Finitistic Higher Order Logic

Matthias Eberl

ABM - LMU Munich, 14.12.2017

Introduction

Aim:

- A finititatic understanding of mathematics
- ► Forerunner: Jan Mycielski (Local finite theories, JSL '86)

Our approach: Use model theory

- FOL: Adopt Tarskian semantics
- HOL: Adopt models of STT

Main idea:

Infinite sets are not actual infinite, but indefinitely extensible — This applies also to the syntax. No notion of computability.

First order logic I

Basic change:

Use a family $(\mathcal{M}_i)_{i \in \mathcal{I}}$ with finite sets \mathcal{M}_i and a directed index set \mathcal{I} instead of an infinite set \mathcal{M} .

Approximation declaration:

Introduce approximation declarations $C \vdash t : i$ and $C \vdash \Phi$ with approximation context $C = (i_0, \ldots, i_{n-1})$ being a list of indices.

Sufficiently large:

Use a relation $i \gg C$ meaning "*i* is sufficiently large relative to C". Restrict contexts to those satisfying $i_k \gg (i_0, \ldots, i_{k-1})$.

Interpretation:

Interpret $\models_{\gg} \forall x \Phi[\boldsymbol{a} : C]$ as: There is some "sufficiently large" index $i \gg C$ such that $\models_{\gg} \Phi[\boldsymbol{a}, b : C.i]$ holds for all $b \in \mathcal{M}_i$.

First order logic II

Main result:

- ► A model (*M_i*)_{*i*∈*I*} validates the same formulas as the limit model ⋃_{*i*∈*I*} *M_i*.
- We have soundness and completeness.
- New metatheory: e.g. no unavoidable non-standard models, categoricity of first order PA becomes possible.
- Applicable also to Kripke models and intuitionistic logic.

First order logic II

Main result:

- ► A model (*M_i*)_{*i*∈*I*} validates the same formulas as the limit model ⋃_{*i*∈*I*} *M_i*.
- We have soundness and completeness.
- New metatheory: e.g. no unavoidable non-standard models, categoricity of first order PA becomes possible.
- Applicable also to Kripke models and intuitionistic logic.

No infinity at all:

Model theory is applicable to background theory: Model of model theory is also finitistic (in particular: Index \mathcal{I} is not infinitely large).

Towards higher order logic I

New in HOL:

Infinite objects are approximated, too. No infinite functions as $f : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$, but approximations $f : (\mathbb{N}_i \to \mathbb{N}_j) \to \mathbb{N}_k$ with $\mathbb{N}_i = \{0, \ldots, i-1\}$ and $i, j, k \in \mathbb{N} \setminus \{0\}$.

Towards higher order logic I

New in HOL:

Infinite objects are approximated, too. No infinite functions as $f : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$, but approximations $f : (\mathbb{N}_i \to \mathbb{N}_j) \to \mathbb{N}_k$ with $\mathbb{N}_i = \{0, \ldots, i-1\}$ and $i, j, k \in \mathbb{N} \setminus \{0\}$.

Total or partial functions?

Domain theory provides a notion of approximation of infinite objects. But it uses partial functions. We us total functions:

- Partial functions not suitable for a HOL (Type *bool* has partial truth values).
- ► Since we only have finite sets M_i , there is no need to approximate functions by finite partial functions.

Towards higher order logic II

Partial surjections:

Partial surjections $\stackrel{p}{\mapsto}$ arise when embeddings on base types are extended to higher type as logical relations. But at higher types the partial surjections are not transitive (composable):

$$f'' \stackrel{p}{\mapsto} f' \stackrel{p}{\mapsto} f \not\Rightarrow f'' \stackrel{p}{\mapsto} f.$$

Use instead property:

$$\exists f'' \ f'' \stackrel{p}{\mapsto} f' \text{ and } f'' \stackrel{p}{\mapsto} f \iff f' \stackrel{p}{\mapsto} f. \tag{1}$$

Towards higher order logic II

Partial surjections:

Partial surjections $\stackrel{p}{\mapsto}$ arise when embeddings on base types are extended to higher type as logical relations. But at higher types the partial surjections are not transitive (composable):

$$f'' \stackrel{p}{\mapsto} f' \stackrel{p}{\mapsto} f \not\Rightarrow f'' \stackrel{p}{\mapsto} f.$$

Use instead property:

$$\exists f'' \ f'' \stackrel{p}{\mapsto} f' \text{ and } f'' \stackrel{p}{\mapsto} f \iff f' \stackrel{p}{\mapsto} f. \tag{1}$$

Embedding and projection:

Property (1) too weak to extend it to higher types. Auxiliary structure of embedding-projection pair around $\stackrel{p}{\mapsto}$ necessary. But: Several choices possible.

Towards higher order logic III

Limit construction:

New limit construction necessary: In FOL the direct limit suffices, in HOL we need more, e.g. $id_{i,j} : \mathbb{N}_i \to \mathbb{N}_j$ with $i \leq j$ has limit $id : \mathbb{N} \to \mathbb{N}$.

Idea: Use partial surjections for the limit construction with property (1) formulated as a universal property.

Towards higher order logic III

Limit construction:

New limit construction necessary: In FOL the direct limit suffices, in HOL we need more, e.g. $id_{i,j} : \mathbb{N}_i \to \mathbb{N}_j$ with $i \leq j$ has limit $id : \mathbb{N} \to \mathbb{N}$.

Idea: Use partial surjections for the limit construction with property (1) formulated as a universal property.

Sufficiently many:

Additionally required: A notion of "sufficiently many" ("almost all"), a kind of Fréchet filter \mathfrak{F} .

Two views

Two views:

(FIN) Dynamic finitistic multiverse e.g. $id_{i,j} : \mathbb{N}_i \to \mathbb{N}_j$. (INF) Static universe with actual infinity e.g. $id : \mathbb{N} \to \mathbb{N}$.

From (FIN) to (INF): Limit construction with $\stackrel{P}{\mapsto}$.

Structure on (INF):

Family \approx_i of partial equivalence relations (PERs) over \mathcal{I} , generated by $\stackrel{p}{\mapsto}$. Idea: \approx_i approximates equality.

From (INF) to (FIN):

Take the equivalence classes of \approx_i .

Universes with families of PERs

Auxiliary structure:

 $\begin{array}{l} \mathsf{Embedding} \leftrightarrow \mathsf{Points} \text{ (representatives of equivalence classes)}.\\ \mathsf{Projection} \leftrightarrow \mathsf{Extension} \text{ of PER to equivalence relation}. \end{array}$

Universes with families of PERs

Auxiliary structure:

 $\begin{array}{l} \mathsf{Embedding} \leftrightarrow \mathsf{Points} \text{ (representatives of equivalence classes)}.\\ \mathsf{Projection} \leftrightarrow \mathsf{Extension} \text{ of PER to equivalence relation}. \end{array}$

Universe view:

Set \mathcal{M} with PERs \approx_i for $i \in \mathcal{I}$, approximating equality on \mathcal{M} . Properties:

- ▶ \approx_i dense in \mathcal{M} , i.e., $\{i \in \mathcal{I} \mid a \approx_i a\} \in \mathfrak{F}$.
- ▶ $\approx_{i'}$ finer than \approx_i for $i' \ge i$, but not necessarily $\approx_{i'} \subseteq \approx_i$.
- ► Further properties in combination with points and extension.
- Functions are extensional (due to universal property of the limit).
- Limit is complete (define convergent families (aⁱ)_{i∈I} w.r.t. ≈_i and limit elements).

One-to-one correspondence

Main idea:

- To each multiverse with partial surjections there is exactly one (extensional and complete) limit universe with PERs.
- To each universe with PERs the equivalence classes form a multiverse with partial surjections.

Hence: The limit structure satisfies the principle of finite support.

One-to-one correspondence

Main idea:

- To each multiverse with partial surjections there is exactly one (extensional and complete) limit universe with PERs.
- To each universe with PERs the equivalence classes form a multiverse with partial surjections.

Hence: The limit structure satisfies the principle of finite support.

However:

From a finitistic perspective we need only multiverse with partial surjections. Nevertheless, the limit can be seen as an indefinitely large stage in $(\mathcal{M}_i)_{i \in \mathcal{I}}$.

Open questions

Limit structure:

What exactly is this limit structure? Are they the (hereditarily) total continuous functionals (Kleene-Kreisel)?

Continuity:

What is the notion of continuity with respect to \approx_i ?

f is *i*-*j*-continuous iff $a \approx_i b$ implies $f(a) \approx_j f(b)$.

Define f is uniform continuous iff there are sufficiently many (i, j) such that f is *i*-*j*-continuous. Too restrictive?

Approximation declaration:

What is the corresponding notion in HOL?

Any questions?

Thank you for your attention.