

(R, h, P ) (x1, f1, a1)

(x2, f2, a2) (y, g, b)

(π−1 ,π
+
1 )

(π+
2 ,π
−
2 ) (φ−,φ+)

(ψ−,ψ+)

is a commutative diagram and (R, h, P ) is a pullback. Now it is immediate that

(P, h,R) (a1, f1, x1)

(a2, f2, x2) (b, g, y)

(π+
1 ,π
−
1 )

(π+
2 ,π
−
2 ) (φ+,φ−)

(ψ+,ψ−)

commutes and (P, h,R) is a pushout by lemma 6.17 and corollary 6.20. q.e.d.

6I will now reuse all variables used in the previous paragraph, but these are chosen independently from
those.



Chapter 7

Generalizations of the Chu
construction

In this chapter we want to generalize the Chu categories, as the title predicts. We will do this
in various ways. For this we start by examining what possibilities for generalization we have
ad hoc.
• As an object in Chu(C , γ) is a triplet (a, f, x), where a, x ∈ C0 and f : a × x → γ, the

first thing one could do is to allow different codomains γ of f . This idea is made precise
by the generalized Chu category, discussed in section 7.1.
• Another idea is to allow a ∈ C0 and x ∈ D0 for a different cartesian closed category

D . To make this precise we use the identification of the Chu construction with a
Grothendieck construction and generalize the equivalent Grothendieck construction ac-
cordingly.
• At last one could could wish not only to consider f : a×x→ γ, but arrows f :

∏n
i=1 ai →

γ for ai ∈ C .

7.1 The generalized Chu category
We first generalize the Chu category in the first sense we discussed. This gives rise to the
following definition. The following definition is taken from [Pet21].

Definition 7.1. Let C be a cartesian closed category and Γ: C → C be an endofunctor.
Then Chu(C ,Γ) is the category given by the following data:
• The objects of Chu(C ,Γ) are quadruples (x; a, f, b) where a, b, x ∈ C0 and f : a × b →

Γ0(x).
• The arrows of Chu(C ,Γ) are triplets (φ0, φ+, φ−) : (x; a, f, b)→ (y; c, g, d) where φ0 : x→
y, φ+ : a→ c and φ− : d→ b such that the diagram

a× d c× d

a× b Γ0(x) Γ0(y)

φ+×1d

1a×φ− g

f Γ1(φ0)

commutes.
• The composition of two arrows

(φ0, φ+, φ−) : (x; a, f, b)→ (y; c, g, d), (ψ0, ψ+, ψ−) : (y; c, g, d)→ (z; s, h, t)

is given by (ψ0, ψ+, ψ−) ◦ (φ0, φ+, φ−) = (ψ0 ◦ φ0, ψ+ ◦ φ+, φ− ◦ ψ−).
• The identities are 1(x;a,f,b) = (1x,1a,1b).

Lemma 7.2. Let C be a cartesian closed category and Γ: C → C be an endofunctor. Then
Chu(C ,Γ) as defined above is a category.

76
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Proof: We first show that the composition of two arrows is well-defined. Let

(φ0, φ+, φ−) : (x; a, f, b)→ (y; c, g, d),

(ψ0, ψ+, ψ−) : (y; c, g, d)→ (z; i, h, j).

Then (ψ0, ψ+, ψ−) ◦ (φ0, φ+, φ−) = (ψ0 ◦ φ0, ψ+ ◦ φ+, φ− ◦ ψ−) and we have to show the
commutativity of the diagram

a× j a× b

Γ0(x)

i× j Γ0(z).

(ψ+◦φ+)◦1j

1a×(φ−◦ψ−)

f

Γ1(ψ0◦φ0)

h

To achieve this we embed the diagram in a bigger diagram, namely

a× d a× b

Γ0(x)

a× j c× d Γ0(y)

Γ0(z)

c× j i× j,

φ+×1d

1a×φ−

f

�1

Γ1(φ0)

Γ1(ψ0◦φ0)

1a×ψ−

�2

φ+×1j

g

�3

Γ1(ψ0)

1c×ψ−

ψ+×1j

h

41

where we already know that �1,�3,41 commute. But we can deduce that �2 commutes, as
(φ+ × 1d) ◦ (1a × ψ−) = (1c × ψ−) ◦ (φ+ × 1j). This shows the desired equality.
Identities: Let (x; a, f, b) ∈ Chu(C ,Γ)0. We want to show that 1(x;a,f,b) = (1x,1a,1b). First
we observe that this is actually well-defined, as

a× b a× b

Γ0(x)

a× b Γ0(x)

1a×1b

1a×1b

f

Γ1(1x)

f

commutes because Γ1(1x) = 1Γ0(x). Now let two arrows

(φ0, φ+, φ−) : (x; a, f, b)→ (y; c, g, d),

(ψ0, ψ+, ψ−) : (z; i, h, j)→ (x; a, f, b)

be given. We then compute

(φ0, φ+, φ−) ◦ 1(x;a,f,b) = (φ0, φ+, φ−) ◦ (1x,1a,1b)
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= (φ0 ◦ 1x, φ+ ◦ 1a,1b ◦ φ−)

= (φ0, φ+, φ−),

1(x;a,f,b) ◦ (ψ0, ψ+, ψ−) = (1x,1a,1b) ◦ (ψ0, ψ+, ψ−)

= (1x ◦ ψ0,1a ◦ ψ+, ψ− ◦ 1b)
= (ψ0, ψ+, ψ−),

therefore the requirements of an identity are fulfilled. The existence is secured through the
existence of the identities in C .
Associativity: Assume we are given objects and arrows

(x; a,m, b) (y; c, n, d) (z; e, o, f) (s; g, p, h)
(φ0,φ+,φ−) (ψ0,ψ+,ψ−) (θ0,θ+,θ−)

in Chu(C ,Γ). Then we can compute(
(θ0, θ+, θ−) ◦ (ψ0, ψ+, ψ−)

)
◦ (φ0, φ+, φ−)

= (θ0 ◦ ψ0, θ+ ◦ ψ+, ψ− ◦ θ−) ◦ (φ0, φ+, φ−)

=
(
(θ0 ◦ ψ0) ◦ φ0, (θ+ ◦ ψ+) ◦ φ+, φ− ◦ (ψ− ◦ θ−)

)
=
(
θ0 ◦ (ψ0 ◦ φ0), θ+ ◦ (ψ+ ◦ φ+), (φ− ◦ ψ−) ◦ θ−

)
= (θ0, θ+, θ−) ◦ (ψ0 ◦ φ0, ψ+ ◦ φ+, φ− ◦ ψ−)

= (θ0, θ+, θ−) ◦
(
(ψ0, ψ+, ψ−) ◦ (φ0, φ+, φ−)

)
,

and the associativity is shown. q.e.d.

Remark 7.3. One can observe that the generalized Chu category is indeed a generalization
of the standard Chu category, as we can choose Γγ : C → C for a fixed γ ∈ C0, defined by
Γ0(x) = γ,Γ1(f) = 1γ for all x ∈ C0, f ∈ C1.

Our next goal is to also generalize the functors associated with the standard Chu construction
to the generalized Chu category, namely the internal Chu functor and the global Chu functor.

7.2 The internal, generalized Chu functor
We mimic the internal, generalized Chu functor. The following definition is taken from [Pet21,
p.79].

Definition 7.4. Let C be a cartesian closed category. We define CHUC : Fun(C ,C ) → Cat
by the following axioms:
• For all functors Γ ∈ Fun(C ,C )0 we have CHUC

0 (Γ) = Chu(C ,Γ).
• For all natural transformations η ∈ Fun(C ,C )1, η : Γ ⇒ ∆ we define CHUC

1 to be the
functor CHUC

1 (η) : Chu(C ,Γ)→ Chu(C ,∆) given by the following data:
– For all (x; a, f, b) we set

[
CHUC

1 (η)
]
0
(x; a, f, b) = (x; a, ηx ◦ f, b).

– For all (φ0, φ+, φ−) : (x; a, f, b) → (y; c, g, d) we define
[

CHUC
1 (η)

]
1
(φ0, φ+, φ−) =

(φ0, φ+, φ−).

Proposition 7.5. CHUC is a functor for every cartesian closed category.

Proof: We first check that CHUC is well-defined. For this let a natural transformation η : Γ⇒
∆ be given. We have to show that CHUC

1 (η) is a functor Chu(C ,Γ) → Chu(C ,∆). For this
we show the following:
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Firstly we observe that [CHUC
1 (η)]0(x; a, f, b) ∈ Chu(C ,∆)0, as

a× b f−−→ Γ0(x)
ηx−−→ ∆0(x).

CHUC
1 (η) preserves identities, as for (x; a, f, b) ∈ Chu(C ,Γ) we have 1(x;a,f,b) = (1x,1a,1b)

and (
CHUC

1 (η)
)

1

(
1x,1a,1b)

)
= (1x,1a,1b) = (1x,1a,1b) = 1(x;a,ηx◦f,b),

so the preservation of identities is shown.
Analogously we have(

CHUC
1 (η)

)
1

(
(φ0, φ+, φ−) ◦ (ψ0, ψ+, ψ−)

)
= (φ0, φ+, φ−) ◦ (ψ0, ψ+, ψ−)

=
(

CHUC
1 (η)

)
1
(φ0, φ+, φ−) ◦

(
CHUC

1 (η)
)

1
(ψ0, ψ+, ψ−).

Therefore CHUC
1 (η) is a functor.

Preservation of identities: Let Γ ∈ Fun(C ,C ). Then 1Γ is the family (1Γ(C))C∈C0 making the
diagrams

Γ0(C) Γ0(C ′)

Γ0(C) Γ0(C ′)

1Γ(C)

Γ1(f)

1Γ0(C′)

Γ1(f)

commute. Now by definition(
CHUC

1 (1Γ)
)

0
(x; a, f, b) = (x; a, (1Γ)x ◦ f, b) = (x; a,1x ◦ f, b)

= (x; a, f, b),(
CHUC

1 (1Γ)
)

1
(φ0, φ+, φ−) = (φ0, φ+, φ−),

therefore CHUC
1 (1Γ) = idChu(C ,Γ).

Compatibility with composition: Assume we are given Γ,Λ,Ω ∈ Fun(C ,C )0 and η : Γ ⇒
Λ, µ : Λ⇒ Ω. We then seek to show that

CHUC
1 (µ ◦ η) = CHUC

1 (µ) ◦ CHUC
1 (η).

As
(

CHUC
1 (µ ◦ η)

)
0
(φ0, φ+, φ−) = (φ0, φ+, φ−) =

(
CHUC

1 (µ) ◦ CHUC
1 (η)

)
0
(φ0, φ+, φ−), it

suffices to examine the action on the objects. We compute(
CHUC

1 (µ) ◦ CHUC
1 (η)

)
0
(x; a, f, b) =

(
CHUC

1 (µ)
)

0

((
CHUC

1 (η)
)

0
(x; a, f, b)

)
=
(

CHUC
1 (µ)

)
0
(x; a, ηx ◦ f, b)

= (x; a, µx ◦ (ηx ◦ f), b) = (x; a, (µx ◦ ηx) ◦ g, b)
= (x; a, (µ ◦ η)x ◦ f, b) =

(
CHUC

1 (µ ◦ η)
)

0
(x; a, f, b).

Here we used that (µx ◦ ηx) = (µ ◦ η)x, a fact found in [Pet20b, Definition 1.15.3]. Therefore
CHUC is a functor. q.e.d.

Proposition 7.6. Let Γ,∆ ∈ Fun(C ,C ) for a cartesian closed category C . Let η : Γ⇒ ∆ be
a natural transformation such that ηx : Γ0(x) ↪→ ∆0(x) is a monomorphism for every x ∈ C0.
Then CHUC

1 (η) is a full embedding of Chu(C ,Γ) into Chu(C ,∆).
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Proof: We have already seen that CHUC
1 (η) is a functor. It remains to show that it is injective

on objects and that the rule(
CHUC

1 (η)
)

(X,Y )
: Chu(C ,Γ)1

(
X,Y

)
→ Chu(C ,∆)1

(
(x; a, ηx ◦ f, b), (y; c, ηy ◦ g, d)

)
,

(φ0, φ+, φ−) 7→ CHUC
1 (η)(φ0, φ+, φ−) (27)

is a bijection for every X = (x; a, f, b), Y = (y; c, g, d).
• To see that CHUC

1 (η) is injective on objects, assume we have (x; a, ηx ◦ f, b) = (y, c, ηy ◦
g, d). Then x = y, a = c, b = d, therefore ηx = ηy. It remains to show that f = g. This
follows from the assumption that ηx is a monomorphism

for every x ∈ C0.
• It is immediate that the rule given by (27) is injective. To see that it is surjective, let

(φ0, φ+, φ−) : (x; a, ηx◦f, b)→ (y; c, g, d) be given. This means that φ0 : x→ y, φ+ : a→
c and φ− : d→ b such that the diagram

a× d c× d

a× b Γ0(x) Γ0(y)

∆0(x) ∆0(y)

�1

φ+×1d

1a×φ− g

f Γ1(φ0)

ηx ηy

∆1(φ0)

commutes. But as the commutativity of �1 is enough that (φ0, φ+, φ−) is an arrow
(x; a, f, b)→ (y; c, g, d), the surjectivity is shown.

Therefore CHUC
1 (η) is a full embedding. q.e.d.

7.3 The generalized, global Chu functor
We now want to generalize the notion of the global Chu functor. So we have to define a
functor CHU : Groth(D ,F) → Cat for a to be determined functor F and a to be determined
category D such that CHU0(C ,Γ) = Chu(C ,Γ). On the way to such a functor we have to a
address the following problem.

How can we generalize the lemma given in [Pet21, p. 27] concerning product preserving
functors to Chu(C ,Γ)?

To this end we make the following lemma.

Lemma 7.7. Let C ,D be cartesian closed categories, Γ: C → C ,∆: D → D and F : C → D
be a product preserving functor with canonical isomorphism Fab for a, b ∈ C0. Furthermore,
let η : F ◦ Γ⇒ ∆ ◦ F be given. Then the rule F∨ : Chu(C ,Γ)→ Chu(D ,∆) defined by

(F∨)0(x; a, f, b) = (F0(x);F0(a), ηx ◦ F1(f) ◦ Fab, F0(b)),

(F∨)1((φ0, φ+, φ−) : (x; a, f, b)→ (y; c, g, d)) = (F1(φ0), F1(φ+), F1(φ−))

is a functor.

Proof: We first check the well-definedness. For this we have to show that

(F∨)0(x; a, f, b) ∈ Chu(D ,∆)0, (28)

(F∨)1(φ0, φ+, φ−) ∈ Chu(D ,∆)1. (29)
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We first show (28). As F0(x), F0(a), F0(b) ∈ D0 and

ηx ◦ F1(f) ◦ Fab : F0(a)× F0(b)→ ∆0(F0(x)),

this is immediate.
So it remains to check (29). To this end, let (φ0, φ+, φ−) : (x; a, f, b)→ (y; c, g, d) be given.

We have to check that the diagram

F0(a)× F0(d) F0(c)× F0(d)

F0(a)× F0(b) ∆0(F0(x)) ∆0(F0(y))

F1(φ+)×1F0(d)

1F0(a)×F1(φ−) ηy◦F1(g)◦Fcd
ηx◦F1(f)◦Fab ∆1(F1(φ0))

commutes. We compute

ηy ◦ F1(g) ◦ Fcd ◦ (F1(φ+)× 1F0(d)) = ηy ◦ F1(g) ◦ Fcd ◦ (F1(φ+)× F1(1d))

= ηy ◦ F1(g) ◦ F1(φ+ × 1d) ◦ Fad
= ηy ◦ F1(g ◦ (φ+ × 1d) ◦ Fad
= ηy ◦ F1(Γ1(φ0) ◦ f ◦ (1a × φ−)) ◦ Fad
= ηy ◦ F1(Γ1(φ0)) ◦ F1(f) ◦ F1(1a × φ−) ◦ Fad
= ηy ◦ F1(Γ1(φ0)) ◦ F1(f) ◦ Fab ◦ (F1(1a)× F1(φ−))

= ηy ◦ F1(Γ1(φ0)) ◦ F1(f) ◦ Fab ◦ (1F0(a) × F1(φ−))

= ∆1(F1(φ0)) ◦ ηx ◦ F1(f) ◦ Fab ◦ (1F0(a) × F1(φ−))

Now we check the axioms of a functor.
• Compatibility with composition: Let

(φ0, φ+, φ−) : (x; a, f, b)→ (y; c, g, d) and (θ0, θ+, θ−) : (y; c, g, d)→ (z; s, h, t)

be given. We then compute

(F∨)1

(
(θ0, θ+, θ−) ◦ (φ0, φ+, φ−)

)
=
(
F1(θ0 ◦ φ0), F1(θ+ ◦ φ+), F1(φ− ◦ θ−)

)
=
(
F1(θ0) ◦ F1(φ0), F1(θ+) ◦1 (φ+), F1(φ−) ◦1 (θ−)

)
= (F∨)1

(
θ0, θ+, θ−

)
◦ (F∨)1

(
φ0, φ+, φ−

)
,

which proves the desired equality.
• Preservation of identities: It is immediate that

(F∨)1(1x,1a,1b) = (1F0(x),1F0(a),1F0(b)),

as F is a functor and preserves identities. q.e.d.

Definition 7.8. We set Groth(ccCat,Fun( - , - )) to be the category defined in the following
way:
• The objects of Groth(ccCat,Fun( - , - )) are pairs (C ,Γ), where C ∈ ccCat0 and Γ ∈

Fun(C ,C )0.
• The arrows of Groth(ccCat,Fun( - , - )) are pairs (F, η) : (C ,Γ) → (D ,∆), such that
F : C → D is a product preserving functor and η : F ◦ Γ⇒ ∆ ◦ F is a natural transfor-
mation.
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• If (H,µ) : (D ,∆)→ (E ,Ξ) is another arrow in Groth(ccCat,Fun( - , - ), then the compo-
sition (H,µ) ◦ (F, η) : (C ,Γ)→ (E ,Ξ) is given by

(H,µ) ◦ (F, η) = (H ◦ F, µ ? η),

where µ ? η is the natural transformation µ ? η : H ◦F ◦ Γ⇒ Ξ ◦H ◦F defined through
the commutativity of the diagram

H0(F ◦ Γ)0(x) H0(F ◦ Γ)0(y)

H0(∆ ◦ F )0(x) H0(∆ ◦ F )0(y)

(Ξ ◦H ◦ F )0(x) (Ξ ◦H ◦ F )0(y),

H1(ηx)

(H◦F◦Γ)1(f)

(µ?η)x

H1(ηy)

(µ?η)y
(H◦∆◦F )1(f)

µF0(x) µF0(y)

(Ξ◦H◦F )1(f)

which means that (µ ? η)x = µF0(x) ◦H1(ηx) for all x ∈ C0.

One can further visualize µ ? η as

D D

C E

D D

C E .

∆ ∆

HF

H◦F
∆◦F

F◦Γ

H

H◦F

F

Γ Ξ

Ξ◦H◦F

H◦F◦Γ

Ξ◦H

H◦∆
η

µ?η

µ

Lemma 7.9. Groth(ccCat,Fun( - , - )) as defined above is a category.

Proof: We check the well-definedness of the composition. Let (H,µ) : (D ,∆) → (E ,Ξ)
and (F, ν) : (C ,Γ) → (D ,∆). Then H ◦ F : C → E and µ ? η is a natural transformation
H ◦ F ◦ Γ⇒ Ξ ◦H ◦ F , as both the upper and the lower rectangle in the diagram

H0(F ◦ Γ)0(x) H0(F ◦ Γ)0(y)

H0(∆ ◦ F )0(x) H0(∆ ◦ F )0(y)

(Ξ ◦H ◦ F )0(x) (Ξ ◦H ◦ F )0(y),

H1(ηx)

(H◦F◦Γ)1(f)

H1(ηy)

(H◦∆◦F )1(f)

µF0(x) µF0(y)

(Ξ◦H◦F )1(f)

commute, hence

(Ξ ◦H ◦ F )1(f) ◦ (µ ? η)x = (Ξ ◦H ◦ F )1(f) ◦ µF0(x) ◦H1(ηx)

= µF0(y) ◦ (H ◦∆ ◦ F )1(f) ◦H1(ηx)

= µF0(y) ◦H1(ηy) ◦ (H ◦ F ◦ Γ)1(f)
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= (µ ? η)y ◦ (H ◦ F ◦ Γ)1(f).

To see the existence of identities, one checks that (1C ,1Γ) = (idC , (1Γ0(x))x∈C0). For this, let
(F, η) : (B,Λ)→ (C ,Γ) and (G,µ) : (C ,Γ)→ (D ,∆) be given. Then

(idC ,1Γ) ◦ (F, η) = (idC ◦F,1Γ ? η) = (F,1Γ ? η).

As (1Γ ? η)x = 1(Γ◦F )0(x) ◦ idC
1 (ηx) = ηx, because ηx : F0(Λ0(x)) → Γ0(F0(x)), we see that

(1Γ ? η) = η. On the other hand, one computes

(G,µ) ◦ (idC ,1Γ) = (G ◦ idC , µ ◦ 1Γ) = (G,µ ◦ 1Γ),

and (µ?1Γ)x = µidC
0 (x)◦G1(1Γ0(x)) = µidC

0 (x)◦1(G◦Γ)0(x) = µx, as µx : G0(Γ0(x))→ ∆0(F0(x)).
So Groth(ccCat,Fun( - , - )) is indeed a category. q.e.d.

Lemma 7.10. The rule CHU : Groth(ccCat,Fun( - , - ))→ Cat defined by

CHU0(C ,Γ) = Chu(C ,Γ),

CHU1((F, η) : (C ,Γ)→ (D ,∆)) = F∨

is a functor.

Proof: We can see that CHU is well-defined, as CHU(C ,Γ) ∈ Cat for all C ∈ ccCat0 and Γ ∈
Fun(C ,C ). Furthermore is (F∨) : CHU0(C ,Γ) → CHU0(D ,∆) for (F, η) : (C ,Γ) → (D ,∆).
So we need to check the axioms of a functor. To this end, we show that (G ◦ F )∨ = G∨ ◦ F∨
for (F, η) : (C ,Γ) → (D ,∆) and (G,µ) : (D ,∆) → (E ,Ξ). We check this equality of functors
on the objects and on the arrows.
• On objects: Let (x; a, f, b) ∈ Chu(C ,Γ)0 be given. We compute

((G ◦ F )∨)0(x; a, f, b)

=
(
(G ◦ F )0(x), (G ◦ F )0(a), (µ ? η)x ◦ (G ◦ F )1(f) ◦ (G ◦ F )ab, (G ◦ F )0(b)

)
=
(
G0(F0(x)), G0(F0(a)), µF0(x) ◦G1(ηx) ◦ (G1(F1(f))) ◦G1(Fab) ◦GF0(a)F0(b), G0(F0(b))

)
=
(
G0(F0(x)), G0(F0(a)), µF0(x) ◦G1(ηx ◦ F1(f) ◦ Fab) ◦GF0(a)F0(b), G0(F0(b))

)
= (G∨)0

(
F0(x), F0(a), ηx ◦ F1(f) ◦ Fab, F0(b)

)
= (G∨)0(F∨)0(x; a, f, b) = (G∨ ◦ F∨)0(x; a, f, b),

which gives the desired equality.
• On arrows: Let (φ0, φ+, φ−) : (x; a, f, b) → (y; c, g, d) be an arrow in Chu(C ,Γ). We

then compute

((G ◦ F )∨)1(φ0, φ+, φ−) =
(
(G ◦ F )1(φ0), (G ◦ F )1(φ+), (G ◦ F )1(φ−)

)
=
(
G1(F1(φ0)), G1(F1(φ+)), G1(F1(φ−))

)
= (G∨)1(F1(φ0), F1(φ+), F1(φ−))

= (G∨)1 ◦ (F∨)1(φ0, φ+, φ−).

So the compatibility with composition is proven, as the above shows that

CHU1

(
(G,µ) ◦ (F, η)

)
= (G ◦ F )∨ = G∨ ◦ F∨ = CHU1(G,µ) ◦ CHU1(F, η).

It remains to show the preservation of identities. But this is immediate, as one can compute
that (idC )∨(x; a, f, b) = (x, a, f, b) for all (x; a, f, b) ∈ Chu(C , γ)0 and ((idC )∨)1(φ0, φ+, φ−) =
(φ0, φ+, φ−) for all (φ0, φ+, φ−) : (x; a, f, b)→ (y; c, g, d). So CHU : Groth(ccCat,Fun( - , - ))→
Cat is a functor. q.e.d.
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Theorem 7.11. If F : C → D is a full embedding and ηx is a monomorphism for every
x ∈ C0, then F∨ is a representation of Chu(C ,Γ) in Chu(D ,∆).

Proof: We first check that F∨ is injective on objects. To this end, let (x; a, f, b) and (y; c, g, d)
with

(F∨)0(x; a, f, b) = (F0(x);F0(a), ηx ◦F1(f)◦Fab, F0(b)) = (F0(y);F0(c), ηy ◦F1(g)◦Fcd, F0(d))

be given. It follows immediately, that F0(x) = F0(y), F0(a) = F0(c), F0(b) = F0(d), and as F
is a full embedding, we have x = y, a = c, b = d and therefore Fab = Fcd, ηx = ηy. It remains
to prove f = g. As ηx is a monomorphism, we have F1(f) ◦ Fab = F1(g) ◦ Fab. As Fab is
always an isomorphism and F is faithful, we have f = g.

Next we prove that (F∨)((x;a,f,b),(y;c,g,d)) is bijective for all (x; a, f, b), (y; c, g, d) ∈ Chu(C ,Γ)0.
Let (φ0, φ+, φ+), (θ0, θ+, θ−) : (x; a, f, b)→ (y; c, g, d) be given, such that

(F∨)1(φ0, φ+, φ−) = (F1(φ0), F1(φ+), F1(φ−)) = (F1(θ0), F1(θ+), F1(θ−)) = (F∨)1(θ0, θ+, θ−).

Then F1(φ0) = F1(θ0), F1(φ+) = F1(θ+), F1(φ−) = F1(θ−), and as F is faithful, we have
φ0 = θ0, φ+ = θ+, φ− = θ−.

To see that (F∨)((x;a,f,b),(y;c,g,d)) is surjective, let

(θ0, θ+, θ−) : Chu(D ,∆)1

(
(F∨)0(x; a, f, b), (F∨)0(y; c, g, d)

)
be given. This means that θ0 : F0(x) → F0(y), θ+ : F0(a) → F0(c), θ− : F0(d) → F0(b). As F
is full, we obtain φ0, φ+, φ− such that

F1(φ0) = θ0, F1(φ+) = θ+, F1(φ−) = θ−.

So F∨ is full.
To sum our results up, we have shown that F is injective on objects, full and faithful, so

F is a representation. q.e.d.

7.4 A Grothendieck construction equivalent to the Chu category
S. Abramsky found a Grothendieck construction equivalent to the category of Chu spaces
over a set K in [Abr18]. We want to generalize this result to all Chu categories. So we first
find an appropriate Grothendieck construction and then a fitting functor.

Our Grothendieck-type construction
−−−→
Groth←−−−((C × C ) op, F ) should have as objects pairs

((a, x), f), where a, x ∈ C0 and f ∈ F0(a, x). This would suit our goal, as this would produce
tuples ((a, x), f), where a, x ∈ C0 and f : a × x → γ, if we take F to be the functor which
sends a pair (a, x) of objects to the set HomC (a × x, γ). Next onto the arrows. In the Chu
category the arrows are given by pairs (φ+, φ−), where φ+ : a → b and φ− : y → x. So if we
want to define arrows (Φ, φ) : ((a, x), f)→ ((b, y), g), we have to let Φ: a→ b. For the arrow
φ we want to use the conditions placed on arrows in Chu(C , γ). We have the commutative
diagram

a× y b× y

a× x γ.

φ+×1y

1a×φ− g

f
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As f ∈ Hom(a× x, γ) and g ∈ Hom(b× d, γ), this can be rephrased through the diagram

f ◦ (1a × φ−) g ◦ (φ+ × 1y)

Hom(a× y, γ)

f g

Hom(a× x, γ) Hom(b× y, γ).

∈ 3

- ◦(φ+×1y)- ◦(1a×φ−)

∈ ∈

This motivates the following definition.

Definition 7.12 (The antiparallel Grothendieck construction). Let C be a cartesian
closed category and F : (C × C ) op → Set be a covariant functor. The category

−−−→
Groth←−−−(C , F )

is defined in the following way:
• The objects of

−−−→
Groth←−−−(C , F ) are triplets (A1, A2, a) such that A = (A1, A2) ∈ (C × C )0

and a ∈ F0(A).
• The arrows of

−−−→
Groth←−−−(C , F ) are pairs (Φ, φ) : (A1, A2, a)→ (B1, B2, b), such that Φ: A1 →

B1 and φ : B2 → A2 such that

F1(Φ× 1B2)(b) = F1(1A1 × φ)(a)

• The composition of two arrows (Φ, φ) : (A1, A2, a)→ (B1, B2, b) and (Ψ, ψ) : (B1, B2, b)→
(C1, C2, c) is given by

(Ψ, ψ) ◦ (Φ, φ) = (Ψ ◦ Φ, φ ◦ ψ).

One can visualize the arrows in the antiparallel Grothendieck construction as in figure 7.1.

C × C Set

(A1, A2)

(B1, B2)

(A1, B2)

1A1 × φ

Φ× 1B2

a

F0(A1, A2)

b

F0(B1, B2)

F1(Φ× 1B2)(b)

F0(A1, B2)

F1(Φ× 1B2)

F1(1A1 × φ)

Figure 7.1: An illustration regarding the arrows in
−−−→
Groth←−−−(C , F )

Lemma 7.13.
−−−→
Groth←−−−(C , F ) as in the preceding definition is a category.
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Proof: We show that the composition is well-defined. To this end let (Φ, φ) : (A1, A2, a) →
(B1, B2, b) and (Ψ, ψ) : (B1, B2, b)→ (C1, C2, c) be given. As Ψ◦Φ: A1 → C1 and φ◦ψ : C2 →
A2, it remains to check the condition

F1

(
(Ψ ◦ Φ)× 1C2

)
(c) = F1

(
1A1 × (φ ◦ ψ)

)
(a).

We already have the equalities

F1(Φ× 1B2)(b) = F1(1A1 × φ)(a) and F1(Ψ× 1C2)(c) = F1(1B1 × ψ)(b).

Thus we compute

F1

(
(Ψ ◦ Φ)× 1C2

)
(c) = F1

(
(Ψ× 1C2) ◦ (Φ× 1C2)

)
(c) =

(
F1(Φ× 1C2) ◦ F1(Ψ× 1C2)

)
(c)

= F1(Φ× 1C2)
(
F1(1B1 × ψ)(b)

)
= F1

(
(1B1 × ψ) ◦ (Φ× 1C2)

)
(b)

= F1

(
(Φ× 1B2) ◦ (1A1 × ψ)

)
(b) = F1(1A1 × ψ)

(
F1(Φ× 1B2)(b)

)
= F1(1A1 × ψ)

(
F1(1A1 × φ)(a)

)
= F1

(
(1A1 × φ) ◦ (1A1 × ψ)

)
(a)

= F1

(
1A1 × (φ ◦ ψ)

)
(a).

Therefore the composite arrow of two arrows exists. Furthermore we have an identity arrow
for each (A1, A2, a) ∈

−−−→
Groth←−−−(C , F ), as (1A1 ,1A2) : (A1, A2)→ (A1, A2) and

F1(1A1 × 1A2)(a) = F1(1A1 × 1A2)(a).

Hence
−−−→
Groth←−−−(C , F ) is a category. q.e.d.

The missing ingredient is the functor which sends the pair to the appropriate Hom-set.
This functor is realised through the following rule.

Definition 7.14 (The functor Sγ). Let γ ∈ C . We define Sγ : (C × C ) op → Set in the
following way:

Sγ0(x, y) = HomC (x× y, γ),

Sγ1
(
(f1, f2) : (x, y)→ (x′, y′)

)
=
(
( - ◦ (f1 × f2)) : HomC (x′ × y′, γ)→ HomC (x× y, γ)

)
.

Proposition 7.15. The rule Sγ defined above is a functor (C × C ) op → Set.

Proof: The well-definedness is immediate, as HomC (x × y, γ) ∈ Set0 for all x, y ∈ C .
Furthermore, if (f1, f2) : (x, y) → (x′, y′), then for every g : x × y → γ we have that g ◦
(f1 × f2) : x′ × y′ → γ, so g ◦ (f1 × f2) ∈ HomC (x× y, γ). We check the axioms of a functor.
• Compatibility with composition: Let (f1, f2) : (x, y) → (x′, y′) and (g1, g2) : (x′, y′) →

(x′′, y′′). We have to check that

Sγ1
(
(g1, g2) ◦ (f1, f2)

)
= Sγ1(f1, f2) ◦ Sγ(g1, g2).

We can do this element-wise, so let h ∈ HomC (x′′ × y′′, γ) be given. One computes

Sγ1
(
(g1, g2) ◦ (f1, f2)

)
(h) = Sγ1(g1 ◦ f1, g2 ◦ f2)(h)

= h ◦
(
(g1 ◦ f1)× (g2 ◦ f2)

)
= h ◦ (g1 × g2) ◦ (f1 × f2)

= Sγ1(f1, f2)
(
h1 ◦ (g1 × g2)

)
= Sγ1(f1, f2)

(
Sγ1(g1, g2)(h)

)
=
(
Sγ1(f1, f2) ◦ Sγ1(g1, g2)

)
(h).
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• Preservation of identities: We have (1x,1y) : (x, y) → (x, y). Let f ∈ HomC (x × y, γ).
We compute

Sγ1(1x,1y)(f) = f ◦ (1x × 1y) = f

so Sγ1(1x,1y) = 1HomC (x×y,γ).

Hence Sγ is a functor. q.e.d.

Theorem 7.16. We have
−−−→
Groth←−−−

(
C , Sγ

)
= Chu(C , γ).

Proof: We first check how the objects of
−−−→
Groth←−−−

(
C , Sγ

)
look. They are tuples ((a, x), f) where

(a, x) ∈ C × C and f ∈ Sγ0(a, x) = HomC (a× x, γ). This already looks promising, as we can
identify ((a, x), f) with (a, f, x) ∈ Chu(C , γ)0. Now let us examine the arrows. How does
(Φ, φ) : ((a, x), f)→ ((b, y), g) look? We have Φ: a→ b and φ : y → x, such that

g ◦ (Φ× 1y) = Sγ1(Φ× 1y)(g) = Sγ1(1a × φ)(f) = f ◦ (1a × φ).

This is exactly the desired commutativity of

a× y a× x

b× y γ.

1a×Ψ

Φ×1y f

g

Now this allows us to define a rule
−−−→
Groth←−−−

(
C ,Sγ

)
→ Chu(C , γ) by

−−−→
Groth←−−−

(
C ,Sγ

)
0
3
(
(a, x), f)

)
7→ (a, f, x) ∈ Chu(C , γ)0,

−−−→
Groth←−−−

(
(C ,Sγ

)
1
3 (Φ, φ) 7→ (Φ, φ) ∈ Chu(C , γ)1.

Next we show the bijectivity of this rule on objects. First, injectivity. Let ((a, x), f), (b, y), g) ∈
−−−→
Groth←−−−

(
C ,Sγ

)
0
be given such that (a, f, x) = (b, g, y). Then ((a, x), f) = ((b, y), g) follows

immediately. The surjectivity is also immediate. Let (a, f, x) ∈ Chu(C , γ)0 be given. Then
((a, x), f) ∈

−−−→
Groth←−−−

(
C , Sγ

)
0
as (a, x) ∈ (C × C )0 and f ∈ Hom(a× x, f) = Sγ0(a, x).

Now onto the bijectivity of the arrows. To see that the rule is injective on arrows, let

(Φ, φ), (Φ′, φ′) : ((a, x), f)→ ((b, y), g)

be given such that (Φ, φ) = (Φ′, φ′) as arrows in
−−−→
Groth←−−−(C ,Sγ). Then the equality (Φ, φ) =

(Φ′, φ′) as arrows in Chu(C , γ) follows immediately. To see the surjectivity, let (Φ,Ψ): (a, f, x)→
(b, g, y) be given. As Φ: a→ b, it remains to check that - ◦(1a×Ψ): Hom(a×x, γ)→ Hom(a×
y, γ) and g◦(Φ×1y) = f ◦(1a×Ψ). But these two conditions are immediate from the definition
of arrows in Chu(C , γ). This allows us to identify Chu(C , γ) with

−−−→
Groth←−−−

(
(C × C ) op, Sγ

)
.

q.e.d.

7.5 Generalizing the Grothendieck construction equivalent to
Chu

We have seen that Chu(C , γ) =
−−−→
Groth←−−−

(
C , S

)
. Our next goal is to generalize the notion of the

Grothendieck construction involved. The obvious step is to allow (C ×D) for two arbitrary
closed categories.
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Definition 7.17 (The antiparallel Grothendieck construction
−−−→
Groth←−−−(C ,D ,F)). Let

C ,D be cartesian closed categories and F : (C ×D) op → Set be a covariant functor. The
category

−−−→
Groth←−−−

(
C ,D ,F

)
is defined in the following way:

• The objects of
−−−→
Groth←−−−

(
C ,D ,F

)
are triplets

(
C,D, c

)
, such that (C,D) ∈ (C ×D)0 and

c ∈ F0(C,D).
• The arrows of

−−−→
Groth←−−−

(
C ,D ,F

)
are pairs (Φ, φ) :

(
C,D, c

)
→

(
C ′, D′, c′

)
such that

Φ: C → C ′ and φ : D′ → D such that

F1(Φ,1D′)(c
′) = F1(1C , φ)(c).

• The composition of two arrows (Φ, φ) :
(
C,D, c

)
→
(
C ′, D′, c′

)
and (Ψ, ψ) :

(
C ′′, D′′, c′′

)
is given by

(Ψ, ψ) ◦ (Φ, φ) = (Ψ ◦ Φ, φ ◦ ψ).

Remark 7.18. As we have already seen, there exists a natural isomorphism between C × C
and the subcategory of C consisting of products a×x, so we will identify these two categories
in the case D = C in order to make the notation a little more bearable.

Lemma 7.19.
−−−→
Groth←−−−

(
C ,D ,F

)
as defined above is a category.

Proof: We check the well-definedness of the composition, as the well-definedness of the
objects and arrows is immediate. So let two arrows (Φ, φ) :

(
C,D, c

)
→
(
C ′, D′, c′

)
and

(Ψ, ψ) :
(
C ′′, D′′, c′′

)
be given. As Ψ ◦ Φ: C → C ′′ and ψ ◦ φ : D′′ → D, it remains to prove

that
F1

(
(Ψ ◦ Φ),1D′′)(c

′′) = F1

(
1C , (φ ◦ ψ)

)
(c).

We already have

F1(Φ,1D′)(c
′) = F1(1C , φ)(c) and F1(Ψ,1D′′)(c

′′) = F1(1C′ , ψ)(c′),

so we can simply compute

F1

(
(Ψ ◦ Φ),1D′′)(c

′′) = F1

(
(Ψ,1D′′) ◦ (Φ,1D′′)

)
(c′′)

=
(
F1(Φ,1D′′) ◦ F1(Ψ,1D′′)

)
(c′′)

= F1(Φ,1D′′)
(
F1(1C′ , ψ)(c′)

)
= F1

(
(1C′ , ψ) ◦ (Φ,1D′′)

)
(c′)

= F1

(
(Φ,1D′) ◦ (1C , ψ)

)
(c′)

= F1(1C , ψ)
(
F1(Φ,1D′)(c

′)
)

= F1(1C , ψ)
(
F1(1C , φ)(c)

)
= F1

(
1C , φ) ◦ (1C , ψ)

)
(c)

= F1

(
1C , (φ ◦ ψ)

)
(c).

To see that identities exists, we simply observe that 1(C,D,c) = (1C ,1D) does the trick. q.e.d.

7.6 The Grothendieck construction over finite products
As we have seen in the preceding section, we can generalize the Grothendieck category
equivalent to the Chu construction by allowing products with factors in different categories.
But what if we want to generalize the Grothendieck construction to allow an arbitrary but
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finite number of products? But this leaves us with a choice of the direction of the arrows.
During the time in which we only considered C × C , this choice was limited, as there only
existed the possibilities

(a, x , f)

(b, y , g)

φ+ φ− and
(a, x , f)

(b, y , g).

φ+ φ−

But now as we consider three elements, we are left with 8 possibilities, which are

(a, x1 , x2 , f)

(b, y1 , y2 , g),

φ1
φ2 φ3

(a, x1 , x2 , f)

(b, y1 , y2 , g),

φ1
φ2 φ2

(a, x1 , x2 , f)

(b, y1 , y2 , g),

φ1
φ2 φ3

(a, x1 , x2 , f)

(b, y1 , y2 , g),

φ1
φ2 φ3

(a, x1 , x2 , f)

(b, y1 , y2 , g),

φ1
φ2 φ3

(a, x1 , x2 , f)

(b, y1 , y2 , g),

φ1
φ2 φ3

(a, x1 , x2 , f)

(b, y1 , y2 , g),

φ1
φ2 φ3 and

(a, x1 , x2 , f)

(b, y1 , y2 , g).

φ1
φ2 φ3

To make this more formal, we define an appropriate set of categories.

Definition 7.20 (The set n -Tuples). Let n ∈ N>0. We define the set n -Tuples to be the
set of categories C which fulfil the following conditions:
• C has 2n objects which we name x1, . . . , xn, y1, . . . , yn.
• C has n arrows ar1, . . . , arn in addition to the identities, such that for each i ∈
{1, . . . , n}, one of the following cases holds:
– dom(ari) = xi and codom(ari) = yi,
– dom(ari) = yi and codom(ari) = xi.

Remark 7.21. For the following work we would want a more “metaphorical” name for each
of the categories in n -Tuples. As each category in n -Tuples is determined by its arrows, we
will simply stack these arrows to identify the corresponding category, so if we for example
consider

x1• •y1

x2• •y2

x3• •y3

or
x1• •y1

x2• •y2,

where we omit the identity arrows, we would write - - to refer to the first category and
- - for the second category.

Now we come to the desired generalization of
−−−→
Groth←−−−(C ,F)

Definition 7.22 (The Grothendieck category Groth(I ,C ,F)). Let C be a category,
F : (C n) op → Set and T ∈ n -Tuples with arrows ar1, . . . , arn for a n ∈ N>0. We define
Groth(T ,C ,F) to be the category given by the following data:
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• The objects of Groth(T ,C ,F) are tuples (A1, . . . , An, a) such that A1, . . . , An ∈ C0 and
a ∈ F0(A1, . . . , An).
• The arrows are given as such: Let (A1, . . . , An, a), (B1, . . . , Bn, b) as above we given.

Then an arrow (A1, . . . , An, a)→ (B1, . . . , Bn, b) is a tuple (φ1, . . . , φn) such that there
exists a functor T ∈ Fun(T ,C ) such that T0(xi) = Ai, T0(yi) = Bi and T1(ari) = φi for
all i = 1, . . . , n. Furthermore we place one more condition on (φ1, . . . , φn). We set

Φ+,i :=

{
φi if dom(ari) = xi,

1dom(φi) if dom(ari) = yi

and Φ−,i :=

{
1dom(φi) if dom(ari) = xi,

φi if dom(ari) = yi.

These arrows must fulfil the condition

F1(Φ+,1, . . . ,Φ+,n)(b) = F1(Φ−,1, . . . ,Φ−,n)(a).

• The composition is defined as follows. Let

(φ1, . . . , φn) : (A1, . . . , An, a)→ (B1, . . . , Bn, b),

(ψ1, . . . , ψn) : (B1, . . . , Bn, b)→ (C1, . . . , Cn, c)

be given. Then the composition (ψ1, . . . , ψn)◦ (φ1, . . . , φn) is an arrow (θ1, . . . , θn) such
that

θi =

{
ψi ◦ φi if dom(ari) = xi,

φi ◦ ψi if dom(ari) = yi.

Before we prove that this indeed gives rise to a category, we start with an example.

Example 7.23. We examine the category Groth( - - ,C ,F) for an arbitrary category C
and a functor F : (C n) op → Set. Let two objects (A1, A2, A3, a) and (B1, B2, B3, b) in
Groth( - - ,C ,F) be given. An arrow (φ1, φ2, φ3) : (A1, A2, A3, a)→ (B1, B2, B3, b) consists
of arrows φ1, φ2, φ3 in C such that

A1 B1,

A2 B2,

A3 B3.

φ1

φ2

φ3

This aids us to visualize how the composition should look. Suppose we are given another
arrow (ψ1, ψ2, ψ3) : (B1, B2, B3, b)→ (C1, C2, C3, c). Then we have

A1 B1 C1

A2 B2 C2

A3 B3 C3.

φ1 ψ1

φ2 ψ2

φ3 ψ3

Ergo (ψ1, ψ2, ψ3) ◦ (φ1, φ2, φ3) = (ψ1 ◦ φ1, φ2 ◦ ψ2, ψ3 ◦ φ3).

Proposition 7.24. Groth(T ,C ,F) is a category for every cartesian closed category C , each
T ∈ n -Tuples and each functor F : (C n) op → Set.
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Proof: We have to prove that the composition is well-defined. We seek to employ the equality
obtained in lemma 7.30 in the proof of the equality

F1(Θ+,1, . . . ,Θ+,n)(b) = F1(Θ−,1, . . . ,Θ−,n)(a).

But for this we need closer knowledge about Θ+,i and Θ−,i. As we have

Θ+,i =

{
ψi ◦ φi if dom(ari) = xi,

1Ci else

and Θ−,i =

{
φi ◦ ψi if codom(ari) = xi,

1Ai else,

by definition, we can always find a factorization Θ+,i = θ+,i,2 ◦ θ+,i,1 and Θ−,i = θ−,i,2 ◦ θ−,i,1
where

θ+,i,2 = ψi, θ+,i,1 = φi if dom(ari) = xi,

θ+,i,2 = θ+,i,1 = 1Ci else,

θ−,i,2 = φi, θ−,i,1 = ψi if codom(ari) = xi,

θ−,i,2 = θ−,i,1 = 1Ai else.

Now we simply observe that θ+,i,2 = Ψ+,i, θ+,i,1 = Φ+,1 and θ−,i,2 = Ψ−,i, θ−,i,1 = Φ−,i, so
we compute

F1(Θ+,1, . . . ,Θ+,n)(c) = F1

(
(θ+,1,2, . . . , θ+,n,2) ◦ (θ+,1,1, . . . , θ+,n,1)

)
(c)

= F1(θ+,1,1, . . . , θ+,n,1) ◦ F1(θ+,1,2, . . . , θ+,n,2)(c)

= F1(Φ+,1, . . . ,Φ+,n) ◦ F1(Ψ+,1, . . . ,Ψ+,n)(c)

= F1(Φ+,1, . . . ,Φ+,n) ◦ F1(Ψ−,1, . . . ,Ψ−,n)(b)

= F1

(
(Ψ−,1, . . . ,Ψ−,n) ◦ (Φ+,1, . . . ,Φ+,n)

)
(b).

We want to examine (Ψ−,1, . . . ,Ψ−,n) ◦ (Φ+,1, . . . ,Φ+,n), to be more precise we want to show
the equality

(Ψ−,1, . . . ,Ψ−,n) ◦ (Φ+,1, . . . ,Φ+,n) = (Φ+,1, . . . ,Φ+,n) ◦ (Ψ−,1, . . . ,Ψ−,n).

To see this, it suffices to prove Φ+,i ◦Ψ−,i = Ψ−,i ◦Φ+,i for all i = 1, . . . , n. So let i = 1, . . . , n
be given. By definition we have

Ψ−,i ◦ Φ+,i =

{
Ψ−,i ◦ φi = 1dom(ψi) ◦ φi if dom(ari) = xi,

Ψ−,i ◦ 1dom(φi) = ψi ◦ 1dom(φi) if dom(ari) = yi.

But by definition we have

Φ+,i ◦Ψ−,i =

{
φi ◦ 1dom(ψi) if dom(ari) = xi,

1dom(φi) ◦ ψi if dom(ari) = yi,

so Ψ−,i ◦ Φ+,i = Φ+,i ◦Ψ−,i. This allows us to complete our computation to

F1

(
(Ψ−,1, . . . ,Ψ−,n) ◦ (Φ+,1, . . . ,Φ+,n)

)
(b) = F1

(
(Φ+,1, . . . ,Φ+,n) ◦ (Ψ−,1, . . . ,Ψ−,n)

)
(b)

= F1(Ψ−,1, . . . ,Ψ−,n) ◦ F1(Φ+,1, . . . ,Φ+,n)(b)

= F1(Ψ−,1, . . . ,Ψ−,n) ◦ F1(Φ−,1, . . . ,Φ−,n)(a)
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= F1

(
(Φ−,1, . . . ,Φ−,n) ◦ (Ψ−,1, . . . ,Ψ−,n)

)
(a)

= F1(Θ−,1, . . . ,Θ−,n)(a).

To see that identities exist, we remark that 1(A1,...,An,a) = (1A1 , . . . ,1An), which trivially
fulfils the condition. This completes the proof that Groth(T ,C ,F) is a category. q.e.d.

Now we want to eliminate “redundant” categories, i.e. we want to identify categories who
are naturally isomorphic. This is to reduce the number of Grothendieck type categories we
have to consider, as we a priori have far to many, 8 in the case that n = 3. For this we want
to consider actions by the symmetric group Sn.

Lemma 7.25. Let n ∈ N>0 and n -Tuples be given. We define a left-action of Sn on n -Tuples
in the following way: Let T ∈ n -Tuples and σ ∈ Sn. Then σ ·T is the category given by the
following data:
• The objects are the same, (σ ·T )0 = T0.
• The arrows are σ · ar1, . . . , σ · arn, where

σ · ari : xi → yi, if arσ−1(i) : xσ−1(i) → yσ−1(i),

σ · ari : yi → xi, if arσ−1(i) : yσ−1(i) → xσ−1(i).

Before we prove that this is indeed a left-action, we examine a concrete case.

Example 7.26. Consider the category - - ∈ 3 -Tuples and σ = (123) ∈ S3. We then
have

σ ·


x1• •y1

x2• •y2

x3• •y3

 =

x1• •y1

x2• •y2

x3• •y3,

or short σ · ( - - ) = ( - - ). So one can imagine the action as “replacing the arrow ari by
arσ−1(i) in the picture”.

Proof of lemma 7.25: We have to prove the following two statements:
• For each T ∈ n -Tuples and σ, τ ∈ Sn, we have

(σ ◦ τ) ·T = σ · (τ ◦T ),

where ◦ is the binary operation in Sn.
• Let id be the neutral element in Sn, then id ·T = T .

To see the first condition, we simply examine the arrows in (σ◦τ) ·T and σ ·(τ ·T ). It suffices
to show that for each pair (xi, yi) we have either σ · τ · ari : xi → yi and (σ ◦ τ) · ari : xi → yi
or σ · τ · ari : yi → xi and (σ ◦ τ) · ari : yi → xi. We have to distinguish the following cases:
• We have σ · τ · ari : xi → yi. By definition this means that τ · arσ−1(i) : xσ−1(i). Using

the definition again, this means that arτ−1(σ−1(i)) : xτ−1(σ−1(i)) → yτ−1(σ−1(i)). But as
Sn is a group, we have τ−1(σ−1(i)) = (σ ◦ τ)−1(i) for all i = 1, . . . , n, so we obtain
(σ · τ) · ari : xi → yi.
• Now we assume σ · τ · ari : yi → xi. Analogously to the first case we obtain

arτ−1(σ−1(i)) : yτ−1(σ−1(i)) → xτ−1(σ−1(i)).

This means that (σ ◦ τ) · ari : yi → xi.
To see the second condition we simply remark that id · ari : xi → yi if ari : xi → yi, and the
other way round, hence id ·T = T . This yields that the rule is indeed a left-action. q.e.d.
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Remark 7.27. One can observe that σ is also a functor σ : T → σ ·T .

This allows us to identify a few Grothendieck-type categories via isomorphisms in case C
is a cartesian closed category and F fulfils a special requirement, which we shall now specify.
First we correlate the category C n with a subcategory of C .

Definition 7.28. Let C be a cartesian closed category and n ∈ N. We define C×n to be the
subcategory of C consisting of the following data:
• The objects of C×n are products

∏n
i=1 ci for ci ∈ C0.

• The arrows of C×n are products
∏n
i=1 fi :

∏n
i=1 ci →

∏n
i=1 di.

It is immediate that this definitions gives rise to a category, as C is a category. With this
definition at hand we can identify C n with this subcategory.

Lemma 7.29. Let C be a cartesian closed category, then C n ∼= C×n.

Before we can prove this we need the generalization of [Pet21, p. 2] to an arbitrary but
finite number of factors in the product. We state this as the following lemma.

Lemma 7.30. Let C be a cartesian closed category and a1, . . . , an, a
′
1, . . . , a

′
n, a
′′
1, . . . , a

′′
n ∈ C0.

Let fi : ai → a′i and gi : a
′
i → a′′i for every i = 1, . . . , n. Then

n∏
i=1

(gi ◦ fi) =
( n∏
i=1

gi

)
◦
( n∏
i=1

fi

)
.

Proof: Let gi, fi be given as in the lemma. Then
∏n
i=1(gi ◦fi) is the unique arrow

∏n
i=1 ai →∏n

i=1 a
′′
i such that for each i = 1, . . . , n the rectangle

∏n
i=1 ai ai

∏n
i=1 a

′′
i a′′i

prai

∏n
i=1(gi◦fi) (gi◦fi)

pra′′
i

commutes. It suffices to check that the rectangle

∏n
i=1 ai ai

∏n
i=1 a

′′
i a′′i

prai

(∏n
i=1 gi

)
◦
(∏n

i=1 fi

)
(gi◦fi)

pra′′
i

(30)

commutes for every i = 1, . . . , n, as then the equality follows by the universal property of the
product. So let i be given. By the universal property of the product, the rectangles

∏n
i=1 ai ai

∏n
i=1 a

′
i a′i

prai

∏n
i=1 fi fi

pra′
i

and

∏n
i=1 a

′
i a′i

∏n
i=1 a

′′
i a′′i

pra′
i

∏n
i=1 gi gi

pra′′
i

commute. So the commutativity of the diagram (30) follows immediately and we obtain the
desired equality. q.e.d.

Proof of Lemma 7.29: We define the isomorphism I : C n → C×n in the following way:
• Let (c1, . . . , cn) ∈ C n. Then I0(c1, . . . , cn) =

∏n
i=1 ci.
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• Let (f1, . . . , fn) : (c1, . . . , cn)→ (d1, . . . , dn). Then

I1(f1, . . . , fn) = f1 × · · · × fn :

n∏
i=1

ci →
n∏
i=1

di.

To see that this is a functor is immediate. We first check the compatibility with composition.
For this let

(f1, . . . , fn) : (c1, . . . , cn)→ (d1, . . . , dn),

(g1, . . . , gn) : (d1, . . . , dn)→ (e1, . . . , en).

Then (g1, . . . , gn) ◦ (f1, . . . , fn) = (g1 ◦ f1, . . . , gn ◦ fn). But by lemma 7.30 we have

I1

(
(g1, . . . , gn) ◦ (f1, . . . , fn)

)
= I1(g1 ◦ f1, . . . , gn ◦ fn) =

n∏
i=1

(gi ◦ fi)

=
( n∏
i=1

gi

)
◦
( n∏
i=1

fi

)
(by lemma 7.30)

= I1(g1, . . . , gn) ◦ I1(f1, . . . , fn).

The compatibility with arrows is also immediate, as

I1(1c1 , . . . ,1cn) = 1c1 × . . .1cn = 1c1×···×cn .

The inverse functor is given by

∀
( n∏
i=1

ci

)
∈ C×n0 : I−1

0

( n∏
i=1

ci

)
= (c1, . . . , cn),

∀
( n∏
i=1

fi

)
∈ C×n1 : I−1

1

( n∏
i=1

fi

)
= (f1, . . . , fn).

q.e.d.

This allows us to identify a functor F : (C n)op → Set with a functor F : (C×n)op →
Set by precomposing with the obtained isomorphism. This allows us to make the following
identifications:
• We identify the objects (A1, . . . , An, a) of Groth(I ,C ,F) with (A1, . . . , An, a), where
a ∈ F0(A1 × · · · ×An).
• For arrows (φ1, . . . , φn) : (A1, . . . , An, a) → (B1, . . . , Bn, b) we replace the condition
F1(Φ+,1, . . . ,Φ+,n)(b) = F1(Φ−,1, . . . ,Φ−,n) by F1(Φ+,1 × · · · × Φ+,n)(b) = F1(Φ+,1 ×
· · · × Φ+,n).

From now on we shall no longer distinguish between functors F : (C n)op → Set and the
associated functor (C×n)op → Set.

Theorem 7.31. Let n ∈ N>0,C be a cartesian closed category, F : (C n)op → Set be a n-
product preserving functor and T ,T ′ ∈ n -Tuples. Then Groth(T ,C ,F) ∼= Groth(T ′,C ,F)
if there exists σ ∈ Sn such that σ ·T ′ = T .

Example 7.32. Before we prove this theorem, we shall examine it in the case of a concrete
example. For this, let Groth( - - ,C ,F) be given for a cartesian closed category C and
F : (C n) op → Set. As we have seen there exists σ = (123) ∈ S3 such that σ · ( - - ) =
- - . We want to see that this translates into an isomorphism

Groth( - - ,C ,F) ∼= Groth( - - ,C ,F).
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To this end, we start by examining the arrows. An arrow in Groth( - - ,C ,F) consists of two
quadruplets (A1, A2, A3, a) ∈ C 3

0 ×F0(A1, A2, A3) and (B1, B2, B3, b) ∈ C 3
0 ×F0(B1, B2, B3, b)

as well as arrows

φ1 : A1 → B1, φ2 : B2 → A2, φ3 : A3 → B3.

On the other hand, an arrow (ψ1, ψ2, ψ3) : (A1, A2, A3, a) → (B1, B2, B3, b) in Groth( - -
consists of arrows

ψ1 : A1 → B1, ψ2 : A2 → B2, ψ3 : B3 → A3.

The key observation to the equivalence of categories is the following:

Lemma 7.33. Let C be a cartesian closed category and F : (C n) op → Set and I1,I2 ∈
n -Tuples. Then

Groth(I1,C ,F)0 = Groth(I2,C ,F)0.

Furthermore, Groth(I1,C ,F)0 is stable under Sn in the following sense: Let σ ∈ Sn. Then
the following are equivalent:
• (A1, . . . , An, a) ∈ Groth(I1,C ,F),
• (Aσ(1), . . . , Aσ(n), a) ∈ Groth(I1,C ,F).

Proof: The first equality is immediate from the definitions. As if (A1, . . . , An, a) is an object
of Groth(I1,C ,F), then (A1, . . . , An) ∈ C n and a ∈ F0(A1, . . . , An), but this is sufficient
that (A1, . . . , An, a) ∈ Groth(I2,C ,F).

To see the equivalence, we simply remark that as C is a cartesian closed category, we have
that for any (A1, . . . , An) ∈ C n and σ ∈ Sn the equalities

(A1, . . . , An) = A1 × · · · ×An = Aσ(1) × · · · ×Aσ(n) = (Aσ(1), . . . , Aσ(n))

hold. Ergo if a ∈ F0(A1, . . . , An), then also a ∈ F0(Aσ(1), . . . , Aσ(n)), which proves the desired
equivalence. q.e.d.

In our concrete example this allows us to do the following: We shuffle the entries of
(A1, . . . , An, a) according to σ, so we can map the arrows accordingly. In a diagram this
would look like the following:

(A1 , A2, A3)

(B1 , B2, B3)

φ1 φ2 φ3 7→
(A3 , A1, A2)

(B3 , B1, B2).

φ3 φ1 φ2

As (A1, A2, A3, a) ∈ Groth( - - ,C ,F)0, we have (A3, A1, A2, a) ∈ Groth( - - ,C ,F).
Hence we have that (φ3, φ2, φ1) : (A3, A1, A2, a)→ (B3, B1, B2, b) is an arrow of Groth( - - ,
C ,F) if we can prove that

F1(Φ+,3 × Φ+,1 × Φ+,2)(b) = F1(Φ−,3 × Φ−,1 × Φ−,2)(a).

But this is immediate as (φ1, φ2, φ3) ∈ Groth( - - ,C ,F)1. Furthermore it is easy to see
that this rule is indeed bijective on arrows and objects.

Now, motivated from this example we can prove the general theorem.

Proof of Theorem 7.31: Let T ,T ′ ∈ n -Tuples and σ ∈ Sn such that σ ·T ′ = T . This is
equivalent to τ ·I = I , if we set τ := σ−1. We then define a functor Eσ,T : Groth(T ,C ,F)→
Groth(T ′,C ,F) in the following way:
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• For (A1, . . . , An, a) ∈ Groth(T ,C ,F)0 we set

Eσ,T0 (A1, . . . , An, a) = (Aσ(1), . . . , Aσ(n), a).

• For (φ1, . . . , φn) : (A1, . . . , An, a)→ (B1, . . . , Bn, b) we set

Eσ,T1 (φ1, . . . , φn) = (φσ(1), . . . , φσ(n)).

As Aσ(1), . . . , Aσ(n) ∈ C0, and A1 × · · · × An ∼= Aσ(1) × · · · × Aσ(n), we have a ∈ F0(Aσ(1) ×
· · · ×Aσ(n)). To see that the rule is well-defined on arrows, we show that

(φσ(1), . . . , φσ(n)) : (Aσ(1), . . . , Aσ(n), a)→ (Bσ(1), . . . , Bσ(n), b).

This means we have to prove that there exists T ′ ∈ Fun(T ′,C ) such that T ′0 (x′i) = Aσ(i) as
well as T ′0 (y′i) = Bσ(i) and T ′1 (ar′i) = φσ(i) for all i = 1, . . . , n. We define T ′ by T ′0 (x′i) = Aσ(i)

and T ′0 (y′i) = Bσ(i) and T ′1 (ar′i) = φσ(i). It remains to check that this is well-defined, i.e.
that F1(ar′i) : Aσ(i) → Bσ(i). We know that σ · T ′ = T . Therefore we have ari : xi → yi if
ar′σ−1(i) : xσ−1(i) → yσ−1(i). As we have T ∈ Fun(T ,C ) such that

T0(xi) = Ai, T0(yi) = Bi, T1(ari) = φi,

we know that T ′1 (ar′σ−1(i)) : T ′0 (x′σ−1(i) → T ′0 (y′σ−1(i), hence T ′1 (ar′σ−1(i)) : Ai → Bi, which
means T ′1 (ar′σ−1(i)) = φi for every i = 1, . . . , n, which yields the desired T ′1 (ar′i) : Aσ(i) → Bσ(i)

by replacing i by σ(i), as desired.
For the functoriality we have to check

Eσ,T1

(
(ψ1, . . . , ψn) ◦ (φ1, . . . , φn)

)
= Eσ,T1 (ψ1, . . . , ψn) ◦ Eσ,T1 (φ1, . . . , φn).

But this is immediate from the definition, as we have Eσ,T1

(
(ψ1, . . . , ψn) ◦ (φ, . . . , φn)

)
=

Eσ,T1 (θ1, . . . , θn), where θi is either ψi◦φi or φi◦ψi, so θσ(i) = ψσ(i)◦φσ(i) or θσ(i) = φσ(i)◦ψσ(i).
This allows us to compute

Eσ,T1

(
(ψ1, . . . , ψn) ◦ (φ1, . . . , φn)

)
= Eσ,T1 (θ1, . . . , θn)

= (θφ(1), . . . , θφ(n))

= (ψσ(1), . . . , ψσ(n)) ◦ (φσ(1), . . . , φσ(n))

= Eσ,T1 (ψ1, . . . , ψn) ◦ Eσ,T1 (φ1, . . . , φn).

To see that this functor is a isomorphism, we simply remark that for every σ ∈ Sn we have
σ−1 ∈ Sn and

Eσ,T ◦ Eσ−1,T = Eσ−1,T ◦ Eσ,T = idGroth(T ,C ,F) .

q.e.d.

This allows us to discard the additional information in which order the arrows arise and
simply count the instances of arrows in each direction. So we simplify in the following manner:

Definition 7.34. Let n ∈ N>0,C be a cartesian closed category as well as F : (C n) op → Set.
Then we call Groth(i, n− i,C ,F) to be the category Groth(I ,C ,F) where I ∈ n -Tuples is
the category defined by the following condition:

For all j = 1, . . . , i, we have ari : xi → yi and for all j = i+1, . . . , n we have ari : yi → xi.
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One can visualize I as

x1 x2 . . . xi xi+1 . . . xn

• • . . . • • . . . •

• • . . . • • . . . •
y1 y2 . . . yi yi+1 . . . yn.

7.7 “Generalization” of the generalized Chu category
We have already found a Grothendieck construction equivalent to the standard Chu category.
This begs the question whether there exists a Grothendieck construction equivalent to the
generalized Chu category. The following Grothendieck construction will answer this question
in a positive way.

Definition 7.35. Let C be a category, Γ: C → Fun((C 2)op,Set) be a functor. We define
−−−→
Groth←−−−(C ,Γ) to be the category given by the following data:

• The objects of
−−−→
Groth←−−−(C ,Γ) are quadruples (C,D, c; d) such that C,D ∈ C0 and c ∈

[Γ0(d)]0(C,D).
• The arrows of

−−−→
Groth←−−−(C ,Γ) are triplets (φ0, φ+, φ−) : (C,D, c, d) → (C ′, D′, c′, d′) such

that φ+ : C → C ′, φ− : D′ → D,φ0 : d→ d′ and the equality(
Γ1(φ0)(C,D′) ◦

(
Γ0(d)

)
1
(1C , φ

−)
)

(c) =
(
Γ0(d′)

)
1
(φ+,1D′)(c

′)

holds.
• The composition of two arrows

(φ0, φ+, φ−) : (C,D, c, d)→ (C ′, D′, c′, d′),

(ψ0, ψ+, ψ−) : (C ′, D′, c′, d′)→ (C ′′, D′′, c′′, d′′)

is given by (ψ0, ψ+, ψ−) ◦ (φ0, φ+, φ−) = (ψ0 ◦ φ0, ψ+ ◦ φ+, φ− ◦ ψ−).

We visualize this as in figure 7.2.

Lemma 7.36. Let C be a category, Γ: C → Fun((C 2)op, Set) be a functor. Then
−−−→
Groth←−−−(C ,Γ)

as defined above is a category.

Proof: The well-definedness of objects and arrows is immediate. It remains to show the
well-definedness of the composition. For this let two arrows

(φ0, φ+, φ−) : (C,D, c, d)→ (C ′, D′, c′, d′),

(ψ0, ψ+, ψ−) : (C ′, D′, c′, d′)→ (C ′′, D′′, c′′, d′′)

in
−−−→
Groth←−−−(C , F,Γ) be given. By definition we obtain ψ+ ◦ φ+ : C → C ′′, φ− ◦ ψ− : D′′ →

D,ψ0 : d→ d′′. It remains to check the condition(
Γ1(ψ0 ◦ φ0)(C,D′′) ◦

(
Γ0(d)

)
1
(1C , (φ

− ◦ ψ−))
)

(c) =
(
Γ0(d′′)

)
1
(((ψ+ ◦ φ+),1D′)(c

′′).

We compute (with explanations at the end)(
Γ1(ψ0 ◦ φ0)(C,D′′) ◦

(
Γ0(d)

)
1
(1C , (φ

− ◦ ψ−))
)

(c) (31)
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C × C

Set

(C,D)

(C,D′)

(C ′, D′)

1C × φ−

φ+ × 1D′

c
Γ0(d)0(C,D)

c′

Γ0(d′)0(C ′, D′)

(Γ0(d))1(1C , φ
−)(c)

Γ0(d)0(C,D′)

(Γ0(d′))1(φ+,1D′)(c
′)

Γ0(d′)0(C,D′)

Γ0(d)

Γ0(d)

Γ0(d′)

Γ0(d′)

ww�Γ1(φ0)

Figure 7.2: An illustration of the arrows in
−−−→
Groth←−−−(C ,Γ)

=
(

Γ1(ψ0 ◦ φ0)(C,D′′) ◦
(
Γ0(d)

)
1

(
(1C , φ

−) ◦ (1C , ψ
−)
))

(c) (32)

=
(

Γ1(ψ0 ◦ φ0)(C,D′′) ◦
(
Γ0(d)

)
1
(1C , ψ

−) ◦
(
Γ0(d)

)
1
(1C , φ

−)
)

(c) (33)

=
(

Γ1(ψ0)(C,D′′) ◦ Γ1(φ0)(C,D′′) ◦
(
Γ0(d)

)
1
(1C , ψ

−) ◦
(
Γ0(d)

)
1
(1C , φ

−)
)

(c) (34)

=
(

Γ1(ψ0)(C,D′′) ◦
(
Γ0(d′)

)
1
(1C , ψ

−) ◦ Γ1(φ0)(C,D′) ◦
(
Γ0(d)

)
1
(1C , φ

−)
)

(c) (35)

=
(

Γ1(ψ0)(C,D′′) ◦
(
Γ0(d′)

)
1
(1C , ψ

−) ◦
(
Γ0(d′)

)
1
(φ+,1D′)

)
(c′) (36)

=
(

Γ1(ψ0)(C,D′′) ◦
(
Γ0(d′)

)
1

(
(φ+,1D′) ◦ (1C , ψ

−)
))

(c′) (37)

=
(

Γ1(ψ0)(C,D′′) ◦
(
Γ0(d′)

)
1

(
(1C′ , ψ

−) ◦ (φ+,1D′′)
))

(c′) (38)

=
(

Γ1(ψ0)(C,D′′) ◦
(
Γ0(d′)

)
1
(φ+,1D′′) ◦

(
Γ0(d′)

)
1
(1C′ , ψ

−)
)

(c′) (39)

=
((

Γ0(d′′)
)

1
(φ+,1D′′) ◦ Γ1(ψ0)(C′,D′′) ◦

(
Γ0(d′)

)
1
(1C′ , ψ

−)
)

(c′) (40)

=
((

Γ0(d′′)
)

1
(φ+,1D′′) ◦

(
Γ0(d′′)

)
1
(ψ+,1D′′)

)
(c′′) (41)

=
((

Γ0(d′′)
)

1

(
(ψ+,1D′′) ◦ (φ+,1D′′)

))
(c′′) (42)

=
((

Γ0(d′′)
)

1

(
(ψ+ ◦ φ+),1D′′)

))
(c′′). (43)

It remains to justify the equations.

(31)=(32): This follows from lemma 7.30.

(32)=(33): This follows as Γ0(d) is a contravariant functor C 2 → Set.

(33)=(34): This follows from the fact that for any three functors F,G,H : C → D and two
natural transformations, η : F ⇒ G,µ : G→ H we have (µ ◦ η)x = µx ◦ ηx for all x ∈ C .
This fact is proven in [Pet20b, Definition 1.1.5.3].

(34)= (35): As Γ1(φ0) is a natural transformation Γ1(φ0) : Γ0(d)→ Γ0(d′) we have a commu-
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tative diagram

[Γ0(d)]0(C,D′) [Γ0(d)]0(C,D′′)

[Γ0(d′)]0(C,D′) [Γ0(d′)]0(C,D′′).

[Γ0(d)]1(1C ,ψ
−)

Γ1(φ0)(C,D′) Γ1(φ0)(C,D′′)

[Γ0(d′)]1(1C ,ψ
−)

This yields the equality used.
(35)=(36): Here we used the equality(

Γ1(φ0)(C,D′) ◦
(
Γ0(d)

)
1
(1C , φ

−)
)

(c) =
(
Γ0(d′)

)
1
(φ+,1D′)(c

′)

that stems from the arrow (φ0, φ+, φ−).
(36)=(37): Here we used that (Γ0(d′) is a contravariant functor.
(37)=(38): Here we used the fact that

(φ+,1D′) ◦ (1C , ψ
−) = φ+, ψ− = (1C′ ◦ φ+), (ψ− ◦ 1D′′)

= (1C′ , ψ
−) ◦ (φ+,1D′′).

(38)=(39): Here we used again that Γ0(d′) is a contravariant functor.
(39)=(40): Here we used that Γ1(ψ0) : Γ0(d′) ⇒ Γ0(d′′) is a natural transformation, so we

obtain a commutative square

[Γ0(d′)]0(C ′, D′′) [Γ0(d′)]0(C,D′′)

[Γ0(d′′)]0(C ′, D′′) [Γ0(d′′)]0(C,D′′),

[Γ0(d′)]1(φ+,1D′′ )

Γ1(ψ0)(C′,D′′) Γ1(ψ0)(C,D′′)

[Γ0(d′′)]1(φ+,1D′′ )

which yields the desired equality.
(40)=(41): Here we used the equality(

Γ1(ψ0)(C′,D′′) ◦
(
Γ0(d′)

)
1
(1C′ , ψ

−)
)

(c′) =
(
Γ0(d′′)

)
1
(ψ+,1D′′)(c

′′)

that stems from the arrow (ψ0, ψ+, ψ−).
(41)=(42): Here we used that (Γ0(d′′))1 is a contravariant functor.
(42)=(43): At last we used the equality

(ψ+,1D′′) ◦ (φ+,1D′′) =
(
(ψ+ ◦ φ+), (1D′′ ◦ 1D′′)

)
=
(
(ψ+ ◦ φ+),1D′′

)
.

So we have proven that the composition of two arrows is well-defined. It remains to check the
associativity and the existence of identities.
Associativity: Let three arrows

(φ0, φ+, φ−) : (C1, D1, c1, d1)→ (C2, D2, c2, d2),

(ψ0, ψ+, ψ−) : (C2, D2, c2, d2)→ (C3, D3, c3, d3),

(θ+, θ+, θ−) : (C3, D3, c3, d3)→ (C4, D4, c4, d4)

be given. Then

(θ0, θ+, θ−) ◦
(
(ψ0, ψ+, ψ−) ◦ (φ0, φ+, φ−)

)
= (θ0, θ+, θ−) ◦ (ψ0 ◦ φ0, ψ+ ◦ φ+, φ− ◦ ψ−)

=
(
θ0 ◦ (ψ0 ◦ φ0), θ+ ◦ (ψ+ ◦ φ+), (φ− ◦ ψ−) ◦ θ−

)
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=
(
(θ0 ◦ ψ0) ◦ φ0, (θ+ ◦ ψ+) ◦ φ+, φ− ◦ (ψ− ◦ θ−)

)
= (θ0 ◦ ψ0, θ+ ◦ ψ+, ψ− ◦ θ−) ◦ (φ0, φ+, φ−)

=
(
(θ0, θ+, θ−) ◦ (ψ0, ψ+, ψ−)

)
◦ (φ0, φ+, φ−).

Identities: We want to show that 1(C,D,c,d) = (1d,1C ,1D) for all (C,D, c, d) ∈
−−−→
Groth←−−−(C ,Γ)0.

It is immediate that 1d : d→ d,1C : C → C,1D : D → D, so it remains to check the condition(
Γ1(1d)(C,D) ◦

(
Γ0(d)

)
1
(1C ,1D)

)
(c) =

(
Γ0(d)

)
1
(1C ,1D)(c).

For this we simply remark that Γ1(1d)(C,D) = 1(C,D), so the equality holds. To see that
(1d,1C ,1D) fulfils the axioms of an identity is immediate. So

−−−→
Groth←−−−(C ,Γ) is a category.

q.e.d.

Now we want to see that this construction actually generalizes the generalized Grothendieck
construction. The first problem at hand is that the generalized Chu construction uses a
functor C → C , not a functor C → Fun((C 2)op,Set). This we can remedy by the following
construction.

Definition 7.37. Let C be a category and Γ: C → C be an endofunctor. We then construct
a functor FΓ : C → Fun((C 2)op,Set) in the following way.
• For all c ∈ C0 we set FΓ

0 (c) := HomC ( - × - ,Γ0(c)).
• For all arrows f : c→ c′ in C we set FΓ

1 (f) to be the natural transformation

FΓ
1 (f) : HomC ( - × - ,Γ0(c))→ HomC ( - × - ,Γ0(c′))

defined by

FΓ
1 (f)(C,D) : HomC (C ×D,Γ0(c))→ Hom(C ×D,Γ0(c′)),

h 7→ Γ1(f) ◦ h.

Lemma 7.38. Let C be a category and Γ: C → C be an endofunctor. Then FΓ defined as
above is a functor.

Proof: The well-definedness is immediate. It remains to check the axioms of a functor.
Compatibility with composition: Let f : c → c′ and g : c′ → c′′ be arrows in C . It suffices to
check the equality of the natural transformations on the arrows. So let r ∈ HomC (C×D,Γ0(c))
be given. Then

FΓ
1 (g ◦ f)(C,D)(r) = Γ1(g ◦ f) ◦ r = Γ1(g) ◦ Γ1(f) ◦ r

= Γ1(g) ◦ FΓ
1 (f)(C,D)(r) =

(
FΓ

1 (g)(C,D) ◦ FΓ
1 (f)(C,D)

)
(r).

Compatibility with identities: We have to show that Γ1(1c) is the identity natural transformation.
It again suffices to check this on the arrows. So let f ∈ HomC (C ×D,Γ0(c)) be given. Then

FΓ(1c)(C,D)(f) = Γ1(1c) ◦ f = 1Γ0(c) ◦ f = f.

So we have shown that FΓ : C → Fun((C 2)op,Set) is a functor. q.e.d.

Remark 7.39. Before we identify the generalized Chu category with our Grothendieck
construction, we will make a few identifications in case C is a cartesian closed category.
• We will identify the objects of

−−−→
Groth←−−−(C ,Γ) with quadruples (C,D, c, d) such that c ∈

(Γ0(d))0(C ×D).
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• We will identify the arrows (1C , φ
−) and (φ+,1D′) with the arrows 1C×φ− and φ+×1D′ .

Theorem 7.40. Let C be a cartesian closed category and Γ: C → C be an endofunctor. Then

−−−→
Groth←−−−(C , FΓ) = Chu(C ,Γ).

Proof: We start by identifying the objects. So let (C,D, c, d) ∈
−−−→
Groth←−−−(C , FΓ). Then C,D, d ∈

C0 and c ∈ (FΓ
0 (d))0(C×D) = HomC (C×D,Γ0(d). So c : C×D → Γ0(d), ergo (d,C, c,D) ∈

Chu(C ,Γ). One can immediately verify that this identification is one-to-one.
Next we identify the arrows. So let (φ0, φ+, φ−) : (C,D, c, d)→ (C ′, D′, c′, d′) be an arrow

in
−−−→
Groth←−−−(C , FΓ). Then

φ0 : d→ d′, φ+ : C → C ′, φ− : D′ → D.

The condition on the arrows translates to

Γ1(φ0) ◦ c ◦ (1C × φ+) = c′ ◦ (φ+ × 1D′),

which is exactly the desired commutativity of the rectangle

C ×D′ C ′ ×D′

C ×D Γ0(d) Γ0(d′)

φ+×1D′

1C×φ+ c′

c Γ1(φ0)

once the objects of
−−−→
Groth←−−−(C , FΓ) are identified with the objects of Chu(C ,Γ). So we have the

desired equality
−−−→
Groth←−−−(C , FΓ) = Chu(C ,Γ). q.e.d.



Chapter 8

The Chu construction and topoi

Chu spaces, which are objects of Chu categories Chu(Set, X) for a set X, have found their
way into many domains of mathematics, theoretical informatics and theoretical physics. Now
as Set is the archetypical topos, it is sensible to ask whether the Chu category Chu(T , γ) over
a topos T and an object γ ∈ T is again a topos.

8.1 The definition of a topos
We start by recalling the categorical notion of a topos, which we take from [Awo10, Definition
8.16].

Definition 8.1 (Topoi). A topos T is a category such that the following two conditions
hold:

(Tps1) The category T is complete (has all finite limits).
(Tps2) The category T has all exponentials.
(Tps3) The category T has a subobject classifier, that is an object Ω together with an

arrow t : > → Ω such that for every object E ∈ T0 and any subobject U ↪→ E there
exists a unique arrow making the diagram

U >

E Ω

!U

t

u

commute and U a pullback. The arrow u is the classifying arrow of U ↪→ E.

Remark 8.2. We do not have to demand that T is a cartesian closed category, as T has all
finite limits if and only if it has finite products and equalizers, which again can only be if it
has pullbacks and a terminal object. So T already has finite products and a terminal object
> as it has all finite limits. The proofs for the equivalences can be found in [Awo10, Section
5.4].

8.2 The Chu construction over Set

The category Set is, as we have already mentioned, the archetypical topos. Our next goal is
to prove that Chu(Set,K) is generally not a topos. To this end we first make the following
observation.

Proposition 8.3. Let K be an arbitrary set. Then Chu(Set,K) is bicomplete.

Proof: As Set is bicomplete, we can use theorem 6.14 to deduce that Chu(Set,K) is bicomplete.
q.e.d.
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This proves that the first condition of a topos is fulfilled. So we direct our attention to
the subobject classifier. How does such an object look in the Chu construction? A subobject
classifier (Ω, w,f) ∈ Chu(Set,K) comes with an arrow (φ+, φ−) : T → (Ω, w,f), where T is
the terminal object of Chu(Set,K). So we have to determine this terminal object.

Lemma 8.4. The terminal object of the category Chu(Set,K) for arbitrary X is given by
(1, ¡K , ∅), where 1 is the set 1 := {∅} and ¡K is the unique arrow ¡K : ∅ → K.7

Proof: Let K be an arbitrary set. Suppose we are given (A, f,X) ∈ Chu(Set, X). We have
to find a unique arrow !(A,f,X) : (A, f,X) → (1, ¡X , ∅). By definition we find unique arrows
!A : A→ 1 and ¡X : ∅ → X. For (!A, ¡X) : (A, f,X)→ (1, ¡K , ∅) to be an arrow in Chu(Set,K),
we need to show the commutativity of

A× ∅ A×X

1× ∅ K.

1A×¡X

!A×1∅ f

¡K

But by lemma 6.16 we know that A × ∅ ∼= ∅. Using this isomorphism we obtain that both
arrows f ◦(1A× ¡X) and ¡K ◦(!A×1∅) are identical to the arrow ¡K , so the diagram commutes.
The arrows !A and ¡X are unique, hence is (!A, ¡X). q.e.d.

So we have identified the terminal object of Chu(Set,K). Our next goal is to find an
arrow (φ+, φ−) : (1, ¡K , ∅) → (Ω, w,f) in Chu(Set,K). This arrows is given by the arrows
φ+ : 1→ Ω and φ− : f→ ∅. But as there exists only one arrow in Set with codomain ∅, the
arrow 1∅, we know that f = ∅. It remains to show that this equality leads to a contradiction.
For this we examine the subobjects in Chu(Set,K) a little further.

A subobject (θ+, θ−) : (B, g, Y ) ↪→ (A, f,X) is given by an object and a monomorphism.
But how do monomorphisms in Chu(Set,K) look like? If we are given the situation

(C, h, Z) (B, g, Y ) (A, f,X),
(α+,α−)

(β+,β−)

(θ+,θ−)

then (θ+, θ−) ◦ (α+, α−) = (θ+, θ−) ◦ (β+, β−) has to imply (α+, α−) = (β+, β−). To dissect
this further, if θ+ ◦α+ = θ+ ◦β+ and α− ◦ θ− = β− ◦ θ−, then α+ = β+, α− = β−. So we see
that if θ+ is a monomorphism and θ− is an epimorphism, then (θ+, θ−) is a monomorphism in
Chu(Set,K). One should note that these conditions on θ+, θ− are sufficient, but not necessary.

So we move on to our contradiction that will prove that Chu(Set,K) is not a topos.

Lemma 8.5. Let K be an arbitrary set, such that there exist sets A,X and a map f : A×X →
K, such that the cardinality of X is greater or equal 2. Then the category Chu(Set,K) does
not have a subobject classifier.

Proof: Suppose Chu(Set,K) contains a subobject classifier (Ω, w, ∅) with an arrow (φ+, φ−) :
(1, ¡K , ∅) → (Ω, w, ∅). Consider (A, f,X) ∈ Chu(Set,K)0 where f is not dependent on the
input of X, i.e. given an a ∈ A and arbitrary x, x′ ∈ X we have the equality f(a, x) = f(a, x′).
Suppose we have a subobject (B, g,1) ∈ Chu(Set, X)0, where B ↪→ A is a subset and g is
defined by restriction, i.e. g = f

∣∣
B×1. Consider (iB, !X) : (B, g,1) → (A, f,X), where iB

7In this notation we suppress the isomorphism 1 × ∅
∼=−−→ ∅ that would need to be precomposed with ¡K .

But as we always identify isomorphic objects this does not change our results.
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is the inclusion B ↪→ A. To see that this is an arrow in Chu(Set,K), we need to show the
commutativity of

B ×X B × 1

A×X K.

1B×!X

iA×1X g

f

But this is immediate as g is the restriction of f to B × 1 and f is independent of the input
in X. So given b ∈ B, x ∈ X we can compute(

f ◦ (iB × 1X)
)
(b, x) = f(b, x)

= f(b, 0) (f independent of X)

= f
∣∣
B×1(b, 0) (as (b, 0) ∈ B × 1)

= g(b, 0)

=
(
g ◦ (1B×!X)

)
(b, x).

So (iB, !X) is an arrow in Chu(Set,K) and a monomorphism, as iB is a monomorphism and 1K
is an epimorphism. As (Ω, w, ∅) is a subobject classifier, we find a unique (ξ+, ξ−) : (A, f,X)→
(Ω, w, ∅) making the diagram

(B, g,1) (1, ¡K , ∅)

(A, f,X) (Ω, w, ∅)

(iB !X)

(!B ,¡1)

(φ+,1∅)

(ξ+,ξ−)

(44)

commute and (B, g,1) a pullback. As ∅ is the initial object of Set we immediately obtain
ξ− = ¡X . Now consider the situation given by the diagram

(B, h,X)

(B, g,1) (1, ¡K , ∅)

(A, f,X) (Ω, w, ∅),

(!B ,¡X)

(iB ,1X)
(iB ,!X)

(!B ,¡1)

(φ+,1∅)

(ξ+,ξ−)

(45)

where h is the restriction f
∣∣
B×X . We want to show that (iB,1X) is an arrow in Chu(Set,K).

For this we need to show the commutativity of

B ×X B ×X

A×X K.

1B×1X

iB×1X h

f

But this is immediate, as h is the restriction of f to B ×X. Next we show that

(B, h,X) (1, ¡K , ∅)

(A, f,X) (Ω, w, ∅)

(iB ,1X)

(!B ,¡X)

(φ+,1∅)

(ξ+,¡X)
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commutes. For this we need to show the commutativity of

B 1

A Ω

!B

iB φ+

ξ+

and
X ∅

X ∅.

¡X

1X 1∅

¡X

As the commutativity of the right diagram is immediate from the definition of ∅, we only need
to consider the left one. But the left diagram commutes as (44) commutes. So as (B, g,1 is
a pullback , we obtain a unique arrow (ρ+, ρ−) : (B, h,X)→ (B, g,1) making (45) commute.
We show that such an arrow can not exist. If such an arrow would exist, we would have the
commutative diagram

X

1 ∅

X ∅.

ρ−

¡
1

¡X

1X
!X 1∅

¡X

But such a ξ− does not exist if the cardinality of X is greater or equal 2. So (B, g,1) is not
a pullback, therefore no subobject classifier in Chu(Set,K) exists. q.e.d.

Now we examine which categories of Chu spaces Chu(Set,K) have objects (A, f,X) such
that X has cardinality greater than two. Here we arrive at the following conclusion.

Theorem 8.6. Let K be an arbitrary set. Then the category Chu(Set,K) has an object
(A, f,X) such that the cardinality of X is greater or equal 2, so Chu(Set,K) is not a topos.

Proof: IfK itself has cardinality greater or equal two, we can consider the object (1, prK ,K) ∈
Chu(Set,K)0, where prK : 1 ×K → K is the projection. With the preceding lemma we can
conclude that Chu(Set,K) is not a topos.

Now let K have cardinality 1 or 0. This means that K is isomorphic to either 1 or ∅. We
first consider the case K ∼= 1, but as we identify isomorphic objects we arrive at K = 1.

If K = 1, then every pair (A,X) of sets can be made a object of Chu(Set,1) using
(A, !A×X , X). Hence we can simply choose 2 = {0, 1} and the conditions of the preceding
lemma are satisfied. Hence Chu(Set,1) is not a topos.

At last consider Chu(Set, ∅). As there exists only one arrow with codomain ∅, we know
that all objects (A, f,X) ∈ Chu(Set, ∅)0 are given by objects which fulfil A ×X ∼= ∅. Using
lemma 6.16 we know that for an arbitrary set X we have ∅ × X ∼= ∅. This allows us to
consider the object (∅,1∅,2) in Chu(Set, ∅), where we suppress the isomorphism ∅ × 2 ∼= ∅ in
the notation of 1∅. So we can again use the preceding lemma, so Chu(Set, ∅) is not a topos.

So in all possible cases for K we have that Chu(Set,K) is not a topos. q.e.d.
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Conclusion

9.1 Open questions and future tasks
As this thesis is in no regard an exhausting treatment of the topic of Chu categories, there
remain open questions and tasks, of which we name a few.

1. Are there categories which require one of the generalizations of the Chu category we
gave for an embedding? For example is there a category C such that there exists a fully
faithful functor F : C → Groth(C , F ), where F : (C × C ) op → Set is a functor not given
as a Hom-functor Hom( - × - , γ)?

2. Can one externalize the Grothendieck construction over finite products given in section
7.6 in the following way:

When one wants to define a projection Π: Chu(C , γ) → D for a to be determined
category C , one immediately arrives at the notion of the antiparallel product of categories,
that is a category C ×←−→ C which has the same objects as the category C × C , but
the arrows differ as such. An arrow f : (a, b) → (c, d) in C ×←−→ C is given as a pair
〈f+, f−〉 : (a, b)→ (c, d) where f+ : a→ c and f− : d→ b.

Now the first thing one sees is that unlike with the “standard” product of categories,
one obtains ad hoc

(C ×
←−→ C )×

←−→ C 6= C ×
←−→(C ×

←−→ C ),

which is good, as it mimics the property of the Grothendieck construction over finite
products. Now for a given I ∈ n -Tuples can one find an ordering of n copies of C and
parenthesis such that

Groth(I ,C ,Hom( - × · · · × - , γ)) = (C ×
←−→ . . .×

←−→ C ×
←−→(C ×

←−→ . . .×
←−→ C ×

←−→(. . . )))?

3. Can one find a functor F : Fun(C op,Set)→ Fun(Chu(C , γ) op,Set making the diagram

C Chu(C , γ)

Fun(C op,Set) Fun(Chu(C , γ) op, Set)

EC ,γ

y y

F

commute?

4. One can employ the Chu construction over a symmetric monoidal category by replacing
all occurrences of × in the definition with ⊗. Now if we are given a category with
products, coproducts, a terminal object and an initial object, it is remarked in [BW20,
Example 16.1.3] that there are two ways to obtain a symmetric monoidal structure on C ,
on the one hand one takes the products and the terminal object and on the other hand
one takes the coproducts and the initial object. Therefore we find two (a priori different)
Chu structures on C . Now can one find a generalized construction, that encompasses
the information of both these Chu constructions as well as possible interplay between
products and coproducts in the underlying category C ?
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5. We have seen that the bicompleteness of the base category C implies the bicompletness
of the Chu construction Chu(C , γ) for any choice of γ ∈ C0. Now the obvious question
is whether a reverse implication holds. Unfortunately we can a priori only construct
“pseudolimits” using the bicompleteness of the Chu construction, as the uniqueness
in the universal property can not be trivially reduced to the uniqueness in the Chu
construction. This gives rise to two questions.

Are these “pseudolimits” interesting in other mathematical research, i.e. can they be
used in answers to other categorical questions?

What restriction have to be put on C and γ such that the bicompleteness of Chu(C , γ)
implies the bicompleteness of C ? One can for example observe that this implication
holds if γ = >, the terminal object, but this also gives us an isomorphism Chu(C ,>) ∼=
C × C op, so this case is not particularly interesting. So > = γ is sufficient, but is it
also necessary?

6. Can theorem 6.14 be generalized to the generalized Chu category?
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The category of pairs (C , γ) where C is a cartesian closed category and γ is an object
of C .
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Groth(I ,C ,F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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and a functor F from the dual of the n-th power category of C into the category of
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Groth(i, n− i,C ,F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
The Grothendieck category over the category I in n -Tuples such that the first i
arrows have domain xi and the remaining have domain yi.−−−→

Groth←−−−(C , F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
The antiparallel Grothendieck construction over a (not necessarily cartesian closed)
category C together with a set-valued functor.−−−→

Groth←−−−(C ,D ,F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
The antiparallel Grothendieck construction over two categories and a functor F from
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Groth←−−−(C ,Γ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
The Grothendieck category over an arbitrary category with a functor Γ from C into
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The set of categories which have 2n objects x1, . . . , xn, y1, . . . , yn where there exists
exactly one arrow between xi and yi for all i = 1, . . . , n.

Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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sets.
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its arrows are continuous maps.



Glossary of symbols

This index contains non-alphabetic symbols and special notations used in this paper. An
example for a special notation would be the isomorphism Fab : F0(a) × F0(b) → F0(a × b)
associated to a product preserving functor. Letters will be used in he according manner.
• The letters a and b will always refer to objects of a given category C .
• The letter F will always refer to a functor whose (co-)domain is an arbitrary category.
• The letter f shall always refer to an arrow whose domain is a product.
• The letter u denotes an arrow with arbitrary codomain and domain.
• The letters µ, η are used to denote natural transformations.

1, 11
2, 19

aA,B,C , 10
Aff, 22

ba, 12
〈 - , - 〉, 13
ba, 41

cA,B,C , 11
CC ,γ , 41
Chu, 34
CHU, 83
ChuC , 31
CHUC , 78
C(L), 15
coChu, 48
coChuC , 44
coeva,x, 41∐
n∈I cn, 39

eA,B, 11
EC ,γ , 30
εA,B, 13
Eσ,I , 95
=X , 13
ESub(C ,γ), 24
ETop, 19
evalb,a, 12

F(a,b), 20
F ab, 45
Fab, 26
f̌ , 41
FΓ, 100
f̂ , 12
F∗, 29

F ∗, 46
F∨, 80

λx∈Aφ(x), 13
L(C ), 15
lim−→i∈I

, 58
lim←−i∈I

, 58

(, 11
µ ? η, 81

φ−, 16
Φ−,i, 89
φ−, 39
φ0, 76
φ+, 16
Φ+,i, 89
φ+, 39
πA,B, 13
π′A,B, 13
+, 39
pri, 12∏
i∈I , 12

P(X), 19

rA, 10

sA,B, 10
Sγ , 86
( - )∗, 12
∗, 13

×, 12
⊗, 10
>, 10, 13
⊥, 39

u∗, 31
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Index

The font of the page number denotes the following. If the page number is bold, it refers to a
definition. If it is italic, it refers to an equivalent characterisation, and a normal upright font
denotes theorems, lemmas and corollaries using this definition. So if we take for example the
following entry:

Bicomplete category, 19,20,25

It means that the notion of “bicomplete categories” is introduced in page 19, a condition
equivalent to the bicompleteness of a category is given in 20, and a theorem using bicomplete
categories can be found in 25.

Affine category, 22

Basic type, 13
Bicomplete category, 58, 58, 59

Cartesian closed category, 13, 15, 16
Category

affine, 22
bicomplete, 58, 58, 59
cartesian closed, 13, 15, 16
Chu, 16, 30, 31, 34, 37, 59
closed symmetric monoidal, 11
coChu, 39, 41, 44
cocomplete, 58
complete, 58
of subobjects, 23
Product, 50
symmetric monoidal, 10

Chu category, 16, 30, 31, 34, 37, 59
generalized, 76

Chu functor
global, 34
internal, 31
generalized, 78

local, 31
generalized, 78

Chu morphism, 16
Chu space, 18

biextensional, 18
extensional, 18
normal, 18
separable, 18

Classifying arrow, 102
Closed symmetric monoidal categories, 11
CoChu category, 39, 41, 44
Cocomplete category, 58

Cocone under a diagram, 58
morphism, 58

Coexponential, 41
Colimit of a diagram, 58
Complete category, 58
Cone over a diagram, 57

morphism, 57
Coproduct, 39
Covariant Grothendieck functor, 35

Diagram
cocone under a, 58
colimit of a, 58
cone over a, 57
limit of a, 57
of type I , 57

Evaluation, 12
Exponential, 12, 63, 64

Function set, 11
Function type, 13
Functor

product preserving, 26

Generalized Chu category, 76
Global Chu functor, 34
Grothendieck functor

covariant, 35

Hom-functor
internal, 11

Initial object, 39, 59
Internal Chu functor, 31
internal hom-functor, 11
Internal language, 15
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λ-Calculus
typed, 13, 15, 16

Language
internal, 15

Limit of a diagram, 57
Local Chu functor, 31

Morphism
Chu, 16

Morphisms of cocones, 58
Morphisms of cones, 57

Object
initial, 39, 59
terminal, 13, 57, 59, 103

One-object set, 11

Power set, 19
Product, 12, 57, 59
Product category, 50
Product preserving functor, 26
Product set, 11
Product type, 13
Pullback, 58, 60, 64
Pushout, 58, 60, 64

Set
function, 11
one-object, 11
power, 19
product, 11

∗-autonomous category, 12
Subobject classifier, 102
Symmetric monoidal categories, 10

Terminal object, 13, 57, 59, 103
Topos, 102
Translation

between λ-calculi, 15
Transpose, 12
Type

basic, 13
function, 13
product, 13

Typed λ-Calculus, 13, 15, 16
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