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Abstract

Quantum computers intrinsically differ from classical ones and consequently
the theory of classical computations can not be applied to them. Therefore
in this thesis a lambda calculus for quantum computations is presented. As an
introduction the fundamentals of category theory and quantum computation are
being explained. Afterwards we analyze the mathematics of quantum mechanics
categorically and use the findings to draw connections to logic. For that matter
light is also shed on linear logic and its properties. Finally a quantum lambda
calculus is presented, with a typing system based on linear logic. The calculus
is analyzed thoroughly and its operational semantics are clarified. Additionally
a comparison of its categorical semantics to the categories found in quantum
mechanics is made.
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Chapter 1

Introduction

1.1 The Aim of this Thesis

The impact of the classical computer on our society can not be understated.
It has not only become an irreplacable part of our everyday lifes, but also
made progress in sciences and technologies significantly easier. Along with the
computer a theory of computation was developed, which build the theoretical
foundations of programing languages and enabled scientists to analyze the com-
putability of many problems: the lambda calculus. With the role of the classical
computer being as big as it is, it is no surprise that the developement of a new
type of computer, the quantum computer, has sparked a lot of excitement. In
contrast to its classical counterpart, a quantum computers fundamental unit of
information, the qubit, obeys the laws of quantum mechanics, allowing for the
exploitation of many quantum effects. In particular a qubit can be in a super-
position of many states at once, and different qubits can interact with eachother
through constructive or destructive interference. A large number of algorithms
have been developed which use these effects to solve problems, which would
take a classical computer an unpractically long time to solve. However the
fundamental differences between classical and quantum computers also entail,
that the lambda calculus classically used to describe computations can not be
applied to quantum computers. In this thesis we thus analyze the newly devel-
oped Quantum Lambda Calculus. The Quantum Lambda Calculus we consider
here is a modified version of the one developed by P. Selinger and B. Valiron
[25, 22, 23], an outline of the similarities and modifications is found in section
1.2.

The aim of this thesis is to show why this Quantum Lambda Calculus is
appropriate for describing computations in a quantum computer. For that in
chapter 2 we draw connections between quantum mechancis and mathematical
logic, more precisely linear logic. In chapter 3 we then present the construction
of a typed lambda calculus based on the previous results. Throughout this
thesis we work largely in a categorical framework, which enables us to translate
between the various fields easily.

In order to make this content available to a broader audience, introduce
basics of category theory and quantum computation later in this chapter.

1



2 CHAPTER 1. INTRODUCTION

1.2 Related Work and Distinguishing Features

Chapter 2 of this thesis follows in large parts the developements of J.C. Baez
and M. Stay in their ”Rosetta Stone” paper [6]. In comparison to that, it is
here explicitly shown that linear logic suffices their notion of a closed symmetric
monoidal theory.

The lambda calculus presented in chapter 3 was developed by B. Valiron in
his PhD thesis [25]. In comparison to their system, the system in this thesis
additionally contains a coproduct. A quantum lambda calculus with coproducts
has already been defined in papers by P. Selinger and B. Valiron [23, 22], but
their system in based on affine logic (linear logic with weakening) while here
we use linear logic (without weakening), since that is more in line with the
other parts of the thesis. Furthermore most results in their paper were only
proven for the fragment of their system that does not include the coproduct.
In this thesis most of those results are extended to encompass the coproduct,
too. Additionally and most notably in section 3.1.5 we add to the substitution
lemma a reverse substitution lemma. The substitution lemma, which can already
be found in the mentioned sources, is sufficient to show that applying β- and
η-reduction to the term of a judgement, does not affect the validity of that
judgement. The reverse substitution lemma, that we showcase in this thesis,
suffices to prove, that the corresponding expansions don’t affect the validity of
the judgements either. Since an equivalence relation is then build upon those
reductions/expansions, showing that one may traverse them in both directions
is in the author’s view appropriate if not necessary.

The logic sketched in section 4.1.1 has already been developed by R. Duncan,
S. Abramsky and B. Coecke [11, 3, 2]. Particularily the logical rules are found in
a similar form in [10]. The rules were found independently by the author, before
noticing that the system coincides with an already existing one. In comparison
to their work, the author added an explanation of the logic not depending on
quantum physics, but rather on availability of resources as commonly done for
linear logic.

1.3 Fundamental Notions of Category Theory

Definition 1.1 (Category).
A category C consists of

� A collection of objects A,B,C,...

� A collection of arrows or morphisms f, g, h such that:

� for each arrow f there are objects dom(f) and cod(f) called the domain
and codomain of f and we write f : A −→ B whenever dom(f) = A and
cod(f) = B.

� For each pair of arrows f, g s.t. cod(f) = dom(g), say f : A −→ B and
g : B −→ C, there is a composite arrow g ◦ f : A −→ C, sometimes also
simply written as gf .

� For each object A, there is an identity arrow idA : A −→ A
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� Composition is associative i.e. for f, g as above and h : C −→ D we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f

� Identity arrows are left and right units of composition i.e. for all f : A −→
B

f ◦ idA = f = idB ◦ f

Definition 1.2 (Isomorphism).
A morphism f : A −→ B is called an isomorphism if there exists a morphism
g : B −→ A such that gf = idA and fg = idB and we then say that g is the
inverse of f .

Definition 1.3 (Functor).
A functor F : C −→ D is a map from a category C to a D meaning it sends

� objects A in C to objects F (A) in D

� arrows f : A −→ B in C to arrows F (f) : F (A) −→ F (B) in D. (Note in
particular, that dom(F (f)) = F (dom(f)) and analogously for cod)

such that identities and composition are preserved:

� F (idA) = idF (A) for any A in C

� F (g ◦ f) = F (g) ◦ F (f) for any f : A −→ B, g : B −→ C in C

Definition 1.4 (Natural transformation).
Let F,G : C −→ D be two functors, then a natural transformation from
F to G, denoted by ϑ : F =⇒ G, assigns to each object A in C a morphism
ϑA : F (A) −→ G(A) such that for any f : A −→ B in C we have ϑB ◦ F (f) =
G(f) ◦ ϑA i.e. the following diagram commutes:

F (A) F (B)

G(A) G(B)

ϑA

F (f)

ϑB

G(f)

Definition 1.5 (Equivalence of Categories).
Two categories C,D are equivalent, if there are functors F : C −→ D, G :
D −→ C and two natural isomorphisms η : 1C =⇒ GF ϑ : FG =⇒ 1D, where
1C ,1D are the identity functors on C,D respectively.

Definition 1.6 ((Cartesian) Product of Categories).
Given two categories C and C′ their (cartesian) product product C × C′ a
category such that

� objects are pairs (A,A′) where A, A′ are objects of C, C′ respectively

� a morphism h : (A,A′) −→ (B,B′) is a pair h = (f, f ′) such that f :
A −→ B and f ′ : A′ −→ B′ are arrows in C and C′ respectively
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� composition and identities are defined componentwise i.e. for any (g, g′) :
(B,B′) −→ (C,C ′) (g, g′)◦ (f, f ′) = (g ◦f, g′ ◦f ′) and 1(A,A′) = (1A,1A′).

Definition 1.7 ((Cartesian) Products). Let C be a category. Then a product
diagram for the objects A,B consists of an object, usually denoted by A×B,
and arrows

A A×B B
π1
A,B π2

A,B

such that for any other diagram

A P B
p1 p2

there is a unique arrow, usually denoted by 〈p1, p2〉 : P −→ A×B, which makes
the following diagram commute

P

A A×B B .

p1 p2

〈p1, p2〉

π1
A,B π2

A,B

The uniqueness-condition is equivalent to the following equation holding for all
h : P −→ A×B:

〈π1
A,B ◦ h, π2

A,B ◦ h〉 = h

We then call A × B the (cartesian) product of A and B. It is commutative
and associative. We say C has products if it contains products of all pairs of
objects. A category which has (binary) products also has products between any
higher amount of objects, e.g. trinary products A×B ×C for objects A, B, C
(parenthesis may be dropped due to associativity).

Definition 1.8 (Terminal Object). An object T of a category C is called ter-
minal if for all objects A there is a unique arrow

∇A : A −→ T .

Terminal objects are unique up to isomorphism, they can be thought of as 0-ary
products.

Definition 1.9 (Finite Products, Cartesian Categories). Let C be a category.
We say C has finite products or C is cartesian if it has products and a terminal
object.

Further, more advanced, notions of category theory will be introduced during
the following chapters of this thesis.

1.4 Introduction to Quantum Computation

1.4.1 Qubits and States

The basic unit of information in quantum computers is a so called qubit. A qubit
is a two-level quantum system. Since quantum mechanics is usually modeled in
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(complex) Hilbert spaces, a qubit is modeled by a two-dimensional (complex)
Hilbert space H, say H = C2. Each state the qubit can take, corresponds
to a normed vector in H. The normality condition is necessary so that scalar
products of states can be interpreted as probabilities.

Theorem 1.10 (Riesz Representation Theorem). Let H be a Hilbert space and
H∗ = {f : H −→ C|f linear and bounded} its dual space. Then the map

RH : H −→ H∗

ϕ 7−→ 〈ϕ|·〉
(1.1)

is an antilinear isometric bijection. We call R−1
H the Riesz representation.

This theorem justifies the following notation.

Notation 1.11. We write a state/vector in our Hilbert space as |ϕ〉, and the
functional it represents in the dual space (cmp. theorem 1.10) as 〈ϕ|. Then for
any ϕ,ψ we get that

〈ϕ| (|ψ〉) = 〈ϕ|ψ〉 (1.2)

where 〈·|·〉 is the scalar product in H justifying our notation. A dual vector is
also called a bra and a ”normal” vector a ket, so that combined they form the
word bra-c-ket, which is an alternative name for the scalar product.

Example 1.12. In the Cn with a fixed basis and the standard scalar product
a state is a column vector. By linearity every functional f must be of the form

f(z1, .., zn) =

n∑
i=1

wizi =
(
w1 ... wn

)
z1

.

.
zn

 (1.3)

for some constants wi ∈ C; the overline denotes complex conjugation. The latter
is costumary here, complex conjugation can of course be avoided by simply
redefining the constants, but keeping it suits us well. The functional can thus
be represented by some row-vector

(
w1 ... wn

)
. So while in this case the kets

are column-vectors, the bras correspond to conjugated row-vectors. Note that
there is an obvious antilinear bijection between them. Applying the latter to
the former results in the scalar product

(
w1 ... wn

)
z1

.

.
zn

 = 〈


w1

.

.
wn

 |

z1

.

.
zn

〉Cn

The Riesz representation theorem really just states, that what we observed
above generalizes to all Hilbert spaces. The Dirac notation is a clever way to
generalize the notation, the row vectors become bras and the column vectors
kets.

The standard basis of H is usually denoted |0〉, |1〉, physically |0〉 is the
ground state and |1〉 the excited state of the system. Each |ψ〉 can thus be
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written as

|ψ〉 = α|0〉+ β|1〉 with |α|2 + |β|2 = 1 ,

where |α|2 and |β|2 are the probabilities, that |ψ〉 will, when measured, be found
in state |0〉 and |1〉 respectively.

Definition 1.13 (Tensor product of Hilbert spaces). Let H1, H2 be Hilbert
spaces with bases a1, .., an and b1, .., bk respectively, then H1 ⊗H2 is the n · k-
dimensional vector space spanned by the pairs of bases vectors ai ⊗ bj . To
make it a Hilbert space, an inner product can be defined the following way:
∀ψ1, ϕ1 ∈ H1 ∀ψ2, ϕ2 ∈ H2

〈ψ1 ⊗ ψ2|ϕ1 ⊗ ϕ2〉H1⊗H2
:= 〈ψ1|ϕ1〉H1

· 〈ψ2|ϕ2〉H2
. (1.4)

The state of n qubits is a normalized vector in the Hilbert space H⊗n :=
H ⊗ .. ⊗ H , where the tensor product is taken n − 1 times. To shorten the
notation we write |q1, .., qn〉 for |q1〉 ⊗ .. ⊗ |qn〉, where q1, .., qn ∈ {0,1}. The
canonical basis for H⊗n is then{

|q1, .., qn〉
∣∣ q1, .., qn ∈ {0,1}

}
. (1.5)

Note that in a two-particle system there are states, which can not be represented
as the product of two one-particle states. Take for example the state

|ψ〉 =
1√
2
|00〉+

1√
2
|11〉,

then there are no single particle states |ϕ1〉, |ϕ2〉 with |ψ〉 = |ϕ1〉 ⊗ |ϕ2〉. These
particles are then called entangled. Analogously entanglement is possible for
more than two particles.

1.4.2 Operators, Observables and Gates

Operators and their Representations

Given a finite dimensional Hilbert space H, an operator O on H is a linear map
O : H −→ H. Fixing a basis {ϕi}i=1,..,n of H every operator can be written as
a matrix, i.e. there are {zij}i,j=1,..,n ∈ C such that

O =


z11 ... z1n

. .

. .
zn1 ... znn

 =

n∑
i,j=1

zij |ϕi〉〈ϕj | . (1.6)

Observables and self-adjoint operators

In quantum mechanics in a system described by a Hilbert space H an observable
is modeled by a self-adjoint operator of H, i.e. an operator A : H −→ H s.t.

∀ψ,ψ′ ∈ H 〈ψ′|Aψ〉 = 〈Aψ′|ψ〉 . (1.7)
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The possible numerical outcomes of a measurement of that observable corre-
sponds to the eigenvalues of A.

Theorem 1.14 (Spectral theorem). Let H be a finite dimensional Hilbert space
and A : H −→ H a self-adjoint operator. Then there is an orthonormal basis of
H, that consists of eigenvectors/eigenstates of A.

Measurement

Let a physical system be described by a finite dimensional Hilbert space H. Let
A be an observable of that system and |Ψ〉 ∈ H its current state. We denote
by |ϕi〉i=1,..,n an orthonormal basis of H consisting of eigenvectors of A and by
(ai)i=1,..,n the corresponding eigenvalues, i.e.

∀i, j = 1, .., n A|ϕi〉 = ai|ϕi〉 and 〈ϕj |ϕi〉 = δij . (1.8)

Then the expected value of the outcome of a measurement is given by 〈Ψ|AΨ〉.
Expanding |Ψ〉 =

∑n
i=1〈ϕi|Ψ〉|ϕi〉 we obtain

〈Ψ|AΨ〉 =

n∑
i,j=1

〈Ψ|ϕj〉〈ϕj |Aϕi〉〈ϕi|Ψ〉 =

n∑
i,j=1

〈Ψ|ϕj〉ai〈ϕj |ϕi〉〈ϕi|Ψ〉

=

n∑
i=1

|〈Ψ|ϕi〉|2ai

In the expanded form |〈Ψ|ϕi〉|2 is the probability to find the system in state ϕi
while ai is the value the observable has in this state. During the measurement
of A the system collapses to an eigenstate

|Ψ〉 7−→ |ϕm〉

whos eigenvalue am is the outcome of the measurement. The system then re-
mains in that eigenstate even after subsequent measurements of A, measure-
ments of other observables however may well change the state again. The exact
nature of this collaps is not well understood and will not be further explored
here.

Gates and Unitary Transformations

Excepting the extraordinary case of the measurement, a state can only be trans-
formed using unitary transformations, i.e. operators U : H −→ H s.t.

∀ϕ,ψ ∈ H 〈Uϕ|Uψ〉 = 〈ϕ|ψ〉 . (1.9)

The unitarity is necessary for preservation of normality of the states. Thus in
a quantum computer instead of logical gates we have so called unitary gates
corresponding to unitary transformations. The most prominent of those trans-
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formations are, in our 2-dimensional case, the Pauli matrices.

σx := σ1 :=

(
0 1
1 0

)
= |1〉〈0|+ |0〉〈1|

σy := σ2 :=

(
0 −i
i 0

)
= i|1〉〈0| − i|0〉〈1|

σz := σ3 :=

(
1 0
0 −1

)
= |0〉〈0| − |1〉〈1|

(1.10)

The Pauli matrices are not only unitary, but also self adjoint, thus they can also
be interpreted as observables. Another very important unitary transformation
which can be realized as a gate is the Hadamard transformation

H =
1√
2

(
1 1
1 −1

)
=

1√
2

(|0〉+ |1〉) 〈0|+ 1√
2

(|0〉 − |1〉) 〈1| . (1.11)

Applying it to a basis vector produces an entangled state, which can be found
to be |0〉 or |1〉 with equal probability.

1.4.3 No Cloning and No Deletion

We investigate whether a cloning operator can exist, that is an operator that
copies the state of a qubit onto another qubit. More precisely, is there a unitary
transformation C : H⊗H −→ H⊗H such that for some state |χ〉

C (|ϕ〉 ⊗ |χ〉) = |ϕ〉 ⊗ |ϕ〉 ∀ϕ ∈ H ? (1.12)

To answer this question let U be an arbitrary unitay transformation, we want
to show that C 6= U . For any two distinct, non-orthogonal, states |ϕ〉, |ψ〉 we
have that

〈C (ϕ⊗ χ) |C (ψ ⊗ χ)〉 = 〈ϕ⊗ ϕ|ψ ⊗ ψ〉 = 〈ϕ|ψ〉2

on the other hand

〈U (ϕ⊗ χ) |U (ψ ⊗ χ)〉 = 〈ϕ⊗ χ|ψ ⊗ χ〉 = 〈ϕ|ψ〉〈χ|χ〉 = 〈ϕ|ψ〉 .

Since |ϕ〉, |ψ〉 are distinct and non-orthogonal we have 0 � 〈ϕ|ψ〉 � 1 and thus
also

〈C (ϕ⊗ χ) |C (ψ ⊗ χ)〉 = 〈ϕ|ψ〉2 6= 〈ϕ|ψ〉 = 〈U (ϕ⊗ χ) |U (ψ ⊗ χ)〉 (1.13)

proving that C 6= U .

Since all unitary transformations are invertible, the above also shows, that
there is no deletion operator, i.e. there is no unitary D : H⊗H −→ H⊗H such
that for some |χ〉

D (|ϕ〉 ⊗ |ϕ〉) = |ϕ〉 ⊗ |χ〉 ∀ϕ ∈ H . (1.14)
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1.4.4 Advantages and Limitations

A number of algorithms for quantum computers have been found for solving
problems whose solution is considerably more complex or even unfeasable in a
classical setting. The most prominent of those are Shor’s algorithm [24] solving
the hidden subgroup problem for finite abelian groups, special cases of which in-
clude finding prime factors of an integer and computing discrete logarithms and
Grover’s algorithm [14] for database search. Quantum computers do however
also come with disadvantages and limitations. Due to the probabilistic nature
of the quantum realm, the mentioned algorithms may with a certain probabil-
ity yield an incorrect result. As a consequence calculations have to be carried
through repeatedly to reduce the probability of an error. This entails, that
quantum computers are actually slower at solving tasks at which the quantum
effects do not provide an algorithmical advantage. It should also be noted, that
any quantum computer additionally contains a classical computing unit, which
controls the qubits.
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Chapter 2

The Internal Logic of
Quantum Mechanics

In this chapter, we derive a logical system which can describe the inner workings
of quantum mechanics. To be able to transverse from physics to logic, we analyze
in the first section a mathematical model of quantum mechanics, namely the
theory of Hilbert spaces, categorically, and then build a logical system which
corresponds to the internal logic of that category. This approach was pioneered
among others by J.C. Baez [6].

2.1 A Hilbert Space Category

2.1.1 Morphisms of Hilbert Spaces

The world of Quantum Mechanics is mathematically usually modeled in Hilbert
Spaces. We thus aim towards building a category Hilb of Hilbert spaces i.e. a
category which has Hilbert spaces as objects. But what should the morphisms
be? Remember, that a (complex) Hilbert Space H is a C-vector space endowed
with an inner product 〈· | ·〉. An obvious choice for a morphism f : H −→ H ′ in
Hilb would thus be a linear function/operator f : H −→ H ′ which is also an
isometry, i.e. it respects the inner product structure:

〈f(ψ)|f(ϕ)〉H′ = 〈ψ|ϕ〉H ∀ϕ,ψ ∈ H .

While this certainly makes for an interesting category, for the description of
quantum mechanics it has turned out to be too restrictive as not all operators
in use need to be isometries (cmp. section 1.4.2). Instead, we define the category
in the following way:

Definition 2.1 (Hilbert Space Category).
Hilb1 is the category which has as
objects: finite dimensional Hilbert spaces H,H ′

arrows: bounded linear functions f : H −→ H ′

1It should be noted that in the literature this category is often called finHilb or similiar,
to distinguish it from categories which also include infinite-dimensional Hilbert spaces. Since
the latter is of no importance in this thesis, we stick with the simpler Hilb.

11
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where bounded is meant in the usual way:

∃M∈R ∀ψ∈H : 〈f(ψ)|f(ψ)〉H′ ≤M〈ψ|ψ〉H .

It is worth noting that in our finite-dimensional setting boundedness is already
a consequence of linearity.

In the way we defined Hilb, we can show that it is equivalent to the category
Vec of finite-dimensional (complex) vector spaces and linear maps. Indeed, if
U : Hilb −→ Vec is the corresponding forgetful functor we can show the
following lemma.

Lemma 2.2. Let H,H ′ be two objects of Hilb, then

H ∼= H ′ ⇐⇒ U(H) ∼= U(H ′) .

In particular, if V is an object of Vec and 〈· |·〉1, 〈· |·〉2 two scalar products on
V , then

(V, 〈· |·〉1) ∼= (V, 〈· |·〉2) in Hilb.

Proof. ⇒ is immediate. For the ⇐-implication note that any isomorphism f :
U(H) −→ U(H ′) is automatically also an isomorphism f : H −→ H ′ in Hilb,
since by our definition the additional structure of Hilbert spaces need not be
respected by arrows in Hilb.

Corollary 2.3. Hilb and Vec are equivalent.

Proof. Let T be a functor T : Vec −→ Hilb, V 7→ (V, 〈·|·〉) where 〈·|·〉 is an
arbitrary scalar product on V . This is ambiguous but any such functor will
do. By definiton UT = idVec, so it remains to show that there is a natural
transformation ϑ : TU −→ idHilb. But using Lemma 2.2 we have an ϑH :

TU(H)
∼=−→ H for any H in Hilb. We need to show that the following diagram

commutes:

TU(H) TU(H ′)

H H ′

ϑH

TU(f)

ϑH′

f

However this is trivial since the ϑH , ϑH′ are induced by the identities on the
underlying vector spaces, and T can be chosen such that TU acts as the identity
on arrows, since any linear maps is bounded in our setting.

Thus at first glance our category of choice seems senseless, why not just
choose Vec? And while some of the arguments made depend on finiteness of
dimension, a similiar issue arises even when including infinite-dimensional spaces
[5]. Nevertheless in the next section we will be able to show that the Hilbert
space structure is essential and Hilb not replacable by a simple vector space
category.
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2.1.2 Hilb as a †-Category

Firstly we introduce †-categories (pronounced: dagger categories).

Definition 2.4 (†-category). A †-category (or dagger category) (C,†) is a cat-
egory C together with an endofunctor † : C −→ C such that

A† := †(A) = A on objects (2.1)

and for objects A,B

† : homC(A,B) −→ homC(B,A) (2.2)

f 7−→ f† (2.3)

such that the following three identities hold.

id†A = idA , (2.4)

f†† = f , (2.5)

(g ◦ f)† = f† ◦ g† , (2.6)

for any arrow g : B −→ C.

We now construct a †-endofunctor † : Hilb −→ Hilb using inner products.
For a morphism f : H −→ H ′ we define f† s.t. for all ψ ∈ H and ϕ ∈ H ′

〈f(ψ)|ϕ〉H′ = 〈ψ|f†(ϕ)〉H .

It can be shown, that this is a well defined map using the property

x = y ⇐⇒ 〈x|z〉 = 〈y|z〉 ∀z ∈ H (2.7)

which holds for general Hilbert spaces H. From that we can also conclude

〈id†H(ψ)|ϕ〉H = 〈ψ|idH(ϕ)〉H = 〈ψ|ϕ〉H = 〈idH(ψ)|ϕ〉H and thus id†H = idH

〈f(ψ)|ϕ〉H′ = 〈ψ|f†(ϕ)〉H = 〈f††(ψ)|ϕ〉H′ and thus f = f††

〈ψ|(g ◦ f)†(ϕ)〉H = 〈g(f(ψ))|ϕ〉H′′ = 〈f(ψ)|g†(ϕ)〉H′ = 〈ψ|f†(g†(ϕ))〉H
and thus (g ◦ f)† = g† ◦ f† .

Thus as such (Hilb, †) becomes a †-category. Note that the use of inner products
of the domain as well as of the codomain were absolutely crucial to defining †.
This dependency even goes both ways, meaning the following:

Lemma 2.5. Let U† : (Hilb, †) −→ (Vec, †) be the functor of †-categories
canonically induced by the forgetful functor U . Then U† is invertible i.e. all
inner products can be recovered in (Vec, †).

Proof. It is sufficient to construct an inner product for each vector space using
the functor †, the rest follows immediately. For that let first H be an object
of Hilb. There is a natural bijection between elements ψ ∈ H and operators
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T : C −→ H given by

H −→ (C −→ H)

ψ 7−→ (Tψ : z 7→ zψ)

We can then note the following identity.

〈ψ|ϕ〉 =
(
T †ψ ◦ Tϕ

)
(1) . (2.8)

Indeed

〈ψ|ϕ〉H = 〈Tψ(1)|Tϕ(1)〉H = 〈1|T †ψ (Tϕ(1))〉C =
(
T †ψ ◦ Tϕ

)
(1) .

Since U† preserves all morphisms we can reconstruct the scalar product on
U†(H) by setting

〈U†(ψ)|U†(ϕ)〉U†(H) =
(
U†(T

†
ψ) ◦ U† (Tϕ)

)
(1) .

Making U†(H) into a Hilbert space which per definition coincides with H.

At this point it should be noted, that this works only for the specific functor
†. Generally in a different †-category (Vec, †′) no scalar product can be con-
structed from the functor †′, which affirms the necessity of the Hilbert-space
structure.

2.1.3 Monoidal Categories

Another important structure in quantum mechanics is the tensor product. In
can be captured categorically with the following notion.

Definition 2.6 (Monoidal Category). A monoidal category (C,⊗, I, a, l, r) is
a category C together with a functor ⊗ : C × C −→ C and

� a unit object I of C

� a natural isomorphism called the associator, which to each three objects
X,Y, Z assigns an isomorphism

aX,Y,Z : (X ⊗ Y )⊗ Z−̃→X ⊗ (Y ⊗ Z)

� two natural isomorphisms called left and right unitors, which assign to
each object X the isomorphisms

lX : I ⊗X −→ X and rX : X ⊗ I −→ X

respectively,

such that

� for all objects X,Y the triangle equation holds:
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(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

aX,I,Y

rX⊗1Y idX⊗lY

� for all objects W,X, Y, Z the pentagon equation holds:

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z

(W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

aW,X,Y ⊗1Z

aW⊗X,Y,Z

aW,X⊗Y,Z

aW,X,Y⊗Z

idW⊗aX,Y,Z

When the rest of the data is irrelevant or clear from context, we only write
(C,⊗) or C for a monoidal category.

Let’s analyze similarities and differences between monoidal categories and
categories with products.

Lemma 2.7. A category with finite (cartesian) products (and terminal object
T ) is monoidal.

Proof. As tensor product we can take the cartesian product, T then acts as the
unit object. The rest of the proof is straightfoward.

One major difference between cartesian and tensor products is the existence
(or non-existence) of the so called duplication and deletion morphisms. In every
category with finite cartesian products one may define the morphisms

duplication : ∆X : X −→ X ×X (2.9)

deletion : ∇X : X −→ T . (2.10)

this need not be possible in monoidal categories. Indeed in Hilb with the
standard tensor product it turns out to be impossible.

Example 2.8. Hilb becomes a monoidal category when endowed with the
usual tensor product. As unit object we take the 1-dimensional Hilbert space
C itself.
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Definition 2.9 (Braided monoidal category).
A braided monoidal category (C, b) is a monoidal category C together with
a natural isomorphism b called braiding, which assigns to objects X,Y an iso-
morphism

bX,Y : X ⊗ Y −→ Y ⊗X

s.t. the hexagon-equations hold:

X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z (Y ⊗X)⊗ Z

(Y ⊗ Z)⊗X Y ⊗ (Z ⊗X) Y ⊗ (X ⊗ Z)

bX,Y⊗Z

a−1
X,Y,Z bX,Y ⊗1Z

aY,X,Z

a−1
Y,Z,X

1Y ⊗bX,Z

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) X ⊗ (Z ⊗ Y )

Z ⊗ (X ⊗ Y ) (Z ⊗X)⊗ Y (X ⊗ Z)⊗ Y

bX⊗Y,Z

aX,Y,Z 1X⊗bY,Z

a−1
X,Z,Y

aZ,X,Y bX,Z⊗1Y

The hexagon-equations ensure what one might call uniqueness of canonicity.
That means if the structure provided yields two canonical ways of achieving
something, then these two should coincide. In the first hexagon equation the
structure provides two paths from X⊗ (Y ⊗Z) to (Y ⊗Z)⊗X, and they should
thus coincide. This motive continues throughout this thesis.

Definition 2.10 (Symmetric monoidal category).
A symmetric monoidal category is a braided monoidal category C such that
for all objects X,Y

b−1
X,Y = bY,X ,

where bX,Y is the braiding.

We already mentioned that one difference between cartesian and monoidal
categories is the existence of duplication and deletion morphisms. For symmetric
monoidal categories this turns out to be the only difference, in the following sense

Theorem 2.11. Let (C,⊗, I, a, l, r, b) be a symmetric monoidal category. Then
(C,⊗, I) is cartesian if and only if for every object X there is a duplication and
a deletion morphism as defined in (2.9) and (2.10) which respect the symmetric
monoidal structure.

This is purposefully stated vaguely to avoid overloading the reader with
even more diagrams. Generally what we mean is that diagrams containing the
duplication and deletion arrows as well as the morphisms that the symmetric
monoidal structure yields commute. For example we demand (f ⊗ f) ◦ ∆Z =
∆X ◦ f for any arrow f : Z −→ X.

Proof. ”⇒”: Let C be cartesian. Then since I is terminal we have deletion
∇X : X −→ I given for every X. Duplication can be defined through the
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pairing of identities: ∆X = 〈idX , idX〉.
”⇐”: Let there be deletion and duplication. Then the deletion morphisms
render I terminal. Uniqueness of the morphisms follows from respecting the
structure, in particular we have ∇I = idI by this demand. The pairing and
projections for objects X,Y and arrows f : Z −→ X, g : Z −→ Y can be
constructed as follows:

π1
X,Y := rX ◦ (idX ⊗ ∇Y )

π2
X,Y := lY ◦ (∇X ⊗ idY )

〈f, g〉 := (f ⊗ g) ◦∆Z .

For an arrow h : Z −→ X ⊗ Y

〈π1
X,Y ◦ h, π2

X,Y ◦ h〉 =
((
rX ◦ (idX ⊗∇Y ) ◦ h

)
⊗
(
lY ◦ (∇X ⊗ idY ) ◦ h

))
◦∆Z

=
((
rX ◦ (idX ⊗∇Y )

)
⊗
(
lY ◦ (∇X ⊗ idY )

))
◦ (h⊗ h) ◦∆Z

=
((
rX ◦ (idX ⊗∇Y )

)
⊗
(
lY ◦ (∇X ⊗ idY )

))
◦∆X⊗Y ◦ h

So it remains to show
((
rX ◦(idX ⊗ ∇Y )

)
⊗
(
lY ◦(∇X⊗idY )

))
◦∆X⊗Y = idX⊗Y .

This amounts to saying that the following diagram commutes

X ⊗ Y (X ⊗ Y )⊗ (X ⊗ Y )

X ⊗ Y (X ⊗ I)⊗ (I ⊗ Y )

idX⊗Y

∆X⊗Y

(1X⊗∇Y )⊗(∇X⊗1Y )

rX⊗lY

which follows from the respecting the structure-demand and the properties of
symmetric monoidal categories we’ve seen above. More details can be found in
the literature [21].

2.1.4 Closed Categories

Definition 2.12 (Closed categories).
A monoidal category C is called left closed, if there is an internal hom functor

(: Cop × C −→ C

together with a natural isomorphism, that assigns to each triple of objects
X,Y, Z a bijection

cX,Y,Z : hom(X ⊗ Y,Z) −→ hom(X,Y ( Z)

and it is called right closed if accordingly

cX,Y,Z : hom(X ⊗ Y,Z) −→ hom(Y,X ( Z).

We call the action of c currying.

In the following we only consider right closed categories. Note, that in the
case of braided monoidal categories this makes no difference since X⊗Y ∼= Y ⊗X
by the braiding.
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Example 2.13. The category Hilb can be made into a closed category by
defining X ( Y as the space of bounded linear operators f, g : X −→ Y with
the standard scalar product:

〈f |g〉X(Y :=

n∑
i=1

〈f(ei)|g(ei)〉Y = Tr[f† ◦ g] (2.11)

where (ei)i=1,..,n is a basis of X and Tr denotes the trace-operation. For h :

X ⊗ Y −→ Z, we define h̃ : Y −→ (X ( Z) by h̃(y) : x 7→ h(x ⊗ y) for any
y ∈ Y . Then cX,Y,Z is given by

cX,Y,Z : h 7−→ h̃ .

2.1.5 Compact Categories

Definition 2.14 (Dual objects).
In a monoidal category C, we call an object X∗ the right dual of an object X
(and accordingly X the left dual of X∗) if there are morphisms

iX : I −→ X∗ ⊗X and eX : X ⊗X∗ −→ I

called the unit and the counit respectively, s.t. the zigzag-equations are satis-
fied:

X ⊗ I X ⊗ (X∗ ⊗X) (X ⊗X∗)⊗X

X I ⊗X

rX

idX⊗iX a−1
X,X∗,X

eX⊗idX

lX

I ⊗X∗ (X∗ ⊗X)⊗X∗ X∗ ⊗ (X ⊗X∗)

X∗ X∗ ⊗ I

lX

iX⊗idX∗ aX∗,X,X∗

idX∗⊗eX

rX

Note that in the case of a symmetric monoidal category the notions of right and
left dual coincide.

In a closed symmetric monoidal category C a candidate for a dual object of
X is always X ( I. For this so called weak dual we can find the counit

eX := c−1
X,X(I,I(idX(I) . (2.12)

where c is currying. It acts as follows on elements x ∈ X,ϕ ∈ X∗

eX(x⊗ ϕ) = ϕ(x)

and can thus also be called an evaluation morphism. A unit need not always
exist.

Example 2.15. For the category Hilb we set X∗ := X ( C. The counit
exists by above considerations. To find a unit we first note that there is a
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natural isomorphism which assigns for each X,Y ∈ Hilb

j : X∗ ⊗ Y −→ X ( Y

where for any ϕ ∈ X∗, y ∈ Y, f ∈ X ( Y

j(ϕ⊗ y)(x) := ϕ(x)y ∀x∈X
j−1(f) :=

∑
i

e∗i ⊗ f(ei)

where {ei}i is a basis of X and {e∗i }i the dual basis. This justifies defining a
morphism j−1 ◦ iX : C −→ X ( X instead of the unit. We set(

j−1 ◦ iX
)

(z) := z idX .

and obtain

iX(z) = j(z idX) =
∑
i

e∗i ⊗ zei .

It is straightforward to show that the zigzag-equations are satisfied.

Definition 2.16 (Compact Categories).
A compact category is a monoidal category C such that every object of C has
both a left dual and a right dual.

In case of a compact closed category C the mapping X 7→ X∗ extends to
a contravariant endofunctor, by defining the dual f∗ : Y ∗ −→ X∗ of an arrow
f : X −→ Y of C to be the unique arrow which makes the following diagram
commute:

Y ∗ I ⊗ Y ∗ X∗ ⊗X ⊗ Y ∗

X∗ X∗ ⊗ I X∗ ⊗ Y ⊗ Y ∗
f∗

lY ∗ iX⊗idY ∗

idX∗⊗f⊗idY ∗

rX∗ idX∗⊗eY

In equational terms:

f∗ = rX∗ ◦ (idX∗ ⊗ eY ) ◦ (idX∗ ⊗ f ⊗ idY ∗) ◦ (iX ⊗ idY ∗) ◦ l−1
Y ∗ (2.13)

Example 2.17. Hilb is obviously compact. Untangeling the definition, we
find, that for an arrow f : X −→ Y in Hilb f∗ acts as follows on an element
ψ ∈ Y ∗ = Y ( C:

f∗(ψ) =
∑
i

ψ(f(ei))e
∗
i = ψ ◦ f .

Thus f∗ coincides with the commonly used dual map.

2.1.6 Dagger Compact Closed Categories

We now join the concept of a compact closed category with the one of a dagger
category.
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Definition 2.18 (Dagger compact closed category). A dagger compact closed
category is a is a compact closed category C which is also a †-category such that
for all objects W,X, Y, Z and arrows f : W −→ X, g : Y −→ Z the following
diagrams commute

X ⊗ Z

W ⊗ Y

(f⊗g)†f†⊗g†

X ⊗ (Y ⊗ Z)

(X ⊗ Y )⊗ Z

a†X,Y,Z
a−1
X,Y,Z

Y ⊗X

X ⊗ Y

b†X,Y
b−1
X,Y

X

I ⊗X

l†Xl−1
X

X

X ⊗ I

r†Xr−1
X

I X ⊗X∗

X∗ ⊗X
iX

e†X

bX,X∗

Definition 2.19 (Lower Star Functor). Let C be a dagger compact closed cat-
egory and f : X −→ Y an arrow in C. We then define the covariant lower
star functor by A 7→ A∗ and f 7→ f∗, where we define f∗ : X∗ −→ Y ∗ by
f∗ := f∗† = f†∗.

Example 2.20. Let f : X −→ Y be an arrow in Hilb, (ei)i a basis of X and
(e∗i )i the dual basis. Applying the definition f∗ = f∗† we find, that for any
ϕ ∈ X∗,ψ ∈ Y ∗

〈f∗(ϕ)|ψ〉Y ∗ = 〈ϕ|f∗(ψ)〉X∗ = 〈ϕ|
∑
i

ψ(f(ei))e
∗
i 〉X∗ =

∑
i

ψ(f(ei))〈ϕ|e∗i 〉X∗

=
∑
i

ψ(f(ei))ϕ(ei)

where we used that 〈ϕ|e∗i 〉X∗ =
∑
j〈ϕ(ej)|e∗i (ej)〉C = ϕ(ei). The overline de-

notes complex conjugation. There is a relation between f, f† and f∗, f∗ respec-
tively, namely they make the following diagrams commute

X Y

X∗ Y ∗

RX RY

f†

f∗

X Y

X∗ Y ∗

RX

f

RY

f∗

where RX , RY are the isometric bijections given by the Riesz representation
theorem. Note however that since RX and RY are antilinear they do not belong
to the category Hilb.

2.2 Linear Logic

In this section we introduce Girard’s linear logic [13], or rather a fragment of it.
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2.2.1 A Background in Logic and Proof Theory

Classical Logic

Classical logic, more precisely classical propositional calculus, is the theory of
abstract propositions A,B, .. and their connectives namely the conjunction ∧
(and), the disjunction ∨ (or) and the implication ⇒ together with a verum, a
notion of truth, usually denoted by 1 or > and a falsum, a notion of falsity,
denoted by 0 or ⊥.

In proof theory we consider the logical rules spanning proofs. We define a
sequent

A1, .., An ` B1, .., Bm (2.14)

to mean at least one of the propositions B1, .., Bm is provable from propositions
A1, .., An (combined). In most cases it suffices to only consider sequents of the
form

A1, .., An ` B (2.15)

which means proposition B is provable from propositions A1, .., An (combined).
A sequence of propositions A1, .., An is called a context. Since here we do not
care about the order nor about the arity of each proposition we can consider
contexts to be sets Γ = {A1, .., An}. We use greek capital letters to denote a
context.

Using the connectives new propositions (A ∧ B, A ∨ B, A ⇒ B) can be
build out of old ones (A, B). To get a full understanding of a newly formed
proposition we need to know how to prove it and what we can prove with it.
Each connective thus comes with some inference rules which give answers to
these questions. An inference rule is written as such

Γ1 ` A1 ... Γn ` An
Γ0 ` A0

It means that from the sequents above the line you can deduce the sequent
below the line. To know what we can prove from a proposition we need a rule
for how the proposition can appear on the left side of a sequent, to know how
we can prove a proposition we need a rule for how it can appear on the right
side of a sequent. For the conjunction the inference rules are as follows

Γ, A,B ` C
(L∧)

Γ, A ∧B ` C
Γ ` A Γ ` B

(R∧)
Γ ` A ∧B (2.16)

The (L∧)-rule states, that if you can prove something under assumptions A,B,
then you can also prove it under the single assumption A ∧ B. The (R∧)-rule
states that a proof of A and a proof of B create a proof of A ∧ B. Both rules
are very intuitive.

Instead of asking what we can prove from a proposition, we can also ask
what we can do with a proof of said proposition i.e. which other proofs can
we construct from them. This approach is called natural deduction. We call
the according rules elimination rules, and the rules which show how to create a
proof introduction rules. For the conjunction these are

Γ ` A1 ∧A2
(∧E)i=1,2

Γ ` Ai
Γ ` A Γ ` B

(∧I)
Γ ` A ∧B (2.17)
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The introduction rule is exactly the right rule from above. The two elimination
rules state, that a proof of A1 ∧A2 can be reduced to a proof of A1 and a proof
of A2 respectively. Note that you can choose to turn a proof of A1 ∧ A2 into
a proof of A1 and you can choose to turn it into a proof of A2. In contrary if
given a proof of a disjunction Γ ` A1 ∨ A2 you can not choose which of A1, A2

has been proven. This is a fundamental difference between conjunctions and
disjunction which will reappear later.

Each system also comes with a set of axioms, these are rules, which have no
sequents above the line, e.g. the axioms

(i)
A ` A

(>R)
Γ ` >

which claim, that A can always be proven assuming A and that truth can
be proven from anything. The following axioms are assumed in classical and
intutionistic logic respectively

¬¬A ` A 0,Γ ` A

where ¬A := A⇒ 0. The latter axiom is strictly weaker than the former.

The third kind of inference rules are structural rules, they explain the syntax
of a logical system. In classical and intutionistic logic we have the weakening
and contraction rules

A,Γ ` C
(w)

A,B,Γ ` C
A,A,Γ ` C

(c)
A,Γ ` C

which state, that we can add assumptions to a proof without affecting its va-
lidity (weakening), and that duplicates in the assumptions can be eliminated
(contraction).

Inference rules can be stacked to form derivations. We can for example stack
inference rules to show that A ∧ > ` A and A ` A ∧ >

(i)
A ` A

(w)
A,> ` A

(L∧)
A ∧ > ` A

(i)
A ` A

(>R)
A ` >

(R∧)
A ` A ∧ >

We call a sequent A ` B valid or derivable if it can be derived in above fashion.
We write A ' B if both A ` B and B ` A are valid. Then by above derivation
we have

A ∧ > ' A (2.18)

making > a unit of the conjunction. Similarily we also have A ∨ 0 ' A

Linear Logic

In linear logic propositions are treated as resources. As it is with resources a
proposition A can not simply be duplicated or deleted, the exact number of
copies of A we’re dealing with is significant. Hence in linear logic a context
Γ is not a set of propositions, but rather a multiset, i.e. a set in which we
keep track of the number of occurences of each element. Also the weakening
and contraction rules can not hold in their current form. As a consequence of
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Table 2.1: Multiplicative and additive fragment of linear logic.

multiplicative additive
conjunction ⊗ &
disjunction

&

⊕
verum 1 >
falsum ⊥ 0

these changes, there are two versions of a conjunction and two versions of a
disjunction, one denoting parallel availability of resources and the other non-
parallel availability. Each of the four has its own distinct unit. We call the
connectives standing for parallel availability and their units multiplicative, the
others additive. The symbols we use for each of the connectives can be found in
table 2.1. The names ”multiplicative” and ”additive” stem from the following
distribution laws

X ⊗ (Y ⊕ Z) ' (X ⊗ Y )⊕ (X ⊗ Z)

X

&

(Y & Z) ' (X

&

Y ) & (X

&

Z)

where again we write X ' Y for propositions X,Y if both X ` Y and Y ` X
are derivable.

When considering propositions as resources, this splitting of connectives into
two parts is necessary. To understand why we consider the example of a vending
machine. We are standing infront of a vending machine with a 2AC-coin. The
vending machine has multiple slots filled with various goods, these may include:
white chocolate (W ), dark chocolate (D), bottles of lemonade (L) and mints
(M). Each slot contains multiple copies of one or more of these goods. Now
the statement ”with 2AC we can buy L and M” is ambiguous, it can mean two
things: either the combined value of L and M is 2AC in which case we can have
both available in parallel, i.e. L ⊗M , or each of L and M costs 2AC, in which
case we may have both, but not in parallel, i.e. L & M . The latter case might
at first glance seem like an exclusive or instead of an and, note however, that we
have the choice to pick whichever of L and M we want, which is a property only
a conjunction has, as we mentioned earlier in this section. The unit of parallel
conjunction, 1, is an empty slot which we can tap for free, while > is an existing
resource which however nobody wants, think of a pack of long expired milk. The
vending machine would give it out for anything, but chosing it is never really an
option, it thus acts as the unit of additive conjunction. It is a bit more difficult
to explain the differences between the two disjunctions. Consider the following
scenario. In one of the slots there are chocolates, they are all the same kind, but
we can not detemine wether it is dark chocolate or white chocolate. We then
have D ⊕W . If instead the slot contains both kinds of chocolate, but we do
not know which it will return, we get D

&

W , this is the parallel disjunction2.
The unit of additive disjunction, 0, is a theoretical resource which is impossible

2This explanation of the multiplicative disjunction is not perfectly accurate, as that would
require a significantly more complicated example. Our example is however sufficient in pro-
viding an idea of what a disjunction denoting parallel availability of resources might look like.
A more accurate example involving multiple vending machines can be found here [27].



24 CHAPTER 2. THE INTERNAL LOGIC OF QUANTUM MECHANICS

to produce, it could thus never have been in the vending machine in the first
place.

Linear logic also includes two modalities denoted by the symbols !, ? . Propo-
sitions of the kind !A may be duplicated and contracted on the left of a sequent,
propositions of the kind ?A on the right. The modalities are also called expo-
nentials, since they convert additves into multiplicatives

!(X & Y ) ' !X ⊗ !Y !> ' 1

?(X ⊕ Y ) ' ?X

&

?Y ? 0 ' ⊥ .

With these modalities both intutionistic and classical logic may be recovered.

2.2.2 A Sequent Calculus for Linear Logic

Here we present a sequent calculus for linear logic, we exclude

&

, ⊥ and ?,
since we do not need either of those. This fragment of linear logic is also called
multiplicative intuitionistic linear logic. The sequent calculus is given by the
following rules.

Axioms

(i)
A ` A

(R1)
` 1

(L0)
0,Γ ` C

(R>)
Γ ` >

Logical Rules

A,B,Γ ` C
(L⊗)

A⊗B,Γ ` C
Γ ` A ∆ ` B

(R⊗)
Γ,∆ ` A⊗B

Ai,Γ ` C
(L& )i=1,2

A1 & A2,Γ ` C
Γ ` A Γ ` B

(R& )
Γ ` A & B

A,Γ ` C B,Γ ` C
(L⊕)

A⊕B,Γ ` C
Γ ` Ai

(R⊕)i=1,2

Γ ` A1 ⊕A2

Γ ` A B,∆ ` C
(L()

A( B,Γ,∆ ` C
A,Γ ` B

(R()
Γ ` A( B

A,Γ ` C
(L!)

!A,Γ ` C
!Γ ` A

(R!)
!Γ ` !A

Structural rules

Γ ` C
(1w)

1,Γ ` C
Γ ` C

(!w)
!A,Γ ` C

!A, !A,Γ ` C
(!c)

!A,Γ ` C
Γ ` A A,∆ ` C

(cut)
Γ,∆ ` C

As stated in the structural rules, contraction and weakening are only allowed

for propositions of the kind !A as well as for the unit 1. It can be seen, that the
comma-separator on the left side of a sequent is essentially the ⊗-conjunction,
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i.e. that the (L⊗)-rule holds in reverse, too.

(i)
A ` A

(i)
B ` B

(⊗R)
A,B ` A⊗B A⊗B,Γ ` C

(cut)
A,B,Γ ` C

We call this new rule (L−1⊗).

2.2.3 Natural Deduction for Linear Logic

The above sequent calculus is equivalent to the following system of natural
deduction [19].

Axioms

(i)
A ` A

Introduction and elimination rules

(1I)
` 1

Γ ` 1 ∆ ` C
(1E)

Γ,∆ ` C

(>I)
Γ ` >

Γ ` 0
(0E)

Γ,∆ ` C

Γ ` A ∆ ` B
(⊗I)

Γ,∆ ` A⊗B
Γ ` A⊗B A,B,∆ ` C

(⊗E)
Γ,∆ ` C

Γ ` A Γ ` B
( &I)

Γ ` A & B
Γ ` A1 & A2 Ai,∆ ` C

( &Ei)i=1,2

Γ,∆ ` C

Γ ` Ai
(⊕Ii)i=1,2

Γ ` A1 ⊕A2

Γ ` A⊕B A,∆ ` C B,∆ ` C
(⊕E)

Γ,∆ ` C

A,Γ ` B
((I)

Γ ` A( B

Γ ` A( B ∆ ` A B,Θ ` C
((E)

Γ,∆,Θ ` C

Γ ` !A A,∆ ` C
(!E)

Γ,∆ ` C

!Am,Γ ` C ∆1 ` !B1 ... ∆n ` !Bn !B1, .., !Bn ` A
(!I)

Γ,∆1, ..,∆n ` C

where !Am denotes m occurrences of !A. The rules for the bang operator ! are
less intuitive in this system, so we will usually be working with the !-rules from
last sections sequent calculus. The (( E) rule can be replace by the simpler
and more intuitive

Γ ` A( B ∆ ` A
Γ,∆ ` B

Indeed the two are equivalent, the simplified version can be seen as a special
case of (( E) where C = B and Θ is empty. (( E) follows from above rule
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by the following derivation

Γ ` A( B ∆ ` A
Γ,∆ ` B

B,Θ ` C
(( I)

Θ ` B ( C

Γ,∆,Θ ` C

By abuse of notation we call the simplified rule (( E), too.

2.2.4 Closed Symmetric Monoidal Theories

We claimed, that (a fragment of) linear logic describes the internal logic of
quantum mechanics well. To be able to defend this claim, we need to under-
stand what the properties of this internal logic of quantum mechanics are. For
this need J.C. Baez and M. Stay introduced the notion of a closed symmetric
monoidal theory [6], a logical analogue of a closed symmetric monoidal cate-
gory. A closed symmetric monoidal theory describes the internal logic of such
a category and is thus a minimal requirement for being considered an internal
logic of quantum mechanics.

Definition 2.21 (Closed monoidal theory). A closed monoidal theory con-
sists of:

� A collection of propositions, which includes a special proposition I (the
unit), as well as propositions X ⊗ Y and X ( Y whenever X,Y are
propositions.

� A set X ` Y of proofs of proposition Y from proposition X for each
propositions X,Y .

� 7 inference rules:

(i)
X ` X

X ` Y Y ` Z
(◦)

X ` Z

W ` X Y ` Z
(⊗)

W ⊗ Y ` X ⊗ Z
W ` (X ⊗ Y )⊗ Z

(a)

W ` X ⊗ (Y ⊗ Z)

X ` I ⊗ Y
(l)

X ` Y
X ` Y ⊗ I

(r)
X ` Y

X ⊗ Y ` Z
(c)

Y ` X ( Z

� The usual equations must hold, that make the rule (◦) associative, (i) the
unit of (◦), (⊗) a functor, and (a), (l), (r) and (c) natural transformations.
Additionally (a), (l), (r) and (⊗) must obey the triangle and pentagon
euqations.

It is clear that each of these requirements corresponds to a defining property
of closed monoidal categories. A braided theory can be defined, too.

Definition 2.22 (Closed braided monoidal theory).
A closed braided monoidal theory is a closed monoidal theory which addi-
tionally satisfies
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W ` X ⊗ Y
(b)

W ` Y ⊗X
s.t. it gives rise to a natural transformation for which the hexagon equations
hold.

To understand these rules better we provide a little lemma.

Lemma 2.23. Let X,Y,W be propositions in a closed monoidal theory, X,Y
being arbitrary but fixed and W arbitrary and not fixed. Then the following rules
are equivalent in the sense that each can be derived from the other.

W ` X
(rule1)

W ` Y
(rule2)

X ` Y

The fixing conditions encode that the X,Y from (rule1) are exactly the X,Y
from (rule2) and that after fixing X,Y (rule1) holds for arbitrary W .

Proof. The derivations are simple:

(i)
X ` X

(rule1 for W = X)
X ` Y

W ` X
(rule2)

X ` Y
(◦)

W ` Y

The rule (l) for example is equivalent to demanding that the judgments
I ⊗ Y ` Y and Y ` I ⊗ Y are valid. Analogously for rules (r), (a) and (b).

Definition 2.24 (Closed symmetric monoidal theory). A closed symmetric
monoidal theory is a closed braided monoidal theory in which the rule (b)
acts as its own inverse.

Theorem 2.25. The ⊗- and (-connectives make linear logic into a closed
symmetric monoidal theory with unit I = 1.

Proof. Rule (i) is satisfied and rule (◦) is a special case of the cut rule. The
other rules can be derived in the following manner:

� Rules (a):

W ` (X ⊗ Y )⊗ Z

(i)
X ` X

(i)
Y ` Y

(i)
Z ` Z

(⊗I)
Y,Z ` Y ⊗ Z

(⊗I)
X,Y, Z ` X ⊗ (Y ⊗ Z)

(L⊗)
X ⊗ Y, Z ` X ⊗ (Y ⊗ Z)

(⊗E)
W ` X ⊗ (Y ⊗ Z)

W ` X ⊗ (Y ⊗ Z)

(i)
Z ` Z

(i)
X ` X

(i)
Y ` Y

(⊗I)
X,Y ` X ⊗ Y

(⊗I)
X,Y, Z ` (X ⊗ Y )⊗ Z

(L⊗)
X,Y ⊗ Z ` (X ⊗ Y )⊗ Z

(⊗E)
W ` (X ⊗ Y )⊗ Z

� Rule (⊗):
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(i)
W ⊗ Y `W ⊗ Y

W ` X Y ` Z
(⊗I)

W,Y ` X ⊗ Z
(⊗E)

W ⊗ Y ` X ⊗ Z

� Rules (l)

X ` 1⊗ Y

(i)
1 ` 1

(i)
Y ` Y

(1E)
1, Y ` Y

(⊗E)
X ` Y

(1I)
` 1 X ` Y

(⊗I)
X ` 1⊗ Y

� Rules (r) can be derived analogously to rules (l), making 1 the unit of the
⊗-product.

� Rules (c):

Y ` X ( Z
(i)

X ` X
(i)

Z ` Z
((E)

X,Y ` Z
(L⊗)

X ⊗ Y ` Z

X ⊗ Y ` Z
(L−1⊗)

X,Y ` Z
((I)

Y ` X ( Z

� Rule (b):

Γ ` X ⊗ Y

(i)
Y ` Y

(i)
X ` X

(⊗I)
Y,X ` Y ⊗X

(symm)
X,Y ` Y ⊗X

(⊗E)
Γ ` Y ⊗X

(2.19)

The last derivation obviously also works the other way around by simply ex-
changing X and Y .

According to the definition we still need to show some properties of those
rules. We demanded for example that (◦) is associative which means that the
following two derivations result in equal judgments

W ` X
X ` Y Y ` Z

(◦)
X ` Z

(◦)
W ` Z

W ` X X ` Y
(◦)

W ` Y Y ` Z
(◦)

W ` Z

We have however not introduced any way of distinguishing between two judg-
ments π : W ` Z , σ : W ` Z . Since in our usage of judgments we only
cared about what propositions its left and right side contained, we only really
have the option of calling judgments equal whenever their left and right sides
coincide respectively. Thus π = σ and similarily all other properties left to
prove hold trivially as well. Note however that a theory build upon linear logic,
particularily the typing system we introduce in the next chapter, might indeed
provide ways of distinguishing between judgments like π and σ, in which case
their equality has to be explicitely proven.
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2.2.5 Further properties of Linear Logic

Next we discuss some properties of linear logic, that will become relevant in the
following chapters.

In the multiplicative fragment there is no duplication and no deletion, i.e.

X 0 X ⊗X X 0 1 ,

in the additive part however the two analogous sequents

X ` X & X X ` >

are both derivable. The bang operator ! makes duplication and deletion possible
in the multiplicative part, i.e. the following two are valid

!X ` !X ⊗ !X !X ` 1 . (2.20)

The derivations are as follows:

(i)
!X ` !X

(i)
!X ` !X

(⊗I)
!X, !X ` !X ⊗ !X

(!c)
!X ` !X ⊗ !X

(1I)
` 1

(!w)
!X ` 1

(2.21)

On propositions of the kind !A both conjunctions coincide i.e.

!Γ ` !X & !Y

!Γ ` !X ⊗ !Y

Note that it is crucial here that all propositions are of the kind !A, not only
X,Y .
We showed above, that deletion of propositions of the kind !X is possible, we
give the more generalized rule the name ∇!:

(∇!)
!Γ ` 1 (2.22)

then we can prove a very important lemma.

Lemma 2.26. The following equivalence holds

(!w) ∧ (1I) ⇐⇒ (∇!) . (2.23)

That means that if the rest of the rules stay the same we can replace (!w) and
(1I) by (∇!).

Proof. ”⇒”: Let n be the number of propositions in Γ, then

(1I)
` 1

(!w) n times
!Γ ` 1

is the derivation we seek.
”⇐”: (1I) is just a special case of (∇!) for an empty context Γ. The derivation
of (!w) from (∇!) would be too wide to fit on this paper, we thus divide it into
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two steps. We first derive

Γ ` C
!A,Γ ` C ⊗ 1

and then
!A,Γ ` C ⊗ 1

!A,Γ ` C

so that put together they create a derivation of (!w). The first derivation goes
as follows

Γ ` C
(i)

!A ` !A
(⊗I)

!A,Γ ` C ⊗ !A

(i)
C ` C (∇!)

!A ` 1
(⊗)

C ⊗ !A ` C ⊗ 1
(cut)

!A,Γ ` C ⊗ 1

the second derivation is:

!A,Γ ` C ⊗ 1

(i)
C ⊗ 1 ` C ⊗ 1

(i)
1 ` 1

(i)
C ` C

(1E)
C, 1 ` C

(⊗E)
C ⊗ 1 ` C

(cut)
!A,Γ ` C

This concludes the proof.

This lemma allows us to choose freely wether we want to define our logic
with rules (!w) and (1I) or rather only with rule (∇!).

The linear implication is contravariant in the first argument and covariant in
the second argument, meaning that from A ` B we can derive C ( A ` C ( B
as well as B ( C ` A( C.

(i)
C ` C A ` B

(L()
C,C ( A ` B

((I)
C ( A ` C ( B

A ` B
(i)

C ` C
(L()

A,B ( C ` C
(( I)

B ( C ` A( C

(2.24)

Let’s take a look at how the bang operator ”!” interacts with the multi-
plicative product. In particular we want to compare the propositons !A⊗ !B
and !(A ⊗ B). We have seen, that ! makes duplication possible. In the case of
!A⊗!B we thus have a pair of duplicable propositions. In the case of !(A ⊗ B)
we have a duplicable pair of propositions, each of which might however not
be duplicable. That means in the former case we have for example derivable
sequents of the form !A⊗ !B `!A⊗ !A⊗ !B, which duplicate only a single propo-
sition, something that is not possible from !(A ⊗ B). Additionally the sequent
!A⊗!B `!(A⊗B) is derivable.

(i)
!A⊗ !B `!A⊗ !B

(i)
A ` A

(i)
B ` B

(!L)
!B ` B

(⊗I)
!A, !B ` A⊗B

(R!)
!A, !B ` !(A⊗B)

(⊗E)
!A⊗ !B ` !(A⊗B)

(2.25)

Lastly there is a bijection we want to shed light on. Every sequent of the
form Γ ` A can be identified with a sequent of the form Γ ` 1 ( A. This can
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be derived the following way:

Γ ` A
(1L)

1,Γ ` A
((I)

Γ ` 1 ( A

(2.26)

and

Γ ` 1 ( A
(1E)

` 1
(i)

A ` A
((E)

Γ ` A
(2.27)

Since this identification will become relevant in the next chapter, we show some
of its properties. The bijection preserves validity, i.e. if A ` B, then 1 ( A `
1 ( B. The derivation is simple:

(i)
1 ` 1 A ` B

(L()
1, 1 ( A ` B

(( I)
1 ( A ` 1 ( B

(2.28)

Furthermore we have A⊗ (1 ( B) ` 1 ( (A⊗B).

(i)
A ` A

(1I)
` 1

(i)
B ` B

(L()
1 ( B ` B

(⊗I)
A⊗ (1 ( B) ` A⊗B

(1w)
1, A⊗ (1 ( B) ` A⊗B

((I)
A⊗ (1 ( B) ` 1 ( (A⊗B)

(2.29)

Next we show, that the rule

A ` B ( C
A⊗B ` 1 ( C

holds. The derivation goes as follows.

A ` B ( C
(i)

B ` B
(i)

C ` C
((E)

A,B ` C
(L⊗)

A⊗B ` C
(1w)

1, A⊗B ` C
((I)

A⊗B ` 1 ( C

(2.30)

That concludes our discourse on the properties of linear logic.
The attentive reader will have also noted the non-properties of linear logic.

What is missing, in comparison to our discussion in the previous section, is a
†-functor and a notion of a strong dual. The former is mostly incompatible with
logic. Indeed the dagger would have to satisfy (A ` B)† = B ` A, however the
validity of B ` A can never be derived from A ` B. Anyway the dagger will not
be necessary in the following chapters. A candidate for a dual proposition is
A∗ := A( 1. But that is only a weak dual, since there is no co-evaluation i.e.
in general 1 6 `A∗ ⊗ A. In quantum mechanics the dual of a particle is its anti-
particle. Since however anti-matter is not used in quantum computers, a notion
of a dual will not be necessary in the following chapters either. The construction
of a logic that does include strong duals is sketched in section 4.1.1.



32 CHAPTER 2. THE INTERNAL LOGIC OF QUANTUM MECHANICS



Chapter 3

Quantum Lambda Calculus

In the previous chapter we have presented how linear logic is capable of describ-
ing quantum mechanics internally. It is thus obvious, that a lambda calculus for
quantum computation needs to be founded on linear logic. In the first section
of this chapter we introduce a typed lambda calculus whose types largely follow
a linear logic with some variations. In the second section we consider the se-
mantics of this language categorically and compare them to the categories from
the previous chapter.

3.1 Construction of a Quantum Lambda Calcu-
lus

Here we construct a quantum lambda calculus. It is the calculus developed by
B. Valiron [25] extended by coproducts.

3.1.1 Terms

The terms in the quantum lambda calculus are as follows.

Definition 3.1 (Terms).

Term M,N,P ::= c | x | MN | λx.M | 〈M,N〉 | ? |
let ? = M in N | let 〈x, y〉 = M in N | injl(M) |
injr(M) | match P with (x 7→M | y 7→ N)

Here x ranges over an infinite set of variables. The term λx.M stands for the
function x 7→M , while MN denotes application of M to argument N . 〈M,N〉
is a tuple consisting of M and N , ? the 0-tuple. In let 〈x, y〉 = M in N the term
M returns a pair 〈V,W 〉, then in N variables x and y are replaced by V and
W respectively. injl(M) and injr(M) are the left and right inclusion functions
into a disjoint union, while the term match P with (x 7→M | y 7→ N) makes a
case distinction proceeding with M if P is of the form injl(x) and with N if it
is of the form injr(y). We do in that term always assume that x 6= y. Finally c
ranges over a set of term constants, which might in principal be arbitrary. For
quantum computation the following are of use:

33
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� new is a term that prepares a quantum state. It takes as input a classical
bit which might be 0 or 1 (see Notation 3.4 below) and accordingly outputs
a qubit in state |0〉 or |1〉.

� a collection of unitary gates U each manipulating one or multiple qubits.

� a function meas representing the measurement, which takes as input a
qubit, measures it in standard basis {|0〉, |1〉} and returns the measured
value as a (classical) bit.

Definition 3.2 (Free Variables, Bound Variables). We denote the set of free
variables of a Term M by FV (M). It is defined inductively as follows

FV (c) := FV (?) := ∅
FV (x) := {x}

FV (MN) := FV (〈M,N〉) := FV (M) ∪ FV (N)

FV (let ? = M in N) := FV (M) ∪ FV (N)

FV (λx.M) := FV (M)\{x}
FV (let 〈x, y〉 := M in N) := FV (M) ∪ (FV (N)\{x, y})

FV (injl(M)) := FV (injr(M)) := FV (M)

FV (match P with (x 7→M | y 7→ N)) :=

FV (P ) ∪ (FV (M)\{x}) ∪ (FV (N)\{y}) . (3.1)

The non-free variables of a term are called bound.

Following common practice we consider terms to be equal if they’re identical
up to renaming bound variables e.g. λx.f(x) = λy.f(y) for any suitable f . This
is known as α-equivalence.

Definition 3.3 (Substitution). Let x be a variable and P a term. We define
substitution of x by P inductively. The base cases are

x[P/x] := P

y[P/x] := y (if y 6= x)

c[P/x] := c

?[P/x] := ?

Now assume, that substitution is defined for terms M,N,N1, N2, then we define

(MN)[P/x] := (M [P/x])(N [P/x])

(〈M,N〉)[P/x] := 〈M [P/x], N [P/x]〉
(injl(M))[P/x] := injl(M [P/x])

(injr(M))[P/x] := injr(M [P/x])

(λx.M)[P/x] := λx.M

(λy.M)[P/x] := λy.(M [P/x]) (if y 6= x and y /∈ FV (P ))

(let ? = M in N)[P/x] := let ? = M [P/x] in N [P/x]
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Two cases remain. Substitution in the term match M with (y1 7→ N1 | y2 7→ N2)
is defined as follows. If x = y1 and y2 /∈ FV (P )

(match M with (y1 7→ N1 | y2 7→ N2))[P/x] :=

match M [P/x] with (y1 7→ N1 | y2 7→ N2[P/x])

if x = y2 and y1 /∈ FV (P )

(match M with (y1 7→ N1 | y2 7→ N2))[P/x] :=

match M [P/x] with (y1 7→ N1[P/x] | y2 7→ N2)

and if y1 6= x 6= y2

(match M with (y1 7→ N1 | y2 7→ N2))[P/x] :=

match M [P/x] with (y1 7→ N1[P/x] | y2 7→ N2[P/x]) .

For the term let 〈y, z〉 = M in N substitution works the following way. If
x ∈ {y, z}

(let 〈y, z〉 = M in N)[P/x] := let 〈y, z〉 = M [P/x] in N

and if x /∈ {y, z} and y, z /∈ FV (P )

(let 〈y, z〉 = M in N)[P/x] := let 〈y, z〉 = M [P/x] in N [P/x] .

Additionally we simplify the notation using the following conventions:

Notation 3.4.

λx1x2..xn.M := λx1.λx2. ..λxn.M

M1M2M3..Mn := (..((M1M2)M2)..Mn)

〈M1,M2, ..,Mn−1,Mn〉 := 〈M1, 〈M2, ..〈Mn−1,Mn〉..〉〉
λ〈x, y〉.M := λz.(let 〈x, y〉 = z in M)

λ?.M := λz.(let ? = z in M) (where z is fresh)

let x = M in N := (λx.N)M

0 := injr(?)

1 := injl(?)

if P then M else N := match P with (x 7→M | y 7→ N) (with x, y fresh)

Lemma 3.5. Let M,P be terms and x /∈ FV (M). Then M [P/x] = M .

Proof. The proof is done by structural induction on M . It is non-constructive.
We begin with the base cases.

Case M ≡ y : Since x /∈ FV (M) we necessarily have x 6= y. Thus M [P/x] =
y[P/x] = y = M .

Case M ≡ c : M [P/x] = c[P/x] = c = M .
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Case M ≡ c : M [P/x] = ?[P/x] = ? = M .

Now assume the lemma holds for terms N,N0, N1, N2.

Case M ≡ injl(N) : M [P/x] = injl(N)[P/x] = injl(N [P/x]). Since x /∈
FV (M) = FV (N) we may conclude by the induction hypothesis that
N [P/x] = N and thus M [P/x] = injl(N) = M.

Case M ≡ injr(N) : Analogously.

Case M ≡ λy.N : If y = x we have M [P/x] = (λx.N)[P/x] = λx.N = M .
If y 6= x we have M [P/x] = (λy.N)[P/x] = λx.(N [P/x]). Since x /∈
FV (M) = FV (N)\{x} and x 6= y we must have x /∈ FV (N), so that
we may conclude by the induction hypothesis that N [P/x] = N and thus
M [P/x] = λx.N = M .

Case M ≡ N1N2 : M [P/x] = (N1N2)[P/x] = (N1[P/x])(N2[P/x]). Since x /∈
FV (M) = FV (N1) ∪ FV (N2) we have x /∈ FV (Ni), i = 1,2, and we may
conclude by the induction hypothesis that Ni[P/x] = Ni, i = 1,2, and
thus M [P/x] = N1N2 = M .

Case M ≡ 〈N1, N2〉 : M [P/x] = 〈N1, N2〉[P/x] = 〈N1[P/x], N2[P/x]〉. Since
x /∈ FV (M) = FV (N1) ∪ FV (N2) we have x /∈ FV (Ni), i = 1,2, and we
may conclude by the induction hypothesis that Ni[P/x] = Ni, i = 1,2,
and thus M [P/x] = 〈N1, N2〉 = M .

Case M ≡ let ? = N1 in N2 : M [P/x] = (let ? = N1 in N2)[P/x] = let ? =
N1[P/x] in N2[P/x]. Since x /∈ FV (M) = FV (N1) ∪ FV (N2) we have
x /∈ FV (Ni), i = 1,2, and we may conclude by the induction hypothesis
that Ni[P/x] = Ni, i = 1,2, and thus M [P/x] = let ? = N1 in N2 = M .

Case M ≡ match N0 with (y1 7→ N1 | y2 7→ N2) : It is FV (M) = FV (N0) ∪
(FV (N1)\{y1}) ∪ (FV (N2)\{y2}) and we thus have x /∈ FV (N0) and
x /∈ FV (Ni)\{yi}, i = 1,2. By the induction hypothesis we can conclude,
that N0[P/x] = N0. We now have three subcases. If x = y1 we have
x /∈ FV (N2), since in particular x 6= y2, and thus by the induction hy-
pothesis N2[P/x] = N2. Then M [P/x] = match N0[P/x] with (y1 7→
N1 | y2 7→ N2[P/x]) = M . If instead x = y2 proceed analogously. If
however y1 6= x 6= y2 we have x /∈ FV (Ni) for both i = 1,2. Thus by
the induction hypothesis Ni[P/x] = Ni, i = 1,2. We then have that
M [P/x] = match N0[P/x] with (y1 7→ N1[P/x] | y2 7→ N2[P/x] = M .

Case M ≡ let 〈y, z〉 = N1 in N2 : Since x /∈ FV (M) and FV (M) = FV (N1)∪
(FV (N2)\{y, z}) we can conclude that x /∈ FV (N1). Thus by induc-
tion hypothesis N1[P/x] = N1. If x ∈ {y, z} we then have M [P/x] =
(let 〈y, z〉 = N1 in N2)[P/x] = let 〈y, z〉 = N1[P/x] in N2 = let 〈y, z〉 =
N1 in N2 = M . If x /∈ {y, z} then also x /∈ FV (N2) and by induc-
tion hypothesis N2[P/x] = N2. We then have M [P/x] = (let 〈y, z〉 =
N1 in N2)[P/x] = let 〈y, z〉 = N1[P/x] in N2[P/x] = let 〈y, z〉 = N1 in N2 =
M . If x /∈ {y, z} then also x /∈ FV (N2)

That concludes the proof.
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3.1.2 Types and Subtyping

Of course not all terms that can be produced in this fashion are admissible. Some
are not allowed for physical reasons, e.g. λx.〈x, x〉 which duplicates x might be
problematic whenever x stands for a quantum state, others don’t make sense to
begin with, the term MN for example only makes sense when M is a function
and N the right type of input. Thus to ensure admissibility of terms a type
system needs to be introduced. To account in particular for non-duplicability
it is based on linear logic.

Definition 3.6 (Types).

Type A,B ::= qbit | !A | A( B | 1 | A⊗B | A⊕B

The type qbit represents the one-qubit states. By !A we denote the subtype
of duplicaple/reusable values of type A. For types A and B, A( B is the type
of functions from A to B, A ⊗ B the type of pairs of a value of type A and a
value of type B and A⊕B the disjoint union of A and B. 1 is a singleton. We
introduce some shorthand notations.

Notation 3.7.

!nA := !!..!!A for n repetitions of !

A⊗n := (..(A⊗A)..⊗A) for the n-fold tensor product

A⊕n := (..(A⊕A)..⊕A) analogously

bit := 1⊕ 1

Translating the descriptions of our constants new, U , meas we find that
they’re supposed to be of the types:

new : bit( qbit U : qbit⊗n ( qbit⊗n meas : qbit(!bit , (3.2)

where n is the arity of the respective gate. It was already mentioned, that !A
is supposed to be a subtype of A in the sense that every term of type !A in
particular also has type A. The according subtyping relation, which we denote
by ≤: , can be defined by a set of rules.

Definition 3.8 (Subtyping Relation).
The subtyping relation ≤: is defined as the smallest relation on types, that
satisfies the rules in table 3.1. We also define the relation + on types to mean
A + B ≡ (A ≤: B) ∧ (B ≤: A).

To eradicate confusion about the condition (m = 0) ∨ (n ≥ 1) (cmp. table
3.1) let’s analyze for a type A the expression !nA ≤: !mA. In the case m = 0 it
becomes !nA ≤: A as wished. In the case n ≥ 1 we obtain !nA ≤: !mA for all
m ∈ N, in particular !nA + !A for all n ∈ N which amounts to saying that we
define reusability to mean infinitely reusable as opposed to reusable once. This
is the whole secret behind that condition.

Lemma 3.9. The subtyping relation ≤: is reflexive and transitive.

This also implies that + is an equivalence relation. The following two lem-
mata will be of use.
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Table 3.1: Inference rules of the subtyping relation. Here m,n ∈ N and we
always assume (m = 0) ∨ (n ≥ 1).

(qbit)
!nqbit ≤: !mqbit

(1)
!n1 ≤: !m1

A1 ≤: B1 A2 ≤: B2
(⊗)

!n(A1 ⊗A2) ≤: !m(B1 ⊗B2)

A1 ≤: B1 A2 ≤: B2
(⊕)

!n(A1 ⊕A2) ≤: !m(B1 ⊕B2)

A ≤: A′ B ≤: B′
(()

!n(A′ ( B) ≤: !m(A( B′)

Lemma 3.10. Let A,B be types such that A ≤: !B, then there is a type A′ such
that A = !A′. Consequently, if A ≤: B and A is not of the form !A′ for some
A′, then B is not of the form !B′ for some B′ either.

Proof. Follows immediately from the cases m 6= 0 and n = 0 in table 3.1.

Lemma 3.11. Let A,B be types. If !B ≤: A then !B ≤: !A.

Proof. If there is a type A′ such that A = !A′ the proof becomes trivial:

!B ≤: A = !A′ + !!A′ = !A .

So assume that A is not of the form !A′. We proceed by structural induction
on the type A, beginning with the base cases.

Case A ≡ qbit : The only applicable subtyping rule is (qbit). We must thus

have !B = !n+1qbit, n ∈ N, and thus by rule (qbit) !B = !n+1qbit ≤: !qbit =
!A.

Case A ≡ 1 : The only applicable subtyping rule is (1). We must thus have
!B = !n+11, n ∈ N, and thus by rule (1) !B = !n+11 ≤: !1 = !A.

Assuming the lemma holds for types A1, A2, we continue with the induction
steps.

Case A ≡ A1 ⊗A2 : The only applicable subtyping rule is (⊗). There must
thus be types B1, B2 with Bi ≤: Ai, i = 1,2 such that !B = !n+1(B1⊗B2),
n ∈ N. Thus by rule (⊗) !B = !n+1(B1 ⊗B2) ≤: !(A1 ⊗A2) = !A

Case A ≡ A1 ⊕A2 : Analogously.

Case A ≡ A1 ( A2 : The only applicable subtyping rule is ((). There must
thus be types B1, B2 with A1 ≤: B2 and B2 ≤: A2 such that !B =
!n+1(B1 ( B2), n ∈ N. Thus by rule (⊗) !B = !n+1(B1 ( B2) ≤:
!(A1 ( A2) = !A

By induction the lemma holds. The proof is non-constructive.
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Table 3.2: Typing rules. Here Ac denotes the type of constant c (cmp. (3.2)).

A ≤: B
(ax1)

!∆, x : A ` x : B

!Ac ≤: B
(ax2)

!∆ ` c : B

Γ `M : !nA
(⊕I1)

Γ ` injl(M) : !n(A⊕B)
Γ `M : !nB

(⊕I2)
Γ ` injr(M) : !n(A⊕B)

!∆,Θ ` P : !n(A⊕B) !∆,Γ, x : !nA `M :C !∆,Γ, y : !nB ` N :C
(⊕E)

!∆,Θ,Γ ` match P with (x 7→M | y 7→ N) : C

!∆,Γ1 `M : A( B !∆,Γ2 ` N : A
((E)

!∆,Γ1,Γ2 `MN : B

Γ, x : A `M : B
((I1)

Γ ` λx.M : A( B

!∆, x : A `M : B
((I2)

!∆ ` λx.M : !n+1(A( B)

!∆,Γ1 `M1 : !nA1 !∆,Γ2 `M2 : !nA2
(⊗I)

!∆,Γ1,Γ2 ` 〈M1,M2〉 : !n(A1 ⊗A2)

!∆,Γ1 `M : !n(A1 ⊗A2) !∆,Γ2, x1 : !nA1, x2 : !nA2 ` N : A
(⊗E)

!∆,Γ1,Γ2 ` let 〈x1, x2〉 = M in N : A

!∆,Γ ` N : 1 !∆,Θ `M : A
(1E)

!∆,Γ,Θ ` let ? = N in M : A
(∇!)

!∆ ` ? : !n1

3.1.3 Typing Rules

In this subsection we describe a formalism with which we can decide the type
of a term.

Definition 3.12 (Typing Context). A typing context Γ is a finite set {x1 :
A1, .., xn : An} of ordered pairs of a variable and a type, which we denoted by
xi : Ai, such that no variable is repeated twice. We may write |Γ| for the set
of variables |Γ| = {x1, .., xn} and Γ(xi) for the type of variable xi, Γ(xi) = Ai.
Additionally we write !Γ in cases where all variables are of re-usable type and
Γ,Γ′ for the union of two disjoint typing contexts.

Definition 3.13 (Typing judgement). For a typing context Γ, a term M and
a type A, a typing judgement is an expression of the form Γ ` M : A. We
call a typing judgement valid if it follows from the rules in table 3.2.

Having formally introduced the typing rules, we can now also see that

` 0 : !nbit ` 1 : !nbit (3.3)
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are valid.
Let’s devote a moment to explaining why a variable may not repeat twice in a

context. Allowing multiple appearances of a variable would allow for judgements
of the form x : A, x : A ` 〈x, x〉 : A⊗A, which upon applying rule ((I1) can be
turned into x : A ` λx.〈x, x〉 : A⊗A. This expression is obviously problematic,
as it behaves a lot like a duplicating function, which we’re trying to avoid at
all costs. We might e.g. apply rule (( E) to it and some valid Γ ` V : A
and obtain Γ, x : A ` (λx.〈x, x〉)V : A⊗ A. Now it is unclear how (λx.〈x, x〉)V
can mean something that does not duplicate V . The condition of non repeated
variables takes care of these issues. Alternative solutions exist, but they make
the language too complicated to be considered a serious option.

The rule (ax2) in table 3.2 was set up such that !Ac is the most specific type
of the respective constant c, meaning that if !Ac �: B, then 0 c : B. It should
however be noted that there are types other then Ac of which !Ac is a subtype
of. Examining e.g. the very important example of new we have that

Anew = bit( qbit

!Anew = !(bit( qbit) !bit( qbit ,

!(!bit( qbit)

≤:≤:

≤: ≤:

where the arrows denote subtyping. This diagram is exhaustive, meaning that
if there is any type B such that !Anew ≤: B, then B is equal (+) to one of
the types in the diagram. This is an immediate consequence of the subtyping
rules (qbit) and (() (cmp. table 3.1). In particular this example shows, that
no reusable qubit can be created.

We’ve put a lot of work into controlling duplication. So the following lemma
is due.

Lemma 3.14. Assume that the judgement x : A ` 〈x, x〉 : A⊗A is valid, then
there is a type A′ such that A = !A′.

Proof. The judgement can only have been introduced by rule (⊗I). Thus
we must have valid judgements !∆,Γ1 ` x : A, !∆,Γ2 ` x : A such that
(!∆,Γ1,Γ2) = (x : A). We have to make a case destinction.

Case 1 : x : A is in !∆. Per definition all types in !∆ are reusable, so there is
a type A′ such that A = !A′.

Case 2 : x : A is in Γ1. That implies that !∆ and Γ2 are empty. So the
judgements are of the form x : A ` x : A and ` x : A. However the latter
judgement can not be valid as a typing x : A can only be introduced via
(ax1), which does not allow an emtpy context. This case can thus never
occur.

Case 3 : x : A is in Γ2. Analogously to above this case can never occur.

That concludes the proof. It is non-constructive.

Corollary 3.15. x : qbit 6 ` 〈x, x〉 : qbit⊗ qbit
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Proof. The type qbit is not reusable.

This type system is based on linear logic, however with the choice to handle
the !-operator differently than we did in the previous chapter, we introduced
some notable differences. To ensure that the derivations we made in the linear
logic are reproducable here, we need to show that the rules applied still hold.
This includes the rules (i), (!L) and (!c). We also derive the cut-rule, to show
what it looks like in the term-language.

Lemma 3.16. The following rules are derivable in our typing system

(i)
x : A ` x : A

Θ ` N : A Γ, x : A `M : B
(cut)

!∆,Θ,Γ ` let x = N in M : B

x : A,Γ `M : B
(!L)

x : !A,Γ `M : B

x : !A, y : !A,Γ `M : B
(!c)

y : !A,Γ ` let x = y in M : B

Proof. The derivations are as follows

A ≤: A
(ax1)

x : A ` x : A

Γ, x : A `M : B
(( I1)

Γ ` λx.M : A( B Θ ` N : A
((E)

Θ,Γ ` let x = N in M : B

!A ≤: A
(ax1)

x : !A ` x : A x : A,Γ `M : B
(cut)

x : !A,Γ `M : B

x : !A, y : !A,Γ `M : B
((I1)

y : !A,Γ ` λx.M : !A( C
(i)

y : !A ` y : !A
((E)

y : !A,Γ ` let x = y in M : B

Note that we used the notation let x = N in M for (λx.M)N as introduced in
Notation 3.4.

We have thus recovered every rule of linear logic except for one, the (R!)
rule. And indeed we do not want it as part of our typing system. Note that
using the constant new we can infer the valid judgement ` new 0 : qbit. Since
the context is empty this would allow the application of the (R!) rule resulting
in a reusable qubit ` new 0 : !qbit which we are trying to avoid at all costs.
The rule however does hold in a special case as we will see at a later point.

3.1.4 Operational Semantics

With the language we have developed we can now write down quantum algo-
rithms. The simplest of them is the fair coin defined as

coin := λ ? .meas(H(new 0)) ,

where H is the Hadamard gate. We can derive from our typing system the
judgement ` coin : 1 ( !bit. The fair coin outputs 0 or 1, each with a 50%
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probability. Let’s also define addition on bits.

plus := λxy. if x then (if y then 0 else 1) else (if y then 1 else 0)

Indeed we can derive x : !bit, y : !bit ` plus : !bit⊗ !bit ( !bit . Now we can do
addition with random numbers by executing the term

let x = coin ? in plusxx . (3.4)

However we this leads to a problem. The result of this computation is ambigu-
ous, it depends on the evaluation strategy. If we substitute coin ? directly into
the addition we get plus(coin ?)(coin ?). This term can result in a 0 or a 1
with equal probability. This is the call-by-name evaluation strategy. If however
we evaluate coin? immediately and then enter the result into the addition, we
obtain either plus 0 0 or plus 1 1 which both result in a 0. This is the call-by-
value evaluation strategy. Clearly both strategies may yield different results.
To remove this ambiguity we need to fix one of the methods, we chose the call-
by-value strategie. Consequently we need to clarify which terms we are allowed
to substitute and which need to be evaluated first.

Definition 3.17 (Values). We define values to be the following terms

V alue V,W ::= c | x | λx.M | 〈V,W 〉 | ? | injl(V ) | injr(V )

where M is an arbitrary term.

Convention 3.18. We only allow substitution by values. For a term M , a
variable x and a value V we define M [V/x] as in definition 3.3. We do however
still allow the trivial substitution by terms in variables, i.e. x[N/x] for arbitrary
term N .

Definition 3.19 (Quantum Closure). A quantum closure, or an (opera-
tional) state is a triple [|Q〉, L,M ] where

� |Q〉 is a quantum state of n qubits, i.e. a normalized vector in (C2)⊗n.

� L is a list of n distinct term variables (x1, .., xn) with xi : qbit, i = 1, .., n.

� M is a term with FV (M) ⊆ {x1, .., xn} .

We may also write [Q,L,M ] for [|Q〉, L,M ]. Additionally we write |L| =
{x1, .., xn} for the (unordered) set of quantum variables, and L(xi) = i for
the position of xi in L. [Q,L, V ] is called a value state if V is a value. The
notion of free variables can be extended to quantum closures.

FV ([Q,L,M ]) := FV (M)\|L|.

Having a notion of free variables, α-equivalence extends to quantum closures.
A quantum closure is evaluated via a series of reductions, the reduction rules
are defined as follows.

Definition 3.20 (Reduction Rules). We denote by [Q,L,M ] →p [Q′, L′,M ′]
a single-step reduction that occurs with probability p. The reduction rules are
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Table 3.3: Reduction rules for classical control of quantum closures. Here
M,N are arbitrary terms and V,W are values.

[Q,L, let x = V in M ]→1 [Q,L,M [V/x] ]

[Q,L, let 〈x, y〉 = 〈V,W 〉 in M ]→1 [Q,L,M [V/x,W/y] ]

[Q,L,match injl(V ) with (x 7→M |y 7→ N)]→1 [Q,L,M [V/x] ]

[Q,L,match injl(V ) with (x 7→M |y 7→ N)]→1 [Q,L,N [W/y] ]

Table 3.4: Reduction rules for quantum data of quantum closures. Here U
denotes a unitary gate of arity n. All closures are assumed to be in quantum
state |Q〉. In the first rule the indices ji ∈ {1, .., n} are all distinct. We write
|Qij〉 for a superposition of states in which xi = |j〉, j = 0,1, and αi, βi are such

that αi|Qi0〉+ βi|Qi1〉 = |Q〉.

[|Q〉, (x1, .., xn), U〈xj1 , .., xjn〉]→1 [U |Q〉, (x1, .., xn), 〈xj1 , .., xjn〉]
[αi|Qi0〉+ βi|Qi1〉, (x1, .., xn),meas xi]→|αi|2 [|Qi0〉, (x1, .., xn), 0]

[αi|Qi0〉+ βi|Qi1〉, (x1, .., xn),meas xi]→|βi|2 [|Qi0〉, (x1, .., xn), 1]

[|Q〉, (x1, .., xn), new 0]→1 [|Q〉 ⊗ |0〉, (x1, .., xn, xn+1), xn+1]

[|Q〉, (x1, .., xn), new 1]→1 [|Q〉 ⊗ |1〉, (x1, .., xn, xn+1), xn+1]

defined as shown in tables 3.3 and 3.4. Additionally we impose the congruence
rules as given in table 3.5, and with it we completely fix the order of evaluation.
We may write → for →1. To keep track of all the cases when evaluating the
measurement we may also write

[ αi|Qi0〉+ βi|Qi1〉, (x1, .., xn),meas xi ]→

{
[ |Qi0〉, (x1, .., xn), 0 ]

[ |Qi1〉, (x1, .., xn), 1 ] .

Example 3.21. We return to our two examples, the fair coin and adding bits
(cmp. eq. (3.4)). Note that these terms do a priori not contain any quantum
variables, so the according quantum closures have the form

[ |〉, (), coin? ]

[ |〉, (), let x = coin ? in plusxx ] .



44 CHAPTER 3. QUANTUM LAMBDA CALCULUS

Table 3.5: Congruence rules for quantum closures. Here M,N are arbitrary
terms while V is a value.

[Q,L,N ]→p [Q′, L′, N ′]

[Q,L,MN ]→p [Q′, L′,MN ′]

[Q,L,M ]→p [Q′, L′,M ′]

[Q,L,MV ]→p [Q′, L′,M ′V ]

[Q,L,N ]→p [Q′, L′, N ′]

[Q,L, 〈M,N〉]→p [Q′, L′, 〈M,N ′〉]
[Q,L,M ]→p [Q′, L′,M ′]

[Q,L, 〈M,V 〉]→p [Q′, L′, 〈M ′, V 〉]

[Q,L,M ]→p [Q′, L′,M ′]

[Q,L, injl(M)]→p [Q′, L′, injl(M
′)]

[Q,L,M ]→p [Q′, L′,M ′]

[Q,L, injr(M)]→p [Q′, L′, injr(M
′)]

[Q,L,M ]→p [Q′, L′,M ′]

[Q,L,match M with...]→p [Q′, L′,match M ′ with...]

[Q,L,M ]→p [Q′, L′,M ′]

[Q,L, let 〈x, y〉 = M in N ]→p [Q′, L′, let 〈x, y〉 = M ′ in N ]

The reduction works as follows. Here z denotes a fresh variable

[ |〉, (), coin ? ]

= [ |〉, (), (λ ? .meas(H(new 0)))? ]

= [ |〉, (), let z = ? in meas(H(new 0)) ]

→ [ |〉, (),meas(H(new 0))[ ?/z] ]

= [ |〉, (),meas(H(new 0)) ]

→ [ |0〉, (q),meas(H q) ]

→ [ H|0〉, (q),meas q ]

= [
1√
2
|0〉+

1√
2
|1〉, (q),meas q ]

→

{
[ |0〉, (q), 0 ]

[ |1〉, (q), 1 ] .

Using this reduction we can now evaluate addition of a random bit with itself,
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too.

[ |〉, (), let x = coin ? in plusxx ]

= [ |〉, (), (λx.(plusxx))(coin?) ]

→

{
[ |0〉, (q), (λx.(plusxx)) 0 ]

[ |1〉, (q), (λx.(plusxx)) 1 ]

=

{
[ |0〉, (q), let x = 0 in plusxx ]

[ |1〉, (q), let x = 1 in plusxx ]

→

{
[ |0〉, (q),plus 0 0 ]

[ |1〉, (q),plus 1 1 ]

→

{
[ |0〉, (q), let x = 0 in (let y = 0 in (if x then (if y then 0 else 1) else (if y then 1 else 0))) ]

[ |1〉, (q), let x = 1 in (let y = 1 in (if x then (if y then 0 else 1) else (if y then 1 else 0))) ]

→

{
[ |0〉, (q), let y = 0 in (if 0 then (if y then 0 else 1) else (if y then 1 else 0)) ]

[ |1〉, (q), let y = 1 in (if 1 then (if y then 0 else 1) else (if y then 1 else 0)) ]

→

{
[ |0〉, (q), if 0 then (if 0 then 0 else 1) else (if 0 then 1 else 0) ]

[ |1〉, (q), if 1 then (if 1 then 0 else 1) else (if 1 then 1 else 0) ]

→

{
[ |0〉, (q), if 0 then 1 else 0 ]

[ |1〉, (q), if 1 then 0 else 1 ]

→

{
[ |0〉, (q), 0 ]

[ |1〉, (q), 0 ]

As expected we obtain a zero no matter which state was measured.

More examples can be found in [22].

Definition 3.22 (Well Typedness, Program). Let [Q, (x1, .., xn),M ] be a quan-
tum closure. We call it well-typed of type A, if x1 : qbit, .., xn : qbit ` M : A
is a valid judgement. Such a quantum closure is also called a program.

Theorem 3.23 (Type safety). If a program [Q,L,M ] does through the reduction
steps reach a state [Q′, L′,M ′] which can not be further reduced, then [Q′, L′,M ′]
is a value state.

Proof. This was proven in [25], section 7.2 there.

3.1.5 Equational Logic

We have defined the terms of our language and explained what their supposed
to mean, we’ve also introduced a typing system to ensure soundness of terms.
However we have yet to make sure that our terms actually behave as expected.
When we define e.g. a function λx.M and apply it to a value (λx.M)V that
clearly is supposed to be equal to the substitution M [V/x], since that is what
we usually mean by function application. This was already hinted at when we
introduced the notation let x = V in M , which reads as a substitution, for
(λx.M)V . We thus aim towards defining an equivalence, to ensure that the



46 CHAPTER 3. QUANTUM LAMBDA CALCULUS

terms behave in an appropriate manner. Since the equivalence may depend on
the context, we define it on judgements rather then on terms. To be sure that we
find all the equivalences, they have to be derived systematically. We obtain them
by analyzing the interaction of introduction and corresponding elimination rules.
Obviously applying an introduction rule followed by the according elimination
rule should leave us with what we started with, this is known as β-equivalence or
β-reduction. Dually in η-equivalence or η-expansion we impose that eliminating
a term and then reintroducing it should leave the term unchanged. Depending
on the connective η-expansion can also mean that introducing a second term and
re-eliminating it should yield the term we started with. η-equivalence can also
be considered a reduction depending on which way we read it. The β-reduction
and η-expansion for type 1 are the following.

(∇!)` ? : 1 Γ `M : A
(1E)

Γ ` let ? = ? in M : A
−→β Γ `M : A (3.5)

Γ `M : 1 −→η Γ `M : 1
(∇!)` ? : 1
(1E)

Γ ` let ? = M in ? : 1
(3.6)

For the ⊕-connective there are two β-reductions since there are two introduction
rules

!∆,Γ ` V : A
(⊕I1)

!∆,Γ ` injl(V ) : A⊕B !∆,Θ, x :A `M :C !∆,Θ, y :B ` N :C
(⊕E)

!∆,Γ,Θ ` match injl(V ) with (x 7→M | y 7→ N) : C

−→β !∆,Γ,Θ `M [V/x] : C (3.7)

!∆,Γ ` V : A
(⊕I2)

!∆,Γ ` injr(V ) : A⊕B !∆,Θ, x :A `M :C !∆,Θ, y :B ` N :C
(⊕E)

!∆,Γ,Θ ` match injr(V ) with (x 7→M | y 7→ N) : C

−→β Γ,Θ ` N [V/y] : C (3.8)

Γ ` P : A⊕B −→η

Γ ` P : A⊕B
x : A ` x : A

(⊕I1)
x : A ` injl(x) : A⊕B

y : B ` y : B
(⊕I2)

y : B ` injr(y) : A⊕B
(⊕E)

Γ ` match P with (x 7→ injl(x) | y 7→ injr(y)) : A⊕B
(3.9)

For the implication we again have multiple reduction rules. One for the substitu-
tion by values, and one for the substitution x[N/x] which we allow for arbitrary
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terms.

!∆,Γ, x : A `M : B
(( I1/2)

!∆,Γ ` λx.M : !n(A( B) !∆,Θ ` V : A
(( E)

!∆,Γ,Θ ` let x = V in M : B

−→β !∆,Γ,Θ `M [V/x] : B (3.10)

x : A ` x : A
(( I1/2)

` λx.x : !n(A( A) Γ `M : A
(( E)

Γ ` let x = M in x : A

−→β Γ ` x[M/x] : A

(3.11)

Γ `M : !n(A( B) −→η
Γ `M : !n(A( B) x : A ` x : A

(( E)
Γ, x : A `Mx : B

(( I1/2)
Γ ` λx.(Mx) : !n(A( B)

(3.12)

Since variables and constants do not have both introduction and elimination
rules, the only remaining case is that of the ⊗-connective.

!∆,Γ1` V1 : A1 !∆,Γ2` V2 : A2
(⊗I)

!∆,Γ1,Γ2 ` 〈V1, V2〉 : A1 ⊗A2 !∆,Θ, x1 : A1, x2 : A2`M : A
(⊗E)

!∆,Γ1Γ2,Θ ` let 〈x1, x2〉 = 〈V1, V2〉 in M : A

−→β !∆,Γ1,Γ2,Θ `M [V1/x1, V2/x2] : A (3.13)

Γ `M : A1 ⊗A2 −→η

Γ `M : A1 ⊗A2

x2 : A2 ` x2 : A2 x1 : A1 ` x1 : A1
(⊗I)

x1 : A1, x2 : A2 ` 〈x1, x2〉 : A1 ⊗A2
(⊗E)

Γ,Θ ` let 〈x1, x2〉 = M in 〈x1, x2〉 : A1 ⊗A2

(3.14)

Based on these reduction rules we can now introduce an equivalence relation on
judgements.

Definition 3.24 (Axiomatic equivalence). The equivalence ≈ is defined as the
smallest equivalence relation on typing judgements, which satisfies the axioms in
tables 3.6 and 3.7. For a typing context Γ and M,N : A we write Γ `M ≈ N : A
to write that Γ ` M : A and Γ ` N : A are equivalent. If context and type are
non-specific or understood from circumstances we also use the simpler notation
M ≈ N . Additionally for a term M [N ] which contains subterm N we impose
the congruence rule

N ≈ N ′
M [N ] ≈M [N ′]

We take a look at rule (β() from table 3.6 to make the notation clear. By
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Table 3.6: Axiomatic equivalence: Rules from β-reduction and η-expansion.
Here 	 denotes the symmetric difference of sets, i.e. S	S′ := (S∪S′)\(S∩S′) .

(β() let x = V in M ≈M [V/x]

(β2
() let x = N in x ≈ N

(β⊗) let 〈x, y〉 = 〈V,W 〉 in M ≈M [V/x,W/y]

(β?) let ? = ? in M ≈M
(η() λx.V x ≈ V
(η⊗) let 〈x, y〉 = N in 〈x, y〉 ≈ N
(η?) let ? = N in ? ≈ N
(η⊕) match P with (x 7→ injl(x) | y 7→ injr(y)) ≈ P

(βl⊕) Γ,Θ ` match injl(V ) with (x 7→M | y 7→ N) ≈M [V/x] : C

(if Θ, y : !nB ` N : C is valid and

(FV (N)\{y})	 (FV (M)\{x}) contains reusable variables only)

(βr⊕) Γ,Θ ` match injr(V ) with (x 7→M | y 7→ N) ≈ N [V/y] : C

(if Θ, x : !nA `M : C is valid and

(FV (N)\{y})	 (FV (M)\{x}) contains reusable variables only)
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Table 3.7: Axiomatic equivalence: Substitution rules. If in a term M the
subterm let x = P in N appears, we imply that x does not appear in the rest of
the term M , e.g. in the case (let1) if ψ = 〈x, y〉, then x, y do not appear in P .
In the following ϕ and ψ may both stand for x, 〈x, y〉 and ? (not respectively).

(letapp) let x = M in (let y = N in xy) ≈MN

(letλ) let x = V in λy.M ≈ λy.(let x = V in M)

(let⊗) let x = M in (let y = N in 〈x, y〉) ≈ 〈M,N〉
(let1) let ϕ = (let ψ = M in N) in P ≈ let ψ = M in (let ϕ = N in P )

(let2) let ϕ = V in (let ψ = W in M) ≈ let ψ = W in (let ϕ = V in M)

(let0⊕) let x = P in (match M with (y1 7→ N1 | y2 7→ N2) ≈
match (let x = P in M) with (y1 7→ N1 | y2 7→ N2)

(let1⊕) let x = P in (match M with (y1 7→ N1 | y2 7→ N2) ≈
match M with (y1 7→ (let x = P in N1) | y2 7→ N2)

(let2⊕) let x = P in (match M with (y1 7→ N1 | y2 7→ N2) ≈
match M with (y1 7→ N1 | y2 7→ (let x = P in N2))
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rule (β() we mean to say that for arbitrary context Γ and type A we have

( Γ ` let x = V in M : A ) ≈ ( Γ `M [V/x] : A ) .

Lemma 3.25. Let ϕ be as in table 3.7, then the following equivalences are
derivable

(αlet) Γ, y : A `M : B ≈ Γ, x : A ` let y = x in M : B

(let2⊗) 〈let ϕ = M in N, V 〉 ≈ let ϕ = M in 〈N,V 〉 .

Proof. The proof is done by case distinction [25].

Ultimately we want to consider typing judgements up to equivalence. How-
ever that makes the usage of values difficult, since for a value V we have for
example

let x = V in x ≈ V .

While V is a value, that is per definition not the case for let x = V in W . We
thus introduce the notion of an extended value, which is closed under equivalence.

Definition 3.26 (Extended Values). We define extended values to be the
following terms

ExtV alue E, F, F ′ ::= V | 〈E,F 〉 | injl(E) | injr(E)

| let x = E in F | let ? = E in F

| let 〈x, y〉 = E in F

| match E with (x 7→ F | y 7→ F ′)

where V is an arbitrary value.

Let’s assume for now that substitution of a value into an extended value
yields an extended value again. By inspection of the defining rules of the equiv-
alence relation we can deduce, that each extended value is equivalent to other
extended values only. We prove the assumption we made in lemma 3.35. The
following lemma explains the relation between values and extended values.

Lemma 3.27. Let E be an extended value and ` E : A valid. Assume
furthermore that no constants are of type !n(A⊗ B) or !n(A⊕ B). Then there
is a value V , such that ` E ≈ V : A .

Proof. The proof is done by induction on the length of term E. The condition on
constants is necessary to ensure that terms of type !n(B1⊗B2) and !n(B1⊕B2)
have been introduced by rules (⊗I) and (⊕I) respectively.

Note that if we were to need a constant of type !n(B1⊗B2), we could instead
define two constants c1, c2 of types !nB1, !nB2 respectively and then consider
〈c1, c2〉 and if we were to need a constant of type !n(B1⊕B2), we could instead
define a constant c of type !nB1 and then consider injl(c).

For consistency reasons we want the axiomatic equivalence to preserve valid-
ity of judgements. Before we can show that, we have to prove some intermediate
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lemmata. These lemmata analyze the form of judgements and what we can de-
rive from them by other means then applying the typing rules. We have for
example already mentioned, that the (R!) rule from linear logic does not hold in
general in our typing system, but that it does hold in a special case. We begin
with the formulation and proof of that statement.

Lemma 3.28 ((R!) rule for values). Let V be a value. If !∆ ` V : A is valid,
so is !∆ ` V : !A.

Proof. The proof is done by structural induction on V . It is non-constructive.
We begin with the base cases. Let in the following M be an arbitrary term.

Case V ≡ x : The judgement !∆ ` x : A must have been introduced by (ax1).
There is thus a type B and a context ∆′ such that !∆ = (!∆′, x : !B) and
!B ≤: A. By lemma 3.11 we thus also have !B ≤: !A so that we can infer
from rule (ax1) that ∆′, x : !B ` x : !A is valid.

Case V ≡ c : The judgement !∆ ` c : A must have been introduced by (ax2).
We thus have that !Ac ≤: A. By lemma 3.11 also !Ac ≤: !A so that we can
infer from rule (ax2) that !∆ ` c : !A is valid.

Case V ≡ ? : It must be A = !n1, n ∈ N, implying !A = !n+11. From rule (∇!)
it then follows that !∆ ` ? : !A is valid.

Case V ≡ λx.M : There must be types B,C such that A = !n(B ( C), n ∈ N,
and !∆, x : B ` M : C is valid. Then !A = !n+1(B ( C). From rule
(( I2) it follows that !∆ ` λx.M : !A is valid.

We continue with the induction steps. Assume that the lemma holds for values
U,U1, U2.

Case V ≡ injl(U) : There must be types B,C such that A = !n(B⊕C), n ∈ N,

and !∆ ` U : !nB is valid. By induction hypothesis !∆ ` U : !n+1B
is valid, too. Since !A = !n+1(B ⊕ C) from rule (⊕I1) the validity of
!∆ ` injl(U) : !A follows.

Case V ≡ injr(U) : Analogously.

Case V ≡ 〈U1, U2〉 : There must be typesA1, A2 such thatA = !n(A1⊗A2), n ∈
N, and valid judgements !Θ, !Γi ` Ui : !nAi, i = 1,2, with (!Θ, !Γ1, !Γ2) =
!∆. By induction hypothesis the judgements !Θ, !Γi ` Ui : !n+1Ai are
valid, too. Since !A = !n+1(A1 ⊗ A2) from rule (⊗I1) the validity of !∆ `
〈U1, U2〉 : !A follows.

That concludes the proof.

Lemma 3.29. Let Γ `M : A be valid, then FV (M) ⊆ |Γ|.

Proof. This was proven in [25] (lemma 9.1.11 there). The proof works by struc-
tural induction over M , it is non-constructive. We will show the induction steps
involving the coproduct, since these are not found in the source. So assume the
lemma holds for terms P,N1, N2.

Case M ≡ injl(P ) : There must then be types A1, A2 and n ∈ N such that
A = !n(A1 ⊕ A2) and Γ ` N : !nA1 is valid. By induction hypothesis we
then have FV (N) ⊆ |Γ|. The claim follows from FV (M) = FV (N).



52 CHAPTER 3. QUANTUM LAMBDA CALCULUS

Case M ≡ injr(P ) : Analogously.

Case M ≡ match P with (x1 7→ N1 | x2 7→ N2) : The judgement can only
have been introduced by rule (⊕E). There must thus be valid judgements
!∆,Θ1 ` P : !n(B⊕C), !∆,Θ2, x1 : !nB ` N1 : A, !∆,Θ2, x2 : !nC ` N2 : A
with (!∆,Θ1,Θ2) = Γ. By the induction hypothesis we may conclude that
FV (P ) ⊆ |!∆,Θ1| and FV (Ni) ⊆ |!∆,Θ2| ∪ {xi}, i = 1,2. And since we
have FV (M) = FV (P )∪(FV (N1)\{x1})∪(FV (N2)\{x2}) it follows that
FV (M) ⊆ |!∆,Θ1| ∪ |!∆,Θ2| = |Γ|.

Lemma 3.30 (Generalized (L!) rule). Let Γ, x : A ` M : B be valid and
A′ ≤: A, then Γ, x : A′ `M : B is valid, too.

Proof. The proof is done by structural induction on M . It is non-constructive.
We begin with the base cases.

Case M ≡ y : The judgement Γ, x : A ` y : B must have been introduced by
(ax1). Thus we must have y = x, Γ = !∆ and A ≤: B. By transitivity
the latter implies A′ ≤: B from which we can conclude by rule (ax1) that
!∆, x : A′ ` x : B is valid.

Case M ≡ c : The judgement must have been introduced by (ax2). Thus there
is context ∆ and type A1 such that Γ = !∆ and A = !A1. By lemma 3.10
there is also A′1 such that A′ = !A′1. Then by rule (ax2) !∆, x : !A′1 ` c : B
is valid.

Case M ≡ ? : The judgement must have been introduced by (∇!) and we thus
have B = !n1, Γ = !∆ for some context ∆ and A = !A1 for some type A1.
By lemma 3.10 there then is a type A′1 such that A′ = !A′1. Now by (∇!)
the validity of !∆, x : !A′1 ` ? : !n1 follows.

That concludes the base cases. For the induction steps assume that the lemma
holds for terms N,P,N1, N2.

Case M ≡ injl(N) : The judgement must have been introduced by (⊕I1) and
there must thus be types C,D such that B = !n(C ⊕ D) and Γ, x : A `
N : !nC is valid. By the induction hypothesis

Case M ≡ injr(N) : Analogously.

Case M ≡ λy.N : The judgement must have been introduced by (( I1) or
((I2) and thus there is a type C such that B = !n(C ( D), n ∈ N, and
Γ, x : A, y : C ` N : D is valid. By induction hypothesis Γ, x : A′, y :
C ` N : D is then valid, too. If n = 0 we may simply apply (( I1) and
conclude that Γ, x : A′ ` λy.N : B is valid. If n > 0 we have that Γ = !∆
for some context ∆ and A = !A1 for some type A1. By lemma 3.10 there is
A′1 such that A′ = !A′1. That allows us to apply ((I2) and we can again
conclude that Γ, x : A′ ` λy.N : B is valid.

Case M ≡ match P with (y1 7→ N1 | y2 7→ N2) : The judgement must have
been introduced by (⊕E) and there must thus be valid judgements !∆,Θ1 `
P : !n(C ⊕ D), !∆,Θ1, y1 : !nC ` N1 : B and !∆,Θ1, y2 : !nD ` N2 : B
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where !∆,Θ1,Θ2 are disjoint and (!∆,Θ1,Θ2) = (Γ, x : A). We now have
three cases: x : A is in !∆, x : A is in Θ1 and x : A is in Θ2. Assume
x : A occurs in !∆. We then define !∆′ to be !∆ with x : A replaced by
x : A′, so that now (!∆,Θ1,Θ2) = (Γ, x : A′). By induction hypothe-
sis the judgements !∆′,Θ1 ` P : !n(C ⊕ D), !∆′,Θ2, y1 : !nC ` N1 : B,
!∆′,Θ2, y2 : !nD ` N2 : B are valid and by (⊕E) so is Γ, x : A′ ` M : B.
If instead x : A occurs in one of the Θi we proceed analogously.

The cases M ≡ NP , M ≡ 〈N1, N2〉, M ≡ let 〈y1, y2〉 = N in P and
M ≡ let ? = N in P are proven exactly like the last case.

Lemma 3.31. Let Γ ` V : !A be valid with V a value. Then Γ = !∆ for some
context ∆.

Proof. This was proven in [25] (lemma 9.1.15 there). The proof is non-constructive.
We show the induction steps in the cases of V ≡ injl(W ) and V ≡ injr(W ),
since those can not be found in the source. So assume the lemma holds for value
W .

Case V ≡ injl(W ) : The judgement must have been introduced by rule (⊕I1),
thus there are types A1, A2 such that !A = !(A1 ⊕ A2) and Γ ` W : !A1

is valid. By induction hypothesis we can conclude that Γ = !∆ for some
context ∆.

Case V ≡ injr(W ) : Analogously.

The restriction to values in above lemma is necessary. Indeed for a non-value
term we can find a simple counterexample: obviously y : A( !B, x : A ` yx : !B
is valid, but the context is not of the form !∆.

Lemma 3.32. Let Γ, x : A ` M : B be valid with x /∈ FV (M). The following
are true.

� A = !A′ for some type A′;

� Γ `M : B is valid;

� Γ, x : A, y : !C `M : B is valid, for fresh z.

Proof. This was proven in [25] (see lemma 9.1.19 there) by structural induction
on M . We show here the induction steps which can not be found in the source.
So let’s assume the lemma holds true for terms P,N1, N2.

Case M ≡ injl(P ) : The judgement must have been introduced by rule (⊕I).
Thus there are types D1, D2 and n ∈ N such that B = !n(D1 ⊕ D2) and
Γ, x : A ` P : !nD1 is valid. Since FV (injl(P )) = FV (P ) we may conclude
that x /∈ FV (P ). By the induction hypothesis there is a type A′ such that
A = !A′. Also by induction hypothesis the judgements Γ ` P : !nD1 and
Γ, x : A, y : !C ` P : !nD1 are valid. Then by rule (⊕I) so are Γ ` injl(P ) :
!n(D1 ⊕D2) and Γ, x : A, y : !C ` injl(P ) : !n(D1 ⊕D2) .

Case M ≡ injr(P ) : Analogously.
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Case M ≡ match P with (z1 7→ N1 | z2 7→ N2) : The judgement must have
been introduced by rule (⊕E). Thus there must be valid judgements
!∆,Θ ` P : !n(D1 ⊕ D2) and !∆,Θ′, zi : !nDi ` Ni : B, i = 1,2, with
(!∆,Θ,Θ′) = (Γ, x : A). Since contexts are disjoint it is z1 6= x 6= z2.
From FV (M) = FV (P ) ∪ (FV (N1)\{z1}) ∪ (FV (N2)\{z2}) it then fol-
lows that x /∈ FV (P ) and x /∈ FV (Ni), i = 1,2. Thus no matter to
which of !∆,Θ,Θ′ the typing x : A belongs, we can apply the induction
hypothesis to deduce, that A = !A′ for some A′. Now let ∆1,Θ1,Θ

′
1 be

respectively ∆,Θ,Θ′ with the possible occurence of x : A removed, so that
(∆1,Θ1,Θ

′
1) = Γ. By induction hypothesis !∆1,Θ ` P : !n(D1 ⊕D2) and

!∆,Θ′, zi : !nDi ` Ni : B, i = 1,2, are valid, and thus by rule (⊕E) so is
Γ ` M : B. Also by induction hypothesis !∆,Θ, y : !C ` P : !n(D1 ⊕D2)
and !∆,Θ′, y : !C, zi : !nDi ` Ni : B, i = 1,2, are valid and again by rule
(⊕E) so is Γ, x : A, y : !C `M : B.

The proof is non-constructive.

Corollary 3.33 ((!w) for contexts). If Γ ` M : B is valid, then so is !∆,Γ `
M : B.

Proof. Repeated application of the previous lemma.

The attentive reader will question why this result is necessary, since we
have shown in the last chapter that rule (∇!) implies (!w) (cmp. lemma 2.26).
However if we translate that derivation into our typing system, we get the rule

Γ `M : B
Γ, x : !A ` N [M ] : B

with N [M ] ≡ let w= (let 〈y, z〉= 〈M,x〉 in 〈y, ?〉) in (let u=∗ in v)). Indeed
using the equivalence relation we can see, that Γ, x : !A ` N [M ] ≈ M : B,
however we have not shown yet, that the equivalence preserves validity, so it
is not ready for employment. Since however we will need (!w) for the proof
that equivalence preserves validity, lemma 3.32 and corollary 3.33 are necessary.
Indeed the system was set up for these results to hold already now. Note that
the rules (ax1), (ax2) contain an additional context !∆, which ensure that (!w)
holds for the bases cases of the induction in the proof of lemma 3.32.

Lemma 3.34. Let Γ ` M : A be valid and A ≤: B, then Γ ` M : B is valid,
too.

Proof. The proof is done by structural induction on the term M . It is non-
constructive.

Case M ≡ x : The judgement must have been introduced by (ax1), thus Γ
must be of the form (!∆, x : A′) for some A′ ≤: A. By transitivity of the
subtyping relation we have A′ ≤: B, too. From (ax1) it then follows that
!∆, x : A′ ` x : B is valid.

Case M ≡ c : The judgement must have been introduced by (ax2), thus Γ = !∆
for some ∆ and !Ac ≤: A. By transitivity we then have !Ac ≤: B. From
(ax2) it then follows that !∆ ` c : B is valid.
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Case M ≡ ? : The judgement must have been introduced by (∇!), thus Γ = !∆
for some ∆ and A = !n1 for some n ∈ N. By definition of the subtyping
relation we must then have B = !m1 for some m ∈ N. From (∇!) it then
follows that !∆ ` ? : B is valid.

That concludes the base cases, we continue with the induction steps.

Case M ≡ injl(N) : The judgement must have been introduced by (⊕I1),
thus A = A1 ⊕ A2 for some types A1, A2 and Γ ` N : A1 is valid. Since
A1⊕A2 ≤: B we can conclude from the definition of the subtyping relation,
that B = B1⊕B2 for some types B1, B2 and A1 ≤: B1 as well as A2 ≤: B2.
By the induction hypothesis from Γ ` N : A1 being valid and A1 ≤: B1

follows that Γ ` N : B1 is valid, too. From (⊕I1) it then follows that
Γ ` injl(N) : B is valid.

Case M ≡ injr(N) : Analogous to the above case.

Case M ≡ match P with (x1 7→ N1|x2 7→ N2) : The judgement must have
been introduced by (⊕E). Thus there must be valid judgements !∆,Θ1 `
P : C ⊗ D, !∆,Θ2, x : C ` N1 : A and !∆,Θ2, y : D ` N2 : A such
that (!∆,Θ1,Θ2) = Γ. By the induction hypothesis we my conclude that
!∆,Θ2, x : C ` N1 : B and !∆,Θ2, y : D ` N2 : B are also valid. From
(⊕E) it then follows that Γ ` match P with (x1 7→ N1|x2 7→ N2) is valid.

Case M ≡ λx.N : The judgement must have been introduced by (( I1) or
(( I2). Thus there are n ∈ N and types C,D such that x : C, N : D
and A = !n(C ( D) and Γ, x : C ` N : D is valid. By inspection of the
subtyping rules there must then be types C ′, D′ such that B = C ′ ( D′

and C ′ ≤: C, D ≤ D′. By the induction hypothesis Γ, x : C ` N : D′

is valid, too. Applying the generalized (L!) rule (lemma 3.30) Γ, x : C ′ `
N : D′ is also valid. From (( I1) (if n = 0) or (( I2) (if n > 0) it then
follows that Γ′ ` λx.N : B is valid.

Case M ≡ NP : The judgement must have been introduced by (( E). Thus
there must be valid judgements !∆,Θ1 ` N : C ( A and !∆,Θ2 ` P : C
with (!∆,Θ1,Θ2) = Γ. Since C ( A ≤: C ( B we may deduce by the
induction hypothesis that !∆,Θ1 ` N : C ( B is valid, too. From (( E)
it then follows that Γ ` NP : B is valid.

Case M ≡ 〈N1, N2〉 : The judgement must have been introduced by (⊗I).
Thus there must be valid judgements !∆,Θ1 ` N1 : !nA1, !∆,Θ2 ` N2 :
!nA2 with n ∈ N, A = !n(A1⊗A2) and (!∆,Θ1,Θ2) = Γ. By inspection of
the subtyping rules there must thus be types B1, B2 and m ∈ N such that
Ai ≤ Bi, i = 1,2, and B = !m(B1 ⊗ B2). From (⊗I) it then follows that
Γ ` 〈N1, N2〉 : B is valid.

Case M ≡ let 〈x1, x2〉 = N in P : The judgement must have been introduced
by (⊗E). Thus there must be valid judgements !∆,Θ1 ` N : !n(A1 ⊗ A2)
, !∆,Θ2, x1 : !nA1, x2 : !nA2 ` N : A with !∆,Θ1,Θ2) = Γ. By induction
hypothesis !∆,Θ2, x1 : !nA1, x2 : !nA2 ` N : B is valid, too. From (⊗E) it
then follows that Γ ` let 〈x1, x2〉 = N in P : B is valid.
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Case M ≡ let ? = N in P : The judgement must have been introduced by
(1E). Thus there must be valid judgements !∆,Θ1 ` N : 1 and !∆,Θ2 `
P : A with (!∆,Θ1,Θ2) = Γ. By induction hypothesis !∆,Θ2 ` P : B is
valid, too. From (1E) it then follows that Γ ` let ? = N in P : B is valid.

By induction the claim follows.

Lemma 3.35. Let V be a value. If M is a value (resp. extended value), then
so is M [V/x].

Proof. The proof is done by structural induction. The base cases are proven as
follows:

M ≡ c : we have M [V/x] = c[V/x] = c which is a value.

M ≡ ? : we have M [V/x] = ?[V/x] = ? which is a value.

M ≡ y : if x = y we have M [V/x] = x[V/x] = V , if instead x 6= y we have
M [V/x] = y[V/x] = y. Both are values.

M ≡ λy.N : if x = y we have M [V/x] = (λy.N)[V/x] = λy.N , if instead x 6= y
we have M [V/x] = (λy.N)[V/x] = λy.(N [V/x]). Both are values.

That proves the base case. The induction steps for values are the following.

M ≡ 〈U,W 〉: We have M [V/x] = 〈U,W 〉[V/x] = 〈U [V/x],W [V/x]〉. Hence if
U [V/x],W [V/x] are values, so is M [V/x].

M ≡ injl(U): It is M [V/x] = injl(U)[V/x] = injl(U [V/x]). Thus if U [V/x] is
a value, so is M [V/x].

M ≡ injr(U): Analogously.

By induction this finishes the proof for values. For extended values the base
case is the case of M being a (non-extended) value, which we have just proven.
We continue with the induction steps. Assume in the following that the lemma
holds for extended values E,F, F1, F2.

M ≡ 〈E,F 〉: We have M [V/x] = 〈E,F 〉[V/x] = 〈E[V/x], F [V/x]〉. Hence if
E[V/x], F [V/x] are extended values, so is M .

M = let ? = E in F : We have M [V/x] = (let ? = E in F )[V/x] = let ? =
E[V/x] in F [V/x]. Thus if E[V/x], F [V/x] are extended values, so is
M [V/x].

M ≡ let y = E in F : by notational definition that means M = (λy.F )E. If
x = y we have M [V/x] = ((λy.F )E)[V/x] = (λy.F )(E[V/x]). If instead
x 6= z we have M [V/x] = ((λy.F )E)[V/x] = (λy.(F [V/x]))(E[V/x]). Both
are extended values if F [V/x], E[V/x] are.

M ≡ let 〈y, z〉 = E in F : If x ∈ {y, z} we have M [V/x] = let 〈y, z〉 =
E[V/x] in F . If instead x /∈ {y, z} we have M [V/x] = let 〈y, z〉 =
E[V/x] in F [V/x]. Both are extended values if F [V/x], E[V/x] are.
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M = match E with (y1 7→ F1 | y2 7→ F2) : If y1 6= x 6= y2 we have

M [V/x] = match E[V/x] with (y1 7→ F1[V/x] | y2 7→ F2[V/x]) ,

so if E[V/x], F1[V/x], F2[V/x] are extended values, so isM [V/x]. If instead
x = y1 it is

M [V/x] = match E[V/x] with (y1 7→ F1 | y2 7→ F2[V/x]) ,

so if E[V/x], F2[V/x] are extended values, so is M [V/x]. Analogously if
x = y2.

By induction that finishes the proof.

Lemma 3.36 (Substitution Lemma). Assume that the two judgements

!∆,Γ1 ` V : A !∆,Γ2, x : A `M : B (3.15)

are valid, with |Γ1| ∩ |Γ2| = ∅ and with V a value. Then the following is valid
too

!∆,Γ1,Γ2 `M [V/x] : B . (3.16)

Proof. This was proven in [25]. The proof is done by structural induction over
M , it is non-constructive. We only show the induction steps involving the
coproduct, since these can not be found in the literature. So assume the lemma
holds for terms P,N,N1, N2.

Case M ≡ injl(N) : Since !∆,Γ2, x : A ` injl(N) : B is valid, there must
be a types B1, B2, such that B = !n(B1 ⊕ B2), n ∈ N, and such that
!∆,Γ2, x : A ` N : !nB1 is valid. By the induction hypothesis !∆,Γ1,Γ2, x :
A ` N [V/x] : !nB1 is valid, too. Applying rule (⊕I1) we get !∆,Γ1,Γ2, x :
A ` injl(N [V/x]) : B. The statement now follows from injl(N [V/x]) =
injl(N)[V/x].

Case M ≡ injl(N) : Analogously.

Case M ≡ match P with (y1 7→ N1 | y2 7→ N2) : There must be valid judge-

ments !∆′,Θ ` P : !n(B1⊕B2), !∆′,Θ′, y1 : !nB1 ` N1 : B and !∆′,Θ′, y2 :
!nB2 ` N2 : B with (!∆′,Θ,Θ′) = (!∆,Γ2, x : A). Since we consider con-
texts to be disjoint we have in particular y1 6= x 6= y2 and substitution
thus works the following way

M [V/x] = match P [V/x] with (y1 7→ N1[V/x] | y2 7→ N2[V/x]).

We have three cases to consider.
If x : A occurs in context !∆′ there is type A′ such that A = !A′. By
lemma 3.31 there is then Γ′1 such that Γ1 = !Γ′1. Let !∆̃′ be !∆′ without
the typing of x. Now we have to do a little bit of context-yoga to avoid
overlapping contexts in our judgements. So let !∆̃′1, !Θ1, !Θ

′
1 be the parts

of !∆̃′,Θ,Θ′ (respectively) which also occur in !∆. The other parts, which
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then also occur in Γ2, are denoted by !∆̃′2,Θ2,Θ
′
2. Let furthermore !Λ, !Λ′

be such that (!∆̃′1, !Θ1, !Λ) = !∆ and (!∆̃′1, !Θ
′
1, !Λ

′) = !∆. We then have
|!∆̃′2,Θ2| ∩ |!Λ, !Γ′1| = ∅ and |!∆̃′2,Θ′2| ∩ |!Λ′, !Γ′1| = ∅ and we may thus in
each case apply the induction hypothesis which yields the judgements

!∆̃′1, !Θ1, !∆̃
′
2,Θ2, !Λ, !Γ

′
1 ` P [V/x] : !n(B1 ⊕B2) ,

!∆̃′1, !Θ
′
1, !∆̃

′
2,Θ

′
2, !Λ

′, !Γ′1, y1 : !nB1 ` N1[V/x] : B ,

!∆̃′1, !Θ
′
1, !∆̃

′
2,Θ

′
2, !Λ

′, !Γ′1, y2 : !nB2 ` N2[V/x] : B .

Note that all contexts that the first judgement has in common with the
other two are reusable, so that we may apply rule (⊕E) from which we
get

!∆̃′1, !∆̃
′
2, !Γ

′
1, !Θ1,Θ2, !Λ, !Θ

′
1,Θ

′
2, !Λ

′ `M [V/x] : B .

The context is by construction equal to (!∆,Γ1,Γ2).
Let’s now consider the case where the typing x : A appears in context
Θ. By lemma 3.29 that implies that x is not free in N1, N2 and thus
Ni[V/x] = Ni, i = 1,2. Let Θ̃ be Θ with the typing of x removed. Let
!∆′1, !Θ̃1 be the parts of !∆′, Θ̃ (respectively) that also occur in !∆ and
!∆′2, Θ̃2 the other parts, which then also occur in Γ2. Let Λ be such
that (!∆′1, !Θ̃1) =!∆. Then we may apply the induction hypothesis to the
judgement involving P and obtain

!∆′1, !Θ̃1, !∆
′
2, Θ̃2,Γ1 ` P [V/x] : !n(B1 ⊕B2) .

We can now apply rule (⊕E) to this and !∆′,Θ′, y1 : !nB1 ` N1 : B,
!∆′,Θ′, y2 : !nB2 ` N2 : B, using (!∆′1, !∆

′
2) = !∆′ and we obtain

!∆′, !Θ̃1, Θ̃2,Γ1,Θ
′ `M [V/x] : B .

The context is by construction equal to (!∆,Γ1,Γ2).
The case were x : A occurs in context Θ′ works analogously.

By induction that finishes the proof.

The substitution lemma is sufficient to show, that β- and η-reduction pre-
serves validity of judgements. However since we defined an equivalence relation
from these, we need to argue, that the according expansions preserve validity,
too. Otherwise a valid judgement could be in the same equivalence class as an
invalid expanded form. We thus show a reverse substitution lemma, too.

Lemma 3.37 (Reverse Substitution Lemma). Let M be a term, V a value and
x ∈ FV (M). Assume that Θ ` M [V/x] is valid and let A be the type of V in
that judgement. Then the following are valid:

!∆,Γ1 ` V : A !∆,Γ2, x : A `M : B

with (!∆,Γ1,Γ2) = Θ.

Proof. We prove this by structural induction over the term M . The proof is
non-constructive. Let’s begin with the base cases.
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Case M ≡ y : Since x ∈ FV (M) we have y = x, A = B and M [V/x] = V .
Thus Θ ` V : B is valid, and so is x : B ` x : B. We are done.

Case M ≡ c : We have x ∈ FV (c) = ∅. This case can thus never occur.

Case M ≡ ? : We have x ∈ FV (?) = ∅. This case can thus never occur.

We continue with the induction steps. For that we assume, that the lemma
holds for terms P,N,N1, N2.

Case M ≡ injl(N) : There are types B1, B2 and n ∈ N such that B = !n(B1⊗
B2) and Θ ` N [V/x] : !nB1 is valid. Since we have x ∈ FV (M) = FV (N)
we can apply the induction hypothesis. Thus there are valid !∆,Γ1 ` V : A
and !∆,Γ2, x : A ` N : !nB1 with (!∆,Γ1,Γ2) = Θ. Applying (⊕I) to the
latter judgement, we get that !∆,Γ2, x : A ` injl(N) : !n(B1 ⊗B2).

Case M ≡ NP : We have FV (M) = FV (N)∪FV (P ) andM [V/x] = N [V/x]P [V/x].
There must then be valid judgements !∆,Γ ` N [V/x] : C ( B and
!∆,Γ′ ` P [V/x] : C with (!∆,Γ,Γ′) = Θ.
If x ∈ FV (N) ∩ FV (P ) then there is A′ such that A = !A′. By applying
the induction hypothesis to !∆,Γ ` N [V/x] : C ( B we obtain valid
judgements !∆′, !Γ1 ` V : !A′ and !∆′,Γ2, x : !A′ ` N : C ( B, with
(!∆′, !Γ1,Γ2) = (!∆,Γ), where we already applied the (L!) rule (lemma
3.30) to the former judgement. By applying the induction hypothesis
to !∆,Γ′ ` P [V/x] : C we obtain valid judgements !∆′′, !Γ′1 ` V : !A′

and !∆′′,Γ′2, x : !A′ ` P : C, with (!∆′′, !Γ′1,Γ
′
2) = (!∆,Γ′), where we al-

ready applied the (L!) rule (lemma 3.30) to the former judgement. We
can w.l.o.g. assume that !∆′ = !∆′′ and (!∆′′, !Γ′1) = (!∆′, !Γ1) since
otherwise the contexts may be adjusted by lemma 3.32. Thus apply-
ing the (( E) rule, we obtain !∆′,Γ2,Γ

′
2, x : !A′ ` NP : B. It is

(!∆′, !Γ1,Γ2,Γ
′
2) = (!∆,Γ,Γ′) = Θ.

If x ∈ FV (N)\FV (P ) we have P [V/x] = P and thus !∆,Γ′ ` P [V/x] : C.
By induction hypothesis !∆′,Γ1 ` V : A and !∆′,Γ2, x : A ` N : C ( P
are valid, with (!∆′,Γ1,Γ2) = (!∆,Γ). Applying (( E) then yields
!∆′,Γ2,Γ

′, x : A ` NP : B. We also have (!∆′,Γ1,Γ2,Γ′) = Θ.
The case x ∈ FV (N)\FV (P ) works analogously.

Case M ≡ 〈N1, N2〉 : Analogously to previous case, since the assumptions of
rules (⊗I) and ((E) are almost identical.

Case M ≡ λy.N : We have B = !n(C ( D) for some types C,D. Since
x ∈ FV (M) = FV (N)\{y} it is x 6= y. We assume without loss of
generality that y /∈ FV (V ), since otherwise we can rename y yielding an α-
equivalent term. It is M [V/x] = λy.(N [V/x]) and thus Θ, y : C ` N [V/x]
is valid. By induction hypothesis there are valid judgements !∆,Γ1 ` V : A
and !∆,Γ2, x : A ` N : D with (!∆,Γ1,Γ2) = (Θ, y : C). Since y ∈ FV (N)
the typing y : C must appear in either Γ2 or !∆.
If the typing y : C appears in the context Γ2 we define Γ′2 to be Γ2 with
y : C removed. Then by rule (( I1 or 2) !∆,Γ′2, x : A ` λy.N : !n(C (
D) with (∆,Γ′2,Γ1) = Θ.
If instead y : C appears in !∆, then we have a type C ′ with C = !C ′. Let
!∆′ be !∆ with y : C removed. Then we have !∆′,Γ1, y : !C ′ ` V : A
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and !∆′,Γ2, x : A, y : !C ′ ` N : D. Since y /∈ FV (V ) we may drop
y : !C ′ from the former judgement due to lemma 3.32. To the latter judge-
ment we apply (( I1 or 2) and obtain !∆′,Γ2, x : A ` λy.N : D. It is
(!∆′,Γ1,Γ2) = Θ.

Case M ≡ let 〈y1, y2〉 = N in P : It is

FV (M) = FV (N) ∪ FV (P )\{y1, y2}.

If x ∈ FV (N) ∩ FV (P )\{y1, y2}, in particular y1 6= x 6= y2, we have
M [V/x] = let 〈y1, y2〉 = N [V/x] in P [V/x] and A = !A′. There must thus
be valid judgements !∆,Γ ` N [V/x] : !n(B1 ⊗ B2), !∆,Γ′, y1 : !nB1, y2 :
!nB2 ` P [V/x] : B with (!∆,Γ,Γ′) = Θ. Since x appears twice there
must be a type A′ such that A = !A′. Applying the induction hypothesis
to the former judgement yields !∆′, !Γ1 ` V : !A′ and !∆′,Γ2, x : !A′ `
N : !n(B1 ⊗ B2), with (!∆′, !Γ1,Γ2) = (!∆,Γ), where we already applied
the (L!) rule (lemma 3.30) to the judgement involving V . Applying the
induction hypothesis to !∆,Γ′, y1 : !nB1, y2 : !nB2 ` P [V/x] : B we obtain
!∆′′, !Γ′1 ` V : !A′ and !∆′′,Γ′2, x : !A′ ` P : B, with (!∆′′, !Γ′1,Γ

′
2) =

(!∆,Γ′, y1 : !nB1, y2 : !nB2). Without loss of generality we assume that
the typings y1 : !nB1, y2 : !nB2 appear in Γ′2 or !∆′′ (otherwise they are
reusable and we can add them by means of lemma 3.32). Let !∆̃′′, Γ̃′2
be !∆′′,Γ′2 respectively with the (possibly occuring) typings of y1, y2 re-
moved. Furthermore w.l.o.g. we assume !∆′ = !∆̃′′ and !Γ1 = !Γ′1, other-
wise the contexts can be adjusted by lemma 3.32. Then by rule (⊗E)
we can infer !∆′,Γ2, Γ̃

′
2, x : !A′ ` let 〈y1, y2〉 = N in P : B. It is

(!∆′, !Γ1,Γ2, Γ̃
′
2) = (!∆,Γ,Γ′) = Θ.

If instead x ∈ (FV (P )\{y1, y2})\FV (N) we have y1 6= x 6= y2 and
N [V/x] = N and M [V/x] = let 〈y1, y2〉 = N in P [V/x]. There must
thus be valid judgements !∆,Γ ` N : !n(B1 ⊗ B2), !∆,Γ′, y1 : !nB1, y2 :
!nB2 ` P [V/x] : B with (!∆,Γ,Γ′) = Θ. By induction hypothesis we then
also have !∆′,Γ′1 ` V : !A′ and !∆′,Γ′2, x : A ` P : B, with (!∆′,Γ′1,Γ

′
2) =

(!∆,Γ′, y1 : !nB1, y2 : !nB2). We can again w.l.o.g. assume, that the typ-
ings of y1, y2 appear in Γ′2 (otherwise they are reusable and the contexts
can be added if necessary) and we define Γ̃′2 to be Γ′2 with the typ-
ings of y1, y2 removed. Then by rule (⊗E) we can infer !∆′,Γ, Γ̃′2, x :
A ` let 〈y1, y2〉 = N in P : B. It is (!∆′,Γ,Γ′1, Γ̃

′
2) = (!∆,Γ′,Γ) = Θ.

If instead x ∈ FV (N)\(FV (P )\{y1, y2}) then

M [V/x] = let 〈y1, y2〉=N [V/x] in P.

There must thus be valid judgements !∆,Γ ` N [V/x] : !n(B1 ⊗ B2),
!∆,Γ′, y1 : !nB1, y2 : !nB2 ` P : B with (!∆,Γ,Γ′) = Θ. By the condition
of disjoint contexts we must also have x /∈ {y1, y2} and thus x /∈ FV (P ).
We can simply apply the induction hypothesis and then rule (⊗E) and we
are done.

Case M ≡ let ? = N in P : Like the previous case, but simpler.

Case M ≡ match P with (y1 7→ N1 | y2 7→ N2) : This is again analogous to
the case were M ≡ let 〈y1, y2〉 = N in P , since the (⊕E) and (⊗E) rules
have similar assumptions.
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Theorem 3.38. The axiomatic equivalence preserves validity of judgements.

Proof. To prove that the equivalence preserves validity, we show that each of
its defining rules does. The proof is non-constructive. We start with the rules
obtained from β- and η-equivalence (table 3.6). From those we first consider
the ones that do not involve any substitution.

Case (β?) : We need to show that Γ ` let ? = ? in M : A is valid if and only if
Γ ` M : A is. For that we look at the β-reduction from which we infered
this demand, namely

(∇!)` ? : 1 Γ `M : A
(1E)

Γ ` let ? = ? in M : A
−→β Γ `M : A .

Clearly if Γ `M : A is valid, so is Γ ` let ? = ? in M : A by the derivation
tree on the left of the reduction. Now assume that Γ ` let ? = ? in M is
valid. The last rule applied in its derivation can only have been (1E) and
thus there are contexts ∆,Θ with (!∆,Θ) = Γ, such that !∆ ` ? : 1 and
Θ `M : A are valid. Since Θ `M : A is valid and (!∆,Θ) = Γ we deduce
by (!w) (corollary 3.33) that Γ `M : A is valid, too.

Case (η?) : Analogously.

Case (η⊕) : We need to show that Γ ` P : A ⊕ B is valid if and only if
Γ ` match P with (x 7→ injl(x) | y 7→ injr(y)) : A ⊕ B is. Again if
Γ ` P : A⊕B is valid, then by the derivation tree of the η-expansion (3.9)
so is the other judgement. Lets assume now that Γ ` match P with (x 7→
injl(x) | y 7→ injr(y)) : A ⊕ B is valid. Then (⊕E) must have been
applied, thus there are valid judgements Θ ` P : A ⊕ B, Θ′, x : A `
injl(x) : A ⊕ B and Θ′, y : A ` injl(y) : A ⊕ B with (Θ,Θ′) = Γ. The
judgement Θ′, x : A ` injl(x) : A ⊕ B can only have been derived from
judgement Θ′, x : A ` x : A, which in turn must have been introduced by
rule (ax1). That implies that Θ′ is actually of the form !Θ′. Since then
(Θ, !Θ′) = Γ and Θ ` P : A ⊕ B is valid, it follows from (!w) (corollary
3.33), that Γ ` P : A⊕B is valid, too.

The cases for (η() and (η⊗) can be handled analogously by tracing back the
derivation tree of the expansion. So let’s now look at the reductions that involve
simple substitution.

Case (β() : We need to show that Γ ` let x = V in M : B is valid if and
only if Γ `M [V/x] : B is.
Assume the former judgement is valid. Then it must have been de-
rived from judgements !∆,Γ1, x : A ` M : B and !∆,Γ2 ` V : A with
(!∆,Γ1,Γ2) = Γ. By the substitution lemma 3.36 we can deduce that
Γ ` let x = V in M : B is valid.
Assume now, that Γ ` let x = V in M : B is valid. Then by the reverse
substitution lemma 3.37 we again obtain valid judgements !∆,Γ1, x : A `
M : B and !∆,Γ2 ` V : A with (!∆,Γ1,Γ2) = Γ. By the derivation tree in
(3.10) we can then deduce that Γ ` let x = V in M : B is valid.
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Case (β2
() : We need to show that Γ ` let x = M in x : A is valid if and only

if Γ ` x[M/x] is. Since x[M/x] = M we basically have no substitution
and this case can thus be handled like the cases (η⊗) and (β?) above.

Now we consider the reductions, that involve a more complicated substitution.

Case (βl⊕) : We need to show that under the assumption !∆,Θ, y : !nB `
N : C the judgement Γ,Θ ` M [V/x] : C is valid if and only if Γ,Θ `
match injl(V ) with (x 7→ M | y 7→ N) : C is, where V is a value.
Assume that the latter judgement is valid. It must have been introduced
by rule (⊕E), so there are valid judgements !∆,Λ ` injl(V ) : !n(A ⊕ B),
!∆,Λ′, x : !nA ` M : C and !∆,Λ′, y : !nB ` N : C with (!∆,Λ,Λ′) =
(Γ,Θ). In particular also |Λ| ∩ |Λ′| = ∅. The judgement !∆,Λ ` injl(V ) :
!n(A⊕B) must have been derived from assumption !∆,Λ ` V : !nA. Now
the substitution lemma 3.36 applies, and we may deduce that Γ,Θ `
M [V/x] : C is valid.
For the converse implication we assume that Γ,Θ ` M [V/x] : C is valid.
Then by the reverse substituion lemma 3.37 we then have valid judgements
!∆,Γ1 ` V : A and !∆,Γ2, x : A ` M : C with (!∆,Γ1,Γ2) = (Γ,Θ). Let
Θ′ be such that (!∆,Θ′) = Θ. We then need to argue that we can demand
Γ2 = Θ′. Excepting x, y, all non-reusable free variables that M,N have
in common are in both Γ2,Θ

′ and the ones they don’t have in common
must be reusable (this comes from the condition on free variables we have
in the definition of βl⊕). So we can by lemma 3.32 adjust Γ2,Θ

′ to be
equal. Then by the derivation tree of the β⊕ reduction (cmp. (3.7)) we
have validity of !∆,Γ1,Γ2 ` match injl(V ) with (x 7→ M | y 7→ N) : C
and (!∆,Γ1,Γ2) = (Γ,Θ).

Case (βr⊕) : Analogously.

Case (β⊗) : We need to show that Γ ` let 〈x1, x2〉 = 〈V1, V2〉 in M : B is
valid if and only if Γ `M [V1/x1, V2/x2] : B.
Assume the former judgement is valid. The there must be valid judgements
!∆,Γ1 ` V1 : A1, !∆,Γ2 ` V2 : A2 and !∆,Θ, x1 : A1, x2 : A2 ` M : B
with (!∆,Γ1,Γ2,Θ) = Γ. Applying the substitution lemma 3.36 to the
first and the third judgement we obtain !∆,Γ1,Θ, x2 : A2 `M [V1/x1] : B.
Applying the lemma again we obtain !∆,Γ1,Γ2,Θ `M [V1/x1, V2/x2] : B.
Now let’s assume that Γ ` M [V1/x1, V2/x2] : B is valid. By the re-
verse substitution lemma 3.37 we obtain judgements !∆,Γ1, x2 : A2 `
M [V1/x1] : B, !∆,Γ2 ` V2 : A2 with (!∆,Γ1,Γ2) = Γ. Reverse substituting
again we obtain !∆′,Γ12, x1 : A1, x2 : A2 ` M : B and !∆′,Γ11 ` V1 : A1

with (!∆′,Γ11,Γ12) = (!∆,Γ1). By the derivation tree of (3.13) we can
derive Γ ` let 〈x1, x2〉 = 〈V1, V2〉 in M : B.

That concludes the cases of β- and η-equivalence. The rules encompassing
substitution (table 3.7) are all proven using the same simple argument. We
show the proof for (letapp) . We need to show that Γ ` MN : B is valid if and
only if Γ ` let x = M in (let y = N in xy) : B is. We show the derivation
tree for the latter judgement. Remember that let z = P1 in P2 is notation for
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(λz.P2)P1 and thus let x = M in (let y = N in xy) means (λx.((λy.(xy))N))M .

!∆, x :A(B ` x :A(B !∆, y :A ` y :A

!∆, x : A( B, y : A ` xy : B

!∆, x :A(B ` λy.(xy) :A(B !∆,Γ2` N :A

!∆,Γ2, x : A( B ` (λy.(xy))N : B

!∆,Γ2 ` λx.((λy.(xy))N) : (A( B) ( B !∆,Γ1 `M :A(B

!∆,Γ1,Γ2 ` (λx.((λy.(xy))N))M : B

Note that there can be no fundamentally different derivation and that the two
assumptions we made are sufficient to derive !∆,Γ1,Γ2 ` MN : B. Thus the
two judgements can only be valid simultaneously, since any assumptions that
derive the one, can also derive the other. All the other rules in table 3.7 involve
two judgements for which the same property holds. Namely each assumption
that proves the one, can also prove the other.

Lastly we should note, that if Γ ` N : A and Γ ` N ′ : A are only valid
simultaneously, then in all occasions the same typing rules can be applied to
the two judgements. Thus the congruence rule for our equivalence relation does
preserve the property of simultaneous equivalence. That finishes the proof.

With this result at hand, we can now safely consider judgements only up to
axiomatic equivalence. That is crucial for the semantics which we consider now.

3.2 Categorical Semantics

In this section we analyze the categorical semantics of the core fragment of our
type system.

3.2.1 Categories of Types

Definition 3.39 (Core Fragment). The core fragment is:

Type A,B ::= α | !A | A( B | 1 | A⊗B

V alue V,W ::= c | x | λx.M | 〈V,W 〉 | ?

ExtV alue E, F ::= V | 〈E,F 〉 | let x = E in F | let 〈x, y〉 = E in F

Term M,N ::= V | MN | 〈M,N〉 | let 〈x, y〉 = M in N

where α and c are arbitrary but fixed sets of ground types and ground operations
respectively.

Definition 3.40 (Category of Computations).
The category of computations Comp is defined as follows:

� objects are types as in definition 3.39

� arrows A −→ B are (equivalence classes of) valid typing judgements x :
A `M : B
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� composition of x : A ` M : B with y : B ` N : C is x : A ` let y =
M in N : C

� the identity idA is x : A ` x : A .

For composition and identity note that these are valid judgements indeed.
The identity being valid follows from rule (i), and validity of the composed
arrow follows from the cut-rule. Composition is associative by equivalence rule
(let1). The identity actually being an identity is ensured by the derived rule
(αlet) and by (β2

().

Definition 3.41 (Category of Values).
The category of values Val is defined such that:
objects are types as in definition 3.39
arrows A −→ B are (valid) typing judgements x : A ` E : B where E is an
extended value
composition and identity are defined as in Comp.

Since extended values are closed under the axiomatic equivalence this is well
defined.

Definition 3.42 (Category of classical Values).
The category of classical values cVal is defined such that:
objects are types as defined in 3.39
arrows A −→ B are (valid) typing judgements x : !A ` E : !B where E is an
extended value
composition and identity are defined as in Comp.

3.2.2 Product Structure

Lemma 3.43. (Val,⊗) is symmetric monoidal.

Proof. The first steps of this proof will be carried out in a very explicit and
rigorous manner, to give the reader an understanding of the workings, which
then allows us to overgo some details afterwards.

Step 1: ⊗ is a functor ⊗ : Val×Val −→ Val.

We already understand how ⊗ is acting on the objects. So now let f :
A −→ A′, g : B −→ B′ be two arrows in Val, say f = x : A ` V : A′ and
g = y : B `W : B′. Then we define

f ⊗ g := z : A⊗B ` let 〈x, y〉 = z in 〈V,W 〉 : A′ ⊗B′

which yields an arrow f ⊗ g : A ⊗ B −→ A′ ⊗ B′. Note that this corresponds
to the (⊗)-rule from symmetric monoidal theories (cmp. definition 2.21), the
validity of the judgement f ⊗ g can thus be shown analogously as there (see
theorem 2.25). By definition we have

idA ⊗ idA = z : A⊗A ` let 〈x, x〉 = z in 〈x, x〉 : A⊗A
≈ z : A⊗A ` z : A⊗A
= idA⊗A .
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For f, g as above and f ′ : A′ −→ A′′, g′ : B′ −→ B′′, say f ′ = x′ : A′ ` V ′′ : A′′

and g′ = y′ : A′ `W ′′ : B′′ (with x′ /∈ FV (W ′′), y′ /∈ FV (V ′′)), we have that

(f ′ ◦ f)⊗ (g′ ◦ g) = (x : A ` let x′ = V in V ′′ : A′′)⊗
(y : B ` let y′ = W in W ′′ : B′′)

= z : A⊗B ` let 〈x, y〉 = z in

〈let x′ = V in V ′′, let y′ = W in W ′′〉 : A′′ ⊗B′′

β(≈ z : A⊗B ` let 〈x, y〉 = z in

〈V ′′[V/x′],W ′′[W/y′]〉 : A′′ ⊗B′′ ,

while

(f ′ ⊗ g′) ◦ (f ⊗ g) = (z′ : A′ ⊗B′ ` let 〈x′, y′〉 = z′ in 〈V ′′,W ′′〉 : A′′ ⊗B′′) ◦
(z : A⊗B ` let 〈x, y〉 = z in 〈V,W 〉 : A′ ⊗B′)

= z : A⊗B ` let z′ = (let 〈x, y〉 = z in 〈V,W 〉) in

(let 〈x′, y′〉 = z′ in 〈V ′′,W ′′〉) : A′′ ⊗B′′

let1≈ z : A⊗B ` let 〈x, y〉 = z in (let z′ = 〈V,W 〉 in
(let 〈x′, y′〉 = z′ in 〈V ′′,W ′′〉)) : A′′ ⊗B′′

β(≈ z : A⊗B ` let 〈x, y〉 = z in

(let 〈x′, y′〉 = 〈V,W 〉 in 〈V ′′,W ′′〉) : A′′ ⊗B′′

β⊗≈z : A⊗B ` let 〈x, y〉 = z in

〈V ′′,W ′′〉[V/x′,W/y′] : A′′ ⊗B′′

= z : A⊗B ` let 〈x, y〉 = z in

〈V ′′[V/x′],W ′′[W/y′]〉 : A′′ ⊗B′′

where in the last step we used, that x′ does not occur in W ′′ and y′ not in V ′′.
Thus (f ′ ◦f)⊗ (g′ ◦g) = (f ′⊗g′)◦ (f ⊗g) and we my conclude, that ⊗ is indeed
a functor.

Step 2: (Val,⊗) is monoidal
To increase the readability of terms, we will from now on often denote a vari-
able’s type in a superscripted index. We need to identify a unit object I, an
associator a and the left and right unitors l, r. We make the following choices:

I := 1 ,

aA,B,C := t : (A⊗B)⊗ C ` let 〈uA⊗B , zC〉 = t in

let 〈xA, yB〉 = uA⊗B in 〈xA, 〈yB , zC〉〉 : A⊗ (B ⊗ C) ,
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lA := y : 1⊗A ` let 〈t1, xA〉 = y in (let ? = t1 in xA) : A ,

rA := y : A⊗ 1 ` let 〈xA, t1〉 = y in (let ? = t1 in xA) : A .

Of course it needs to be checked wether these judgements are actually valid in
our typing system. This can be done by mimicking the derivations from the
previous chapter. To derive for example the judgement lA we carry out the
derivation of rule (l) (see theorem 2.25)

(i)
y : 1⊗A ` y : 1⊗A

(i)
t : 1 ` t : 1

(i)
x : A ` x : A

(1E)

t : 1, y : Y ` let ? = t1 in xA : A
(⊗E)

y : 1⊗A ` let 〈t1, xA〉 = y in (let ? = t1 in xA) : A

where we immediately transformed the derivation according to lemma 2.23. The
inverses of above arrows are given by

l−1
A := x : A ` 〈?, x〉 : 1⊗A ,
r−1
A := x : A ` 〈x, ?〉 : A⊗ 1 .

a−1
A,B,C := t : A⊗ (B ⊗ C) ` let 〈xA, uB⊗C〉 = t in

let 〈yB , zC〉 = uB⊗C in 〈〈xA, yB〉, zC〉 : (A⊗B)⊗ C .

We need to show they actually are inverses, indeed

lA ◦ l−1
A = (y : 1⊗A ` let 〈?, xA〉 = y in xA : A) ◦ (z : A ` 〈?, z〉 : 1⊗A)

= x : A ` let y1⊗A = 〈?, x〉 in
let 〈t1, zA〉 = y in (let ? = t1 in zA) : A

β(≈ x : A ` let 〈t1, zA〉 = 〈?, x〉 in (let ? = t1 in zA) : A

β⊗≈ x : A ` let ? = ? in x : A
η?≈ x : A ` x : A

= idA
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and

l−1
A ◦ lA = (z : A ` 〈?, z〉 : 1⊗A) ◦ (y : 1⊗A ` let 〈?, xA〉 = y in xA : A)

= y : 1⊗A ` let zA =

let 〈t1, zA〉 = y in (let ? = t1 in xA) in 〈?, z〉 : 1⊗A
let1≈ y : 1⊗A ` let 〈t1, zA〉 = y in

(let zA = (let ? = t1 in xA) in 〈?, z〉) : 1⊗A
let1≈ y : 1⊗A ` let 〈t1, zA〉 = y in

(let ? = t1 in (let zA = xA in 〈?, z〉)) : 1⊗A
β(≈ y : 1⊗A ` let 〈t1, zA〉 = y in (let ? = t1 in 〈?, xA〉) : 1⊗A
β(≈ y : 1⊗A ` let 〈t1, zA〉 = y in 〈t1, xA〉 : 1⊗A
η⊗≈ y : 1⊗A ` y : 1⊗A
= id1⊗A
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and analogously for rA, r−1
A . Additionally

aA,B,C ◦ a−1
A,B,C =

(
r1 : (A⊗B)⊗ C ` let 〈tA⊗B , yC1 〉 = r1 in

let 〈wA1 , xB1 〉 = tA⊗B in 〈wA1 , 〈xB1 , yC1 〉〉 : A⊗ (B ⊗ C)
)
◦(

r2 : A⊗ (B ⊗ C) ` let 〈wA2 , uB⊗C〉 = r2 in

let 〈xB2 , yC2 〉 = uB⊗C in 〈〈wA2 , xB2 〉, yC2 〉 : (A⊗B)⊗ C
)

= r2 : A⊗ (B ⊗ C) ` let r1 =
(
let 〈wA2 , uB⊗C〉 = r2 in

(let 〈xB2 , yC2 〉 = uB⊗C in 〈〈wA2 , xB2 〉, yC2 〉)
)
in(

let 〈tA⊗B , yC1 〉 = r1 in

(let 〈wA1 , xB1 〉 = tA⊗B in 〈wA1 , 〈xB1 , yC1 〉〉)
)

: A⊗ (B ⊗ C)

let1≈ r2 : A⊗ (B ⊗ C) ` let 〈wA2 , uB⊗C〉 = r2 in(
let r1 = (let 〈xB2 , yC2 〉 = uB⊗C in 〈〈wA2 , xB2 〉, yC2 〉) in(
let 〈tA⊗B , yC1 〉 = r1 in

(let 〈wA1 , xB1 〉 = tA⊗B in 〈wA1 , 〈xB1 , yC1 〉〉)
))

: A⊗ (B ⊗ C)

let1≈ r2 : A⊗ (B ⊗ C) ` let 〈wA2 , uB⊗C〉 = r2 in(
let 〈xB2 , yC2 〉 = uB⊗C in(
let r1 = 〈〈wA2 , xB2 〉, yC2 〉 in(
let 〈tA⊗B , yC1 〉 = r1 in

(let 〈wA1 , xB1 〉 = tA⊗B in 〈wA1 , 〈xB1 , yC1 〉〉)
)))

: A⊗ (B ⊗ C)

β(≈ r2 : A⊗ (B ⊗ C) ` let 〈wA2 , uB⊗C〉 = r2 in(
let 〈xB2 , yC2 〉 = uB⊗C in(
let 〈tA⊗B , yC1 〉 = 〈〈wA2 , xB2 〉, yC2 〉 in

(let 〈wA1 , xB1 〉 = tA⊗B in 〈wA1 , 〈xB1 , yC1 〉〉)
))

: A⊗ (B ⊗ C)

β⊗≈ r2 : A⊗ (B ⊗ C) ` let 〈wA2 , uB⊗C〉 = r2 in(
let 〈xB2 , yC2 〉 = uB⊗C in

〈wA2 , 〈xB2 , yC2 〉〉
)

: A⊗ (B ⊗ C)

β⊗≈ r2 : A⊗ (B ⊗ C) ` let 〈wA2 , uB⊗C〉 = r2 in

〈wA2 , uB⊗C〉 : A⊗ (B ⊗ C)
η⊗≈ r2 : A⊗ (B ⊗ C) ` r2 : A⊗ (B ⊗ C)

= idA⊗(B⊗C) .

a−1
A,B,C ◦ aA,B,C ≈ id(A⊗B)⊗C is shown in the exact same manner.

It remains to show the triangle equations (idA⊗lB)◦aA,I,B = rA⊗lB as well
as the pentagon equations aA,B,C⊗D ◦ aA⊗B,C,D = (idA ⊗ aB,C,D) ◦ aA,B⊗C,D ◦



3.2. CATEGORICAL SEMANTICS 69

(aA,B,C ⊗ idD). For the triangle equations we note that

rA ⊗ idB = z : (A⊗ 1)⊗B ` let 〈xA⊗1, wB〉 = z in〈
let 〈yA, t1〉 = xA⊗1 in (let ? = t1 in yA), wB

〉
: A⊗B

let2⊗≈ z : (A⊗ 1)⊗B ` let 〈xA⊗1, wB〉 = z in

let 〈yA, t1〉 = xA⊗1 in
(
let ? = t1 in 〈yA, wB〉

)
: A⊗B

(3.17)

and thus

(idA ⊗ lB) ◦ aA,I,B =
(
z′ : A⊗ (1⊗B) ` let 〈yA, v1⊗B〉 = z′ in〈
yA, let 〈t1, wB〉 = v1⊗B in (let ? = t1 in wB)

〉
: A⊗B

)
◦
(
z : (A⊗ 1)⊗B ` let 〈xA⊗1, wB〉 = z in

let 〈yA, t1〉 = xA⊗1 in 〈yA, 〈t1, wB〉〉 : A⊗ (1⊗B)
)

= z : (A⊗ 1)⊗B ` let z′ =
(
let 〈xA⊗1, wB〉 = z in(

let 〈yA, t1〉 = xA⊗1 in 〈yA, 〈t1, wB〉〉
)
in(

let 〈yA, v1⊗B〉 = z′ in〈
yA, let 〈t1, wB〉=v1⊗B in (let ?= t1 in wB)

〉))
:A⊗B

let1≈ z : (A⊗ 1)⊗B ` let 〈xA⊗1, wB〉 = z in(
let z′ =

(
let 〈yA, t1〉 = xA⊗1 in 〈yA, 〈t1, wB〉〉

)
in(

let 〈yA, v1⊗B〉 = z′ in〈
yA, let 〈t1, wB〉=v1⊗B in (let ?= t1 in wB)

〉))
:A⊗B

β(≈ z : (A⊗ 1)⊗B ` let 〈xA⊗1, wB〉 = z in(
let 〈yA, t1〉 = xA⊗1 in(
let 〈yA, v1⊗B〉 = 〈yA, 〈t1, wB〉〉 in〈
yA, let 〈t1, wB〉=v1⊗B in (let ?= t1 in wB)

〉))
:A⊗B

β(≈ z : (A⊗ 1)⊗B ` let 〈xA⊗1, wB〉 = z in(
let 〈yA, t1〉 = xA⊗1 in〈
yA, let 〈t1, wB〉 = 〈t1, wB〉 in

(let ? = t1 in wB)
〉)

: A⊗B
β(≈ z : (A⊗ 1)⊗B ` let 〈xA⊗1, wB〉 = z in

let 〈yA, t1〉 = xA⊗1 in
〈
yA, let ? = t1 in wB

〉
: A⊗B

let2⊗≈ z : (A⊗ 1)⊗B ` let 〈xA⊗1, wB〉 = z in

let 〈yA, t1〉 = xA⊗1 in
(
let ? = t1 in 〈yA, wB〉

)
: A⊗B

(3.17)
≈ rA ⊗ idB .
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To show the pentagon equation we first consider the lefthanded side.

aA,B,C⊗D◦ aA⊗B,C,D=〈tA⊗B2 , 〈yC , zD〉〉) : (A⊗B)⊗ (C ⊗D)
)

= q2 : ((A⊗B)⊗ C)⊗D ` let q
(A⊗B)⊗(C⊗D)
1 =(

let 〈r(A⊗B)⊗C , zD〉 = q2 in

(let 〈tA⊗B2 , yC〉 = r(A⊗B)⊗C in

〈tA⊗B2 , 〈yC , zD〉〉)
)
in
(
let 〈tA⊗B1 , vC⊗D〉 = q1 in

(let 〈wA, xB〉 = tA⊗B1 in

〈wA, 〈xB , vC⊗D〉〉)
)

: A⊗ (B ⊗ (C ⊗D))

let1≈ q2 : ((A⊗B)⊗C)⊗D ` let 〈r(A⊗B)⊗C , zD〉 = q2 in(
let q

(A⊗B)⊗(C⊗D)
1 = (let 〈tA⊗B2 , yC〉 = r(A⊗B)⊗C in

〈tA⊗B2 , 〈yC , zD〉〉) in
(
let 〈tA⊗B1 , vC⊗D〉 = q1 in

(let 〈wA, xB〉 = tA⊗B1 in

〈wA, 〈xB , vC⊗D〉〉)
))

: A⊗ (B ⊗ (C ⊗D))

let1≈ q2 : ((A⊗B)⊗C)⊗D ` let 〈r(A⊗B)⊗C , zD〉 = q2 in(
let 〈tA⊗B2 , yC〉 = r(A⊗B)⊗C in(
let q

(A⊗B)⊗(C⊗D)
1 = 〈tA⊗B2 , 〈yC , zD〉〉 in(

let 〈tA⊗B1 , vC⊗D〉 = q1 in(
let 〈wA, xB〉 = tA⊗B1 in

〈wA, 〈xB , vC⊗D〉〉
))))

: A⊗ (B ⊗ (C ⊗D))

β(≈ q2 : ((A⊗B)⊗ C)⊗D ` let 〈r(A⊗B)⊗C , zD〉 = q2 in(
let 〈tA⊗B2 , yC〉 = r(A⊗B)⊗C in(
let 〈tA⊗B1 , vC⊗D〉 = 〈tA⊗B2 , 〈yC , zD〉〉 in(
let 〈wA, xB〉 = tA⊗B1 in

〈wA, 〈xB , vC⊗D〉〉
)))

: A⊗ (B ⊗ (C ⊗D))

β⊗≈q2 : ((A⊗B)⊗ C)⊗D ` let 〈r(A⊗B)⊗C , zD〉 = q2 in(
let 〈tA⊗B2 , yC〉 = r(A⊗B)⊗C in(
let 〈wA, xB〉 = tA⊗B2 in

〈wA, 〈xB , 〈yC , zD〉〉〉
)))

: A⊗ (B ⊗ (C ⊗D)) .
(3.18)

For the righthanded side we first look at aA,B,C ⊗ idD and idA ⊗ aB,C,D sepa-
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rately.

aA,B,C ⊗ idD =
(
r : (A⊗B)⊗ C ` let 〈uA⊗B , yC〉 = r in

let 〈wA, xB〉 = uA⊗B in 〈wA, 〈xB , yC〉〉 : A⊗ (B ⊗ C)
)

⊗
(
z : D ` z : D

)
= q : ((A⊗B)⊗ C)⊗D ` let 〈r(A⊗B)⊗C , zD〉 = q in〈
let 〈uA⊗B, yC〉=r in (let 〈wA, xB〉=uA⊗B in

〈wA, 〈xB , yC〉〉) , zD
〉

: (A⊗ (B ⊗ C))⊗D
let2⊗≈ q : ((A⊗B)⊗ C)⊗D ` let 〈r(A⊗B)⊗C , zD〉 = q in(

let 〈uA⊗B , yC〉 = r(A⊗B)⊗C in
(
let 〈wA, xB〉 = uA⊗B in〈

〈wA, 〈xB , yC〉〉, zD
〉))

: (A⊗ (B ⊗ C))⊗D

and analogously

idA ⊗ aB,C,D ≈ q : A⊗ ((B ⊗ C)⊗D) ` let 〈wA, s(B⊗C)⊗D〉 = q in(
let 〈uB⊗C , zD〉 = s in

(
let 〈xB , yC〉 = uB⊗C in

〈wA, 〈xB , 〈yC , zD〉〉〉)
)

: A⊗ (B ⊗ (C ⊗D
)
) .
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Thus we can compute, that

aA,B⊗C,D◦ (aA,B,C⊗ idD) ≈ q2 : ((A⊗B)⊗ C)⊗D ` let qA⊗(B⊗C)
3 =(

let 〈r(A⊗B)⊗C
1 , zD〉 = q2 in(

let 〈tA⊗B , yC〉 = r1 in
(
let 〈wA, xB〉 = tA⊗B in〈

〈wA, 〈xB , yC〉〉, zD
〉)))

in(
let 〈rA⊗(B⊗C)

2 , zD〉 = q3 in

(let 〈wA, uB⊗C〉 = r
A⊗(B⊗C)
2 in

〈wA, 〈uB⊗C , zD〉〉)
)

: A⊗ ((B ⊗ C)⊗D)

let1≈ q2 : ((A⊗B)⊗C)⊗D ` let 〈r(A⊗B)⊗C
1 , zD〉 = q2 in(

let q
A⊗(B⊗C)
3 =

(
let 〈tA⊗B , yC〉 = r1 in(

let 〈wA, xB〉 = tA⊗B in〈
〈wA, 〈xB , yC〉〉, zD

〉))
in(

let 〈rA⊗(B⊗C)
2 , zD〉 = q3 in

(let 〈wA, uB⊗C〉 = r
A⊗(B⊗C)
2 in

〈wA, 〈uB⊗C , zD〉〉)
))

: A⊗ ((B ⊗ C)⊗D)

let1≈ q2 : ((A⊗B)⊗C)⊗D ` let 〈r(A⊗B)⊗C
1 , zD〉 = q2 in(

let 〈tA⊗B , yC〉 = r1 in
(
let 〈wA, xB〉 = tA⊗B in(

let q
A⊗(B⊗C)
3 =

〈
〈wA, 〈xB , yC〉〉, zD

〉
in(

let 〈rA⊗(B⊗C)
2 , zD〉 = q3 in

(let 〈wA, uB⊗C〉 = r
A⊗(B⊗C)
2 in

〈wA, 〈uB⊗C , zD〉〉)
))))

: A⊗ ((B ⊗ C)⊗D)

β(≈ q2 : ((A⊗B)⊗C)⊗D ` let 〈r(A⊗B)⊗C
1 , zD〉 = q2 in(

let 〈tA⊗B , yC〉 = r1 in
(
let 〈wA, xB〉 = tA⊗B in(

let 〈rA⊗(B⊗C)
2 , zD〉 =

〈
〈wA, 〈xB , yC〉〉, zD

〉
in

(let 〈wA, uB⊗C〉 = r
A⊗(B⊗C)
2 in

〈wA, 〈uB⊗C , zD〉〉)
)))

: A⊗ ((B ⊗ C)⊗D)

β⊗≈ q2 : ((A⊗B)⊗C)⊗D ` let 〈r(A⊗B)⊗C
1 , zD〉 = q2 in(

let 〈tA⊗B , yC〉 = r1 in
(
let 〈wA, xB〉 = tA⊗B in

〈wA, 〈〈xB , yC〉, zD〉〉
))

: A⊗ ((B ⊗ C)⊗D) .
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Overall we then have

(idA ⊗ aB,C,D) ◦ aA,B⊗C,D ◦ (aA,B,C ⊗ idD) ≈

q2 : ((A⊗B)⊗ C)⊗D ` let q
A⊗((B⊗C)⊗D)
3 =(

let 〈r(A⊗B)⊗C
1 , zD〉 = q2 in(

let 〈tA⊗B , yC〉 = r1 in
(
let 〈wA, xB〉 = tA⊗B in

〈wA, 〈〈xB , yC〉, zD〉〉
)))

in(
let 〈wA, s(B⊗C)⊗D〉 = q3 in(
let 〈uB⊗C , zD〉 = s in

(
let 〈xB , yC〉 = uB⊗C in

〈wA, 〈xB , 〈yC , zD〉〉〉)
))

: A⊗ (B ⊗ (C ⊗D))

let1≈ q2 : ((A⊗B)⊗ C)⊗D ` let 〈r(A⊗B)⊗C
1 , zD〉 = q2 in(

let q
A⊗((B⊗C)⊗D)
3 =(

let 〈tA⊗B , yC〉 = r1 in
(
let 〈wA, xB〉 = tA⊗B in

〈wA, 〈〈xB , yC〉, zD〉〉
))
in(

let 〈wA, s(B⊗C)⊗D〉 = q3 in(
let 〈uB⊗C , zD〉 = s in

(
let 〈xB , yC〉 = uB⊗C in

〈wA, 〈xB , 〈yC , zD〉〉〉)
)))

: A⊗ (B ⊗ (C ⊗D))

let1≈ q2 : ((A⊗B)⊗ C)⊗D ` let 〈r(A⊗B)⊗C
1 , zD〉 = q2 in(

let 〈tA⊗B , yC〉 = r1 in(
let 〈wA, xB〉 = tA⊗B in(
let q

A⊗((B⊗C)⊗D)
3 = 〈wA, 〈〈xB , yC〉, zD〉〉 in(

let 〈wA, s(B⊗C)⊗D〉 = q3 in(
let 〈uB⊗C , zD〉 = s in

(
let 〈xB , yC〉 = uB⊗C in

〈wA, 〈xB , 〈yC , zD〉〉〉)
)))))

: A⊗ (B ⊗ (C ⊗D))

β(≈ q2 : ((A⊗B)⊗ C)⊗D ` let 〈r(A⊗B)⊗C
1 , zD〉 = q2 in(

let 〈tA⊗B , yC〉 = r1 in(
let 〈wA, xB〉 = tA⊗B in(
let 〈wA, s(B⊗C)⊗D〉 = 〈wA, 〈〈xB , yC〉, zD〉〉 in(
let 〈uB⊗C , zD〉 = s in

(
let 〈xB , yC〉 = uB⊗C in

〈wA, 〈xB , 〈yC , zD〉〉〉)
))))

: A⊗ (B ⊗ (C ⊗D))

β⊗≈q2 : ((A⊗B)⊗ C)⊗D ` let 〈r(A⊗B)⊗C
1 , zD〉 = q2 in(

let 〈tA⊗B , yC〉 = r1 in(
let 〈wA, xB〉 = tA⊗B in

〈wA, 〈xB , 〈yC , zD〉〉〉
))

: A⊗ (B ⊗ (C ⊗D))

(3.18)
≈ aA,B,C⊗D ◦ aA⊗B,C,D .
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This shows, that the pentagon equation holds, proving that (Val,⊗) is monoidal.

Step 3: (Val,⊗) admits a symmetric braiding.
We define the braiding bA,B : A⊗B −→ B ⊗A as follows:

bA,B := z : A⊗B ` let 〈x, y〉 = z in 〈y, x〉 : B ⊗A .

We first show, that it is symmetric, i.e. b−1
A,B = bB,A.

bB,A ◦ bA,B =
(
z′ : B ⊗A ` let 〈y′, x′〉 = z′ in 〈x′, y′〉 : A⊗B

)
◦(

z : A⊗B ` let 〈x, y〉 = z in 〈y, x〉 : B ⊗A
)

= z : A⊗B ` let z′ =
(
let 〈x, y〉 = z in

〈y, x〉
)
in
(
let 〈y′, x′〉 = z′ in 〈x′, y′〉

)
: A⊗B

let1≈ z : A⊗B ` let 〈x, y〉 = z in(
let z′ = 〈y, x〉 in

(
let 〈y′, x′〉 = z′ in 〈x′, y′〉

))
: A⊗B

β(≈ z : A⊗B ` let 〈x, y〉 = z in(
let 〈y′, x′〉 = 〈y, x〉 in 〈x′, y′〉

)
: A⊗B

β(≈ z : A⊗B ` let 〈x, y〉 = z in 〈x, y〉 : A⊗B
η⊗≈ z : A⊗B ` z : A⊗B
= idA⊗B

The braiding also needs to satisfy the hexagon equations:

bA,B⊗C = a−1
B,C,A ◦ (idB ⊗ bA,C) ◦ aB,A,C ◦ (bA,B ⊗ idC) ◦ a−1

A,B,C

bA⊗B,C = aC,A,B ◦ (bA,C ⊗ idB) ◦ a−1
A,C,B ◦ (idA ⊗ bB,C) ◦ aA,B,C

The calculations are again straightforward but very lenghty and will thus be
skipped.

Lemma 3.44. (cVal,⊗, 1) is cartesian.

Proof. We start by showing that 1 is terminal. For that let A be any type, then
we can simply construct

∇A := x : !A ` ? : 1 .

For the product we need to construct projections π1
A,B , π2

A,B for any types A,B.
We define them to be

π1
A,B := w : !(A⊗B) ` let 〈x, y〉 = w in x : !A

π2
A,B := w : !(A⊗B) ` let 〈x, y〉 = w in y : !B .

Now for any pair of morphisms f : C −→ A, g : C −→ B, say f = z : !C ` U :
!A, g = z : !C ` V : !B we set

〈f, g〉 := z : !C ` 〈U, V 〉 : !A⊗ !B .



3.2. CATEGORICAL SEMANTICS 75

Clearly 〈f, g〉 : C −→ A⊗B and

π1
A,B ◦ 〈f, g〉 =

(
w : !(A⊗B) ` let 〈x, y〉 = w in x : !A

)
◦(

z : !C ` 〈U, V 〉 : !A⊗ !B
)

= z : !C ` let w = 〈U, V 〉 in
(
let 〈x, y〉 = w in x

)
: !A

β(≈ z : !C ` let 〈x, y〉 = 〈U, V 〉 in x : !A

β⊗≈ z : !C ` U : !A

= f .

Analogously one shows π2
A,B ◦ 〈f, g〉 = g. It remains to show, that for all

h : C −→ A⊗B we have 〈π1
A,B ◦ h, π2

A,B ◦ h〉 = h. So let h = z : !C ` 〈U, V 〉 :
!A⊗ !B, then

π1
A,B ◦ h = z : !C ` let w = 〈U, V 〉 in

(
let 〈x, y〉 = w in x

)
: !A

β(≈ z : !C ` let 〈x, y〉 = 〈U, V 〉 in x : !A

β⊗≈ z : !C ` U : !A

and analogously π2
A,B ◦ h ≈ z : !C ` V : !B , thus

〈π1
A,B ◦ h, π2

A,B ◦ h〉 = z : !C ` 〈U, V 〉 : !A⊗ !B = h .

3.2.3 Semantics of the Function Type

To analyze the semantics of the function type, we have to take a look at the
differences between then notions of a value and a computation. We have defined
values such that they can be interpreted as a result of a computation (cmp. sec-
tion 3.1.4). Computations on the other hand are arbitrary terms. If quantum
computers were deterministic, we could easily identify each computation with
its resulting value, giving us a surjective embedding of computations into values.
But since that is not the case, a computation will rather result in a probability
distribution over values, so this identification can not work. We have however
at the end of section 2.2.5 found a bijection between propositions A and propo-
sitions of kind 1 ( A. We can make use of that, since terms of type 1 ( A are
always values. Translating the derivations (2.26), (2.27) into the typing system
we can derive from Γ `M : A the judgement Γ ` λ ? .M : 1 ( A and the other
way around we can derive from Γ ` V : 1 ( A the judgement Γ ` V ? : A.
We can thus identify with each computation M : A the value of the function
λ ? .M : 1 ( A which executes the computation, and with each function of the
form V : 1 ( A the computation V ? : A it executes. These maps are mutually
inverse up to equivalence.

These ideas can be incorporated into our categories using the concepts of a
monad and related structures, which we introduce now [17].

Definition 3.45 (Monad). A monad over a category C consists of

� A functor T : C −→ C
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� A natural transformations η : idC =⇒ T called the unit

� A natural transformation µ : T 2 =⇒ T called the multiplication

such that the following diagrams commute:

T 3A T 2A

T 2A TA

TµA

µTA µA

µA

TA T 2A TA

TA

ηTA

idTA

µA

TηA

idTA

In the case of a monoidal category (C,⊗, I, a, l, r) we call a monad (T, η, µ)
strong if there is a natural transformation tA,B : A⊗TB −→ T (A⊗B), called
the tensorial strength, such that the following diagrams commute:

1⊗ TA T (1⊗A)

TA

t1,A

lTA

TlA

A⊗B A⊗ TB

T (A⊗B)

ηA⊗B

idA⊗ηB

tA,B

(A⊗B)⊗ TC T ((A⊗B)⊗ C)

A⊗ (B ⊗ TC) A⊗ T (B ⊗ C) T (A⊗ (B ⊗ C))

tA⊗B,C

aA,B,TC TlA

idA⊗tB,C tA,B⊗C

A⊗ TTB T (A⊗ TB) TT (A⊗B)

A⊗ TB T (A⊗B)

tA,TB

idA⊗µB

TtA,B

µA⊗B

tA,B

Definition 3.46 (Kleisli category). Let C be a category and (T, η, µ) a monad
over C. Then the Kleisli category CT is the category with the following prop-
erties

� the objects of CT are the objects of C

� an arrow f : A −→ B in CT is an arrow f : A −→ TB of C

� the identity idA in CT is given by the arrow ηA of C

� for arrows f : A −→ B, g : B −→ C in CT g ◦ f : A −→ C is defined by
µC ◦ Tg ◦ f : A −→ TC

Lemma 3.47. Let A,B be objects of Val and f : A −→ B an arrow, say
f = x : A ` V : B. We define the endofunctor T : Val −→ Val through

TA = 1 ( A

Tf = y : 1 ( A ` λ ? .let x = (y?) in V : 1 ( B .
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Furthermore we define the maps

ηA = x : A ` λ ? .x : 1 ( A

µA = x : 1 ( (1 ( A) ` λ ? .(x?)? : 1 ( A

tA,B = z : A⊗ (1 ( B) ` let 〈x, y〉 = z in λ ? .〈x, y?〉 : 1 ( (A⊗B) .

Then (T, η, µ, t) is a strong monad over Val.

Proof. The derivations of the judgements Tf and tA,B follow along the lines
of derivations (2.28) and (2.29) respectively. Showing the commutation of the
diagrams is straightfoward. The calculations can be found in [25] (lemma 9.3.7
there).

Corollary 3.48. Let T be the strong monad over Val as defined in lemma 3.47.
Then Comp is the corresponding Kleisli category, i.e.

Comp = ValT . (3.19)

Proof. Follows immediately from lemma 3.47 and the definition of a Kleisli
category.

We have thus encoded the relationship between values and computations
categorically. But the implication ( provides even more structure.

Definition 3.49 (Kleisli exponentials). Let (C,⊗, 1) be a symmetric monoidal
category with a strong monad (T, η, µ) and CT the corresponding Kleisli cate-
gory. Then C is said to have T-exponentials, or Kleisli exponentials, if it
is equipped with a bifunctor (: Cop × C −→ C and a natural isomorphism that
assigns to each objects A,B,C the bijection

ΦA,B,C : homC(A,B(C) −→ homCT (A⊗B,C) = homC(A⊗B, TC) .

Lemma 3.50. Let f : A1 −→ A2, g : B1 −→ B2 be arrows in Val, say f = x :
A1 ` V : A2, g = y : B1 `W : B2. We define (: Valop ×Val −→ Val to be
the bifunctor defined on arrows by

A( g = m : A( B1 ` λz.(let y = mz in W ) : A( B2 ,

f ( B = m : A2 ( B ` λx.(mV ) : A1 ( B .

Additionally we define the map ΦA,B,C : homVal(A,B ( C) −→ homVal(A ⊗
B, 1 ( C) on an arrow f = x : A ` V : B ( C by

ΦA,B,C(f) = p : A⊗B ` λ ? .(let 〈x, y〉 = t in V y) : 1 ( C .

Then for (Val,⊗, 1) with the monad (T, η, µ) as defined in lemma 3.47, ( and
Φ yield T -exponentials.

Proof. The validity of the judgements A ( g and f ( B follows from the
judgements f and g. It is derived along the lines of derivations (2.24). The
judgement ΦA,B,C(f) can be derived from f as done in (2.30).
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3.2.4 Semantics of the Bang Operator ”!”

To describe the operator !, we first need to introduce additional categorical
notions.

Definition 3.51 (Comonad). Let C be a category. Then a comonad (L, ε, δ)
consists of an endofunctor L : C −→ C, and natural transformations ε : L =⇒
idC , δ : L =⇒ L2 which make the following diagrams commute:

L3A L2A

L2A LA

LδA

δLA

δA

δA

LA L2A LA

LA

εLA LεA

idLA idLA

δA

Additionally we call the comonad idempotent if δ is an isomorphism.

Lemma 3.52. We can extend the definition of ! to arrows f = x : A ` V : B
by defining

!f = x : !A ` V : !B . (3.20)

Let additionally ε, δ be defined by

εA = x : !A ` x : A δA = x : !A ` x : !2A . (3.21)

Then (!, ε, δ) is an idempotent comonad in Val.

Proof. The judgement !f follows from f by applying the (L!) rule and then the
(R!) rule (see lemma 3.28). The validity of εA follows from applying the (L!)
rule to the identity idA = x : A ` x : A and the validity of δA from applying
the (R!) rule twice to εA. The necessary equations follow from the equivalence
relation by direct calculations (see lemma 9.3.13 in [25]).

Let us now categorify how the bang operator is compatible with the monoidal
structure.

Definition 3.53 (Monoidal Comonad). Let (C,⊗, 1) be a symmetric monoidal
category. A monoidal comonad on C is a comonad (L, δ, ε) equipped with
natural transformations with components dA,B : LA ⊗ LB −→ L(A ⊗ B),
d1 : 1 −→ L1 making (L, d) a lax symmetric monoidal functor, such that the
following diagrams commute:

LA⊗ LB L(A⊗B)

A⊗B

dA,B

εA⊗ εB
εA⊗B

1 L1

1

d1

id1
ε1

LA⊗ LB L(A⊗B)

L2A⊗ L2B L(LA⊗ LB) L2(A⊗B)

dA,B

δA⊗δA δA⊗B

dLA,LB LdA,B

1 L1

L1 L21 .

d1

d1 δ1

Ld1
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Definition 3.54 (Linear Exponential Comonad). Let (C,⊗, 1, a, l, r, b) be a
symmetric monoidal category. Then a monoidal comonad (L, δ, ε, d, d) over C is
a linear exponential comonad if the following hold true:

� for each object A, LA is a commutative comonoid (LA,∆A,∇LA), where
∆A : LA −→ LA⊗ LA, ∇LA : LA −→ 1

� ∆ and ∇L are monoidal natural transformations i.e. for each pair of
objects A,B the following commute

LA⊗ LB (LA⊗ LA)⊗ (LB ⊗ LB)

(LA⊗ LB)⊗ (LA⊗ LB)

L(A⊗B) L(A⊗B)⊗ L(A⊗B)

∆A⊗∆B

dA,B

swLA,LB

dA,B⊗dA,B

∆A⊗B

LA⊗ LB 1⊗ 1

L(A⊗B) L(A⊗B)⊗ L(A⊗B)

∇L
A⊗∇

L
B

dA,B l1

∇L
A⊗B

1 1⊗ 1

L1 L1⊗ L1

d1

l1

d1⊗d1
∆1

1 1

L1

d1

id1

∇L
1

where sw is the canonical map that switches the two middle objects, i.e.

swA,B = a−1
A,B,A⊗B ◦ (idA ⊗ aB,A,B) ◦ (idA ⊗ (bA,B ⊗ idB))

◦ (idA ⊗ a−1
A,B,B) ◦ aA,A,B⊗B .

� The maps

∆A : (LA, δA) −→ (LA⊗ LA, (δA ⊗ δA); dA)

∇LA : (LA, δA) −→ (1, d1)

are L-coalgebra morphisms, i.e. the following commute:

LA LA⊗ LA

L2A⊗ L2A

L2A L(LA⊗ LA)

∆A

δA

δA⊗δA

dLA,LA

L∆A

LA 1

L2A L1

∇L
A

δA d1

L∇L
A

� For each A δA is a comonoid morphism

δA : (LA,∆A,∇LA ) −→ (L2A,∆LA,∇LLA)
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i.e. the following commute:

LA L2A

LA⊗ LA L2A⊗ L2A

∆A

δA

∆LA

δA⊗δA

LA L2A

1

δA

∇L
A ∇L

LA

Lemma 3.55. In Val with the maps

dA,B := z : !A⊗ !B ` let 〈x, y〉 = z in 〈x, y〉 : !(A⊗B)

d1 := z : 1 ` let ? = z in ? : !1

∆A := x : !A ` 〈x, x〉 : !A⊗ !A

∇!
A := x : !A ` ? : 1 .

the comonad (!, δ, ε) is an idempotent linear exponential comonad.

Proof. The judgement dA,B can be derived as shown in (2.25). The derivation
of d1 is

z : 1 ` z : 1
(∇!)` ? : !1

(1E)
z : 1 ` let ? = z in ? : !n1

The ∇!
A judgement is just a special case of the (∇!) rule and ∆A can be derived

as shown in (2.21).

An analogous sequent to d1 can be derived in linear logic, too, namely 1 ` !1.
However the derivation in linear logic differs from the one here, due to our choices
to use the (∇!) rule in our typing system and to not have an explicit (!R) rule.
A notable difference from linear logic without terms, is that here the arrow dA,B
is an isomorphism. Indeed we can derive

w : !(A⊗B) ` w : !(A⊗B)

x : !A ` x : !A y : !B ` y : !B
(⊗I)

x : !A, y :!B ` 〈x, y〉 : !A⊗ !B
(⊗E)

w : !(A⊗B) ` let 〈x, y〉 = w in 〈x, y〉 : !A⊗ !B

Ultimately this difference stems from the way we chose to incorporate the !-
operator into the (⊗E) rule. There we allowed for a reusable pair of data to
be substituted for a pair of individually reusable data. Since a duplicable pair
of data necessarily belongs to the classical control of the system and not to the
quantum part, both components are classical, too. Thus allowing each of the
components to be reusable individually is appropriate. The same is generally
not true in linear logic, where we allow duplicable pairs of individually non-
duplicable propositions.

Lemma 3.56. cVal is the co-Kleisli category of the comonad (!, δ, ε).

3.2.5 Combined Structure

The combined structure looks as follows.
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Definition 3.57 (Linear Category for Duplication). A linear category for
duplication is a category C with

� a symmetric monoidal structure (⊗, 1, a, l, r, b)

� an idempotent, strongly monoidal, linear exponential comonad
(L, δ, ε, d, d,∆,∇)

� a strong monad (T, µ, η, t)

� a Kleisli exponential (, i.e. a bifunctor (: Cop × C −→ C and a natural
transformation with components

ΦA,B,C : hom(A⊗B, TC) −→ hom(A,B ( C) .

We call C weak if 1 is a terminal object.

Theorem 3.58. Val is a (non weak) linear category for duplication

Proof. This follows immediately from the previous lemmata.

Weakness is obtained when adding the weakening rule to the system i.e.
when founding the typing system on affine logic [22]. For a weak linear category
of dublication a concrete model has been found [16]. For a non-weak linear cat-
egory of dublication, finding a concrete model is to the author’s best knowledge
still an open problem.
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Chapter 4

Conclusions and Future
Work

4.1 Current and Future Research

4.1.1 Parallel-Non-Parallel Logic

We have seen in chapter 2, how a fragment of linear logic forms the internal logic
of closed symmetric monoidal categories. However we had also seen that the
category Hilb admits more structure, it is a dagger compact closed category,
a status linear logic cannot attain. This begs the question of what an internal
logic of a dagger compact closed category would look like. Here we quickly
sketch a possible answer.

What is missing from linear logic is a notion of a (strong) dual. The obvious
candidate A∗ := A ( 1 is only a weak dual; it admits evaluation A ⊗ A∗ ` 1,
but not coevaluation. Since

&

has the structure of a monoidal product, too,
we have the second option of A∗ := A ( ⊥. Here it is reversed, we have
coevaluation ⊥ ` A∗

&

A, not however evaluation. We thus seek to merge
the connectives ⊗ and

&

and their units 1 and ⊥. While that might seem
odd at first glance, there is an interpretation to this. We mentioned in section
2.2.1 how the fundamental difference between conjunction and disjunction is
that in the former you have the choice, while in the latter the choice is made
for you. Considering again the example of buying goods from a vendor, we see
that, what is a disjunction to us, is a conjunction from the perspective of the
vendor and vice versa. Both perspectives would be merged when taking a third
persons point of view. To a third person the situation is symmetrical, they not
care who gets to choose and who doesn’t, so to them there is no distinction
between conjunction and disjunction. It does however still make a difference
wether goods are available in parallel or not, i.e. wether it is a multiplicative
connective or an additive one. We thus name this logic parallel-non-parallel
logic.

Having sketched an interpretation, we define the logic, in particular the new
connective q and its unit ∅. We read A q B as A parallel to B. The rules are
as follows.

83
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Axioms

(i)
A ` A

(R∅)
` ∅

(L∅)
∅ `

Logical Rules

A,Γ1 ` Γ2 B,∆1 ` ∆2
(L q)

A q B,Γ1,∆1 ` Γ2,∆2

Γ1 ` Γ2, A ∆1 ` ∆2, B
(R q)

Γ1,∆1 ` Γ2,∆2, A q B

Γ ` A B,∆1 ` ∆2
(L()

A( B,Γ,∆1 ` ∆2

A,Γ ` B
(R()

Γ ` A( B

Structural Rules

Γ1 ` Γ2 ∆1 ` ∆2
(mix)

Γ1,∆1 ` Γ2,∆2

Γ ` A A,∆1 ` ∆2
(cut)

Γ,∆1 ` ∆2

The rule (L q) coincides with the left rule for

&

, while (R q) is just (R⊗);
similarly for the unit ∅. The key to the system is the so called mixing rule.
Using (mix) it can be shown that q satisfies the respective other rules of

&

and ⊗, too. Since implication is defined as in linear logic and q satisfies both
(L⊗) and (R⊗), we can safely assume that this is a closed symmetric monoidal
theory (cmp. section 2.2.4). Moreover it can be proven that for A∗ := A ( ∅
we have

A∗ ⊗A ' ∅

making A∗ a strong dual. We also have A∗ q B ' A( B. The additive connec-
tives would merge into a biproduct, which is both a product and a coproduct.

A system of this kind has already been developed by R. Duncan, S. Abramsky
and B. Coecke [11, 3, 2, 10] under the name quantum logic. It has however to
the author’s best knowledge never been translated into a term language in the
manner that we have shown in this thesis. Such a term language would allow us
to write down quantum processes as lambda terms, which might be of theoretical
interest in quantum physics.

4.1.2 Dependent Linear Type Theory

An ongoing research area is the development of a dependent version of linear
type theory. In such a theory the types should be divided into a linear and a
classical part as, usually in linear type theory. Dependencies on linear types
should be forbidden, however both linear and classical types are allowed to
depend on classical types. One possible version would be a linear homotopy
type theory. A discussion of the various proposed approaches can be found in
[20] (section 1.7 there). It is suggested that a dependent linear type theory
is the most appropriate choice for the foundations of quantum programming
languages [12].
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4.2 Summary and Conclusions

In this thesis we have shown how the mathematical theory behind quantum
mechanics can be abstracted using categorical methods. More concretely we
showed, that it forms a dagger compact closed category. Subsequently we ana-
lyzed a fragment of linear logic and realized that it forms a sufficiently similar
structure, namely a closed symmetric theory. This motivated us to build the
lambda calculus for quantum computation on linear logic. We went on to define
a term language for the lambda calculus and introduced a typing system based
on linear logic. The term language was constructed to be user-friendly. We then
described a concrete method of denoting and evaluating quantum programs us-
ing the introduced language. Semantically the quantum part of the lambda
calculus was shown to resemble the categories known from quantum mechanics.
The additional structure the term language yields was successfully incorporated
into the categorical semantics.

This thesis made clear how category theory as a mean for connecting var-
ious mathematical fields is an irreplaceble tool. It was capable of translating
between mathemtical physics, logic and the theory of computation. Linear logic
was deemed fruitful enough to describe both the quantum part of the lambda
calculus and its classical control. By tracing derivations back to the underlying
logic, it was made clear which properties of the calculus were inherited by the
linear logic and which were introduced by the specific choice of a term language.
Large parts of this thesis are thus also applicable to alternative calculi based on
the same logic. The quantum lambda calculus was constructed successfully. It
is user-friendly and ready to be employed.



86 CHAPTER 4. CONCLUSIONS AND FUTURE WORK



List of Tables

2.1 Multiplicative and additive fragment of linear logic. . . . . . . . . 23

3.1 Inference rules of the subtyping relation. Here m,n ∈ N and we
always assume (m = 0) ∨ (n ≥ 1). . . . . . . . . . . . . . . . . . . 38

3.2 Typing rules. Here Ac denotes the type of constant c (cmp. (3.2)). 39
3.3 Reduction rules for classical control of quantum closures. Here

M,N are arbitrary terms and V,W are values. . . . . . . . . . . 43
3.4 Reduction rules for quantum data of quantum closures. Here U

denotes a unitary gate of arity n. All closures are assumed to be
in quantum state |Q〉. In the first rule the indices ji ∈ {1, .., n} are
all distinct. We write |Qij〉 for a superposition of states in which

xi = |j〉, j = 0,1, and αi, βi are such that αi|Qi0〉+ βi|Qi1〉 = |Q〉. 43
3.5 Congruence rules for quantum closures. Here M,N are arbitrary

terms while V is a value. . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Axiomatic equivalence: Rules from β-reduction and η-expansion.

Here 	 denotes the symmetric difference of sets, i.e. S 	 S′ :=
(S ∪ S′)\(S ∩ S′) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Axiomatic equivalence: Substitution rules. If in a term M the
subterm let x = P in N appears, we imply that x does not appear
in the rest of the term M , e.g. in the case (let1) if ψ = 〈x, y〉,
then x, y do not appear in P . In the following ϕ and ψ may both
stand for x, 〈x, y〉 and ? (not respectively). . . . . . . . . . . . . 49

87



88 LIST OF TABLES



Bibliography

[1] S. Abramsky ”Computational interpretations of linear logic”, Theoretical
Computer Science, volume 111, issues 1–2, pp. 3-57, 1993.

[2] S. Abramsky, B. Coecke ”A categorical semantics of quantum protocols”,
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science, pp. 415-425, Turku, 2004.

[3] S. Abramsky, R. Duncan ”A categorical quantum logic”, Mathematical
Structures in Computer Science, vol. 16, issue 3, pp. 469-489, Cambridge
University Press: July 2006.

[4] S. Awodey ”Category Theory”, 2nd edition, Oxford Logic Guides 52, June
2010.

[5] J.C. Baez ”Quantum Quandaries: A Category-Theoretic Perspective”,
Structural Foundations of Quantum Gravity, pp. 240-265, retrieved from:
https://math.ucr.edu/home/baez/quantum/quantum.pdf, last visited:
13.01.23

[6] J.C. Baez, M. Stay ”Physics, Topology, Logic and Computation: A Rosetta
Stone”, in New Structures for Physics, pp. 95-174, ed. Bob Coecke, Lecture
Notes in Physics vol. 813, Springer, Berlin, 2011.

[7] P.N. Benton ”A mixed linear and non-linear logic: Proofs, terms and mod-
els”. In: Computer Science Logic eds. L. Pacholski, J. Tiuryn, Lecture
Notes in Computer Science, vol 933, pp. 121–135, Springer, Berlin, Heidel-
berg: 1995.

[8] G.M. Bierman ”What is a categorical model of Intuitionistic Linear Logic?”
In: Typed Lambda Calculi and Applications, eds. M. Dezani-Ciancaglini,
G. Plotkin, Lecture Notes in Computer Science, vol 902, Springer, Berlin,
Heidelberg: 1995.

[9] J.R.B. Cockett, R.A.G. Seely ”Proof theory for full intuitionistic linear
logic, bilinear logic, and mix categories”,Theory and Applications of Cate-
gories, Vol. 3, No. 5, pp. 85–131, 1997.

[10] R. Duncan ”Generalized Proof-Nets for Compact Categories with Biprod-
ucts” In: Semantic Techniques in Quantum Computation, eds. S.Gay, I.
Mackie, pp. 70-134, Cambridge, Cambridge University Press: 2009.

89

https://math.ucr.edu/home/baez/quantum/quantum.pdf


90 BIBLIOGRAPHY

[11] R. Duncan ”Types for Quantum Computing”, Diss. Merton College,
Oxford: 2006. Retrieved from: http://personal.strath.ac.uk/ross.

duncan/papers, last visited: 23.10.23

[12] P. Fu, K. Kishida, P. Selinger ”Linear Dependent Type Theory for Quan-
tum Programming Languages: Extended Abstract”, in Proceedings of the
35th Annual ACM/IEEE Symposium on Logic in Computer Science, pp.
440–453, Association for Computing Machinery, New York: 2020.

[13] J.-Y. Girard ”Linear logic”, Theoretical Computer Science, vol. 50, issue 1,
pp. 1-101, 1987.

[14] L.K. Grover ”A fast quantum mechanical algorithm for database search”
in Proceedings of the twenty-eighth annual ACM symposium on Theory of
Computing, pp. 212–219, Association for Computing Machinery, New York,
1996.

[15] B.C. Hall ”Quantum Theory for Mathematicians”, Graduate Texts in Math-
ematics, vol. 267, pp.53-169, 540, Springer: 2013.

[16] O. Malherbe, P. Scott, P. Selinger ”Presheaf Models of Quantum Com-
putation: An Outline”, In: Computation, Logic, Games, and Quantum
Foundations, eds. B. Coecke, L. Ong, P. Panangaden, The Many Facets of
Samson Abramsky, Lecture Notes in Computer Science, vol 7860. Springer,
Berlin, Heidelberg: 2013.

[17] E. Moggi, ”Notions of computation and monads”, Information and Com-
putation volume 93, issue 1, pp. 55-92, 1991.

[18] V. Moretti ”Spectral Theory and Quantum Mechanics - Mathematical
Foundations of Quantum Theories, Symmetries and Introduction to the
Algebraic Formulation”, 2nd edition, pp. 107-117, 197-214, Springer: 2017.

[19] S. Negri ”A normalizing system of natural deduction for intuitionistic linear
logic”, Archive for Mathematical Logic 41, pp. 789-810, Springer: 2002.

[20] M. Riley ”A Bunched Homotopy Type Theory for Synthetic Stable Homo-
topy Theory”, Diss. Wesleyan University: 2022. Retrieved from: https:

//mvr.hosting.nyu.edu/pubs/thesis.pdf, last visited: 27.10.23

[21] P. Selinger ”Control categories and duality: On the categorical semantics
of the lambda-mu calculus”, Mathematical Structures in Computer Science,
volume 11, issue 2, pp. 207-260, 2001.

[22] P. Selinger, B. Valiron ”Quantum Lambda Calculus” in S. Gay, I. Mackie
(eds) Semantic Techniques in Quantum Computation, pp. 135-172, Cam-
bridge: 2009.

[23] P. Selinger, B.Valiron, ”A lambda calculus for quantum computation with
classical control” in P. Urzyczyn (eds) Typed Lambda Calculi and Applica-
tions, pp. 354-368, Lecture Notes in Computer Science, vol 3461, Springer:
2005.

http://personal.strath.ac.uk/ross.duncan/papers
http://personal.strath.ac.uk/ross.duncan/papers
https://mvr.hosting.nyu.edu/pubs/thesis.pdf
https://mvr.hosting.nyu.edu/pubs/thesis.pdf


BIBLIOGRAPHY 91

[24] P.W. Shor ”Algorithms for quantum computation: discrete logarithms and
factoring”, Proceedings 35th Annual Symposium on Foundations of Com-
puter Science, Santa Fe, NM, USA, 1994, pp. 124-134.

[25] B. Valiron ”Semantics for a Higher Order Functional Programming Lan-
guage for Quantum Computation”, Diss. University of Ottawa: May 2010.
Retrieved from: https://theses.hal.science/tel-00483944#, last vis-
ited: 04.06.2023

[26] A. van Tonder ”A Lambda Calculus for Quantum Computation”, SIAM
Journal on Computing, vol. 33, pp. 1109-1135, 2004.

[27] J. Wickerson ”A Very Rough Introduction to Linear Logic”, retrieved from:
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=

9308FF5AEB2702B3C0AFD7C702E7D6FF?doi=10.1.1.641.7553&rep=

rep1&type=pdf, last visited: 27.10.2023

https://theses.hal.science/tel-00483944#
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=9308FF5AEB2702B3C0AFD7C702E7D6FF?doi=10.1.1.641.7553&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=9308FF5AEB2702B3C0AFD7C702E7D6FF?doi=10.1.1.641.7553&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=9308FF5AEB2702B3C0AFD7C702E7D6FF?doi=10.1.1.641.7553&rep=rep1&type=pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	The Aim of this Thesis
	Related Work and Distinguishing Features
	Fundamental Notions of Category Theory
	Introduction to Quantum Computation
	Qubits and States
	Operators, Observables and Gates
	No Cloning and No Deletion
	Advantages and Limitations


	The Internal Logic of Quantum Mechanics
	A Hilbert Space Category
	Morphisms of Hilbert Spaces
	Hilb as a -Category
	Monoidal Categories
	Closed Categories
	Compact Categories
	Dagger Compact Closed Categories

	Linear Logic
	A Background in Logic and Proof Theory
	A Sequent Calculus for Linear Logic
	Natural Deduction for Linear Logic
	Closed Symmetric Monoidal Theories
	Further properties of Linear Logic


	Quantum Lambda Calculus
	Construction of a Quantum Lambda Calculus
	Terms
	Types and Subtyping
	Typing Rules
	Operational Semantics
	Equational Logic

	Categorical Semantics
	Categories of Types
	Product Structure
	Semantics of the Function Type
	Semantics of the Bang Operator "!"
	Combined Structure


	Conclusions and Future Work
	Current and Future Research
	Parallel-Non-Parallel Logic
	Dependent Linear Type Theory

	Summary and Conclusions


