Ludwig-Maximilians-Universitdt Miinchen
Mathematisches Institut

BACHELOR THESIS

2-dep-Categories
Yannick Ehrhardt
supervised by

Priv.-Doz. Dr. losif Petrakis

April 13, 2024



Eigenstandigkeitserklirung

Hiermit bestétige ich, dass ich die vorliegende Arbeit selbstindig verfasst und keine an-
deren als die in der Arbeit angegebenen Quellen und Hilfsmittel benutzt habe. Des weit-
eren bestatige ich, dass die vorliegende Arbeit weder vollstindig noch in wesentlichen Teilen
Gegenstand eines anderen Priifungsverfahren war.

Ort, Datum Yannick Ehrhardt



Acknowledgments
I would like to thank Drlosif Petrakis for the guidance and suggestions I received while
writing this thesis.



Contents

1 Introduction

2 Categories with dependent arrows

21 fam-Categories . . . . . . . . .. ... ... e
22 (fam,X)-Categories . . . . . . . . . . ...
2.3 fam-and (fam,X)-Functors . . . . . . . . . . . .. .. ...
24 dep-Categories . . . ... ... ...
25 (dep,Z)-Categories . . . . .. ... ... ...
3 Categories with dep-arrows and 2-fam-arrows
31 2-fam-Categories . . . .. .. ... .. ... ...
32 (2-fam,X)-Categories. . . . . . . . . ...
3.3 2-fam-and (2-fam,X)-Functors . . . . . . . . . . ... ... .. ... ... ...
3.4 2-dep-Categories . . . .. .. ... .. ... ... ... e

3.5 (2-dep, X)-Categories
4 Conclusion

References



1 Introduction

Category theory aims to generalize the notion of function. To that end arrows with a domain
and a codomain as well as a composition of those arrows are defined. However, many of
the structures that we aim to generalize with category theory, like sets or types, also have
dependent functions. These are not captured by their respective categories. Hence, if we
wish to talk about dependency from a categorical perspective, we need to introduce new
structures to the notion of category. One approach for just that, due to Petrakis [3], giving
additional structure to categories, works roughly as follows: First, you add family arrows,
which have a domain but no codomain. Then you can add dependent arrows, which have
a regular object as domain and a family arrow as codomain. Along the way, it also makes
sense to introduce Z-objects, which generalize notions like the Z-type. These structures give
rise to what are called fam-, (fam, Z)-, dep and (dep, X)-categories. However, these can still
be extended by introducing 2-fam-arrows, arrows between family arrows. To motivate this,
consider Martin-Loef Type Theory (MLTT). For the notions from MLTT that we will use here,
refer to the HoI'T Book [5]. Type-families are given by

e afunction f: A — U from
e atype A:Uto
¢ the universe U.

Now considering a second such family h: A — U, we can define a type of functions, which,
in some sense, maps from f to h.
This type is given by

[ tfx) = h(x)).

XA
What we will do in this thesis, is to consider a generalized notion of this kind of function, the
2-fam-arrows, which extend the previously mention approach to dependency in category
theory. We will extend many of the already established examples and we will also extend the
theorems on how (fam, X)-categories induce dep- and (dep, X)-categories to work with this
additional structure. We will also show, that the example of a fam- and (fam, X)-category
given by a topos can be extended to also include 2-fam-arrows in a sensible way and inves-
tigate the structure from applying the aforementioned theorems to the topos examples.
For that, first, in the remainder of the introduction (Section 1), we will give definitions of
categories and functors, to make the notation we will be using clear. These definitions are
largely adopted from the respective definitions in [2].
Then, in Section 2, we will lay down the definitions for fam-, (fam, £)-, dep and (dep, X)-
categories as well as prove some statements about them that will be useful later. This section
is largely adopted form [3].
In Section 3, we will then introduce 2-fam-arrows and add them to the previously defined
structures. We will define 2-fam-, (2-fam, X)-, 2-dep and (2-dep, X)-categories and we see
that all (2-fam, X)-categories induce 2-dep- and (2-dep, £)-categories.
After that, there will be some concluding comments (Section 4).

Now, as mentioned, we will spend the rest of this section with setting the stage for the later
discussions. First we define the notion of a “category”:

Definition 1.0.1 (Category).
C consisting of



¢ a collection C, of objects,
¢ acollection Hom(a, b) of arrows or morphisms from a to b, Va,b € C,,

* an operation Hom(b,c) x Hom(a,b) — Hom(a,c), (f,h) — foh,Va,b,c € Cy
(called composition) and

e an arrow id, € Hom(a, a), Va € C,
(called the identity)

is called a category, iff

1. Va,b € CoVf € Hom(b, a) :
idof=f="foidy

and
2. Ya,b,c,d € CyVf € Hom(b, a)vh € Hom(c,b)¥p € Hom(d,c) :

fo(hop)=(foh)op.

We also define C; to be the collections of all arrows in C.

Recall earlier we used types as a motivation. So we better make sure that types actually
tulfill all the definitions we present. And, as we will see, they do. With one caveat, we will
need function extensionality and we will be using it explicitly many times. Hence, we give
ourselves function extensionality within type universes as an axiom:

Axiom 1.0.2 (Function Extensionality for types).
We assume for any type universe that we will be working with, that function extensionality
holds within it.

Then, since types are our main example and motivation, we will now show, that small types
form a category. This is of course pretty easy, but we shall do still it for the sake of complete-
ness.

Proposition 1.0.3 (Small types form a category).
Suppose U is a type universe.
Then, Type(U) consisting of

* Type(U)o:=U,
e VA B € Type(U),: Hom(A,B):=A — B,

e VA B,C € Type(U)y: o: Hom(B,C) x Hom(A,B) — Hom(A, C)
with computation rule f o h := Ax.f(h(x)) and

e VA € Type(U)p:ida = Axx: A = A
is a category.

Proof.
To see the statement, we have to show the two conditions in Definition 1.0.1.



1. Let A,B € Type(U)p and f € Hom(B, A). Hence A,B: Uand f: B — A.
As expected, we will be using function extensionality for this, so let x : B.
Using the definition for the composition and identities, we thus get

(ida o f)(x) = ida(f(x)) = f(x)

and
(foidg)(x) = f(idg(x)) = f(x).

Hence ida o f = f = f o ids.

2. Let A,B,C,D € Type(U)y, f € Hom(B,A), h € Hom(C,B) and p € Hom(D, C).
Hence A,B,C,D:U, f:B— A, h:C—Bandp:D — C.
We have to show
fo(hop)=(foh)op.

This time we will not need function extensionality, just the definition of the composi-
tion:

fo(hop)=M.f((hop)(x)) =M.f(h(p(x))) = Ax.(Ay.f(h(y))) (p(x))
=Ax.(foh)(p(x)) =(foh)op. [

Later, when we present the additional structures to categories we will also want to define
maps between them for some of them. These will of course be based on functors. So it is
practical to also quickly give a definition for functors:

Definition 1.0.4 (Functor).
Let C and D be categories. Then, F consisting of

® an assignment Fy : Cy — Dy and
e an assignment F{* : Hom(a,b) — Hom(Fo(a), Fo(b)), Va,b € Cy
is called a functor from C to D, iff
1. Va € Gy : F$%(id,y) = idp,(q) and
2. Va,b,c € Co¥f € Hom(a,b)Vh € Hom(b,c) : F&¢(ho f) = F'¢(h) o F#*(b).

Example 1.0.5 (A functor from Type(U) to Type(U)).
Let U be a type universe and A : U. Let Type(U) as in Proposition 1.0.3. Then, Hom(A, —)
consisting of

e AB.Hom(A,B):U — Uand
e VB, C € Type(U)y: AfAy.(foy):(A—=B)—-(B—-C)—>A—>C
is a functor from Type(U) to Type(Ul).

Proof.
We have to show the two conditions from Definition 1.0.4.



¢ Let B : U. We have to show that
(Af.AY.(foy))(ids) = idas.
For this we fist simplify the right side of this equation.

(AMfAy.(foy))(ids) = Ay.(idg o y)

Now, recall that we showed idg o y =y in the proof for Proposition 1.0.3.
Hence we can say

Ay(ldg Oy) = Ayy = idA*}B'
Thus we get (Af.Ay.(foy))(idg) = ida_s.

e LetB,C,D: U, f:B— Cand h: C — D. We have to show that
Hom(A,hof) = Hom(A,h) o Hom(A,f).
For this we just simplify both sides of this equation, which yields:
Hom(A,hof) = (AMfAy.(foy))(hof) =Ay.((hof)oy) =Ay.(ho (foy))

and
Hom(A,h) o Hom(A, f) = (Af.Ay.(foy))(h) o (Af.Ay.(f oy))(f)

= (Ay.(hoy)) o (AyY.(foy)) = Ax.(Ay.(h o y))((Ay.(f o y))(x))
= M.(Ay.(hoy))(fox) =Ax.(ho (fox)). O



2 Categories with dependent arrows

In this section, we will set the groundwork for our work in Section 3. We will give definitions
for fam-, (fam, X)-, dep- and (dep, Z)-categories. After each of these definitions, we will
discuss a couple of examples and prove some useful and interesting statements. Also, just
as the definitions build on each other, so will the examples rely on examples from previous
definitions. Of particular importances will be the proofs for the statements that (fam, Z)-
categories naturally induce dep- and (dep, X)-categories, as we will rely on these heavily
in the 3rd section, when we discuss the analogous statements for (2-fam, X)-categories. As
mentioned in the introduction, the definitions and most of the statements are due to Petrakis

[3].

2.1 fam-Categories

fam-categories are the foundation of the everything we will do in this thesis. All subsequent
definitions will make use of the structure of a fam-category. This makes sense, consider
again types. To define the X-type, you first need type-families, to define dependent functions,
you also first need type-families to give the codomain.

Definition 2.1.1 (fam-Category).
famC consisting of

¢ aCategory C,
¢ a collection fHom/(a) of fam-arrows, Va € Cy and
¢ an operation fHom(a) x Hom(b, a) — fHom(b), Va,b € Cy, as shown in the diagram:

f A
b > a o

(called composition of fam-arrows)
is called a fam-category, iff
(fam;) Va € CoVA € fHom(a) :

and
(famy) Va,b,c € CoVA € fHom(a)Vf € Hom(b, a)vh € Hom(c, b) :
(Aof)oh=Ao(foh)

Ao(foh)
foh
/—\
c h > b f > a A >
Aof
(Aof)oh



We will refer to the collection of all fam-arrows in a fam-category famC by famC,. Fur-
thermore, for fam-categories famC, we also say famCy := Cy and famC; = C;.

So, to summarize, in fam-categories, we have
e fam-arrows, which have a domain but no codomain and
* a way to compose fam-arrows with regular arrows.

And again, considering types, this makes sense. Type-families have the universe as codomain.
But the universe is not an object in the category given by its small types. Only the domain is
an object. Similarly, we know, that type-families can be composed with functions of appro-
priate codomain, as type-families are ultimately just functions.

Next, we will have a look at a very simple example of a fam-category. This is going to be a
continuous theme, after each of the major definitions, we will discuss a trivial example.

Example 2.1.2 (A fam-category with trivial fam-arrows).
Let C be any category and A any collection. Then, famC consisting of

e C,
e Ya e Cy:fHom(a):= A and
* Va,be Co: (A, f) = A

is a fam-category.

Proof.
To see this, we have to show the conditions in Definition 2.1.1.

(fam,) For (fam,),leta € Cypand A € fHom(a).
By the definition of the fam-arrow composition here,

Aoidg = A,
which is precisely (fam;).

(fam,) Now let a,b,c € Cy, A € fHom(a), f € Hom(b,a) and h € Hom(c,b).
Again, by the definition of the fam-arrow composition, we have

AofJoh=Aoh=A
and
Ao (foh)=A.
Hence (Aof)oh =Ao (foh). H

Now, just because this example was easy, does not mean it is useless. The following is a
special case of this. What we will see, is that, for every category, there is a fam-category,
where the fam-arrows are simply the objects of the category. This category with constant
fam-arrows will accompany us on our entire journey.

Corollary 2.1.3 (A fam-category with constant fam-arrows).
Let C be a category.
Then, famC consisting of

oC/



e Va € Cy:fHom(a) := Cyand
* Va,be Co: (A f) = A
is a fam-category.

Proof.
The statement is clear, as it is simply a special case of Example 2.1.2. O

Referring to these fam-arrows as constant is very natural. For this, again consider a type
universe U. If we apply the above construction to Type(U), there is clearly a correspondence
between the selected fam-arrows and the constant type-families.

This now marks the 3rd time in this subsection, that we have talked about types in relation to
fam-categories. We still have to show, that we can actually give a fam-structure for Type(U)
that captures all type-families. This we do now:

Proposition 2.1.4 (Small types form a fam-category).
Let U be a type universe.

Let Type(U) be the category as per Example 1.0.3.
Then Typef(U) consisting of

* Type(U),
e VA € Type(U)y: fHom(A):=A — Uand
e VA B € Type(U)y : (u, f) — Ax.pu(f(x))

is a fam-category.

Proof.
Like in Example 2.1.2, to see that Type'(U) is a fam-category, we have to show the conditions
(famy) and (fam,).

(fam;) LetA:Uand pn: A — U.
Let x : A. We can see that pu(ida(x)) = p(x).
Thus by function extensionality, o ida = p.

(fam,) LetA,B,C:U, u:A—> U, f:B—Aand h:C — B.
We have to show that
(pof)joh=po(foh).

Thus, using the above definitions, we get

(Lof)oh =Az.(nof)(h(z)) = Az.u(f(h(z))) = Az.u((foh)(z)) =pno(foh). O

With this we can see, that the initial motivation is founded, at least for this definition. Small
types indeed give a fam-category. Later, as we introduce more definitions, we will always
show, that small types form an example of them. Eventually, we will show, that type uni-
verses give (2-dep, )-categories, which are, in a sense, the combination of all of the struc-
tures we are going to discuss.

Let us then go to our second major example: Toposes. One of our aims is to show that all
toposes can naturally be given the structure of a (2-dep, X)-category. Naturally, for this we
have to show that they can be given the structure of a fam-category. To do this, we will use
a construction which is due to Pitts [4].



The full construction presented by Pitts is an example of what he called a type-category. The
definition for type-categories and the definition for (fam, Z)-categories (which we will give
later in Definition 2.2.1) are actually almost the same. The difference is, that type-categories
are required to have a terminal object, while (fam, Z)-categories are not. Hence the full con-
struction actually satisfies the definition for (fam, X)-categories. Here however we will only
focus on the part relevant to fam-categories.

We will revisit this in the subsection on (fam, £)-categories, where we will show that toposes
canbe given a (fam, X)-structure. For the definition and other notions of toposes that we will
use here, please refer to [1]. Now we are going to explicitly spell out the notation for the bits
of the topos-structure, that we are going to use:

Notation 2.1.5 (Notation for toposes).
If C is a topos, we will use

* 1 for a terminal object,
* Va € Co: 1,4 for the unique arrow in Hom(a, 1),
¢ () for a subobject classifier and
e T for the truth arrow in Hom(1, Q).
Using this notation, we will now see how a topos becomes a fam-category:

Lemma 2.1.6 (Toposes as fam-categories).
Let C be a Topos.
Then famC consisting of

e C,
* Va € Co: fHom(a) := [ [c.c, Hom(a x b, Q) and
e Va, ke Cy:((b,e), f) — (byeo (f xidy))

is a fam-category.

Proof.
As before, to see that famC is a fam-category we have to show the conditions in the defini-
tion.

(fam;) To show (fam,), we have to show
Va € CoV(k,e) € fHom(a) : (k,eoid, x idy) = (k, e).

But this is immediately clear, as regular composition respects identities and
Va,b € Cp:idg x idp = idaxep.

(fam,) Leta,b,c € Cy, (k,e) € fHom(a), f € Hom(b,a) and h € Hom(c, b).
We have to show
((kye)of)oh = (k,e) o (foh).

Using the definition of the fam-arrow composition and basic properties of products,
we have

((kye)of)oh=(k,eo (f x1idy)) oh = (k,eo (f x idg) o (h x idy))

:(k,eo((foh) Xidk)) =(k,e)o(foh). O

8



As mentioned in the introduction, we will show theorems on that every (2-fam, Z)-category
is a 2-dep- and (2-dep, Z)-category, as well as comparable theorems for the 1-versions. Given
such theorems it is of course reasonable to ask, if all (dep, Z)- and (2-dep, X)-categories are
given by (fam, Z)- and (2-fam, Z)-categories respectively. The answer to that question will
be no and the following example of commutative rings will help us get to that answer.

Example 2.1.7 (A fam-structure for a commutative ring).

Let R be a commutative ring.

Let BR be the category given by the additive group of R, with object * and morphisms the
ring elements.

Then, fR consisting of

* BR,

e fHom(x) = R x Rand

e Vr € RVY(a,b) e RxR:(a,b)or:=(a+7,b+71)
is a fam-category.

Proof.
To see this, again, we just have to show (fam;) and (fam;).

(fam,) Let (a,b) € fHom(x).
We simply have to show that (a + 0,b 4+ 0) = (a, b).
Since 0 is a neutral element, this clearly holds.

(fam,) Let (a,b) € fHom(x) and r,q € R.
We have to show that ((a+71)+q,(b+71)+q)=(a+ (r+q),b+ (r+q)).
This though follows immediately from the associativity of addition in rings. O

2.2 (fam,X)-Categories

Now, we will add X-objects to fam-categories, turning them into (fam, X)-categories. X-
objects aim to generalize notions like the Z-type into a categorical framework. As such, in ad-
dition to Z-objects, (fam, L)-categories will also contain first projection arrows and Z-arrows,
which we use to capture certain parts of the behaviour of the X-type. It is also possible to
define second projection arrows, but at the moment we lack the necessary prerequisites for
this, so will will address these later.

Definition 2.2.1 ((fam, X)-Categories).
2 C consisting of

¢ a fam-category famC,

* anobject } A€ famCy, Va € famCoVA € fHom(a),
(called the Z-object of a and A),

e anarrow pr{* € Hom( ) A, a),Va € famCoVA € fHom(a),
(called the first projection arrow for a and A) and

e anarrow I,f € Hom ()Y (Ao f),Y  A),Va,b € famCoVA € fHom(a)vf € Hom(b, a),
(called the X-arrow for A and f)

is called a (fam, X)-category;, iff



(pull) Va,b € famCyVA € fHom(a)Vf € Hom(b, a) : the following diagram is a pullback
S Aof) — 25 A

b,Aof

A
Py pri»

b s a

(s1) Ya € famCyVA € fHom(a) :
Tridg = idy »

and
(s2) Va,b,c € famCyVA € fHom(a)Vf € Hom(b, a)vh € Hom(c,b) :

Z)\(f o) h) = Z)\f o Z}\th.

Furthermore, we define Cy := famC,, C; := famC; and C; := famC,.

Remark 2.2.2 (Well-definedness of conditions in Definition 2.2.1).

We can see that the conditions (s7) and (s;) are well defined. To do so, we want to see, that
both sides of the respective equations have equal domains and codomains. To see this, use
(fam,) for (s7) and (fam,) for (s;).

With the definition in hand, let us now consider some examples. Note though, that, as men-
tioned before, the definition is almost the same as the definition of type-categories presented
by Pitts [4]. It is only missing the requirement of a terminal object. So all examples of type-
categories are also examples of (fam, X)-categories.

Example 2.2.3 (A (fam, Z)-category with trivial X-objects).
Let famC be a fam-category. Then, ZC consisting of

e famC,

* Va € famCoVA € fHom(a): ) ,A:=aq,

e Va € famCyVA € fHom(a) : pr¢* := id, and

e Ya,b € famCyVA € fHom(a)Vf € Hom(b, a) : L\ f := f,
is a (fam, X)-category.

Proof.
To see this, we have to show the conditions (pull), (s7) and (s;) from Definition 2.2.1.

(pull) For this, Let a,b € famCy, A € famCy and f € Hom(b, a).

We have to show, that
b—" s a
idb‘/ ‘ida
b ———a
is a pullback.

This, however, is clearly the case.



(s1) Letagain a € famCy and A € fHom(a). We have to show that id, = id,.
Hence, by reflexivity of equality, we see that (s;) holds.

(s2) That (s;) holds we can see analogously to (s;).
Again, just unravel the definitions and use reflexivity. O

Next we will look again at the constant fam-arrows from Corollary 2.1.3. We will see, that,
under the condition that we have binary products, we can find a Z-structure, turning these
fam-categories into (fam, X)-categories.

Example 2.2.4 (A (fam, Z)-category with constant fam-arrows).
Let C be a category with binary products. Let famC be the fam-category given by C and
Corollary 2.1.3. Let there be an assignment

famCy x famCy — famCy, (a,b) — a x b,

where a x b is a product of a and b. Then, ZC consisting of
e fam(C,
* Va € famCoVA € fHom(a): )} A:=a XA,
e Va € famCyVA € fHom(a) : pr¢* € Hom(a x A, a) the canonical projection and
e Ya,b € famCyVA € fHom(a)Vf € Hom(b, a) : I f := f x id,,
is a (fam, Z)-category.

Proof.
We again have to show the conditions (pull), (s;) and (s;).

(pull) Let a,b € famCy, A € famCy and f € Hom(b, a).
We have to show that the square

fxidy

b xA axA
pr%"A pr‘]l*)‘ )
b > a

is a pullback.
Since the diagram is clearly commutative, we only need to have a look at whether it
tulfills the universal pullback property.
For this, let P € famCy, p € Hom(P,a x A) and q € Hom(P,b) a competitor to the
diagram:
P
P /—\

fxidy

b x A axA
q
priA prét
b > a

11



We now have to find r € Hom(P, b x A) making the diagram

axA

A
pros

commutative and show that r is unique.

existence
For this, let pr$¢ € Hom(a x A, A) and pr5 € Hom(b x A, A) be the canonical second
projections. For the red arrow in the diagram, we take

r:=(q,pry op).

We now have to show that the diagram actually becomes commutative with this.
Hence we have to show commutativity of the triangles, then we are done with this
part. For this we have to show

(i) pr* o (q,pr§ op) = qand
(ii) f x idyo (q,prsop).

(i) follows from basic properties of products.
For (ii), consider

fx idyo (q,p3 op) = (fo q,prs op) = (pr{* op,pr§ op)

= (pri’,prs) op =p.

uniqueness
For this let w € Hom(P, b x A) also making the diagram commutative.
We have to show
T=w.

Now, since both are arrows pointing to a product, it suffices to show, that they
make the same product-competitor diagram for said product commutative:

b

3_

P b xA

N

pryop
Hence it suffices to show
(i) prt* ow =prttorand
(i) priow=prbor.



(i) is clear, as both sides of the equation are assumed to be equal to q.
To show (ii), consider

priow =1idyopriow =priof xidyow =priop.

Analogously we also get
prior=priop.

Hence, pr§ ow = p3 o r, demonstrating uniqueness.
To summarize, with this we can see, that we indeed have a pullback.
(s1) Leta € famCyand A € fHom(a). We have to show
idq x idy = idgxa.
However, this is clear.

(s;) Leta,b,c € famCy, A € fHom(a), f € Hom(b,a) and h € Hom(c, b).
We have to show
(fO h) X idy = (f X ld)\) o (h X ld)\)

Again, this is just a basic property of products. O

After the constant families, we will now return to types and we will see that small types
indeed form (fam, Z)-categories. Observe that much of the proof below is similar to the
proof above. This makes sense, after all Z-types are simply dependent products.

Proposition 2.2.5 (Small types form a (fam, Z)-category).
Let U be a type universe. Let Type'(U) be the fam-category from Proposition 2.1.4 using U.
Then, Type*(U) consisting of

* Type'(U),
e VA € Type'(U)oVp € fHom(A) : Y, n:=> 5 u(x) the inductively defined Z-type,
e VA € Type(W)oVu € fHom(A) : pri*: 3, u — A the first projection and

e VA,B € Type'(U)oVp € fHom(A)VFf € Hom(B,A): Z,f: ) (pof) = > , H,
with computation rule X, f(x,y) = (f(x),y),

is a (fam, X)-category.

Proof.
Again, we simply have to show the conditions (pull), (s;) and (s;).

(pull) Let A,B € Type'(U)y, u € fHom(A) and f € Hom(B, A).
We have to show that the square

Iuf
2plpof) —— 3 \u
pﬂhmfk Bprf\yu )
B > A

13



is a pullback.

It is easy to see that the square is commutative using function extensionality.

So we just have to show the universal pullback property.

For this, let P € Type’ (U)o, p € Hom(P,}_, 1) and q € Hom(P, B) a competitor to the
diagram:

.f
2plpof) ————— 5 ,u
q .
pr$,uof pr?’“
B > A

commutative and show that r is unique.

existence
For this, let pr? [Lis  w u(prH(x)) and prb : [Tes, o w(f(pri*of(x))) the sec-
ond projections.
Now let
ri= A (q(x), pri(p(x) : P = 3 (not).
B

To see that v makes the pullback-competitor diagram commutative, we need to

show
(i) pry
(i) Z,for=p.

f
Pl or=qand

This can be done using function extensionality, let x : P.
Thus we can see

(pro*f o 1) (x) = pro*f(r(x)) = pr?’”Of(q(X),Pf?(P(X))) = q(x)

and

14



uniqueness
Letw : P — ) .(po f) such that it makes the pullback-competitor diagram com-
mutative. We have to show, that
T=w.

To do so, we use function extensionality again, let x : P. Thus
wix) = (pri*(w(x)), pri(w(x))) = (q(x), pri(w(x)))
= (q(x), PrA(ELFW(x))) = (a(x), Pra(p(x)) = r(x).
Thus clearly, r = w.
With this we can see, that we have a pullback.
(s7) Let A € Typef(U)yand pu € fHom(A). We have to show
Lida =idy .

This we can see easily, by applying function extensionality:
Let (x,y): > , i, then

ZuidA(X)y) = (1dA(X))y) = (X)y) = idZA H(X)y)-

(s2) Let A,B,C € Type'(U)y, u € fHom(A), f € Hom(B,A) and h € Hom(C, B).
We have to show
Zu(f e} h) = Zuf o Zuofh.

We are going to use function extensionality again, let (x,y) : > (o foh).
Thus

Zu(fo h)(x>9) = (f(h(X)),y) = Zuf(h(x))y) = (Zufo Zuth) (X)y)- [

Next, we want to discuss the example of a topos again. As mentioned before, the structure
we used for toposes in Lemma 2.1.6, is actually part of a type-category-structure on toposes,
introduced by Pitts [4]. Now we will verify, that this structure does fulfill the definition of a
(fam, X)-category.

Lemma 2.2.6 (Toposes as (fam, X)-categories).
Let C be a topos. Let famC be the fam-category by Lemma 2.1.6 using C.
Then, ZC consisting of

e fam(C,
* Va € famCyV(k,e) € fHom(a) : }__(k, e) the pullback of
axk
1—'——Q
e Va € famCoV(k,e) € fHom(a) : pr{t :=prikop,
where pri* € Hom(a x k, a) is the canonical first projection

and p € Hom( Y (k, e),a x k) the arrow given by the pullback, and

15



* Va,b € famCyV(k,e) € fHom(a)Vf € Hom(b,a) : Xy f the unique arrow making

the diagram

> (k,e)of » b xk
wk
> ax k
T > Q

commutative
is a (fam, X)-category.

Proof.
As always, we need to prove the 3 conditions in Definition 2.2.1.

(pull) Let a,b € famC,y, (k,e) € fHom(a) and f € Hom(b, a).
We have to show that the following square, which we call (xx)

e
Y (ke)of —= 5 Y (k,e)

b,(k,e)of
pr1( e)o pﬁl,(k&)

b > a

is a pullback.
For this, let
* po € Hom() . (k,e),a x k) and
* pp € Hom( Y ,(k,e)of,b x k)
be the arrows from the defining pullback of the Z-objects.
Furthermore let
e pr&* € Hom(a x k,a) and
e pr®* € Hom(b x k,b)
be the canonical projections.
Since pr&™® = prok o p, and pri®°
following diagram, which we call (x):

Zke
S (ke)of — 90 s (K e)

Po Pa
M fxidy M .
pr}f‘(k‘e)"f b x k s a X k pr?‘(k‘e)
pr‘f’k p‘r?’k
b >

16

f = prik o py, (x%) is the outer square in the



Notice that the left and right triangle of (x) are commutative. Furthermore, using the
definitions for X, f and f x idy, we immediately see, that the upper and lower square in
(*) are commutative. Thus (*) is entirely commutative and thus, (*x*) also is.

By Example 2.2.4 we already know, that the lower square in (*) is a pullback.

Hence it suffices to show, that the upper square is a pullback, then by the pullback
lemma, the outer square, which is (%), also is.

For this, combine the upper square with the defining diagram for ) _(k,e), which
yields the commutative diagram:

Soke)of — T LS (ke) 5 1

b xk - yaxk ——— Q
ledk

By the definitions for ) , (k,e)ofand ) _(k,e), both the right and outer square of this
diagram are pullbacks. By the pullback lemma, thus the left square, which is the upper
square in (*), is as well. Hence (xx) is a pullback.

(s7) Let a € famCy and (k,e) € fHom(a). We have to show, that

Lieida =1idy (ke

To do so, since Xy )id, is defined via pullback, we can simply show that idy ) also
satisfies the universal pullback property.

(s;) Leta,b,c € famC,y, (k,e) € fHom(a), f € Hom(b,a) and h € Hom(c, b).

We have to show
Zike)(foh) = Ze)f o Eyejorh. (1)

To do so, we will show, that both sides of this equation make the same pullback-
competitor diagram commutative. First consider X ) o Zi ¢)orh.
The arrow X ¢)f is defined by

2 p(k,e)of » b xk
wk

> axk

e

T > Q)

and X ¢)orh is defined by
> .k,e)Jofoh s cxX k
T~ Lkejorn de
Ty
2> lk,e)of » b xk
eofxidk
1 - >

17



Putting these diagrams together, we get the following diagram, which we call (x):

> (k,e)ofoh »cx k
> bxk
o
> axk
COindk
T s Q

Now consider the other side of Equation 1.
The arrow L ¢)(f o h) is defined by

> (k,e)Jofoh s cx k

w) Xidy

s ax k

T > Q)

We can clearly see, that (except for the red arrow) this diagram is a subdiagram of (x).
Thus, since we are working with a pullback, whatever in () has the place of the red
arrow, is equal to that red arrow.

Thus Equation 1 follows. O

Example 2.2.7 (A (fam, Z)-structure for a commutative ring).
Let R be a commutative ring. Let fR be the fam-category given by Example 2.1.7 and R.
Then, IR consisting of

o fR,
* Y(a,b) € fHom(x): Y .(a,b) :=x,
e Y(a,b) € fHom(*) : prT’(a’b) :=a-band

* V(a,b) € fHom(*)Vr € Hom(x, %) : LT :=7(1 +7+a+Db)
is a (fam, X)-category.
Proof.
We simply have to show (pull), (s;) and (s;) again.
(pull) Let (a,b) € fHom(x) and f € Hom(x, %).
We have to show that the square

f(1+f+a+b)
*

*
(a+f) (b+f)k Bab

* —— %
f

18



is a pullback.
For this we first have to show that it is commutative.
We can see commutativity, by showing

ab+f(1+f+a+b)=f+(a+f)(b+f).
For this, we can just simplify both sides of this equation, which get us:
ab+f(1+f+a+b)=ab+f+f*+fa+fb

and
f+ (a+f)(b+f) =f+ ab + fb + fa + -

By commutativity of addition in rings, we can thus see that the square is commutative.
Now we show the universal pullpack property holds here. Solet xand p, q € Hom(x, )
be a competitor to the square. Hence we have the following commutative diagram,

which we call (d):
* /p\
f(14+f+a+b)

—_—

S
g l(am (b-+f)
k

—_—
f

* ¥ ¥
=]
o

We now have to show existence and uniqueness of an arrow as in the universal pullback
property for this diagram.

existence
Letr:=—f(1+4+f+ a+ b) + p. We have to show that

P

f(1+f+a+b)

|

¥ ¥/ ¥

(a+f)(b+f) ab

is commutative. We only have to do so for the triangles though, as we have already
seen that the square is commutative.

For the upper triangle this is immediately clear.

For the left triangle, use that p — f + ab = q, since (d) is commutative, and verify

(a+f)(b+flor=(a+f)(b+f)o(—f(1+f+a+Db)+7p)

—ab+fat+fb+f—f—f —fa—fb+p=ab—f+p=gq.
Hence existence is clear.

uniqueness
That we have uniqueness is clear, since all morphisms are isomorphism.

19



(s7) Let (a,b) € fHom(x). We have to show that
0(1+0+4+a+b)=0.
For this we can simply use the general fact, that in rings Vr ¢ R: 0-1=0.
(s2) Let(a,b) € fHom(x) and v, q € Hom(x, ). We have to show, that
r+q)(1+r+q+a+b)=r(1+r+a+b)+q(l+q+a+b+2r).
For this we just simplify both sides of the equation, which yields:
(r+q)(I+r+q+a+b)=r+r’+rq+rat+rb+q+qr+q*+qa+qb
=1+ q°+2rq+ra+rb+qa+qb
and
r(I+r+a+b)+ql+q+a+b+2r)=r+r*+ra+rb+q+q°+qa+qgb+2qr

=1+ g’ +2rq+ra+rb+qa+qb. O

2.3 fam-and (fam, X)-Functors

Now we will have a short look at fam- and (fam, £)-functors, as we want to introduce the
2-fam-versions of these later. We will also discuss some examples of these, so that we will
be able to give examples for the 2-fam-versions later. First we will consider fam-functors:

Definition 2.3.1 (fam-Functor).
Let famC, famD be fam-categories and C,D their underlying regular categories respec-
tively. Then, famF consisting of

e F:C — D afunctor and
* Ya e C: famF§: fHom(a) — fHom(F(a)),

is a fam-functor from famC to famD, iff
Va,b € CoVA € fHom(a)Vf € Hom(b,a) :

famF3 (A o f) = famF$(A) o F(f).

Example 2.3.2 (A fam-functor from Type’(U) to Type’(UL)).
Let Ube a type universe, A : Uand a : A. Let Type'(U) be the fam-category form Proposition
2.1.4. Then, Hom"*(A, —) consisting of

* Hom(A,—) the functor from Example 1.0.5 and
e VB € Typef (U)o : famF? := AuAf.u(f(a)): (B—U) — (A = B) = U
is a fam-functor from Typef(U) to Typef(UL).

Proof.
We have to show that the condition in Definition 2.3.1 is fulfilled.
SoletB,C:U, u: B — Uand h: C — B. We have to show that

(AwAf.pu(f(a))) (poh) = (AwAf.u(f(a))) (1) o Hom(A, h).

20



To do so we just simplify both sides of the equation, which yields:

(AwAf.p(f(a))) (o h) = (AMf.(koh))(f(a)) = Af.(k(h(f(a)))).

and
(AAf.u(f(a))) (n) o Hom(A, h) = (Af.u(f(a))) o Hom(A, h)
)

= Ax.(AF.p(f ( ))(Hom(A, h)(x))) = Ax.(s((Hom(A, ) (x))(a))
= . (1((Ay-h o y) (1)) (@) = Ax.(p((h o x) (@) = M. (n(h(x(a))). O

Example 2.3.3 (A fam-functor induced by a ring homomorphism).

Let R, Q be a commutative ring and f : R — Q a ring homomorphism.

Let fR and fQ be the fam-categories given by R and Q via Example 2.1.7 respectively.
Then, famF consisting of

* (idyy, f) and
* F7:(a,b) = (f(a), (b))
is a fam-functor from fR to fQ.

Proof.
That (id., f) forms a functor BR — BQ is easy to see and that F; is well defined is also clear.
Hence we simply have to consider the condition in Definition 2.3.1.
Let (a,b) € fHom(*) and v € Hom(x, ).
We have to show
Fi((a,b) o7) = F3(a,b) o ().

For this we can just simplify both sides of this equation, which yields:
F((a,b)or) =F(a+r,b+71) = (f(a) + f(r), f(b) + (1))

and
Fy(a,b) o f(r) = (f(a), f(b)) o f(r) = (f(a) + f(r), f(b) + f(r)). O

Next, we are going to look at (fam, X)-functors. Interestingly, they have the same structure as
fam-functors, they are just subject to additional conditions. This is not entirely surprising,
after all, (fam, Z)-categories do not have collections of things that fam-categories do not
have. (fam, Z)-categories only provide us with additional objects and arrows.

Definition 2.3.4 ((fam, X)-Functor).
Let ZC, XD be (fam, X)-categories and famC, famD their underlying fam-categories re-
spectively. Then, a fam-functor

famF = (F, famF,) : famC — famD

is called a (fam, X)-functor from ~C to XD, iff
1. Va € XCyVA € fHom(a) :

F( Z 7\) - % famFe(A)

and
2. Va,b € ZCyVA € fHom(a)Vf € Hom(b, a) :

F(ZAf) = Zamrg ) F(F).

21



Example 2.3.5 (A (fam, Z)-functor induced by a ring homomorphism).
Let R, Q be a commutative ring and f : R — Q a ring homomorphism.
Let famF be the fam-functor given by R, Q and f through Example 2.3.3.
Let LR and ZQ be the (fam, Z)-categories given by Example 2.2.7.

famF is a (fam, X)-functor from XR to ZQ.

Proof.
We just have to show the two conditions from Definition 2.3.4.

1. This condition is immediately clear, as both R and XQ both only have one object.

2. Let (a,b) € fHom(x) and r € Hom(x, ).
We have to show

fr-(14+1+a+b))=f(r)-(1+F(r)+fla) + f(b)).

This is clear, as f is a ring homomorphism. ]

2.4 dep-Categories

Now we begin to add arrows that point from an object to a fam-arrow of that object, which
we call dep-arrows. We also want to be able to compose these arrows with regular arrows of
appropriate codomain. Later, when we get to 2-dep-categories, we will also give ourselves a
composition of a dep-arrow with the 2-fam-arrows mentioned in the introduction. A minor
complication that we will have when composing dep-arrows and regular arrows, is that the
resulting dep-arrow will have both a different domain and a different codomain from the
original one. It is easy to see why this is necessary by considering the typing of the dep-
arrows, which we will see in the definition below. The reader is also encouraged to compare
how the codomain changes for these arrows with how the codomain behaves in type theory,
when composing a dependent function with a regular function.

Definition 2.4.1 (dep-Category).
dC consisting of

¢ a fam-category famC,
¢ a collection dHom(a, A) of dep-arrows, Va € famCyVA € fHom(a) and

* an application of dep-arrows,Va,b € famCyVA € fHom(a), as shown in the diagram:

is called a dep-category, iff
(dep;) Va € famCyVA € fHom(a)Vd € dHom(a, ) :
$boida =0
and

22



(dep,) Va,b,c € famCyVA € fHom(a)vVd € dHom(a,A)Vf € Hom(b, a)vVh € Hom(c, b) :

$o(foh)=(pof)oh.

We also define dC; to be the collection of all dep-arrows of dC.
Furthermore, we say dCy = famCy, dC; := famC; and dC; := famC,.

With this definition, we will again look at examples as usual. First we will look at a trivial
example, then at an example with constant fam-arrows and then show that small types fulfill
the definition. After that, we will deviate from the previous pattern and not immediately
look at the example of a topos, but rather one of the theorems mentioned in the introduction,
which states that every (fam, X)-category induces a dep-category.

Example 2.4.2 (A dep-category with trivial dep-arrows).
Let famC be a fam-category and A any collection.
Then, dC consisting of

e famC,
e Va € famCyVA € fHom(a) : dHom(a,A) := A and
e Va,b € famCyVA € fHom(a): (¢,f) — ¢

is a dep-category.

Proof.

To show that dC is a dep-category, we simply need to show (dep;) and (dep,).

Both of these follow immediately though, as the application is constant in the second vari-
able. Hence dC is a dep-category. O

Example 2.4.3 (A dep-category with constant fam-arrows).
Let C be a category and famC the fam-category given by Corollary 2.1.3 and C.
Then, dC consisting of

e fam(C,

e Va € famCyVA € fHom(a) : dHom(a,A) := Hom(a,A) and

* Va,b € famCyVA € fHom(a) : the regular composition of arrows
is a dep-category.

Proof.

Again, we simply have to show the conditions in Definition 2.4.1.

And again, we can easily see that the conditions hold, as the regular composition of arrows
respects identities, which gives us (dep;), and is associative, which gives us (dep,). ]

Proposition 2.4.4 (Small types form a dep-category).
Let U be a type universe and Type'(U) the fam-category given by Proposition 2.1.4 and U.
Then, Type?(U) consisting of

* Type'(U),
e VA € Typef(U)oVu € fHom(A) : dHom(a, p) := [ . n(x) and

23



e VA,B € Typef(U)oVu € fHom(A) :
o = ApALMD(F(x)) : (] Jux) = T [ r(fx))
xX:A

f:B—A x:A

is a dep-category.

Proof.
We again have to show that the conditions hold, this time we will have to put some more

effort in though.

(depy) LetA:U, u:A—=Uand ¢ : [] 5 d(x).
We have to show
$oida = .
This we can do using function extensionality, so let x : A.
We can see, using the definitions

(¢ oida)(x) = dp(ida(x)) = (x).
Hence clearly ¢ o ida = ¢.

(dep;) LetA,B,C:U, p:A—=U f:B—=A h:C—Band ¢:[[ ., d(x).
We have to show
bo(foh)=(pof)oh.

Again, we can use function extensionality, let x : C.
Using the definitions we get

(po(foh))(x) =d((foh)(x)) =(f(h(x))) = (¢ of)(h(x)) = ((pof)oh)(x). [

Theorem 2.4.5 (Every (fam, X)-category induces a dep-category).
Let 2C be a (fam, X)-category and famC its fam-structure.
LetVa € XCyVA € fHom(a) :

dHom(a,A) :={¢$ € Hom(a, > A)lpri* o d = id,).

LetVa,b € ZCyVA € fHom(a) : an operation

o4 : dHom(a,A\) — H dHom(b, A o f),

feHom(b,a)

such that it returns the unique arrow making the following pullback-competitor diagram
commutative:

Then, dC consisting of

24



e famC,
e Ya € LCyVA € fHom(a) : dHom(a,A) and
e Va,b € XCyVA € fHom(a) : o4
is a dep-category.
The proof of the theorem largely follows the proof of the same statement in [3].

Proof.
First we have to see, that o4 actually maps to the right collection of dep-arrows.
For thislet a,b € XCy, A € fHom(a), ¢ € dHom(a,A) and f € Hom(b, a).
By considering the defining diagram, it is clear, that ¢ o4 f € Hom(b, 2 y(Aof )), but we still
need to show, that
pri*fo (¢ og f) = idy.

This however, we can see by considering the left triangle in the defining diagram.
So what remains to be done, is to show the conditions (dep;) and (dep,).

(depy) Leta € £XCy, A € fHom(a) and ¢ € dHom(a,A).
We have to show

¢ ogids = ¢.

For this it suffices to show that the diagram

a
&
aida
e
D oA 2 A
id
@ pr%" pr§1‘7‘
a . > a

is commutative.

For this we just need to show the commutativity of the triangles.
For the left triangle, this is clear, by the condition on dep-arrows.

So we just have to demonstrate commutativity of the upper triangle.
To see this, we use (s1) and see that L id, = idy .

With this we know that the upper triangle is commutative.

Thus we have seen that (dep;) holds.

(dep,) Leta,b,c € £Cy, A € fHom(a), & € dHom(a,A), f € Hom(b,a)and h € Hom(c, b).
We have to show
$og(foh)=(dogf)oqh.

25



For this, first consider the definition of the left side of this equation:

(bogf)oh

c,Aofoh b,Aof
PTy PTy

c s b

If we can show, that the right side of this equation also makes the above diagram com-
mutative when substituting the red arrow for it, we are done. So we have to show

(i) id. = pryr™ho ¢ ogq (foh) and
(i) (pogf)oh =Ly shoddog(foh).

To do so, consider the definition for ¢ o4 (f o h):

dofoh

foh

We call this diagram ().
With this we can immediately see, from the left triangle, that (i) holds.
For (ii), consider the definition of ¢ o4 f:

We call this diagram (s:x).

26



We can put parts of (x) and (xx) together, to form the following commutative diagram:

We can clearly see, that the inner square in this diagram is a pullback.

Furthermore, we can also see, that ¢, ¢ o f o h and h are a competitor to that pullback.
Lastly, we can see, that both (¢ o4 f) o h and Zy.¢h o ¢ oq4 (f o h) fulfill the universal
pullback property for the put together diagram. Thus they are equal, showing that (ii)
holds. Thus we have

P ogq (foh) = (pogf)ogh,

what we wanted to show. O]

We will now address the example of a topos again. We have seen in Lemma 2.2.6 that every
toposisa (fam, X)-category. With the above theorem in hand, we thus know that every topos
is a dep-category. But just knowing that is not enough to understand the dep-structure of a
topos, so we have to put in some additional work:

Lemma 2.4.6 (Toposes as dep-categories).

Let C be a Topos and let ZC be the (fam, Z)-category given by Lemma 2.2.6 and C.
Let dC be the dep-category given by ZC and Theorem 2.4.5.

Let a € dCy and (k,e) € fHom(a).

Then, there is a bijective correspondence between

¢ the f € Hom(a, k) fulfilling e o (idq, f) =T o 1, and
¢ the dependent arrows from a to (k, e) in dC.
In one direction, this correspondence is given by

X : dHom(q, (k,e)) — {f € Hom(a, k)|eo (idy,f) =T o 1.},

b — Prtzlyk O Pa,(ke) © D,

where pg () is the arrow from the pullback as in Lemma 2.2.6 and pr$™* : axk — k canonical.
In the other direction the correspondence is given by

d:{f e Hom(a,k)leo (ide,f) = To 1.} — dHom(aq, (k,e)),

f— 6(f),

27



where 5(f) is the unique arrow given by the universal pullback property:

(ida, f)

Furthermore, it can be shown, that
Vb € dCoVd € dHom(a, (k,e))Vh € Hom(b, a) : x($p og h) =x(d) o h.

Proof.
We first have to consider whether x and & are well defined. We start with x.
We have to show, that, given ¢ € dHom(a, (k, e)), we have

1. pre*opa ke © ¢ € Hom(a, k) and
2. eo (idg, pr¥* o pake 0o d) =To 1.
This, we can do in the following way:
1. Recall from the respective definitions, that

* ¢ € Hom(a, Zq(k,e)),
® Pake € Hom(Zy(k,e),a x k) and
e pr$k € Hom(a x k, k).

Thus clearly pr$* o po ) © ¢ € Hom(a, k).

2. For this, we first show that (idq, Pr9* o pa,ke) © ®) = Pa,(ke) © O
We do this, by showing that the diagram

ida
a
Pﬁa’k/
a——axk
pa,[k,e)od) ak
*
k

PTg’kOPa,(k,e)O¢

is commutative.
For the upper triangle, use the conditions on ¢ in Theorem 2.4.5 and the definition of
pri™¢ in Lemma 2.2.6 and verify

o ) k»
ide = pri™ o d = pri*o pa e o ¢.

28



For the lower triangle, simply use reflexivity.
Since (idq, PTy* 0 Pa,ke) © ¢) is given as by the universal product property:

ida

prza'kopa,(k,elod)

we thus know that
(ida) prg’k O Pa,(ke) © d)) = Paq,(k,e) © d)
Hence, we only have to show e o pg )0 =To 1.
Furthermore, since 1, = 1y _(x¢) © , it suffices to show
eop=Tols ke
However, this holds by the defining diagram of ) __(k, e) in Lemma 2.2.6.

Hence we see that x is well defined.

Now we consider 5.

That the resulting arrows have the correct type is clear by the defining diagram of 5. Hence
we need only consider that the condition on dependent arrows from Theorem 2.4.5 is fulfilled
by these arrows. So let f € Hom(a, k), such that

eo (ide,f) =To 1,.

We have to show that
pré®9 o 5(f) = id,.

By the defining diagram for (f), we have the following commutative diagram:

(ida, 1)

By the definition of pr"®, in Lemma 2.2.6, we have pr"™® = pré* o p, ..
Thus, together with the defining diagram for 6(f), we get

.pr1ay(k>e) o é(f) — p‘r?vk o —pa)(k‘e] [e) 6(f) — 'pr?’k (@] (i'd(l) f) — :Lda-

This concludes the part for 6.

Now we want to show, that x and 6 are inverse to each other. For this we simply have to
show that they compose to identity in both directions.

29



(—) Let d € dHom(aq, (k,e)).
We have to show

5(x(db)) = .
Using the defining diagram for 6(x(¢)), we only need to show that the diagram

(ida, x())

is commutative.

The inner square is commutative since it is a pullback.

The well definedness of x guarantees that the outer square is commutative.
Since 1 is a terminal object, the left triangle is commutative.

So what remains is to show pg, k) © ¢ = (ida, X(P)).

However, we already saw this earlier in this proof.

Thus 5(x(¢)) = .
(<) Letf € Hom(a, k) with eo (idy, f) = T o 1,. We have to show

x(0(f)) =A.
We have that x(8(f)) = pr$* o pa,,e) © 8(f) and that the diagram

(ida, f)

is commutative.
Thus

x(6(f)) = prg’k 0 Pa,(ke) © O(f) = pr‘zl’k o (idg, f) =f.

With this we have seen that x and & are indeed inverses to each other.

What remains now, is to show that
vb € dCyVd € dHom(a, (k,e))vh € Hom(b,a) : x(d og h) = x(P) o h.
Soletb € dCy, p € dHom(a, (k,e)) and h € Hom(b, a). We have to show, that
PT3* 0 Po,e)on © (G 0g h) = pre* o pa e 0 b o h.

30



To do so, recall the defining diagrams of ¢ o4 h and Xy .h. Putting these together, we get the
diagram

$poh

which is commutative.
Using the commutativity of this diagram, we get

PT" 0 Pocejon © ($ 0a h) = pr3* o h x idy © Po,(keon © (§ 0a h)

= Pry* o Paie © ke o (G oah) =pri*opa e opoh. O

Remark 2.4.7 (6 also commutes with composition).
Notice, that as a result of Lemma 2.4.6 we also have that

Vb € dCyVf € dHom(a, (k,e))vh € Hom(b, a) : 6(f o h) = §(f) o4 h.

This follows since 6 and ¥, as defined in Lemma 2.4.6, are inverse to each other and since we
have seen the analogous statement for ¢.

Next, we want to see, that for the example of a commutative ring, there is a dep-category,
which is not given through Theorem 2.4.5 and the (fam, X)-category from Example 2.2.7.
For this, we have to give a dep-structure for a commutative ring independently of Theorem
2.4.5, which has the fam-structure from Example 2.1.7. This, we do now:

Example 2.4.8 (A dep-structure for a commutative ring).
Let R be a commutative ring. Let fR be the fam-category given by 2.1.7 and R.
Then, dR consisting of

e fR,
* V(a,b) € fHom(x): dHom(x*, (a,b)) :={I € Ideal(R)|la —b € I} and
e Y(a,b) € fHom(x)VI € dHom(x*, (a,b))Vre R: ITor:=1

is a dep-category.

Proof.
First, notice that the here defined application does have the correct typing as given in Defi-
nition 2.4.1. Now, we have to show the conditions (dep;) and (dep;).

31



(dep;) Let (a,b) € fHom(x) and I € dHom(x, (a,b)).
Thus we have to show I o 0 = I, which holds by definition.

(dep,) Let (a,b) € fHom(x), I € dHom(x, (a,b)) and r,q € Hom/(x, ).
Thus we have to show
[o(roq)=(lor)oq.

Here both sides of the equation simplify to just I, making them equal. O
Now we can compare the two dep-structures for a commutative ring:

Proposition 2.4.9 (A dep-structure on a commutative ring not given by Theorem 2.4.5).
Let R be a commutative ring.
We use

* dR for the dep-category from Example 2.4.8 and
* YR for the (fam, X)-category from Example 2.2.7.

Furthermore, V(a,b) € fHom(x), we call the collection of dep arrows from * to (a, b), given
by Theorem 2.4.5 and ¥R, dHom,(, (a, b)).

Then, there is a commutative ring R, such that,
d(a,b) € fHom(x) : [dHom(x*, (a,b))| > |[dHom,(x*, (a, b))|,
where | - | refers to the cardinality of sets.

Proof.
Let R :=Z.
Let (a,b) € Z?, such that a — b is not a unit.

First, consider dHom,(*, (a,b)).

Letr,q € dHomy(x, (a,b)).

Hence, by Theorem 2.4.5, v + ab =0 = q + ab.
Thus r = —ab = q.

Thus dHom, (*, (a, b)) has at most one element.

Now consider dHom(x, (a,b)).

We need to find at least 2 ideals, such that they both contain a — b.

One ideal that does that, is R itself.

Another oneis < a—b >.

Since a —bisnota unit, R #< a—b >.

Hence we find at least 2 elements in dHom(x, (a, b)).

Thus |[dHom(x, (a,b))| > |[dHom,(x, (a, b))|. O

2.5 (dep,X)-Categories

Now we will combine the notions of (fam, X)- and dep-categories into (dep, X)-categories.
Combining (fam, L)- and dep-categories is not just for fun. Of course it is fun, but it will
also allow us to add the notion of a second projection arrow to the X-objects. Comparing
with types again, it makes sense that we couldn’t before, as the second projection is depen-
dent. Hence the second projection arrow needs both X-objects and dep-arrows to be defined
sensibly.

32



Definition 2.5.1 ((dep, Z)-Category).
dXC consisting of

* a dep-category dC,
* a (fam,X)-category ZC and

* adep-arrow pry* € dHom( Y A, AoprPt), Va € dCoVA € fHom(a),
(called the second projection arrow of a and A)

is called a (dep, X)-category, iff
(fam) The fam-structure of dC and ZC are the same and
(dX) Va,b € dCyVA € fHom(a)Vf € Hom(b, a) :

prE o Lyt = pr,

meaning the diagram

Inf

ZbU\Of) > ZaA

a,A
pTlZV,)\Of pry

is commutative.
We also define Cy := dCy = £Cy, C;:=dC; = LGy, C:=dC; = ZC; and C; := dCs.

Remark 2.5.2 (Well-definedness in Definition 2.5.1).
To see that the equality in (dX) is well defined, we have to show

1. that the codomains are equal, so A o p$* o L,f = Ao f o prP*f and
2. that the domains are equal, so } (Aof) =) ,(Aof).
2. is easy and we use (pull) from Definition 2.2.1 for 1.

Now we want to look at another trivial example. Previously, for the dep-and (fam, X)-
categories, we always took a general fam-structure and then added trivial additional struc-
ture to it. So what we might want to do here, is to take general dep-and (fam, Z)-structures
and add to them trivial second projection arrows. But there is an obvious problem with
that. Not every dep-structure can have second projection arrows. Say, for instance, you pick
every dHom collection to be empty. This would clearly yield a dep-structure for every fam-
category. However, it would clearly be impossible to select second projection arrows from
such a dep-structure. Hence we have to do something else. And we will do the next best

thing, our (fam, Z)-structure will be general and the dep-structure will be given by Example
242

Example 2.5.3 (A (dep, X)-category with trivial dependent arrows).

Let A be a collection. Let k € A. Let ZC be a (fam, Z)-Category. Let dC be the dep-Category
given by Example 2.4.2 and the fam-structure of ZC.

Then, d~C consisting of

e dC,

33



e >Cand
e Ya € dCyVA € fHom(a) : k
is a (dep, L)-category.

Proof.
To show this, we must show the conditions (fam) and (dX) from Definition 2.5.1.

(fam) That dC and ZC have the same fam-structure is clear by how they where defined.

(dX) Leta,b € dCy, A € fHom(a) and f € Hom(b, a).
We have to show
ko Z)\f = k.

Recall the definition of this composition in Example 2.4.2. We can see the equation
holds immediately by definition. O

Example 2.5.4 (A (dep, X)-category with constant family arrows).
Let C be a category with binary products and an assignment

Cox Cy — Co,(a,b) — a x b,

where a x b is a product of a and b.

Let dC be the dep-category given by Example 2.4.3 and C.
Let ZC be the (fam, X)-category given by Example 2.2.4.
Then, dZC consisting of

e dC,

e YCand

* Va € dCyVA € fHom(a) : pr$* € Hom(a x A,A) canonical
is a (dep, L)-category.

Proof.
Again we have to show the conditions in the definition.

(fam) Itis clear from the construction in the Examples 2.4.3 and 2.2.4, that dC and ZC have
the same fam-structure.

(dX) Leta,b € dCy, A € fHom(a) and f € Hom(b, a).
We have to show
prot o (f x idy) = prot.
This however follows immediately from the definition of the second projection arrows,
as it is a basic property of products. O

Proposition 2.5.5 (Small types form a (dep, £)-category).

Let U be a type universe.

Let Type?(U) be the dep-category given by Proposition 2.4.4 and U.

Let Type*(U) be the (fam, £)-category given by Proposition 2.2.5 and U.
Then, Type*(U) consisting of

* Typed(U),
e Type*(U) and

34



e VA € Typed(U)oVu € fHom(A) : pr?’“ : Hy:Z ) u(pr?’“(y)) the second projection

x:A M

is a (dep, L)-category.

Proof.
For this we again simply have to show the conditions.

(fam) By considering the constructions in the Propositions 2.4.4 and 2.2.5, we can see that
Typed(U) and ZC have the same fam-structure.

(dX) Let A,B € Typed(U)y, u € fHom(A) and f € Hom(B, A).
Thus A,B: U, u: A - Uand f: B — A.
We now have to show, that

A,p __ yreBypof
pry o L f=pryt.

We will show this utilizing function extensionality, so let (x,y) : > _g(po f).
Hence, using the computation rules, we can see

(pro* o Zuf)(x,y) = prot(Z.f(x,y)) = prat(f(x),y) =y

and
pry*(xy) =y. O

Next we will extend Theorem 2.4.5. We will see, that (fam, XZ)-categories not only induce
dep-categories, but also (dep, £)-categories.

Theorem 2.5.6 (Every (fam, X)-category induces a (dep, X)-category).
Let XC be a (fam, X)-category.
Let dC be the dep-category given by Theorem 2.4.5 and C.
Let Va € dCoVA € fHom(a) : prg* the unique arrow fulfilling the pullback-competitor dia-
gram:
idy

idza A P ‘pT?’}\

Then, dZC consisting of

e dC,

e YCand

* Va € dCyVA € fHom(a) : pre?
is a (dep, L)-category.

Proof.

By the defining diagram of the second projection arrows, we can immediately see, that they
do fulfill the conditions for being dep-arrows of the appropriate type by Theorem 2.4.5.

So what we have to do, is simply show that the conditions from Definition 2.5.1 hold.

35



(fam) By the construction in Theorem 2.4.5, we know that the fam-structures of C and dC
are the same.

(dX) Leta,b € dCy, A € fHom(a) and f € Hom(b, a).

We have to show
'pTg’A (oF ] Z)\f = pTg’)\Of.

Putting together the defining diagrams for pr3*° and I, f, we obtain the following com-
mutative diagram, which we call (x):

ids ) (rof)

> y(Aof)
S~o_ prief
< brofy _ TAerPTiT Inf
2 s ponAofopr®) ————— 3 [(Aof) ———— 3 (A

b

. b,Aof
leb()\Of] przb(?\of)‘Aofop'r] pr]bJ\of

a,A
1 PT

D> y(Aof) > b e

b,Aof
pryte

Now for pr$? oq Iy f:
Putting together

e the defining diagram of pr$* o4 Z,f, from Theorem 2.4.5,
e the defining diagram for £,pr{* from Definition 2.2.1 and

e the arrow X,f,

we obtain the following commutative diagram, which we call (s:x):

Iaf

> y(Aof)

S~ 'pré‘*hodz)\f

TR bx Iaf
()\opr“v)‘) A Z)\.p_ra,)\
a,A 1 a,A 1
) )
Zzb()\of)o\op"] oL\f) ———— ZZHA()\ o prit) 2 A
. ° oprbHAofy opr®A
1dzb()\of) anbU\ f),Aopry Iaf pT]Za?\,)\ pry ’PT?‘A
privt
> y(Aof) I > D G A > a

Now, to show that the red arrows in () and (*x*) are equal, we first want to show that,
the arrows actually have the same codomain. Hence we need to show

b,Aof

prito Lif = foprd

36



This follows from the commutativity of the right square in (x).

To see that the arrows are also equal, we will show that they fulfill the same pullback-
competitor diagram. For this we pick appropriate subdiagrams of (x) and (xx) (called
(') and (*x*') respectively) as follows:

Iaf
> y(Aof) D LA
~~ proref ZAfoZV
St

b,Aof
Zzb()\of) (Ao foprp™) pri-?
ideU\Of] _prlzb()\of],)\ofopr]f‘)‘of a
foprbef
T, (o)
Iaf
Zb()\ © f) Z)\pr?,?\oz an A f Za }\
Teao__ pritoaif MV
T
a,A
ZZbO\of) (Ao prit o Exf) pri?
idzb[)\of) prlzb()\of],?\opr?‘)\oz)\f a

pr?v)‘o):;\f

2 y(Aof)

By (pull) and the pullback lemma, the inner squares of both (x’) and (xx’) are pull-
backs.
So what remains to be seen, is that (') and (*x’) are the same. For this we have to show

b,Aof
7

(i) prito Suf = fopr}

Zb(Aof],AofoprI]”)‘Of Zb(kof],loprﬁl’)‘o):)\f

(ii) pry = Ppr] and

(iil) Inf o Iyorpri™f = Liprit o PENE

A
Aoprt

We already have seen (i) earlier.

(i) then immediately follows from (i).
For (iii), we have to use (s;):

Using (i) and (s,), we can see

(Zaf) o Z(Aof)PT’?’AOf =2X,(fo pr?’)‘of)
and
Z)\pr$»?\ o Z(Aoprw) (I\f) = ZA(prﬁlJ‘ 0 5y f) = Iy (fo pr$,kof).

37



With this we can see, that (iii) holds as well.
Thus both pr9*" and pr$* o4 LA f fulfill the same pullback-competitor diagram.
Hence they are equal. O

Remark 2.5.7 (Toposes as (dep, Z)-categories).

As an extension of Lemma 2.4.6, we can, given an object a and fam-arrow (k, e), find the
arrows in Hom(a, k) which correspond to the second projection arrows given by Theorem
2.5.6. We can do this, by simply applying x.

Recall the work we did on commutative rings (2.1.7,2.2.7,2.4.8,2.4.9). Now we want to ac-
tually put these together, to see that not every (dep, X)-category is induced by its (fam, Z)-
structure. First we combine the (fam, X)-category from Example 2.2.7 and the dep-category
from Example 2.4.8 into a (dep, Z)-category. Afterwards, by using Proposition 2.4.9, seeing
that statement will be easy.

Example 2.5.8 (A (dep, X)-structure for a commutative ring).

Let R be a commutative ring. Let Vr € R: I(r) be the ideal generated by .
Let dR be the dep-category given be Example 2.4.8.

Let 2R be the (fam, L)-category given by Example 2.2.7.

Then, dZR consisting of

* dR,

e YRand

® Y(a,b) € fHom(x) : prj’(a’b) = I(a—D)
isa (dep,X) — category.

Proof.
To see this, we have to show the conditions in Definition 2.5.1.

(fam) Using the constructions from the Examples 2.4.8 and 2.2.7 it becomes immediately
clear that (fam) holds.

(dX) Let (a,b) € fHom(x) and r € Hom(x, *).
We have to show
[(a=b)or-(T+r4+a+b)=I[(a+r—b—T1).
Using the definition of the application, we get
[(a—b)or-(1+r+a+b)=I(a—Db).
Then, using basic arithmetic, we get
[la+r—b—71)=1I(a—D).
Thus the desired equation indeed holds. O

Remark 2.5.9 (Not all (dep, X)-categories are given by their (fam, Z)-structure).

Because of Lemma 2.4.9 we can immediately see, that the (dep, £)-category defined above,
is not given through Theorem 2.5.6.

This is since Theorem 2.5.6 uses the dep-structure generated by Theorem 2.4.5 and we already
saw, that the thusly generated dep-structure is not compatible with the one for Example 2.4.8,
which we used above.

This concludes both this subsection and the 2nd section as a whole. We now have all the
definitions and tools we need, in order to tackle the goals of the 3rd section. For further
reading on the concepts mentioned in this section, see [3].

38



3 Categories with dep-arrows and 2-fam-arrows

In this section, as already stated in the introduction, we will add arrows between the fam-
arrows to each of the structures of the previous section. To that end, we will define 2-fam, (2-
fam, L), 2-dep- and (2-dep, Z)-categories. Similarly to last section, we will give examples for
each of these definitions. in particular, we will see, that small types form examples for all of
these definitions. We will also see analogous versions of Theorems 2.4.5 and 2.5.6 in the The-
orems 3.4.6 and 3.5.8. We will then, again use these on the topos examples. Furthermore, we
will see that there are (2-dep, Z)-categories which are not given by their (2-fam, Z)-structure.
For this we will again use the example of commutative rings.

3.1 2-fam-Categories

In this section we will add 2-fam-arrows to fam-categories. However, we do not simply
require arbitrary collections for every pair of fam-arrows over a particular object, we will
impose additional conditions:

¢ Firstly, we will require, that the fam-arrows over a particular object and the 2-fam-
arrows between them form a category.

¢ Secondly, we will also require a composition of 2-fam-arrows with regular arrows as
well as certain conditions on this composition.

Definition 3.1.1 (2-fam-Category).
2C consisting of

¢ a fam-category famC
¢ a collection Hom(A, i) of 2-fam-arrows, Va € famCyVA, 1 € fHom(a),

* an operation, Va € famCoVA, 1, v € fHom(a), as shown in the following diagram:

Ak

e a2-fam-arrow id), € Hom(A,A), Va € famCyVA € fHom(a), and

* an operation, Va,b € famCyVA, u € fHom(a), as shown in the diagram
Aof
@
bf\iﬁ |
n
pof

39

is called a 2-fam-category, iff



(fcat) Va € famC, : CfHom(a) consisting of

e fHom(a),

e VA, u e fHom(a): Hom(A, ),

* VA u,v e fHom(a) : the composition Hom(p,v) x Hom(A, p) — Hom(A,v) and
e VA € fHom(a): idy

is a category,

(2fhy) Va € famCyVA, u € fHom(a)vn € Hom(A, u) :
noids =m,
(2fh;) Va,b,c € famCyVA, n € fHom(a)vVn € Hom(A, w)vVf € Hom(b, a)vh € Hom(c, b) :
no(foh)=(mof)oh.

The condition (2fh;) can be illustrated using the following two diagrams:

A
c h > b f >a/ﬂn\‘-
ku/f

Aofoh

C (nof)oh <> no(foh) .

pofoh
(2fv) Va,b € famCyVA, i, v € fHom(a)vn € Hom(A, u)v0 € Hom(u, v)Vf € Hom(b, a) :
(Bon)of=(0of)o(nof).

The condition (2fv) can be illustrated using the following two diagrams:

<< >>)
@ =3

Aof

AT

b (8of)o(nof) (Bon)of

ARV

vof

40



We call the collection of all 2-fam-arrows in C by C,.
We also define

o Co = fClTTLCo,
4 C] = famC1,
d Cz = famCz,

Given this definition, we will now look a examples again. As before, we will start with a
simple example. Similarly to the Examples 2.2.3 and 2.4.2 in the subsections on (fam, X)-
and dep-categories respectively, we will take an arbitrary fam-structure and then add to it a
trivial 2-fam-structure:

Example 3.1.2 (A 2-fam-category with trivial 2-fam-arrows).
Let M be any monoid. Let famC be a fam-Category.
Then, 2C consisting of

e famC
e Va € famCyVA, u € fHom(a) : Hom(k,p) :=M
* Va € famCyVA, 1, v € fHom(a): o: M x M — M the operation in M,
e Ya € famCyVA € fHom(a) : id, the neutral element of M and
e Va,b € famCyVA, u € fHom(a): o: (n,f) —n
is a 2-fam-category.

Proof.
We just have to show the conditions in Definition 3.1.1.

(fcat) We show that Va € famC, : CfHom(a) is a category with these definitions.
For this we have to show that the conditions in Definition 1.0.1 hold.
Since the composition comes from a monoid though, this is immediately clear.

(2fhy) That the equation for (2fh;) holds is clear, immediately by definition, as the compo-
sition of 2-fam-arrows with regular arrows is constant in the second variable.

(2fh;) Now let a,b,c € famCy, A, € fHom(a), f € Hom(b,a) and h € Hom(c, b).
Using the definition of the composition, we obtain the following equations:

no(foh)=n

and
(mof)Joh=moh=n.

Putting them together, we thus get

no(foh)=Mmof)oh.

(2fv) Leta,b € famCy, A, u € fHom(a), v € fHom(a), 6 € Hom(u,v) and f € Hom(b, a).
We have to show
(Bom)of=(06of)omof)

41



We can simplify both sides of the equation, which yields
(6on)of=00on

and
(Bofjo(mof)=00n

Thus we get the desired equation, by reflexivity. O
Example 3.1.3 (A 2-fam-category with constant fam-arrows).
Let C be a category.

Let famC be the fam-category from Corollary 2.1.3 using C.
Then, 2C consisting of

e famC

Va € famCyVA, u € fHom(a) : the collection of regular arrows Hom(A, p),

Va € famCyVA, 1, v € fHom(a) : o the composition of regular arrows,

Va € famCyVA € fHom(a) : id, the regular identity and
e Ya,b € famCyVA, u € fHom(a): o: (n,f) —n
is a 2-fam-category.

Proof.
Again, we have to show the conditions (fcat), (2fhy), (2fh,) and (2fv).

(fcat) First we consider why Va € famC, : CfHom(a) is a category.
This is easy though, as equipping fHom(a) with the above defined arrows and com-
position makes it equal to C.
Then, since C is a category, so is CfHom(a).

(2fhy) We can see (2fh;) similarly to last example, as the composition of 2-fam- and regular
arrows is constant in the second variable.

(2fhy) For (2fh;) we can use, that both sides of the relevant equation simplify to just the
2-fam-arrow, as the composition is constant in the second variable.

(2fv) Leta,b € famCy, A, 1, v € fHom(a), n € Hom(A, u), 6 € Hom(w,v), f € Hom(b, a).
We have to show
(Bon)of=(6of)o(nof)

Both sides of the equation simplify in the following ways:
(Bon)jof=060n

and
(Bofjo(mof)=060n

Thus we get the desired equation, by reflexivity. O
Proposition 3.1.4 (Small types form a 2-fam-category).
Let U be a type universe.

Let Type'(U) be the fam-category from Proposition 2.1.4 using U.
Then, Type?(U) consisting of

42



e Type'(U)

VA € Type'(U)oVp, v € fHom(A) : Hom(w, v) == [T (R(X) = v(x)),

VA € Type'(UW)oVp, v, & € fHom(A) : a function o with computation rule

(Mo B)(x) =n(x)o0(x)

VA € Type'(U)oVu € fHom(A) : id, := MAy.y : [ [ (r(x) — p(x)) and

VA, B € Typef(U)oV, v € fHom(A) : a dependent function o with computation rule
(Mo f)(y) :==nl(fly))

is a 2-fam-category.

Proof.
We again want to show that the conditions from the definition hold.

(fcat) We have to show, that VA € Type’(U), : fHom(a) becomes a category, so let A €
Type'(U)o. We now have to show the conditions from Definition 1.0.1:

1. Let v,u € fHom(A) and n € Hom(v, ). We need to show
idyon=mn=noid,.

For thisletx : A and y : v(x).
Thus

(idyom)(x)(y) = (idu(x) om(x)) (y) = idu(x) (M(x)(y)) =n(x)(y)

and
n(x)(y) =n0x) (idy(x)(y)) = (M(x) e idv(x)) (y) = Mo V) (x) (y).
Then, using function extensionality, we get the desired equations.
2. Letv,i,&,0 € fHom(A), n € Hom(v,u), 8 € Hom(y,0) and t € Hom(o, §) as
well. Now we have to show

(toB)on=1to0(0omn).

For this let again x : A.
Applying x to both sides of the equation yields:

((Lo®) om)(x) = (Lo B)(x) on(x) = (t(x) 0 O(x)) on(x)

and
(Lo (Bom))(x) =tlx) o (Bom)(x) = tlx) o (B(x) on(x)).

Now we have to show that the rightmost terms are equal.
For this, notice, that these are just compositions of regular functions.
Hence, by associativity:

(tx) 0 B(x)) om(x) = t(x) o (B(x) on(x)).

Thus ultimately:
((toB) om)(x) = (Lo (B om))(x).
Using function extensionality, we then get the desired equation.

43



Thus CfHom(A) indeed is a category.

(2fhy) Let A € Typef(U)y, v, u € fHom(A) and 1 € Hom(v, w).
We have to show
noida=n.

For this let x : A.
Thus we have

(moida)(x) =n(ida(x)) =n(x).

Using function extensionality we thus get the desired equality.

(2fh;) Let A,B,D € Type’(U)y, n € Hom(v, u), f € Hom(B,A) and h € Hom(D, B).
Again, let x : D. We get

(mo(foh))(x) =n(f(h(x))) = Mo f(h(x)) = ((nof)oh)(x).
Using function extensionality we thus getno (foh) = (nof)oh.

(2fv) Let A,B € Typef (U)o, v, u, & € fHom(A), 1 € Hom(v,u) and 6 € Hom(y, &).
We now have to show
(Bon)of=(6of)o(nof)

To do so, let x : B. We thus get
((0om)of)(x) = (60m)(f(x)) = 0(f(x)) on(f(x))
= (00of)(x)o(mof)(x)=((80f)oMmof))(x)
Using function extensionality, we thus get the desired equation. O

Lemma 3.1.5 (Toposes as 2-fam-categories).
Let C be a topos. Let famC be the fam-category from Lemma 2.1.6 using C.
Then, 2C consisting of

e famC

Va € famCoV(k,t), (p,e) € fHom(a) :

Hom((k,t), (p,e)) :={f € Hom(k,p)le o id, x f = t},

Va € famCyV(k,e), (p,t), (u,v) € fHom(a) : o the regular composition,
* Va € famCyV(k,e) : ide) : idx € Hom(k, k) the regular identity and
e Va,b € famCyV(k,e), (p,t) € fHom(a):o: (h,f) —h

is a 2-fam-category.

Proof.

Notice, that the above defined identity 2-fam-arrows actually do fulfill the condition on 2-
fam-arrows above.

Now we have to show the conditions from Definition 3.1.1.

(fcat) Since we are just using the regular composition as composition between the 2-fam-
arrows, using the regular identity, it is clear that VfamC, : CfHom(a) a category.

44



(2fhy) Here, like in previous examples, the composition is constant in the second variable,

so (2fh;) holds immediately by definition.

(2fhy) Again, the constantness of the composition in the second variable makes (2fh;) obvi-

ously hold. We have seen arguments to that end throughout this document.

(2fv) Same story as in the previous cases, due to the composition being constant in the
second variable, both sides of the equation immediately simplify to the same expres-

sion.

Example 3.1.6 (A 2-fam-structure for a commutative ring).

LetR

be a commutative ring.

Let fR be the fam-category from Example 2.1.7.

Then,

is a 2-

Proof.

2R consisting of

famC,

]

V(a,b),(c,d) € fHom(x): Hom((a,b),(¢,d)) :={n € Hom(R,R)n(a —b) = c —d},

V(a,b), (c,d), (e,f) € fHom(x) : (1,0) — 1 o O the regular function composition,

V(a,b) € fHom(x) : idqp) := idg and
V(a,b),(c,d) € fHom(x): o, : (n,f) —n

fam-category.

To show this, we have to observe the conditions in the definition.

(fcat) To see that we have a category CfHom(x) as in Definition 3.1.1, we have to check the

conditions 1. and 2. in Definition 1.0.1.

1. This is clear, as function composition respects the identity idg.

2. This is also clear, as function composition is associative.

Hence CfHom(x) is a category.

(2fhy) Let (a,b), (c,d) € fHom(x) and n € Hom((a, b), (c,d)).

We have to show
no,0=n.
This holds by definition of o,

(2fh,) Let (a,b),(c,d) € fHom(x), n € Hom((a,b),(c,d)) and r, f € Hom(x, ).

(2fv)

We have to show
no,(rof)=Mmoy7)o,f.

But by definition, both sides of the equation reduce to 1, making them equal.

Let (a,b), (c,d), (e, f) € fHom(x), n € Hom((a,b), (c,d)), 0 € Hom((c, d), (e,
TE Hom( ,*) We have to show

(eoﬂ) Oy T = (QOVT)O(T] Ovr)-

Again, applying the definition of o,, both sides of the equation reduce to (0 on).

Hence they are equal.

45

f)) and



3.2 (2-fam,X)-Categories

(2-fam, X)-categories combine the structures of a 2-fam- and a (fam, X)-category, much like
(dep, X)-categories did for dep- and (fam, Z)-categories. Also just like then, it allows us to
add a little bit of additional structure, that can only be defined if you have both. For (dep, £)-
categories, this was the second projection arrow, here it will be a second kind of X-arrow,
which is induced by a 2-fam-arrow. These will interact with the first projection arrows in a
similar way to the interaction between the first kind of X-arrow and second projection arrows.
The two kinds of X-arrows will also be required to commute with each other in a certain way.
The exact details for this, we can see in the definition:

Definition 3.2.1 ((2-fam, Z)-Category).
25 C consisting of

¢ a2-fam-Category 2C,

¢ a (fam, X)-Category XC, and

* anarrow X, ,1, Va € 2CoVA, u € fHom(a)vn € Hom(A, pu)
is called a (2-fam, X)-category, iff
(fam) 2C and ZC have the same underlying fam-structure, and

(diag) Va,b € 2CoVA, n € fHom(a)vf € Hom(b, a)vn € Hom(A, u) : the diagram
Y Aof — 2L 5 A

Z?\of,pofnof Z?\,pn

~ ~

Tuf
pioer| Tymof — s T

b,pof a
Py P sH

v

b > a

is commutative,

(VS;) Va € 2CoVA € fHom(a) :
Iaaidy = 1dg.a,

and

(VSy) Va € 2CoVA, 1, v € fHom(a)vn € Hom(A, u)v0 € Hom(w, v) :
Lv0o0Xy,m=2Iy,(00om).
We also define
e 2¥Cy:=XCo=2C,,
e 2¥Cy:=XCy =2Cy,
o 27Cy:=2C,; =2C,,

46



o 25Cy:=2Cy.

Remark 3.2.2 (Pullbacks in (diag)).
Notice that in (diag), the upper square is a pullback. We can see this by the pullback lemma,
as both the lower and outer square are pullbacks by the definition of (fam, X)-categories.

Here we again consider a trivial example first. Similarly to Example 2.5.3, we would like to
take a general 2-fam- and a general (fam, Z)-structure and then add trivial X-arrows of the
second kind to those. However, similarly to Example 2.5.3, this is not trivially possible. This
is because, a priori, we do not have arrows between arbitrary objects. So instead, we will use
a general 2-fam-structure and the trivial (fam, X)-category from Example 2.2.3.

Example 3.2.3 (A (2-fam, X)-category with trivial Z-objects).
Let 2C be a 2-fam-category. Let ZC be the (fam, Z)-category from Example 2.2.3 using the
fam-structure of 2C. Then, 2XC consisting of

e 2C,

e >Cand

* Va € 2CoVA, n € fHom(a)vn € Hom(k,p) : Iy ,m:=1idg
is a (2-fam, Z)-category.

Proof.
So what we have to do is show the 4 conditions in Definition 3.2.1.

(fam) That the 2-fam-and (fam, X)-categories have the same fam-structure is immediately
clear, by the constructions in Example 2.2.3.

(diag) To show thislet a,b € 2Cy, A, u € fHom(a), f € Hom(b, a) and n € Hom(A, u).
We have to show, that the diagram

S Aof — 2 5 )

Z?\of,uofn Z?\,p.n

4 £of 4
prosAor Zb pof ——— e proA

b,uof a
pT] > pT1 sH

~

b > a

is commutative.
Substituting with the above assignments, we have to show, that the diagram

idp idg
) f e .
idp b ———a idq
idp idg




is commutative.
But this is clearly the case.

(VS;) follows immediately from the definition of the Y-arrows of the second kind, as the
equation for (VS;) is exactly the defining equation for the relevant Z-arrows.

(VS,) The equation for (VS,) is also immediately clear, as all of the X-arrows of the second
kind are identities. [

Example 3.2.4 (A (2-fam, ¥)-category with constant fam-arrows).
Let C be a category with binary products.

Let 2C be the 2-fam-category form Example 3.1.3 using C.

Let 2C be the (fam, Z)-category given by Example 2.2.4 and C.
Then, 2X.C consisting of

e 2C,
e >Cand
* Va € 2CoVA, 1 € fHom(a)vn € Hom(A, p) : Iy, m:=1idq x M

Proof.
We simply have to see that the conditions in Definition 3.2.1 hold.

(fam) That the categories form the Examples 3.1.3 and 2.2.4 have the same fam-structure is
clear from their construction.

(diag) Let a,b € 2Cy, A, n € fHom(a), f € Hom(b, a) and n € Hom(A, w).
Applying the definitions above, we have to show that the diagram:

fxidy

b x A axA

is commutative.

From Example 2.2.4 we already know, that the outer and lower square are commutative,
since they are pullbacks. Hence we only need to consider the upper square, the left
triangle and the right triangle.

upper square
For this consider that

fxidyoidy, xn = (foidy) x (idyom) =Ffxn

and
idg xnofxidy=(idgof) x (noidy) =1 x 1.

With these, we can immediately see the commutativity of the upper square.

48



left triangle
As a property of product arrows, we know that

pri*oidy x m = idy o P
With this, the commutativity of the triangle immediately follows.

right triangle
For the right triangle we can argue analogously to the case of the left triangle.

Hence the diagram is commutative.
(VS;) Leta € 2Cyand A € fHom(a). Here we have to show
id, x idy = idaxa,
which of course holds.

(VS;) Leta € 2Cy, A, 1, v € fHom(a), n € Hom(A, u) and 0 € Hom(u, v).
We have to show
id, x 0 oid, x 1 = 1id, x (0 0n).

This again from the basic properties of product arrows. O

Proposition 3.2.5 (Small types form a (2-fam, £)-category).

Let U be a type universe. Let Type?(U) be the 2-fam-category given by Proposition 3.1.4 and
U. Let Type*(U) be the (fam, £)-category given by Proposition 2.2.5 and U. Then, Type®*(U)
consisting of

* Type?(U),
e Type*(U) and
e VA € Type?(U)oVv, u € fHom(A)vn € Hom(v, u) :

T = MAy.6n(x)Y): ) v— Y u

is a (2-fam, Z)-category.

Proof.
We again just have to show the conditions (fam), (diag), (VS;) and (VS,) in Definition 3.2.1.

(fam) This is clear from the construction of the 2-fam- and (fam, X)-category in the Propo-
sitions 3.1.4 and 3.2.5 respectively.

(diag) Let A,B € Type?(U)o, v, € fHom(A), f € Hom(b, a) andn € Hom(v, p).
We have to show that the diagram

S Aof — 2 5 A

Z)\of‘uofn me

v v

Iof
piner| ol — 2 ¥ w L

Tb,uof

a,u
P PTy

~

b > a

49



is commutative.

Since Type*(U) is a (fam, X)-category, by (pull) in Definition 2.2.1, we already know,
that the outer square and the inner lower square in the diagram are commutative.

So it suffices to demonstrate that the inner upper square and the left and right triangles
are commutative, then the entire diagram also is.

All of this can easily be shown using function extensionality.

(VS;) This can easily be shown with function extensionality, similarly to the proof for (s;) in
Proposition 2.2.5.

(VS,) This can also be shown easily with function extensionality, similarly to the proof for
(s2) in Proposition 2.2.5. H

Lemma 3.2.6 (Toposes as (2-fam, X)-categories).

Let C be a topos. Let 2C be the 2-fam-category from Lemma 3.1.5 using C.
Let 2C be the (famX)-category given by Lemma 2.2.6 and C.

Then, 2X.C consisting of

e 2C,
e YCand

* Va € CoV(k,e), (p,t) € fHom(a)vn € Hom(k,p) : Ze),p.on the arrow given by the
universal pullback property:

Za(k) e) > ax k
- Zike), (po)M yajn
> axp
t
! >

is a (2-fam, Z)-category.

Proof.
Again, we just have to show the 4 conditions in the definition.

(fam) This is clear from the definition of the 2-fam- and (fam, X)-category.

(diag) Let a,b € 2Cy, (k,e), (p,t) € fHom(a), f € Hom(b, a) and n € Hom((k,e), (p,t)).
we have to show that the diagram

e f
Y (kye)of —= 5 Y (k,e)

L(k,elof,(p,t)ofM  Z(k,e),(p,t)M

v v

Ipof )
Sopyt)of ———— 3 (p,t)
p‘r‘]b,(k,e)of pT?’(k‘e)

b,(p,t)of
prl (p,t)o pr?’(p’t)

~

b

g

50



is commutative.

Since LC is a (fam, X)-category, by (pull) in Definition 2.2.1, we already know, that
the outer square and the inner lower square in the diagram are commutative. So it
suffices to demonstrate that the inner upper square and the left and right triangle are
commutative, then the entire diagram also is.

First, we show the commutativity of the inner upper square.

For this, let first be Ve € CoV(d,h) € fHom(c) : pean € Hom( Y .(d,h),c x d) the
morphism that comes with the pullback:

> (d,h) _Pelem o d

1 T s Q

Now we know since 1is a terminal object, that thereis 1o € Hom(Q, 1) and that 150T =
id;. Hence T is a monomorphism.

This since we are working with a pullback, we also find that p. (4n) is a monomorphism.
Now, consider the following diagram:

Zike)f .
Zb(k, e)of > Za(k, e)
Po,(k,e)of
Pa,(k,e)
fxidy
bxk —— axk
L (k,e)of, (pyt)ofT idpxn idaxn Z(ke), (p,0)1
fxidp
bxp — axp
4 Po,(p,t)of Pa,(p,1) 4
Lpoof .
Zb(p)t) Of ’ Za(pat)

Using the defining diagrams for the X-arrows, it is easy to verify, that the upper, left,
lower and right square in this diagram are all commutative. It is also clear, that the
centre square is commutative, using basic properties of the product arrows.

Using these commutativities, we get

Pa,p,0) © kel M © Zike) F = Paipt) © Lo T O Zikgeror, oo
Since pg,(p,1) is @ monomorphism, this gives us

ke, ()N © Lke) T = Lip,nf © Likejof, (p,t)ofTy
which is what we wanted to show.

Now we still have to show commutativity for the triagles.
For this, consider the diagram:

Y Jkye) —— axk

Zik,e), (p,M ida xn a

/

>opt) ————— axp

51



By the defining diagram of X ) (»,y11 we know that the square in this diagram is com-
mutative. By the properties of the product, we know that the triangle in this diagram
is commutative. Thus the entire diagram is commutative.

With this follows the commutativity of the right triangle in the above diagram.

For the left triangle the proof is analogous.

(VS;) Let a € 2Cp and (k, e) € fHom(a). Consider the pullback-competitor diagram defin-
NG 2 1), (ke) 1 k,e)-

> Jk,e) >y axk
&Tid(k‘e)
2 J(kye) »axk
t
1 ! >y Q

Clearly the identity idy _(«) also fulfills the universal pullback property here.
Thus (VS;) holds.

(VS;) Leta € 2Cy, A, 1, v € fHom(a), n € Hom(A, i) and 6 € Hom(u,v).
We have to show that

L p,0,(an0 © Zie),(p,oM = L), (g, (0 0M). (2)

To do so, we will use the universal pullback property. First consider Z, 1) (q,r)00Z ke, (p,t)T-
The arrow X, 1),(q,r)0 is defined by

S pyt) s axp
We
> ax q
T > Q)
and X ) (p,yN is defined by
> Jk,e) > ax k
\am
)
t
T > ()

52



Putting these diagrams together, we get the following diagram, which we call (x):

> Jk,e) »axk

S~ Zike)(p,tM wn

> axp

> axq

> Q

T

Now consider the other side of Equation 2, Xy ¢) (4,r)(0 o) is defined by

> Jk,e) > axk
xcxx(eon)
> axq
> O

We can see, that (except for the red arrow) this diagram is a subdiagram of (x).
Thus, since we are working with a pullback, whatever in () has the place of the red
arrow, is equal to the red arrow. Thus the equation follows. O

Example 3.2.7 (A (2-fam, X)-structure for a commutative ring).
Let R be a commutative ring. Let 2R be the 2-fam-category from Example 3.1.6 using R. Let
IR be the (fam, I)-category from Example 2.2.7 using R. Then, 2% R consisting of

e 2R,

e YRand

* V(a,b),(c,d) € fHom(x)vn € Hom((a,b),(c,d)) : Z(ap)c,amn = ab—cd
is a (2-fam, Z)-category.

Proof.
We have to show the conditions (fam), (diag), (VS;) and (VS,).

(fam) To see that the fam-structures of 2R and ZR are the same, simply consider the respec-
tive definitions, both use the fam-category from Example 2.1.7.

(diag) Let (a,b),(c,d) € fHom(x), n € Hom((a,b), (c,d)) and r € Hom(x, x).

53



We have to show that the diagram

r(14+r4+a+b)
* > >k
(a+r)(b+r)—(c+7)(d+7) ab—cd
(a+7)(b+1) * > % ab
r(14+r+c+d)
(c+7)(d+T) cd
* >k

is commutative.

Since we already know that the lower square is a pullback, due to the X-structure, we
only need to show that the right triangle, left triangle and upper square are commuta-
tive. For the triangles this is easy.

But we still have to consider the upper square.

We have to show, that

rl+r+c+d)+(a+r)(b+7)—(c+T1)(d+7)=ab—cd+71(1+r+a+Db).
For this we can just simplify both sides of the equation, this gives us:
rl+r+c+d)+(a+r)b+1)—(c+71)(d+T)

=r4+1r’4+rc+rd+ab+ar+br+rP—cd—cr—dr—1?
=r+ab+ar+br+1r°—cd

and
ab—cd+r(1+r+a+b)=ab—cd+r+1>+ar+br.

Then, using commutativity of addition, we can see that the rightmost terms in these
two equations are equal. Hence the square and thus the entire diagram is commutative.

(VS;) Let (a,b) € fHom(x*). We have to show

2 (ab),(a,b) 1 (a,p) = 0.

Applying the definition for X4 ),(a,v)1d(q,b), We have to show

ab—ab =0,
which clearly holds.
(VS,) Let (a,b),(c,d), (e, f) € fHom(x), n € Hom((a,b), (c,d)) and 6 € Hom((c, d), (e, f)).
We have to show that
cd—ef+ ab—cd = ab — ef.
Using the commutativity of addition in R, this is clear. O

54



3.3 2-fam- and (2-fam, X)-Functors

Now we will take a brief look at the 2-versions of fam- and (fam, X)-functors, 2-fam- and
(2-fam, X)-functors. We will start by giving a definition for 2-fam-functors:

Definition 3.3.1 (2-fam-Functor).
Given 2-fam-categories 2C and 2D,
2F consisting of

e a fam-functor famF: C — D, and

* an assignment ZFg’A’“ : Hom(A,u) — Hom(famF(A),famF(u)), Va € 2CVA,u €
fHom(a),

is called a 2-fam-functor, iff
1. Va € 2Cy : (famF§, (ZFg’A’“)MefHom(QJ) is a functor and
2. Va,b € 2CoVA, 1 € fHom(a)Vf € Hom(b, a)vn € Hom(A, u) :
20NN (o £) = 2F9M () o famF(f)
Remark 3.3.2 (Typing in Definition 3.3.1).

The equation 2. in the definition is well-typed.
To see this, consider the types of the 2 sides:

e 2F(nof) € Hom(2F(A o f),2F(wo f)), and
® 2F(n) o 2F(f) € Hom(2F(A) o 2F(f), 2F(u) o 2F(f)).
And of course, due to the axioms of fam-functors, we know
2F(1o f) = 2F(w) o 2F(f),

and
2F(A o f) = 2F(A) o 2F(f).

Hence we can see that 2. is well-typed.

Example 3.3.3 (A fam-functor from Type(U) to Type(U)).

Let U be a type universe, A : Uand a : A.

Let Type?(U) be the 2-fam-category given by Proposition 3.1.4 and U.

Let Hom"?(A, —) be the fam-functor given by Example 2.3.2 and U, A and a.
Then, Hom*%(A, —) consisting of

¢ Hom"* (A, —) and
e VB € 2CoVp, v € fHom(B) : 2FPY := M. Af.Ay. (n(f(a))(y))
is a 2-fam-functor from Type?(U) to Type?(U).

Proof.
We have to show the conditions form Definition 3.3.1.

1. Let B : U. We have to show that (famF%, Au.AV.ZFE’“’V) is a functor.
For this we can simply show the conditions in Definition 1.0.4.

55



(a) Let u € fHom(B).
We have to show
ZFE’H’H(idH) - :LdfaszB(u)'

To do so, we first substitute with the definition and simplify the right sides of the
equation:
AMAyY.(idu(f(a))(y)) = AM.Ay.y.

By definition we know that
idfaszB (w) - 7\f}\y .y .

(b) Let u,v,t € fHom(B), n € Hom(u,v) and 6 € Hom(v, ().
We have to show
2F0MY (@ om) = 2F5VH(0) 0 2R3 ().

For this, we just simplify both sides of the equation, which yields:
2FP™ (0 0m) = AFAY.((0 0 m)(F(a))(y) = AMXy.((8(f(a) om(f(a))(y))

=My, (8(f(@) (n(f(@) (W)

and
2P (0) 0 2F9*(n) = (M.Ay. (8(f(a))(y))) o (AfAy.(n(f(a))(y)))
=N (M. (8(F(@))())) (x) © (M. (n(F(@) () (x))
= xc (- (0(x(a)) ()
= xez((Ay.(8(x(@) (y)) )
= ez (- (0(x(a)) () (nix(a)) z]))
=Nz (8(x(a)) (n(x(a))(2))).

2. LetB,C: U, u,v e fHom(B), f € Hom(C,B) and n € Hom(u,v).
We have to show that

250 (o f) = 2F34Y(n) o Hom ¢(A, f).
For this, we again just simplify both sides and get:
2FSHNT (1 o £) = AhAy. (n(f(h(a))) (y))

and
2FY (1)) o Hom (A, f) = (AhAy. (n(h(a))(y))) o Ah.(fo h)

= M ((AhAy. (n(R(@) (y))) AR (Fo ) (x)))

=X (WA (n(h(a) W) (Fox))

= AxAy.(n((f o x)(a))(y))
= MAy.(n(f(x(a)(y)). O

56



Example 3.3.4 (A 2-fam-functor induced by a ring homomorphism).

Let R, Q be a commutative ring and f : R — Q a ring isomorphism.

Let 2R and 2Q be the 2-fam-categories given by R and Q via Example 3.1.6 respectively.
Let famF be the fam-functor given by Example 2.3.3 and R, Q and f.

Then, 2F consisting of

e famF and
e Y(a,b),(d,c) € fHom(*): 2F§a’b)’(°’d) ‘m—fonof!
is a 2-fam-functor from 2R to 2Q.

Proof.

First, we have to convince ourselves, that the assignment 2F§a’b)’(°’d) is actually of the kind de-
manded by Definition 3.3.1. For this, let (a, b), (d,c) € fHom(*) andnn € Hom((a,b), (c, d)).
We have to show that

fonof ' e Hom((f(a),f(b)), (f(c), f(d))).
To show this, we need to show that

fonof':Q—0Q
and
(fonof ")(f(a)—f(b)) =f(c) — f(d).

The first of these can be immediately seen by considering the typing of n and f.
For the second, we can just calculate:

(fomof )(f(a)—f(b)) = fn(f ' (fla) — f(b)))) = f(a—Db)) = f(c — d) = f(c) — f(d).
What remains now is to show the conditions from Definition 3.3.1.

1. We have to show that (f, (2F{*™" %) 1) (ac)ertiom(s)) is a functor, hence that it fulfills the
conditions from Definition 1.0.4.

1. Let (a,b) € fHom(x*). We have to show that

,b s )b 3 i
2F§“ )(a )(1d(a,b)) = id(f(a),f(v))-

)

We know:
ZF;a’b)’(a’b)(id(a,b)) =foldgp)© .

We also know that
id(ayb) = idR
and
d(f(a),f(v)) = 1dq-

Hence
fo id(a’b) e} f_] =fo f_] = ldQ = i«d(f(a)’f(b)).

2. Let(a,b),(c,d), (m,n) € fHom(x), n € Hom((a,b), (¢,d))and 6 € Hom((c,d), (m,n)).
We have to show that

ZFéa»b)>(myn) (e o T]) — 2Fécyd)y(m>n) (e) o ZFéayb)»(Cyd) (n ) .
By simply applying the definition, we can see that

ZFéaab))(m»n)(e OT]) — foe OT] of*] — fo@ofo‘[ﬁ]n of*] — ZFgC)d)v(m»n)(e) OZFgavb))(cyd) (n).

57



2. Let (a,b),(c,d) € fHom(x), n € Hom((a,b),(c,d)) and r € Hom(x, *).
We have to show

2F2a+r,b+T),(C+T»d+r) Mo, 1) = ZFga’b)’(c’d) (M) oy f(7).

Using that o, is constant in the second variable, this equation simplifies to:

2Féu+r,b+r),(c+r,d+r) (n) _ ZFéa,b),(c,d) (n ) )

We furthermore, have that
2Féa+r,b+r),(c+r,d+r) (

n)=fonof’

and
2R ) — fonof!. O

Next we will have a look at (2-fam, £)-functors. Similar to how it was for (fam, X)-functors,
these will just be 2-fam-functors with two additional conditions.

Definition 3.3.5 ((2-fam, X)-Functor).
Let 22C and 22D be (2-fam, X)-categories, with underlying 2-fam- and (fam, X)-categories
2C,XC and 2D, D respectively. Then, a 2-fam-functor

2F = (famF, 2F;) : 2C — 2D
is called a (2-fam, X)-functor 2XC — 2D, iff
1. famFisa (fam, X)-functor XC — XD and
2. Va € 2LCoVA, u € fHom(a)vn € Hom(A, 1) : famF(Z,\,m) = ZfamF()\))famF(u)ZFg’A’“(n).

Example 3.3.6 (A (fam, Z)-functor induced by a ring homomorphism).
Let R, Q be a commutative ring and f : R — Q a ring isomorphism.

Let 2F be the 2-fam-functor given by Example 3.3.4 and R, Q and f.
Let 2XR and 22ZQ be the (2-fam, )-categories given by Example 3.2.7.
2F = (famkF, 2F;3) is a (2-fam, X)-functor from 2XR to 2XQ.

Proof.
We just have to show that the conditions in Definition 3.3.5 are fulfilled.

1. That famF is a (fam, Z)-functor, we know from Example 2.3.5.

2. Let (a,b),(c,d) € dHom(x) andn € Hom((a, b), (c,d)).
We have to show that

)b ) )d
FAMF(Z (a0, cam) = Zit(a o, ronran2Fs Y ().
For this, first consider that we know
famF(Z(ayb),(cydm) = f(ab — Cd)

and
a,b),(c,d
sanonyienian) 2P0V (M) = f(a)f(b) — f(c)f(d).

Using then that f is a ring isomorphism, we can see that the rightmost sides of these
two equations are equal. [

58



3.4 2-dep-Categories

In this subsection, we combine the notions of 2-fam- and dep-categories into 2-dep-categories.
As with (dep, X)- and (2-fam, X)-categories, this will allow us to add a bit of structure that
we couldn’t before. This structure is going to be a composition of 2-fam-arrows with dep-
arrows. This composition will be required to satisfy the obvious conditions on interactions
with identities and other compositions:

Definition 3.4.1 (2-dep-Category).
2dC consisting of

* a2-fam-category 2C,
* a dep-category dC, and

* an operation, Va € 2CyVA, u € fHom(a), as shown in the diagram:

is called a 2-dep-category iff,
(fam) 2C and dC have the same underlying fam-category.
(2dvq) Va € 2CyVA € fHom(a)Vd € dHom(a,A) :

idiodp=0¢
(2dv,) Va € 2CyVA, i, v € fHom(a)vVn € Hom(A, 1)v0 € Hom(w, v)Vd € dHom(a, A) :

(Bon)od =00 (nod),

and

59



(2dh) Va,b € 2CyVA, nu € fHom(a)vn € Hom(A, )V € dHom(a,A)Vf € Hom(b, a) :

Mod)of=Mmof)o(pof),

We also define

b CQ = dCo = ZCQ,

C] = dC] = 2C1,

Cz = dCz = 2C2,

C3 = dC3 and

C4 = 2C4

Now, just like previously, we look at a simple example. Also just like for the Example 2.5.3
and 3.2.3, one of the component structures is going to be trivial, the other general.

Example 3.4.2 (A 2-dep-category with trivial dep-arrows).
Let 2C be a 2-fam-category. Let A be any collection. Let dC be the dep-category given by
Example 2.4.2 and the fam-structure of 2C. Then, 2dC consisting of

e 2C,

e dCand

e Va € 2CyVA, nu € fHom(a): o := ((n,d) — ¢)
is a 2-dep-category.

Proof.
We have to show that the conditions (fam), (2dv;), (2dv;) and (2dh) from Definition 3.4.1
hold:

(fam) That 2C and dC have the same fam-structure is immediately clear, since we explicitly
use the fam-structure of 2C in the construction of dC.

(2dvy) Since the composition is constant in the first variable, identities are respected by def-
inition.

60



(2dv,) Because of the constantness of the composition in the first variable, we can immedi-
ately see that both sides of the relevant equation for (2dv,) simplify to the same dep-
arrow.

(2dh) Just like for (2dv;,), using the respective constantnesses of the operations we immedi-
ately see that both sides of the equation for (2dh) simplify to the same dep-arrow.
A relevant difference to the previous case, is that we need not just the constantness
for the composition of 2-fam-arrows with dep-arrows, but also the constantness of the
application of dep-arrows. O

Example 3.4.3 (A 2-dep-category with constant fam-arrows).
Let C be a category. Let 2C be the 2-fam-category from Example 3.1.3 using C. Let dC be
the dep-category given by Example 2.4.3 and C. Then, 2dC consisting of

e 2C,
e dCand

* Va € 2CoVA, n € fHom(a) : o the regular composition of arrows
is a 2-dep-category.

Proof.
We have to show that the conditions (fam), (2dv;), (2dvy) and (2dh) hold.

(fam) That 2C and dC have the same fam-structure is clear by how they where defined in
Example 3.1.3 and 2.4.3 respectively.

(2dvy) Since regular composition of arrows respects identities, (2dv;) holds.
(2dv,) Since regular composition of arrows is associative, (2dv;,) also holds.

(2dh) Here, let a,b € 2Cy, A, u € fHom(a), n € Hom(A, u), & € dHom(a,A)
and f € Hom(b, a).
We have to show

Mod)of=(mof)o(pof).
We know, from Example 3.1.3, that
nof=n.

Thus we have to show
mod)of=mno(dof),
which immediately follows from the associativity of regular composition of arrows. [

Proposition 3.4.4 (Small types form a 2-dep-category).

Let U be a type universe. Let Type?(U) be the 2-fam-category from Proposition 3.1.4 using
U. Let Typed(U) be the dep-category from Proposition 2.4.4 using U.

Then, Type?d(U) consisting of

* Type’(U),
e Typed(U) and
e VA € Type?(U)oVv,u € fHom(A) :

o = A AbAx. (N(x) ($(x))) : (Hv(x) - u(x)) - (Hv(x)) = T n.
xX:A xX:A

XA

61



is a 2-dep-category.

Proof.
We again just have to show the 4 conditions in Definition 3.4.1.

(fam) By considering the definitions of Type?(U) and Type?(U) in Example 3.1.4 and 2.4.4
respectively, we can immediately see, that both have the fam-structure given by Propo-
sition 2.1.4 and U.

(2dv;) For this let A € Type?(U)y, A € fHom(A) and ¢ € dHom(A,A). We have to show
idyod =¢.

We can reduce this to pointwise equality, using function extensionality.
Thus let x : A. We have

(idr o d)(x) = ida(x) (d(x)) = d(x).
Hence (2dv;) holds.

(2dv;) Let A € Type?(U)y, A, 1, v € fHom(A), ¢ € dHom(A,A), n € Hom(A,u) and 0 €
Hom(u, v). We have to show, that

(Bon)od=00Mmod).

Again we can use function extensionality.
Thus let x : A. We get

((Bom)od) (x) = (Bon)(x)(db(x)) = B(x) (N(x)(d(x))) = B(x)((Nod)(x)) = (Bo(nod))(x),
with which we can see (2dv,).

(2dh) Let A,B € Type?(U)y, u,v € fHom(A), ¢ € dHom(A,v), 1 € Hom(v,u) and f €
Hom(B, A). We have to show, that

Mod)of=(mof)o(pof).

And yet again, we use function extensionality.
Thus let x : A. We get

((odp)of)(x) = Mod) (f(x)) = n(f(x)) ((f(x))) = Mof) (x)((bof)(x)) = ((nof)o(dof))(x).

Example 3.4.5 (A 2-dep-structure for a commutative Ring).

Let R be a commutative ring. Let Vr C R : I(r) be the ideal generated by r.
Let 2R be the 2-fam-category from Example 3.1.6 using R.

Let dR be the dep-category from Example 2.4.8 using R.

Then, 2dR consisting of

o 2R,
e dR and
* V(a,b),(c,d) € fHom(x): (n,]) = I(n(]))

is a 2-dep-category.

62



Proof.
First, notice that the composition is actually well-defined, as

Va € RVf € Hom(R,R)V] € Ideal(R): (a € ] — f(a) € I(f(]))).

What we now have to do is the same as in the previous examples. We simply have to show
the conditions (fam), (2dv;), (2dv;) and (2dh).

(fam) Ititclear from the respective definitions, that 2R and dR have the same fam-structure.

(2dvy) Let (a,b) € fHom(x) and ] € dHom(x, (a, b)).
We have to show idgo ] = .
By considering the definition of the composition above, we can see:

idg o ] = I(idr(])) = I(J) =].
Hence we see that (2dv;) holds.

(2dv,) Let (a,b),(c,d), (e, f) € fHom(x), n € Hom((a,b),(c,d)), ® € Hom((c,d), (e,f))
and ] € dHom(x, (a,b)).
We have to show
(Bom)oJ=00(Mmo]). 3)
Using the definition of the compositions, both we get
(Bon)o] =I((6on)(])) =1(8(n(])))
and
Bomo])=00IM(])) =1(6(IM(]))).
It is immediately clear, that I(6(n(]))) € I(6(I(n(])))), so we just have to show
1(6(IM()))) € 1(6(n(]))).

Soletr e I(6(I(m(])))).
Henceletn € N, ay,...,an € Rand 11,..., 1 € 6(I(n(J))), such that

n
T = E a; * Ty.
i=1

Next then, let for every i € {1,..,n}ben; € N, ai1, ..., ain, and i3, ..., Tin,, such that

ng
=0 (Z QipTip ) .
p=1

Since 0 is a ring homomorphism, thus

ny

T = Z e(ai,p)e(ri,p)-

p=1

Thus

n
E E a;0(aip)0(rip).
p=1

i=1

Thus, T € ( ( (])))
Hence I(6(I(n(])))) € I(8(n(]))), and Equation 3 follows.

63



(2dh) Let (a,b),(c,d) € fHom(x), n € Hom((a,b),(c,d)), ] € dHom(x,(a,b)) and r €

Hom(x, ).
We have to show (noJ)or=(nor)o(Jor).
But both sides of the equation simplify to 1 o ], hence they are equal. O

Now we get to the first major theorem of this section. We will now show, that the structure
of a (2-fam, L)-category is sufficient to construct a 2-dep-category with the same 2-fam-
structure.

Theorem 3.4.6 (Every (2-fam, Z)-category induces a 2-dep-category).

Let 22C be a (2-fam, Z)-category, let 2C be its underlying 2-fam-category and let ZC be its
underlying (fam, Z)-category. Let dC be the dep-category given by Theorem 2.4.5 and XC.
Then, 2dC consisting of

e 2C,
e dCand
e YVa € 2CyVA, u € fHom(a) :
o: (M ¢) = Lynod
is a 2-dep-category.

Proof.

Before we get to the conditions, we have to convince ourselves, that the the composition has
correct type. For this, let a € 2Cy, A, pu € fHom(a), n € Hom(A, u) and ¢ € dHom(a,A).
We need to show, that

no; ¢ € dHom(a, p).

For this, we first need to make sense of the term X, ,n o ¢, which is the definition of n o, ¢.
Recall, that

dHom(a,A) = {x € Hom<a, Yy A) pret o x = idg).

Thus ¢ € Hom(a, ) _A).
Next, recall form Definition 3.2.1, that

M€ Hom( Z A, Z u).
Thus Zy,mo ¢ € Hom(a, Y 1)

To see that X, ,n o ¢ € dHom(a, i), we must now show, that pri" o I, ,n o ¢ = id,.
For this, recall (diag) from Definition 3.2.1, and consider only the right triangle.
This yields us a commutative diagram as follows:

ZGA

Z}\,uﬂ

~

2ol et

a,u
Py’

64



Thus, we get

pritoLymod = prito ¢ = ida.
Hence we know

no, ¢ =Iymod e dHom(a, ).

Now, what remains to be seen are the conditions (fam), (2dv;), (2dv;) and (2dh) from Defi-
nition 3.4.1.

(fam) The fam-structure of 22C is the same as the fam-structure of XC, by Definition 3.2.1.
By the Theorem 2.4.5, the fam-structure of XC is the same as the fam-structure of dC.
Thus 2C and dC have the same underlying fam-category.

(2dvq) Leta € 2Cy, A € fHom(a) and ¢ € dHom(a,A). We have to show, that
idy o & = ¢.
We know by definition of o,,
idy oy ¢ = Lypida o &.
By Definition 3.2.1 (VS;), we know

Taaidy = idy .

Thus
Z)\))\id)\ (¢] (1) = (b
(2dv;) Leta € 2Cy, A, 1, v € fHom(a), n € Hom(A, u), 6 € Hom(w,v)and ¢ € dHom(a,A).
We have to show, that

(Oomn)ord =00; (Mo ).
We know by definition of o,,
(Bon)oyp=2Xxy(00m)o .

Using (VS;) from Definition 3.2.1, we get

Z?\,v(e Oﬂ) © Cb - Zu,ve o Z?\,un o Cl)

By the definition of o, again, we then get
Zu,ve © Z?\,un o = Zu,ve oMoy d) =00, (Mor ).

(2dh) Leta,b € 2Cy, A, € fHom(a), n € Hom(A, u), ¢ € dHom(a,A) and f € Hom(b, a).
We have to show

Moxd)ogf=Mmof)oy(dogf).
By definition of o,,
Moy d)ogf=(Zymod)ogf.

Now recall, the definition of the application of dependent arrows from Theorem 2.4.5.
We know, that (X, ,n o ¢) o4 f is the arrow fulfilling the following pullback-competitor

65



diagram:
Zy,unodpof

~

S (Exumod)oaf

~

Iof

Zb(uof) - Zau

To show the equality, we will now simply show that (1 o ) o, (¢ o4 f) also fulfills the
diagram.
For this, first note that

(n o f) 02 (d) ¥ f) - Z?\of,pof(n o f) ° ((b %d f)

¢ o4 f is defined by the universal pullback property:

N
(Aof) B, A
b a

z)\of,uof(nof) Z)\,;ﬂ]

2 2

Tuf
iy \ PN Dplof) ———— 3 1 |pren

T$,u0f

P pry

L

S
i
S

is commutative.

66



Then, taking the following subdiagram

¢dof

2 y(Aof) 2 A

Z?\of‘pof(nof) Z?\,un

Yo(uof) — 5y 1

idp

i
S

We see immediately, that Zjof,.¢(1 © f) o ($ o4 f) fulfilles the same pullback-competitor
diagram as (X, n o ¢) oq f.
Hence they are equal. O

With this theorem, we have now achieved one of our central aims. What is left now, is to
define (2-dep, L)-categories and show the analogous theorem for them. We also still want to
talk a bit about toposes, which is what we do in this next lemma. Here we will have a look at
the structure Theorem 3.4.6 generates on a topos and develop the notions from Lemma 2.4.6.

Lemma 3.4.7 (Toposes as 2-dep-categories).

Let 2XC be the (2-fam, Z)-category from Example 3.2.6.

25 C induces a 2-dep-category 2dC by Theorem 3.4.6.

Leta € 2XCy and (k,e) € fHom(a).

Take the bijective assignments x and & from Lemma 2.4.6.

Then V(p,t) € fHom(a)Vd € dHom(a, (k,e))¥n € Hom((k,e), (p,t)) :

x(Mo2 @) =nox(d).

Proof.
Let (p,t) € fHom(a), ¢ € dHom(q, (k,e)), n € Hom((k, e}, (p,1)).
By definition,
nox ¢ = Le,pono d.
Using the defining diagram for X ¢ »,1)1, we thus get the following diagram, which is com-
mutative:

a
x
Pk,
> (ke o) yaxk
ida XM
Z(ke), (p,t)1 Do) y
> pyt) »axp

€

1 T s

67



By the properties of the product, we also have the commutative diagram:

p.ra,k
axk ——— k

ida Xn n-

pTﬂ»P

AaxXp ———7p

Putting these diagrams together, yields the following commutative diagram:
a

X‘
a,k

P(x,e) pr
> (kye) > axk - > k
idq xn n
Z(ke), (p,0)1
e),(p P(p,t) . prgyp >
2> Jpt) > axp > P
e
T

1 >

Now, remember, we have to show, that

x(Mo2 &) =nox(d).

Using the definition of X, this equation turns into

P 0P © ZikeypM o @ =M opryT oppy o,
Which then clearly follows from the diagram. OJ

Remark 3.4.8 (5 also commutes with composition).
Note that, since 6 and x are inverse to each other, as an easy consequence of Lemma 3.4.7, we
also get the analogous statement for 9.

Remark 3.4.9 (A 2-dep-structure on a commutative ring not given by Theorem 3.4.6).

Using Proposition 2.4.9 it is easy to see that the 2-dep-category from Example 3.4.5 cannot be
given, by the (2-fam, X)-category from Example 3.2.7 through Theorem 3.4.6. This is because
Theorem 3.4.6 uses the dep-structure from Theorem 2.4.5 and Example 3.4.5 uses the dep-
structure from Example 2.4.8. We did see that these dep-structures were not the same in
Proposition 2.4.9, making the 2-dep-categories different as well.

3.5 (2-dep,X)-Categories

Now, we are in the last part of section 3. We will now wrap up everything that we have done
and define (2-dep, )-categories, which are a structure that has 2-fam-arrows, dep-arrows
and X-obejcts. Previously, we had already combined some of those notion, for example,
we combined dep-categories and (fam, Z)-categories into (dep, L)-categories. However, (2-
dep, I)-categories are different from our previous efforts to combine these structures. The
difference is, that for each of these combinations we still added a little bit of structure which
we couldn’t capture before. Like the second projection arrows or the X-arrows of the second
kind. This time we will not add anything new. The only things we will need for a (2-dep, X)-
category are a 2-dep-, a (dep, X)- and a (2-famZX)-category, as well as some conditions, to
make their structures compatible.

68



Definition 3.5.1 ((2-dep, X)-Category).
2dXC consisting of

* a2-dep-category 2dC,

* a(dep, X)-category dZC, and

* a(2-fam, X)-category 2XC
is called a (2-dep, X)-category;, iff
(dep) the underlying dep-categories of 2dC and dX.C are the same,
(2-fam) the underlying 2-fam-categories of 2dC and 252 C are the same,
(X) the underlying (fam, X)-categories of 2~C and dZC are the same, and
(2ds) Va € CoVA, u € fHom(a)vn € Hom(A, u) :

Mopri?) o pri?t = pry'o Ly m.

To illustrate this, consider the following diagrams:

a,A
pry”

Z}\,un
D oM
p].LZJJ\
m
/_)\\
popr"HoXy un
pT‘;‘“ OZ)\,un

We also define
® Cp:=2dCy=dECy=2%C,,
e Cy:=2dC, =dxXC, =22Cy,
e C,:=2dC, =dxC, =22C,,
e C3:=2dC; =dXCs;and

69



b C4 = 2dCy4 = ZZC4

Remark 3.5.2 (Typing in Definition 3.5.1).
Note, that the arrows on the 2 sides of the equation in (2ds) indeed have the same type.
For this, by definition, the types of the 2 arrows are (given variables as specified in (2ds)) are:

o MoprdM) oprg? € dHom( Y A, po prit), and
o pry¥oXym € dHom( Y (A poprytoLym).

Remember, from Definition 3.2.1, pri* = pr{* o L, \m.
With this we can clearly see, that the typings are the same.

Remark 3.5.3 (Compontents of (2-dep, Z)-categories have the same fam-structure).
Notice, that the fam-structures of the 3 components of a (2-dep, X)-category are the same.
This can be seen, by using the conditions (dep), (2-fam) and (X).

As always, we will now look at a trivial example. Here we will be combining the structures
given by the Examples 3.4.2, 3.2.3 and 2.5.3 into a (2-dep, Z)-category.

Example 3.5.4 (A (2-dep, X)-category with trivial dep-arrows and Z-objects).

Let 2C be a 2-fam-category. Let 2dC be the 2-dep-category from Example 3.4.2, using 2C.
Let 2C be the (fam, Z)-category given by Example 2.2.3 and the fam-structure of 2C.

Let dXC be the (dep, X)-category from Example 2.5.3, using XC. Let 2XC be the (2-fam, X)-
category from Example 3.2.3, using 2C. Then, 2dXC consisting of

e 2dC,
e dXCand
e 25C
is a (2-dep, X)-category.

Proof.

To show this, we have to show the conditions (dep), (2-fam), (X) and (2ds).

Tosee (dep), (2-fam) and (Z), simply go to the respective examples and compare the relevant
structures. So what remains is to show (2ds).

Soleta € Cy, A, u € fHom(a) and n € Hom(A, u). We have to show

(noprit) o pry? = pry*o Iy .
Using the definitions of the compositions in Example 3.4.2, we get
(nopri*) o prit = pr§?

and
pri® o Iy,m = prot
Furthermore, by Example 2.5.3 we know pry* = prt.
Thus (2ds) follows, and we indeed have a (2-dep, X)-category. ]

Next we will show that we get (2-dep, X)-categories with constant fam-arrows, from type
universes and from commutative rings. In all of these, we will take the respective examples
from the previous section and simply show, that the given structures are compatible as per
Definition 3.5.1.

70



Example 3.5.5 (A (2-dep, )-category with constant fam-arrows).
Let C be a category with binary products.
Let there be an assignment

famCy x famCy — famCy, (a,b) — a x b,

where a x b is a product of a and b.

Let 2dC be the 2-dep-category from Example 3.4.3, using C. Let dsigC be the (dep, Z)-
category from Example 2.5.4, using C. Let 2sigC be the (2-fam, L)-category from Example
3.2.4, using C. Then, 2dZC consisting of

e 2dC,
e dsigC and
e 2sigC
is a (2-dep, X)-category.

Proof.

We have to again show the conditions from Definition 3.5.1. Here it is again easy to see that
(dep), (2-fam) and (Z) are fulfilled, using the definitions in the examples.

So we just have to show (2ds). Hence let a € Cy, A, p € fHom(a) andn € Hom(A, p).

We have to show that

(o pr) o pret = prit o (ida x ).
We know by the definition in Example 3.2.4, that
Mmopri?) opryt =noprd’.
As a basic property of products, we know that
nopry® =prito (id, x n).
Thus we have shown (2ds). ]

Example 3.5.6 (Small types form a (2-dep, Z)-category).

Let U be a type universe. Let Type?d(U) be the 2-dep-category from Example 3.4.4 using U.
Let Type*(U) be the (dep, £)-category given by Example 2.5.5 and U. Let Type**(U) the
(2-fam, £)-category given by Example 3.2.5 and U. Then, Type?*(U) consisting of

* Type*'(U),
e Typed*(U) and
* Type**(U)
is a (2-dep, X)-category.

Proof.

We have to show the conditions in Definition 3.5.1 hold. By observing the constructions for
Type*d(U), Typed*(U) and Type** (U), in the examples, we immediately see, that the condi-
tions (dep), (2-fam) and (X) hold. So what remains to be seen is (2ds).

For this we will use function extensionality.

71



Let A € Type?¥* (U)o, u,v € fHom(A), andn € Hom(u,v).
Hence A : U, pu,v:A — Uyjandn: [[ .4 (1(x) = v(x)). We need to show

(mopr™) opry™ =pri o L.

Solet (x,y) : ) A H(a).
By simplifying both sides of the equation we get:

(Mopr*) o pry™)(x,y) = (Mo prH) (%, y) (pr5H (%, y))

=n(pr™H (%, y)) (et (%, y)) =n(x)(y)
and
(pr2Y o Zuvn) (x,y) = prY (Zuam(x,y)) = pro¥ (x,n(x) (y)) =n(x)(y). O

Example 3.5.7 (A (2-dep, I)-structure for a commutative ring).

Let R be a commutative ring. Let Vr € R : I(r) be the ideal generated by r. Let 2dR be
the 2-dep-category from Example 3.4.5 using R. Let dZR be the (dep, Z)-category given by
Example 2.5.8 and R. Let 2R the (2-fam, Z)-category given by Example 3.2.7 and R.

Then, 2dXR consisting of

* 2dR,
e diRand
e 2FR
is a (2-dep, X)-category.

Proof.

As with the previous examples, the conditions (dep), (2-fam) and (X) are clear.

So what remains is to show (2ds). Solet (a,b), (c,d) € fHom(*) andn € Hom((a, b), (c,d)).
We have to show

*,(a,b *,(c,d
mopri™ opry®” =pry' o L igp can.
Using the respective definitions, this equation simplifies to

I(T](I(a— b))) =1I(c—d).

Since we have n(a — b) = ¢ — d, we can see that I(n(I(a—b))) D I(c —d) is clear, but we still
have to show
IM(I(a—1))) CI(c—ad).

For this, let v € I(n(I(a—b))). Then, letn € N, s1,...,s, € Rand 11, ...,7n € n(I(a—b)), such

that
n
T = Z SiTy.
i=1

Now, for each i € {1,...,n}let p; € R, such that r; =n(pi(a —b)).

Hence N N
r=) sm(pnla—b) =) sm(pi(c—b)ellc—d).
i=1 i=1
Thus I(n(I(a—b))) = I(c — d). Thus (2ds) holds. O

72



Now we will wrap up our big theorems. We will see now that the structures from Theorem
2.5.6 and Theorem 3.4.6 are compatible, such that we do get a (2-dep, X)-category from every
(2-fam, X)-category in the following theorem. Afterwards we will make two quick remarks
about easy consequences of the Theorem.

Theorem 3.5.8 (Every (2-fam, Z)-category induces a (2-dep, X)-category).

Let 2XC be a (2-fam, Z)-category. Let 2dC the 2-dep-category induced by 2XC through The-
orem 3.4.6. Let dXC be the (dep, £)-category induced by 22X C through Theorem 2.5.6.
Then, 2d%C consisting of

e 2dC,
e dXCand
e 25C
is a (2-dep, X)-category.

Proof.
To see that the data gives a (2-dep, X)-category, we must show that the conditions in Defini-
tion 3.5.1 hold.

(dep) Since both Theorem 3.4.6 and Theorem 2.5.6 use the dep-structure induced by 22XC
through Theorem 2.4.5, 2dC and dZC indeed have the same dep-structure.

(2-fam) Since Theorem 3.4.6 uses 22X C for the 2-fam-structure, 2XC and 2dC have the same
2-fam-structure.

(X) Since Theorem 2.5.6 uses 22X C for the (fam, X)-structure, 2-C and dXC have the same
(fam, X)-structure.

(2ds) Leta € 2dXCy, A,u € fHom(a) and n € Hom(A, p).
We have to show
(nopri?) oy pry” = pry* og Ty, @)
To do this, we want to the universal pullback property. For this, first consider the def-
inition of pry™* o4 I, M given by Theorem 2.4.5. By this, pry* o4 I, 1 is given as the
unique arrow from the universal pullback property:

a,
pr3 HoZy,um

2 A

a,p
T~al przy Odz)\‘un

A Zpoprﬁl’”z?\,un

Yyalpopritonym) ———— 35 (noprit)

a,p a,p
k‘prlza A,uopry OZ)\’un BPT?:G HyHopTy ’

D oA I

Z)\‘un

73



Furthermore, consider the definition of pry™ given by Theorem 2.5.6.
this yields us the following commutative diagram:

5 myuoprt a
P ! P

2ok x

prit
Putting these diagrams together results in the following commutative diagram (x):

Z)\,un

T

~A

Zupry
a,u a,u wPTy
O O Z > opr _
ZZaA(u P )\,LLT]) L opr@nIa,un ( Zza F"(u PT ) Zau
1
A, augy ) ) a,u i
pT]Za nopr oy m iy, pr]Zau Hopr) pro®
Zaun prit
YA : S ' a

Next consider the other side of Equation 4.
The definition of pr§* as given by Theorem 2.5.6 is

idy A

74



Then, by the condition (diag) from Definition 3.2.1, we have the commutative diagram:

A
Iyprid

ZZGAU\OP]"?’}\) 2 oA

a,A
Z?\opr?‘)\‘uopril‘“(nopﬁ’ ) Z?\,un

~ ~

A
TarreprPr |y (Lopryt) > I
T 2aA Zprooh a pre

A popr®HA i
pT]Za ,1opTy pre

A ~
pry

2 LA ' a

We can see that the square in the diagram for pr$* is just the outer square in (diag).
Hence we can also put these diagrams together, yielding a commutative diagram (s:x):

idy_»

):)\.pra,?\
a,A !
Ty Aopr T A
Z}\Opr?,)\’uopr?w(TIOPTQ‘)‘) ZNHH
A
> A,?\opra’)‘ O r(l,
Py “ ! ZZQ)\(H P ) Zupr‘]lﬁ‘ Za H a,A
PTy
Za A,uopr?‘}‘ a,p
Pry PT

priv?t )

D A ' a

Now, we know that both of the inner squares of () are pullback, thus by the pullback
lemma, the rectangle these two form together is also a pullback. Since (x) is commu-
tative, we can get the following pullback-competitor diagram, as a subdiagram (') of

(*):

75



Z)\,un

a,p
> ( Mo Iy ,m) PP R opr i Ent
oprT o n
T AHOPT Am

pTZa A,popr?‘uolxyun
1

au
Py

2 oA

> a
privtolnun

For (xx), we know that the lower square is a pullback. Hence we get the following
pullback-competitor diagram as a subdiagram (s#x') of (sx):

Z)\,un

2 oA

Toso__(moprtogpri?
Ly aop) —— =y
2 A -y > a

Notice that we used, that, by the definition in Theorem 3.4.6,

a,A aA __ a,\ a,A
MoprPt) oy pry” = Z)\oprﬁl’)‘,uopr?’”(n oprt) opr;

Now we need to show, that (+’) and (xx’) are the same diagram, then we are done
For this we need to show
@) pri* =prito Ly,

(i) X5 alwoprih) =3 y(wopr*oIym),
(it) Z,pri? = Zprt o I panZy,m, and

. A,popr®A A, popr
(iv) pri=e P = prime

LL027\’111’]

(i) follows immediately from the right triangle in (%), (ii) and (iv) then follow from (i).
For (iii) use (i) and (s;) from the definition of (fam, £)-categories to see, that

Luprito Zyioprin ATl = Zulprit o Lym) = Zupri?
Thus, (+') and (x+’) are the same, and with the uniqueness property for pullback, we
get

(moprit) oprd? = pry*os Lym. O

76



Remark 3.5.9 (Toposes as (2-dep, L)-categories).
Taking the structures on toposes defined in Lemma 3.2.6, Lemma 3.4.7 and Remark 2.5.7, we
can use Theorem 3.5.8 to see that every topos is a (2-dep, X)-category.

Remark 3.5.10 (Not all (2-dep, Z)-categories are given by their (2-fam, I)-structure).

We have seen that we can combine the structures from the Examples 3.4.5, 2.5.8 and 3.2.7
into a (2-dep, L)-category, in Example 3.5.7. Hence, by a similar argument as in the Remarks
2.5.9 and 3.4.9, we can see, that there exists a (2-dep, X)-category, such that it is not induced
through Theorem 3.5.8 by its own (2-fam, Z)-structure.

77



4 Conclusion

We have now seen the definitions associated with 2-fam-arrows, several examples and that
(2-fam, X)-categories induce 2-dep- and (2-dep, L)-categories. But there are many further
concepts that one might talk about, regarding this topic.

The most obvious of which might be 2-dep- and (2-dep, Z)-functors. After all, when we de-
fine a new kind of object, we always want to know how a map between two objects of that
kind might look like. Then with extended notions of functors of course comes the question,
whether one can define corresponding extended notions of limits and, if it is possible, how
these behave. Furthermore, with definitions of 2-dep- and (2-dep, £)-functors, it could be in-
teresting to investigate whether the correspondences that we discussed for the topos example
in Lemma 2.4.6 can be used to construct 2-dep- and (2-dep, Z)-functors.

Going now beyond functors, another object one might look at are duals for 2-fam-arrows.
In [3] it is mentioned, that for fam-arrows, dep-arrows and X-objects, one can find duals of
these, called cofam-arrows, codep-arrows and coX-objects respectively. There is no reason to
assume, that we wouldn’t be able to define 2-cofam-arrows, that point from a cofam-arrow
to another cofam-arrow. These also might have interesting properties and example.

So, there clearly is more work to be done.

78



References

[1] T.Leinster. Aninformal introduction to topos theory, 2011, arXiv:1012.5647v3 [math.CT].
[2] T. Leinster. Basic category theory, 2016, arXiv:1612.09375v1 [math.CT].
[3] I Petrakis. Categories with dependent arrows, 2023, arXiv:2303.14754v1 [math.CT].

[4] A. M. Pitts. Categorical logic. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, Volume 5. Algebraic and Logical Structures,
chapter 2, pages 39-128. Oxford University Press, 2000.

[5] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study;,
2013.

79


https://homotopytypetheory.org/book

	Introduction
	Categories with dependent arrows
	fam-Categories
	(fam,)-Categories
	fam- and (fam,)-Functors
	dep-Categories
	(dep,)-Categories

	Categories with dep-arrows and 2-fam-arrows
	2-fam-Categories
	(2-fam,)-Categories
	2-fam- and (2-fam,)-Functors
	2-dep-Categories
	(2-dep,)-Categories

	Conclusion
	References

