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I. Symmetric matrices

Definition 1. If (X, +,0,-,1) is a vector space, a scalar product (or an inner
product) on X is a map <,>: X x X — R satisfying, for every x,y,z € X
and A € R, the following properties:

(i) < x,x >> 0.

(i) <z, >=0— 2z =0.

(i1i) < x,y >=<y,z >

(i) < x,y+z>=<xz,y>+<x,2>.

(v) < Azyy >=<x, Ay >= A < z,y >.

It is immediate to check that the map <, >: R® x R" — R, defined by

<zy>=zx'y

n

= E TiYi,
=1

is a scalar product on the vector space R”. Note that in the expression z Ty
we consider the elements z,y of R” as column vectors i.e., n X 1-matrices,
therefore 2T, the transpose matrix of z, is an 1 x n-matrix. Hence the
multiplication Ty between an 1 x n-matrix and an n x 1-matrix is well
defined and results to an 1 x I-matrix, the real number » " | z;y;.

Definition 2. If A = (a;;) is an n x m-matriz and B = (bj) is an m x k-
matriz, their product AB = (c;;) is an n X k—matriz, where

n
Cik ‘— Z aijbjk.
i=1
We also use the notation
M"™(R) :={A| Ais an n X n—matrix over R}.

Definition 3. If A = (a;;) is an n x m-matriz, its transpose AT = (b;;)
is an m X n-matriz, where bj; = a;;. Moreover, if A = (a;;) € M"™(R), its
trace Tr(A) is defined by

=1

One basic property of the transpose of a matrix that we’ll use is that

(AB)T = BT AT,



Exercise 4. Let S"(R) be defined by
S"(R):={A e M"(R) | A is symmetric}.

(i) Show that S™(R) is a vector space.
(ii) Show that the map defined by

< A, B >:=Tr(AB),

for every A, B € S™(R), is a scalar product on S™(R).

Blatt 1, Aufgabe 4

If A€ M?(R) such that

it is easy to see that
lad — be* < (a* + ) (b + d?) < (ab + cd)* > 0.
The general case for some n > 2 is treated as follows. Let
A= (01...00).

By the Gram-Schmidt process there exist by, ..., b, € R” such that
(1) ||bs]| = 1, for every i.

(ii) < b;,b; >=0, for every i # j.
(iii) VzeRnaz\l,...,AneR(l’ = Z:'Lzl )\zbz)
(iv) span{oy,...,o0} = span{bi,..., by}, for every 1 < k < n.

Consequently, the n x n—matrix
B=(by...by)

is orthogonal and BT B = BBT = I, where I, is the unit element of M"(R).
Moreover, if x € R™, we have that

$:Z<$,bk>bk, (1)
k=1
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since

<z b =< Z/\ibiybk >
=1

= Zn: < )\ibiabk >
=1

n
= N <bi by >

i=1
= A < bg, bp. >
= Ak
Using (1) we also get that
][> = | < @by > % (2)
k=1

since

l2]|* =< 2,2 >

n

n
=< < b > b, Y < by > by >
k=1 k=1

n
:Z<<$,bk>bk,<$,bk>bk>

By (iv) each oy has a shorter expansion than the one found in (1), since

k k
oL € Span{bl,. . .,bk} O = Z,U,jbj O = Z < Uk,bj > bj. (3)
j=1 j=1



Next we define the matrix C' = (cg;) by

_ <onby> 1<k
kL= 0 Jifl <k <n.

Clearly we have that

<oy,b> <o9,by> ... <op,bp >

0 <o9,bo> ... <op,by>

O = 0 0 v < Op,bs >
0 0 v < Op,by >

i.e., C is an upper triangular matrix, and because of (3) we get that
A= BC.

Since B is orthogonal, and since the determinant of a triangular matrix is
the product of its diagonal elements, we have that

det(A)? = det(ATA)
= det((BC)TBC)
= det((C*BT)BO)
= det(CT(BTB)0)
= det(CT1,0)
(C C)

(

Note that by the previous inequality we get the following necessary and
sufficient condition for getting the equality in the main inequality of the



exercise. Namely,

det(4)? = [ llowll? © Yreqr,mp(| < onbe > P =D | <oi b > [%)
k=1 i=1

“ Vieqt,...n} (Or =< o, by > by)
<~ ng](al 1 O'j),

since the vectors by, ..., b, are pairwise perpendicular to each other.

Question 5. Can we assert that

| det(A)] < [ I,
1

where T; are the row-vectors of A?

Blatt 2, Aufgabe 4

Next follows the material necessary to a complete presentation of the
solution.

Definition 6. If I C R and f : I — R", then there are functions f1,..., fn:
I — R such that we can write f as

f:(f17"'7fn)7

f(t) = (fl(t)’ . '7fn(t))a

for every t € I. We say that f is differentiable at t € I, if f1,...,fn are
differentiable at t and

F@) = (@), fa'(1))-
We say that f is differentiable on I, if it is differentiable at every t € I.

It is straightforward to show the following proposition.



Proposition 7. Let g,h : I — R be differentiable on I, P € R"™ and
d,e : I — R"™ differentiable on I. The following hold:

(i) The function v : I — R"™, defined by
V() :=g@)P, tel,
1s differentiable on I and
Y (t) =4 t)P, tel.
(i) 0 + ¢ is differentiable on I and
(6+¢e)(t):=d(t)+€@#), tel.
(iit) The function f : I — R"™, defined by
F(t) =< g(O),h(t) >, tel,
1s differentiable on I and
() =< g'(t),h(t) > + < g(t),h(t) >, teL
(iv) If A € M™(R), the function f: 1 — R", defined by
ft) = Ad(t), tel,
is differentiable on I and
f(t) == Ad(t), tel.
Definition 8. We denote by
"= {z e R" | [|a]] = 1},
the unit sphere of R™.

For example,
St = {(2,y) € B2 | 2? + 42 = 1}

is the standard unit circle. In Exercise 1 of Blatt 2 we showed that S! is
a compact subset of R?, and similarly one shows that S”~! is a compact
subset of R"™.

Definition 9. Let f : R” — R and P € R". We say that P is a maximum
for f on 8" if Pc S" e, ||P|| =1, and if

Voegn-1(f(2) < f(P)).



Note that P is not necessarily unique, while unique is the maximum value
f(P). If f is continuous, then f has always a maximum on S"~!, since S"~!
is compact. The next proposition explains why the function considered in
Exercise 4 of Blatt 2 is continuous, therefore it is meaningful to talk about
its maximum value on S™~!.

If (X, d) is a metric space, (z,)52; C X and z € X, we use the notation

n .
T, — = lim x, = x.
n—oo

Proposition 10. (7) If <. >: X x X — R is a scalar product on the vector
space X, then < .> is a continuous functions i.e.,

(T, Yn) —= (T,Y) = < Tp,Yp >—< T,y >,
for every (x5)5 1, (yn)oey C X and x,y € X. Note that
(Tn, Yn) = (z,y) & ||z, — || —0 A [Yn — Yl — 0.

(i) If A € M™(R), then the function g : R™ — R"™ defined by

for every x € R", is continuous.
(iii) If A € M™(R), then the function f:R™ — R defined by

f(z) =<z, Az >,
for every x € R™, is continuous.

Proof. (i) With the use of the Cauchy-Schwarz inequality.
(ii) First you need to unfold the multiplication Azx.
(iii) Use (i) and (ii). O

Theorem 11. Let A € S™(R) and f : R™ — R defined by
f(z) =<z, Az >,

for every x € R™. If P is a mazimum for f on S"~!, then P is an eigenvector

of A.
Proof. We consider the set

Y ={yeR"|<y,P>=0}={\P|)\cR},



which is a subspace of R™ of dimension n — 1, since
dim(Y) + dim(Y1) = n.
Let y € Y such that ||y|| = 1, and 7, : [-1,1] = R" is defined by
Yy(t) := (cost)P + (sint)y, te[-1,1].
We show the following:

(i) () € SmL.

(ii) 7,(0) = P.

(iii) 7,/(0) = .

(iv) 7y is a curve on S™~! passing through P and the direction of vy at 0 is
the direction of y.

(i) We have that
1y (D1 =< 2y (1), 7 (t) >

=< (cost)P + (sint)y, (cost)P + (sint)y >

= (cos” t)]|P|| + (sin® t)]|y?

=1.
(ii) 74 (0) = (cos0)P + (sin0)y = 1P = P.
(11) Using Proposition 7 we get 7,/(t) = (—sint)P + (cost)y, therefore

/

( V) Th1s is (i)-(iii) in words.
Next we define the function g : [-1,1] — R by

g(t) = flyy(t) =< (1), An(t) >,  tel[-11].

By Proposition 7(iii) and (iv), and by the fundamental property of symmet-
ric matrices
<z, Ay >=< Azx,y >

we have that

g (t) =</ (1), Ay (t) > + < v (1), (Avy (1)) >
=<,/ (t), Ayy(t) > + < 7(t), A/ (t) >
=</ (t), Ayy(t) > + < Ay (), /() >
=<7/ (t), Ayy(t) > + < 3/ (t), Ay (t) >
=2 <)/ (t), Ayy(t) >
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Since f(P) is a maximum and g(0) = f(y,(0)) = f(P), we get

g'(0) = g'(f(P)) =0 < 2 < 7,/(0), Ay, (0) >=0
<2<y, AP >=0
— APly, yeY
— AP eyt
< AP = \P,

for some )\ € R. O

The next corollary is exactly Exercise 4 of Blatt 2.

Corollary 12. Let A € S"™(R) and f: R™ — R defined by
f(z) =<z, Az >,

for every x € R™. The mazimum value of f on S~ is the maximal eigen-
value of A.

Proof. Let A be a non-zero eigenvalue of A (it always exists, since A is
symmetric). Let P is an eigenvector of A with eigenvalue A such that ||P|| =
1 (why can I always tale P € S"~1?). Then we have

f(P)=< P,AP >
=< P,\P >
=A< P P>
= AP
=\
By the previous theorem the maximum of f on S"~! occurs at an eigenvec-

tor, therefore by the previous equality this maximum value is the maximum
eigenvalue of A. O
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I1. Convexity of C?-functions
(For Exercise 3, Blatt 7)

First we give some necessary definitions.

Definition 13. Let A € M"™(R) be a symmetric matriz. A minor Ay of
order k of A is called principal, if it is obtained by deleting n — k rows and
the n — k columns with the same numbers. The leading principal minor Dy
of A of order k is the minor of order k obtained by deleting the last n — k
rows and columns of A.

For example, if n = 2 and A is given by

a b
A=
(5 0),
it has the following principal minors A; = a and Ay = ¢ of order one
and the principal minor Ay = ac — b? of order two. Moreover, it has the
leading principal minor D = a of order one and the leading principal minor

Dy = ac — b? of order two.

Note that there are |
n!

El(n — k)!

principal minors of order k.

Theorem 14. Let A € M"(R) be a symmetric matriz.

(i) A is positive definite if and only if Dy > 0, for all leading principal
minors Dy of order k of A, where 1 < k <n.

(i) A is negative definite if and only if (—1)* Dy, > 0, for all leading principal
minors Dy of order k of A, where 1 < k <mn.

(iii) A is positive semi-definite if and only if A > 0, for all principal
minors Ay of order k of A, where 1 < k <n.

(iv) A is negative semi-definite if and only if (—1)*Ag > 0, for all leading
principal minors Ay of order k of A, where 1 < k <n.

Definition 15. If U C R" is open, a function f : U — R is called C?, if
the partial derivatives on U
0% f

exist and are continuous.
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Theorem 16. If U C R” is open and f : U — R is C?, then its Hessian
matrizc H¢(x), x € U, is symmetric.

Theorem 17. Let U C R™ be open and convez, and let f: U — R be C2.
(i) [ is convex in U if and only if Hy is positive semi-definite in U.
(it) f is concave in U if and only if Hy is negative semi-definite in U.
(it3) If Hy is positive definite in U, then f is strictly convex in U.
(iv) If Hy is negative definite in U, then f is strictly concave in U.

For the part (ii) of Exercise 3 one needs to use the following simple fact.

Proposition 18. Let U C R" be convez and f : U — R be continuous. If
f is (strictly) convex in U, then f is convex in the closure U of U.

Aufgabe 4, Blatt 7

Seien p, q € (1,+00), so dass

1 1
-4+ =-=1,
p q
und seien x1,...,Tg,y1,...,yr € R. Zeigen Sie, dass die folgenden Gle-
ichungen stimmen.
k k k
) D el + lwil)? =D (sl + Lyl il + D (sl + [yl wil-
i=1 i=1 i=1

k k
(i) Z<|wi|+|yi|>p—1|xi|s(Z<xz|+|yz ) (va’)

i=1 i=1

(iif) (izk;(\fczlﬂyz ) (lezlp>l (i}lwlp);

Proof. (i) First not that if a,b € R, then

(lal + [6))? = (lal + [p))*~* (lal + [b])
= (la| + o))"~ |al + (la] + [o])*~"[o].
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Hence

k k
Dl + lyal)” = Y[l + yal)~ aeil + (el + Lyl i)
1=1 1=1
k k
=D (il + yal)~ el + ) (aal + yal )P~ il
1=1 i=1

(ii) The Holder inequality is the following:

Qe

k k v /K
Z |ziyi| < (Z |$i|p> <Z |yi|q>
i=1 i=1 i=1

Since (p — 1)q = p, by Holder inequality we get

Q=

A

k k % k
Dl + lyil)P~ il < (ZI%I”) <Z (il + lyil )"~ 1))

=1 =1

(iii) Because of (ii) we also have

k k % k %
Z(IxilJrlyil)p_llyilé<Z|yi|p> (Z(Iwilﬂyzl)p) :

=1 =1 =1

(Sor) (B

Hence by (i) we get

k k
D (il + i) < (Z(Ixil + Iyil)p>

i=1 i=1

14



therefore

k
2 i (] + [yil)”

(b (il + e

[

k

D

i=1

1

-3
(] + |yz'|)p)

k
<Z(!l’z‘ + !yi!)p>
i=1

<

IN

IN

(Sor) + (5w

(Sr) + (5w

(Sor) + (5w
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