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ABSTRACT

We introduce the concept of a self-interpreted mathematical theory, construing Brouwer’s
intuitionistic analysis as an important example of such a theory. Brouwer’s aim was to show
evidence of all the mathematical properties of the continuum by unfolding its intuitionistic
meaning, without using any axioms. Our criticism of Kleene’s formalization of intuitionistic
analysis derives from this point of view. We give a reconstruction of Brouwer’s analysis
from the self-interpreted theory point of view, based only on definitions of the fundamental
concepts. We argue though, that Brouwer’s proof of fan theorem is not intuitionistically
acceptable, therefore a different approach on the proof of fan theorem is needed, in order to
secure the self-interpreted character of intuitionistic analysis. Finally, we discuss the benefits
of incorporating elements of intuitionistic analysis into teaching mathematical analysis, based
on some crucial points of our reconstruction of Brouwer’s intuitionism.

1 The concept of a self-interpreted mathematical theory

A mathematical theory T is called self-interpreted (siT ) if it has a unique mental inter-
pretation and this interpretation, not only is part of T , but also generates its syntax. In
a siT its formal part (syntax) is a mathematical development of the fundamental intu-
itions of its interpretation (semantics). A siT contains no axioms, but every proposition
derives from the definitions of the related concepts.

The major examples of siT are the following:

Platonic Euclidean geometry (PEG): it consists of the greater part of the Euclidean
Elements (except e.g., the axiomatic Book V) and the Platonic philosophical interpre-
tation of the Euclidean geometric concepts. The Euclidean definitions of them are
actually of Platonic nature, creating an important link between mental interpretation
and mathematical language. Proclus tried to give a ‘philosophical proof’ of the Eu-
clidean Postulates through the concept ‘flowing of the point’, using only the Euclidean
definitions, in order to secure the siT -character of Euclid’s geometry1.
Brouwer’s intuitionistic arithmetic (BA): it is the development of arithmetic from
the mental construction which corresponds to a natural number. This construction is
founded on Brouwer’s primordial intuition of time two-ity2. Though Brouwer provided
a sketch of his arithmetic (see e.g., [Brouwer 1981] p.90), only Heyting followed his
line of presentation in [Heyting 1956] (pp.13-15). A fuller reconstruction of Brouwer’s
arithmetic can be found in [Petrakis 2007, 2008], in which the difference between BA

1For the above siT -character of Euclidean geometry see [Farmaki, Negrepontis 2008], who show the
platonic nature of the Euclidean definitions and their role in turning postulates into proved proposi-
tions.

2I.e., the a priori intuition of retaining in memory a previously distinguished object and connecting
it to another object, distinguished later, forming that way a new composite object.
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and the formal theory of Heyting’s arithmetic is explained.
Brouwer’s intuitionistic analysis (BIA): it is the mathematical development of the
concept of the intuitionistic continuum, which is described as an appropriate spread,
based on a corpus of intuitionistic principles and concepts. Brouwer never used axioms
in BIA and he tried to justify all his principles on conceptual grounds.

All the above theories are constructive, i.e., they contain, tacitly or not, some con-
structive principles which guide the execution of proofs and the formation of concepts.
In that way, the truth of the fundamental intuitions or concepts is preserved by the
defined concepts and proofs. A siT is trivially categorical, since there is only one inter-
pretation associated to it, consistent, as long as the fundamental mental interpretations
are non-contradictory, and complete, in the sense that a formula of a siT is true only
if there is some constructively persuasive evidence for it.

In our opinion, it is impossible for a theory to be a siT without being constructive.
Of course, there are theories with a constructive character, such as various versions of
post-Brouwer intuitionistic arithmetic or analysis, which are not self-interpreted. We
shall only indicate in section 5 why post-Brouwer intuitionism lost every aspect of the
siT -character of Brouwer’s intuitionism. Post-Brouwer intuitionistic theories, Kleene’s
system FIM3 being the best known, became formal theories i.e., theories originating
from a syntax, which generates a multiplicity of semantics. As any formal theory,
post-Brouwer intuitionistic theories had to deal with their consistency, categoricity and
completeness. The metamorphosis of the self-interpreted Brouwer’s intuitionism to a
variety of formal theories brought intuitionism, on the one hand, closer to classical
mathematics, but on the other hand, carried it away from the methodological princi-
ples of his philosophically motivated inventor. The general view though, is that “it was
Brouwer’s vision what theory should be attained and Kleene’s insight which first found
implicit in Brouwer a usable, more conventionally mathematical (axiomatic) road to
that theory”4. Myhill, for example, insisted that Brouwer’s views were not adequately
taken into account5, but he was referring to specific technical issues, rather than on
the general foundational scheme. It was Heyting who, commenting on his first intu-
itionistic logic papers, regretted the fact that these papers ‘diverted the attention from
the underlying ideas (of Brouwer) to the formal system itself ’6. There is a remarkable
historical analogy between the pairs (Brouwer’s intuitionism, post-Brouwer intuition-
ism) and (Euclidean geometry, axiomatic-Hilbertian geometry). The first elements of
the pairs are self-interpreted theories which were translated, in the course of time, to
formal (axiomatic) theories. Hilbert’s ‘Grundlagen’ though, are neither constructive
nor self-interpreted; actually the syntactical part of it is not interpreted at all. Sim-
ilarly, the syntax of post-Brouwer intuitionistic analysis is on its own uninterpreted.
But Brouwer’s view, already from his early period, was that7

[A logical construction of mathematics, independent of the mathematical
intuition, is impossible - for by this method no more is obtained than a
linguistic structure, which irrevocably remains separated from mathematics
- and more-over it is a contradictio in terminis - because a logical system

3See [Kleene-Vesley 1965].
4These are words of Vesley in [Vesley 1980] p.328.
5See [Myhill 1968].
6See [Heyting 1978] p.15.
7See [Brouwer 1907] p.97.
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needs the basic intuition of mathematics as mathematics itself needs it.]

PEG and BIA though, are not fully successful self-interpreted theories: a philosophical
proof of the Fifth Postulate has not been given and Brouwer’s proof of Fan theorem is
not, as we argue in section 5, intuitionistically acceptable. A new kind of proof of Fan
theorem is needed in order to be an intuitionistic truth.

In the next section we present the main definitions of BIA. It is the difference
between intuitionistic and classical concepts that explains the difference between BIA
and classical analysis8.

2 Basic constructive definitions

Since 1918, Brouwer has described the intuitionistic continuum as a certain spread. A
spread M is determined through the spread-law ΛM and (if necessary) the complemen-
tary law ΓM . ΛM decides which finite sequences of natural numbers9 are accepted or
not. Namely ΛM :
(i) decides which naturals are admitted as 1-sequences (i.e., as sequences of length 1).
(ii) accepts (a1, a2, ..., an), if it accepts (a1, a2, ..., an, an+1).
(iii) decides, for any natural k, whether it accepts (a1, a2, ..., an, k) or not, if it accepts
(a1, a2, ..., an).
(iv) accepts (a1, a2, ..., an, k), for some k, if it accepts (a1, a2, ..., an).
So, ΛM determines a tree with its branches corresponding to the admissible by ΛM

finite sequences or nodes of M10. By (iv), all paths of the tree are potentially infinite
and they are called choice sequences of the spread M11. Each a1 is the root <> of the
tree.
ΓM corresponds to any ΛM -accepted sequence an already constructed mathematical
object. So, if (a1, a2, ..., ak, ...) is an M -(choice) sequence, then by the following corre-
spondences of ΓM

(a1) 7→ b1
(a1, a2) 7→ b2
. . . . . . . . . . .
. . . . . . . . . . .

(a1, a2, ..., ak) 7→ bk
. . . . . . . . . . .

an M -sequence of mathematical objects, other than naturals, is constructed. Each M -
sequence is an infinitely proceeding sequence (i.p.s), of which we know at any moment
only a finite initial segment i.e., an M -sequence is an on-going mathematical object.
If ΛM admits any finite sequence of naturals, then M is the universal spread ωω, which

8Feferman, discussing Brouwer’s uniform continuity theorem (see section 5), in([Feferman 1997]
p.222), remarks: [...but once it is understood that Brouwer’s theorem must be explained differently via
the intuitionistic interpretation of the notions involved, an actual contradiction is avoided. Perhaps if
different terminology had been used, classical mathematicians would not have found the intuitionistic
redevelopment of analysis so off-putting, if not downright puzzling.]

9Brouwer has previously justified the use of natural numbers, founding them on the intuition of
time.

10The above definition does not specify the nature of ΛM , only its function. This is not a problem,
since BIA uses certain spreads and it is independent from a general theory of spreads.

11We will not study here choice sequences outside a spread.
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corresponds to the classical Baire space N of all sequences of naturals12. But intuition-
istic ωω is not a set, but a mechanism of construction of i.p.s. The notion of spread
is one of Brouwer’s most important conceptual innovations, since it holds together all
the M -sequences, without containing them as a set. The spread concept derives from
Brouwer’s need to avoid the concept of absolutely infinite set.

A subspread K of M , K vM , is a spread such that, if (a1, a2, ..., an) is ΛK-accepted,
then it is ΛM -accepted.

The most important spread is the spread of real numbers <. If we define the rational
numbers in the classical way, and fix an enumeration q1, q2, ..., qn, ... of them, then Λ<:
(i) accepts any natural number as a successor of the root <>.
(ii) accepts (a1, a2, ..., an), if it accepts (a1, a2, ..., an, an+1).
(iii) accepts (a1, a2, ..., an, an+1) iff it accepts (a1, a2, ..., an) and

| qan − qan+1 |<
1

2n

Γ< is defined by
(a1, a2, ..., an) 7→ qan

Λ< guarantees the extension of any Λ<-admitted sequence (a1, a2, ..., an), since there
always exists rational q such that,

qan −
1

2n
< q < qan +

1

2n

But q is a qk, for some k, so (a1, a2, ..., an, k) is Λ<-admitted. Of course, this q is
not unique, so the extension of (a1, a2, ..., an) is not absolutely determined by Λ<.
So, ΛM is, generally, a non absolutely deterministic law. Through Γ< the sequence
(qa1 , qa2 , ..., qan , ...) determines an intuitionistic real number. Obviously, the intuitionis-
tic continuum is a holistic continuum which generates its points, while the classical con-
tinuum is an atomistic continuum generated by its points as their sum (set). A spread
M is called splitting iff (∀α ∈ M)(∀N)(∃β ∈ M)(∃M > N)(Nβ = Nα ∧ Mβ 6= Mα),
i.e., if each finite M -sequence splits at some moment of its evolution into two different
sequences.
A fan F is a finitely branching spread i.e., each finite ΛF -admitted sequence can be
extended only by finitely many naturals. A subfan T of F , T v F , is a subspread of
F . If the universal law applies only to 0-1 sequences, then we take the fan 2ω, which
corresponds to the classical Cantor space C of all 0-1 sequences13.
An intuitionistic ωω-function, ϕ : ωω → ω, is a law14, such that ϕ corresponds an ωω-
sequence α to a unique natural number ϕ(α), based on an initial segment of α of length
N , Nα, for some N , or on any extension of it15. We call any such node a critical node
for ϕ. So, ϕ is actually determined by a function ϕ∗ on the finite ωω-sequences. This

12If we define the metric

ρ(α, β) =
{ 1

η(α,β) , if α 6= β

0 , if α = β

where η(α, β) is the least index for which α 6= β, then N is a metric space, and a spread, classically
interpreted, is a closed set of N . Not every closed set corresponds to a spread.

13A fan, classically interpreted, corresponds to a compact subset of N .
14In Brouwer’s words: “...by a function...we understand a law...” ([Brouwer 1927] p.458.
15There are many, more or less, equivalent formulations of the same concept.
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definition is natural, since α is an on-going object and its value must be determined
some time in the course of its ‘becoming’. If M is an arbitrary spread, an intuitinistic
M-function, ϕ : M → ω, is defined likewise.
An intuitionistic ωω-Function, Φ : ωω → ωω, is a law which corresponds an ωω-sequence
α to a unique ωω-sequence β, based on a law Φ∗, which correlates finite sequences of
naturals such that:
(i) if N ≤ M , then Φ∗(a1, a2, ..., aN) � Φ∗(a1, a2, ..., aM), where � means that the se-
quence Φ∗(a1, a2, ..., aN) is an initial segment of the sequence Φ∗(a1, a2, ..., aM).
(ii) Φ∗ is not finally constant.
(iii) Φ(α) = supNΦ∗(Nα) i.e., Φ(α) is approximated by the segments Φ∗(Nα).
This definition is natural, since the image of an on-going object through Φ is another
on-going object. If M1, M2 are arbitrary spreads an M1,M2-Function Φ : M1 →M2 is
defined in the same way.

A species is a constructed property A on pre-determined intuitionistic objects. It is
not identified with its extension, despite the fact that we call the objects which satisfy
A elements of A, it avoids circularity, since it applies on pre-existent objects, and it
is not a linguistic expression, since it is constructed. The constructive character of a
species is studied in [Petrakis 2008], but it suffices to say here that a species depends
on a common mode of formation of its elements. So, we study e.g., the species of the
M -sequences, for some spread M , or its sub-species of those M -sequences which extend
a finite M -segment (a1, a2, ..., an).

A well-ordered species (w.o.s) A is defined inductively as follows:
(i) if A is one-element species, then it is a w.o.s.
(ii) if A1, A2, ..., An are disjoint w.o.s., then their ordered sum

⊕n
i=1Ai is a w.o.s 16.

(iii) if A1, A2, ..., An, ..., is a constructively given sequence of disjoint w.o.s., then their
infinite ordered sum

⊕∞
i=1Ai is a w.o.s.

A bar B for a spread M is a species of finite M -sequences such that, each infinite
M -sequence α has an initial segment in B or hits the bar i.e., ∀α(α ∈M)(∃n)(nα ∈ B).
A decidable bar is one for which there is a method to say in finite time whether a finite
M -sequence is in the bar or not. A thin bar B contains only the elements necessary to
be a bar i.e., it satisfies: (u ∈ B) ∧ (v ≺ u), then v /∈ B.

3 Programmatic Principles of Brouwer’s Foundational Frame-
work B

(P1) Mathematical objects, besides some fundamental intuitions, are constructions of
the mind of a creating subject17, based on the fundamental ones.
(P2) The fundamental intuitions are the intuition of time two-ity and the intuition of
(time) continuum. The latter is formalized in terms of the discrete intuition of two-ity,
through the concept of spread <.
(P3) On-going objects, such as M -sequences, are, for the first time in a constructive
theory of the continuum, legitimate objects. It is the ontology of intuitionistic objects,
such as the M -sequences, which is responsible for the non-acceptance of logical princi-

16
⊕n

i=1Ai is the union of Ai such that, each Ai preserves its order and j < k, then a ≺ b, for a ∈ Aj
and b ∈ Ak.

⊕∞
i=1Ai is defined analogously.

17Our reconstruction of B stresses Brouwer’s objective, rather than solipsistic, views. E.g., in
[Brouwer 1981] p.90, Brouwer says that “the stock of mathematical entities is a real thing, for each
person, and for humanity”.
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ples, like the Principle of the Excluded Middle (PEM).
(P4) A completed mathematical object exists iff it has been constructed, while an on-
going object exists iff there is a procedure which guarantees its infinite becoming18.
(P5) Mathematical formulations are mere linguistic structures, if they do not accom-
pany genuine constructive thoughts. Absolute infinity is a linguistic concept completely
separated from intuition. Therefore, the only legitimate infinity is the potential one.
Generally, language is inferior to genuine thought, which is independent from language.
(P6) A mathematical proposition of BIA is true if persuasive constructive evidence is
provided for it, based on the definitions of the concepts found in it.

In the next sections we show that the proof of continuity principle is compatible
with these principles, but we argue that Brouwer’s proof of fan theorem is not.

4 The Continuity Principle

Continuity Principle (CP) was accepted from Brouwer since 1918, as a self-evident
truth. Post-Brouwer formal theories (e.g., FIM) considered it as an axiom19. In our
reconstruction CP is proved in accordance to P6.

Continuity Principle: If ϕ : ωω → ω is an intuitionistic ωω-function, then

(∗) ∀α(α ∈ ωω)(∃N)(∀β,Nβ = Nα −→ ϕ(β) = ϕ(α))

Proof20: If β is a sequence such that Nβ = Nα, then ϕ corresponds β to ϕ(α), since
ϕ, by its definition, is activated only by Nα.�
(∗) expresses the continuity of a function in Baire space N 21. CP is classically false,
since the following function

ϕ(α) =

{
1 , if α 6= 0
0 , if α = 0

where 0 is the constant sequence 0, does not satisfy (*). But the above ϕ is not an
intuitionistic function since, if it were, it would correspond 0 to 0, based on a N0, for
some N . But then, by CP, all sequences with N0 as initial segment would take the same
value 0. So, the following universal version of PEM is false in BIA:

(α = 0) ∨ (α 6= 0)

A simple corollary of CP is that ωω is not denumerable i.e., there exists no intuitionistic

function ϕ : ωω
1−1−→ ω, and the same holds for any splitting spread, of which we know

that it is non-empty (like <)22. Therefore, Brouwer reached the same conclusion for
the continuum as Cantor did, but, according to P5, < has not cardinality 2ℵ0 , it is only

18So, an M -sequence is known iff ΛM is known. Contrary to Brouwer’s early views, it is not necessary
to know the evolution law of a sequence in advance.

19Kleene, in [Kleene 1969], defined a formal system, which generates classical analysis, if PEM is
added, and formal intuitionistic analysis, if an expression of CP is added.

20α ∈ ωω means that α is an element of the species of infinite ωω-sequences and not that α belongs
to a set. We avoid here though, a different symbolism. Also, ∀α is meant only with the potentially
infinite way: “for each given α”.

21In N , if α 6= β, then ρ(α, β) < 1
N → Nα = Nβ .

22This is the intuitionistic version of the generalized Cantor theorem: a non-empty, perfect set of N
has cardinality 2ℵ0 .
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sequentially inexhaustible.
Since there is a retraction-Function Θ : ωω → M , which is the identity on M , CP
proves easily the Continuity Principle for a spread M (CP(M))

∀α(α ∈M)(∃N)(∀β,Nβ = Nα −→ ϕ(β) = ϕ(α))

where ϕ is an intuitionistic M -function23.

5 An argument against the intuitionistic validity of Brouwer’s
proof of Fan theorem

Fan theorem is the most important proposition of BIA, since it proves the remarkable,
from the classical point of view, following theorem.

Brouwer’s uniform continuity theorem: If Φ : [α, β] → < is an intuitionistic
Function, then Φ is uniformly continuous24.

Brouwer’s (1924) formulation of FT is essentially the following:

Brouwer’s Fan theorem (FT): If T is a fan and ϕ : T → ω an intuitionistic function,
then there exists a natural N , such that, for each infinite T -sequence α, its value ϕ(α)
is determined by its initial segment N. I.e.,

(∗∗) ∃N∀α(α ∈ T )(ϕ(α) = ϕ∗(Nα))

FT is classically false, since, for example, the following function ϕ : 2ω → ω, based
on ϕ∗ : 2<ω → ω:

ϕ∗(1, 0) = 1
ϕ∗(0, 1) = 2

. . . . . . . . . . .
ϕ∗(0, 0, ..., 0︸ ︷︷ ︸

n

, 1) = n+ 1

. . . . . . . . . . .
ϕ(0) = 0

cannot be determined by a global bound N . Although ϕ is algorithmically defined on
C and non C-continuous at 0, it is not an intuitionistic function, since its value on 0 is
not determined by any of its initial segments25.

Brouwer’s proof of FT is based on his famous Bar theorem. Note that, if ϕ : M → ω
is an intuitionistic M -function, then the species of the critical nodes for ϕ, Bϕ, is a
decidable bar. Also, if B is a decidable bar for M , then it contains a unique decidable
thin bar B0; for each u ∈ B we find its shortest initial segment also in B. A node u is
secured relative to M iff (∃v � u, v ∈ B0) ∨ u /∈ M . An M -node u is B-securable iff
every infinite M -sequence which extends u hits the bar B.

23Though we cannot exhaust here the results of BIA related to CP, it is worth mentioning that CP
alone guarantees the continuity of a function Φ : < → < ([Veldman 1982]).

24It can be shown that the intuitionstic interval [α, β] is a fan. Note that Φ is uniformly continuous
just by being defined on [α, β].

25The essential difference between 2ω and C is that C-sequences, like 0, have an existence independent
from their generation, while 2ω-sequences exist only as Λ2ω -procedures.
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Bar theorem (BT): if B is a decidable26 bar for M , then it contains a well-ordered
thin bar B0.

Proof (an outline27): Brouwer interpreted the intuitionistic implication P ⇒ Q as
a constructive method, transforming every possible proof of P to a proof of Q. In BT
P is “B is a decidable bar for M” and Q is “B contains a well-ordered thin bar B0”.
Brouwer replaced the above P with its equivalent P

′
: “<> is B-securable”.

Brouwer proved BT by analyzing the possible proofs of P
′
. Since there are, in

general, infinitely many such proofs, he was forced to adopt a dogma, in order to avoid
their infinity.

Brouwer’s Dogma (BD)28: A proof, Ru, of the “u is B-securable” can be reduced to
a canonical proof (c.p.), where only the following kinds of inference occur:

u is secured
u is securable

η-inference

(a1,a2,...,an) is securable
(a1,a2,...,an,k) is securable

ζ-inference

(a1,a2,...,an,1) is securable, (a1,a2,...,an,2) is securable,....
(a1,a2,...,an) is securable

z-inference

A z-inference has infinitely many premises, meaning that there is a method generating
these subproofs of the proof of securability of (a1, a2, ..., an). Even if this is not totally
clear, in the fan case a z-inference becomes:

(a1,a2,...,an,k1) is securable, (a1,a2,...,an,k2) is securable,...,(a1,a2,...,an,km) is securable
(a1,a2,...,an) is securable

where k1, k2, ..., km are the immediate successors of (a1, a2, ..., an). Since we mostly care
for the proof of FT rather than of BT, the application of BD on a fan is clear.

A securable node u has the well-ordering property (w.o.p.) iff the thin bar Bu
0 which

bars exactly the M -sequences which extend u is a w.o.s. A subproof R of Ru has the
well-ordering property iff every node, the securability of which is established in the
course of R, has the w.o.p. for nodes. Also, a subproof R has the preservation property
(p.p.) iff the conclusions in R have the w.o.p. for nodes whenever their premises have
the w.o.p. for nodes. Brouwer proves then the following facts:

Proposition 1: Ru has the p.p.

Proof : By BD we prove this inductively. It is trivial for an η-inference. In a ζ-inference,
if B

(a1,a2,...,an)
0 is a w.o.s., then by an induction on the definition of a w.o.s., B

(a1,a2,...,an,k)
0

is a w.o.s. too. In a z-inference B
(a1,a2,...,an)
0 =

⊕∞
k=1B

(a1,a2,...,an,k)
0 , where B

(a1,a2,...,an,k)
0

are appropriately inductively defined.�
Proposition 2 Ru has the w.o.p.

Proof : Ru starts necessarily from η-inferences which have one-element well-ordering
structure. Since Ru has the p.p., each conclusion of an inference in Ru has the w.o.p.
too.�
Proposition 3: u has the w.o.p.

Proof : Since u is the last conclusion in Ru and Ru has the w.o.p., then u has the w.o.p.
too.�

26Decidability is not explicit in [Brouwer 1927] but it is necessary, as Kleene has shown.
27The details can be found in [Brouwer 1927] or [van Atten 2004].
28This is a term of Martino and Giaretta.
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Conclusion of BT: B0 is a w.o.s.

Proof : Since P
′

is the hypothesis of a proof of the securability of <>, by BD, there is
a c.p. R<>, and by Proposition 4 for u = <>, <> has the w.o.p., meaning that B0 is
a w.o.s.�

Proof of FT via BT : In case M is a fan, B
(a1,a2,...,an)
0 =

⊕m
k=1B

(a1,a2,...,an,k)
0 , for some

m ∈ ω. Since there can easily be proved, that an ordered sum generated by one-element
species and finite sums only, is finite, then B

(a1,a2,...,an)
0 is finite. Especially, the w.o.s.

B0 is finite, so it has a node of maximum length N . In case B = Bϕ, for some function
ϕ, N is the global bound of (∗∗).�

Up till now, the problem with the above proof of BT (or FT) was centered around
BD. Brouwer considered BD natural, though “as late as 1952 had to admit that a
simpler proof (of FT) had eluded him”29. Epple (in [Epple 1997]) rightfully questioned
the cognitive transparency of BD, as Brouwer’s programmatic epistemology demands
(P6). On the other side, van Atten30 doesn’t accept Epple’s general tenet, believing
that Brouwer’s proof doesn’t betray the intuitionistic principles, without giving though,
some arguments in favor of his opinion. The obscurity of BD justified Kleene’s reaction
of using the scheme of bar-induction (BID)

(∀α ∈M) ∃n(nα ∈ B) ∧
(∀u ∈M) (u ∈ B ∨ u /∈ B) ∧

(∀u ∈M) (u ∈ B → u ∈ W ) ∧
(∀u ∈M) (∀k(u a k ∈ W )→ u ∈ W ) −→

<> ∈ W

where u a k is an immediate successor node of u, as an axiom31. In case u ∈ W
means that u has the w.o.p. for nodes, then BT is directly derived. But to prove FT
through an axiom violates P6 and the siT -character of intuitionism. Brouwer always
searched for a conceptual proof of FT, not an axiomatic one. Kleene justified this
seemingly evasion of his to postulate an axiom schema by his independence result of
bar induction from the other intuitionistic principles32.

The argument against Brouwer’s proof : Someone could assert, like Brouwer,
that BD is transparent enough to be accepted, but still, there is a serious problem in
Brouwer’s proof, from the intuitionistic point of view.

The main idea of the proof is that the proof R<> of the securability of <> starts
with the securability of the elements of B0 (the securability of the, in principle, infinite
nodes u /∈ M is not that essential) and goes down to the securability of <>, mainly
due to z-inferences. But the hypothesis that the proof starts that way and ends in
the securability of <>, is not constructively innocent. The real problem in the proof
of BT is that B0 may have infinite elements and in order to consider R<> completed,
Brouwer employs the intuitionistically unaccepted concept of absolute infinity (P6). If

29In [van Stigt 1990] p.379.
30In [van Atten 2004] p.40, p.61.
31We use the same symbolism α ∈M and u ∈M for the M -infinite and M -finite sequences respec-

tively.
32See [Kleene, Vesley 1965] p.51.
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R<> is a man-made proof (P1) and we start R<> from η-inferences, we need, in general,
absolutely infinite time to complete it.

Even if M is a fan and B = Bϕ is an infinite species, then, at the beginning of R<>,
we do not know that B0 is a finite species. R<> starts with inferences

u ∈ B0

u is securable

but we need to know that these inferences are finite, or some other uniform generation
of B0 is needed, in order to start R<>. So , the real problem with Brouwer’s proof of FT
is that he considers a line of progression in R<>, without justifying constructively that
such a proof is completed in finite time. Brouwer proves the finiteness of B0 only on
the hypothesis that R<> is completed and proceeds the way he describes. But before
starting the proof, Brouwer doesn’t know that B0 is finite and he does not explain how
we may go from the η-inferences down to the root <>. So, the proof R<> that Brouwer
adjusts to hypothesis P

′
is not an intuitionistic mathematical object.�

The non-constructive character of Brouwer’s argument applies to BID too. While
in standard induction there is a fixed beginning, in BID there is a fixed end without
any explication of how the η and z-inferences it employs lead to the w.o.p. of <>.
In our view, the quantification over u has an absolutely infinite character. Moreover,
Martino and Giaretta have shown ([Martino, Giaretta 1979]) that BD is equivalent to
BID, assuming CP.

Our analysis has shown that, in order to secure the siT -character of BIA, we must
skip Brouwer’s justification of FT33. We feel the same towards Kleene’s theory FIM and
its non-constructiveBID-axiom. Someone could assert that BD is not more evident than
BT itself, therefore it is not necessary. But it is the analysis of Brouwer’s use of BD in
his proof, which reveals the non-constructive character of BID.

6 Intuitionistic analysis in teaching mathematical analysis

Modern textbooks of mathematical analysis or books on the foundations of mathemati-
cal analysis are concerned exclusively with classical analysis. A characteristic exception
is [Truss 1997]. In his book, Truss studies the classical set of reals together with the
Baire space N , the Cantor space C and the intuitionistic continuum, all in a more
or less undergraduate level. We believe that incorporating elements of intuitionism in
teaching mathematical analysis will have the following merits, based on our previous
reconstruction of intuitionism.

(i) Students will understand the importance of philosophical views in the development
of mathematics, since BIA is a philosophically motivated mathematical theory. Becom-
ing familiar with the general philosophical background of intuitionism they will become
aware of the non-constructive framework of classical mathematics.
(ii) Despite their familiarity with the axiomatic approach on mathematics, students will
have the opportunity to acknowledge a conceptual origin of the continuum. Dedekind
cuts is a model of the axioms of reals based on an axiomatic set theory, but the in-
tuitionistic < is the mathematical description of an intuition, independent from the

33A different approach to the proof of FT is studied in [Petrakis 2008].
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concept of set. Also, they will discover that using an axiom to prove a theorem is not
always the only solution. In a theory like BIA an appropriate definition or a suitable
analysis of a definition, is probably the right way to a proof.
(iii) Students will understand that BIA is not in clash with classical analysis, but
is a theory based on different principles and definitions. An intuitionistic function
ϕ : ωω → ω behaves differently from a classical f : N → N, because it has a completely
different definition from it.
(iv) Students will find out the significance of the difference between the potential and
absolute infinity in the development of a mathematical theory. The absolute infinity
is the infinity of classical analysis, while the potential infinity is the infinity of BIA.
Brouwer’s fundamental concept of spread, for example, is a product of his need to avoid
the concept of an absolutely infinite set. Unfortunately, as we have argued in section
5, he didn’t manage to avoid it in his famous proof of fan theorem.
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– Brouwer, L. E. J., 1927, “Über Definitionsbereiche von Funktionen”, Mathematische An-
nalen 97, 60-75. Also in From Frege to Gödel, A Source Book in Mathematical Logic,
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