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These notes include part of the material discussed in our Exercises-session
for the lecture course “Analysis II for Statisticians” of Prof. Dr. Tomasz
Cieslak.

Please feel free to send me your comments and suggestions regarding these
notes.
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I. Symmetric matrices

Definition 1. If (X,+, 0, ·, 1) is a vector space, a scalar product (or an inner
product) on X is a map <,>: X ×X → R satisfying, for every x, y, z ∈ X
and λ ∈ R, the following properties:

(i) < x, x >≥ 0.
(ii) < x, x >= 0→ x = 0.
(iii) < x, y >=< y, x >
(iv) < x, y + z >=< x, y > + < x, z >.
(v) < λx, y >=< x, λy >= λ < x, y >.

It is immediate to check that the map <,>: Rn × Rn → R, defined by

< x, y > := xTy

=

n∑
i=1

xiyi,

is a scalar product on the vector space Rn. Note that in the expression xTy
we consider the elements x, y of Rn as column vectors i.e., n × 1–matrices,
therefore xT, the transpose matrix of x, is an 1 × n–matrix. Hence the
multiplication xTy between an 1 × n–matrix and an n × 1–matrix is well
defined and results to an 1× 1–matrix, the real number

∑n
i=1 xiyi.

Definition 2. If A = (aij) is an n×m–matrix and B = (bjk) is an m× k–
matrix, their product AB = (cik) is an n× k–matrix, where

cik :=

n∑
i=1

aijbjk.

We also use the notation

Mn(R) := {A | A is an n× n–matrix over R}.

Definition 3. If A = (aij) is an n × m-matrix, its transpose AT = (bji)
is an m × n–matrix, where bji = aij. Moreover, if A = (aij) ∈ Mn(R), its
trace Tr(A) is defined by

Tr(A) :=

n∑
i=1

aii.

One basic property of the transpose of a matrix that we’ll use is that

(AB)T = BTAT.
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Exercise 4. Let Sn(R) be defined by

Sn(R) := {A ∈Mn(R) | A is symmetric}.

(i) Show that Sn(R) is a vector space.
(ii) Show that the map defined by

< A,B >:= Tr(AB),

for every A,B ∈ Sn(R), is a scalar product on Sn(R).

Blatt 1, Aufgabe 4

If A ∈M2(R) such that

A =

(
a b
c d

)
,

it is easy to see that

|ad− bc|2 ≤ (a2 + c2)(b2 + d2)↔ (ab+ cd)2 ≥ 0.

The general case for some n > 2 is treated as follows. Let

A = (σ1 . . . σn).

By the Gram-Schmidt process there exist b1, . . . , bn ∈ Rn such that

(i) ||bi|| = 1, for every i.

(ii) < bi, bj >= 0, for every i 6= j.

(iii) ∀x∈Rn∃λ1,...,λn∈R(x =
∑n

i=1 λibi).

(iv) span{σ1, . . . , σk} = span{b1, . . . , bk}, for every 1 ≤ k ≤ n.

Consequently, the n× n–matrix

B = (b1 . . . bn)

is orthogonal and BTB = BBT = In, where In is the unit element of Mn(R).
Moreover, if x ∈ Rn, we have that

x =
n∑
k=1

< x, bk > bk, (1)
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since

< x, bk =<
n∑
i=1

λibi, bk >

=
n∑
i=1

< λibi, bk >

=
n∑
i=1

λi < bi, bk >

= λk < bk, bk >

= λk.

Using (1) we also get that

||x||2 =

n∑
k=1

| < x, bk > |2, (2)

since

||x||2 =< x, x >

=<
n∑
k=1

< x, bk > bk,
n∑
k=1

< x, bk > bk >

=
n∑
k=1

<< x, bk > bk, < x, bk > bk >

=

n∑
k=1

< x, bk >
2< bk, bk >

=

n∑
k=1

< x, bk >
2

=

n∑
k=1

| < x, bk > |2.

By (iv) each σk has a shorter expansion than the one found in (1), since

σk ∈ span{b1, . . . , bk} ↔ σk =

k∑
j=1

µjbj ↔ σk =

k∑
j=1

< σk, bj > bj . (3)
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Next we define the matrix C = (ckl) by

ckl =

{
< σl, bk > , if 1 ≤ k ≤ l
0 , if l < k ≤ n.

Clearly we have that

C =



< σ1, b1 > < σ2, b1 > . . . < σn, b1 >
0 < σ2, b2 > . . . < σn, b2 >
0 0 . . . < σn, b3 >
· · . . . . . .
· · . . . . . .
0 0 . . . < σn, bn >


i.e., C is an upper triangular matrix, and because of (3) we get that

A = BC.

Since B is orthogonal, and since the determinant of a triangular matrix is
the product of its diagonal elements, we have that

det(A)2 = det(ATA)

= det((BC)TBC)

= det((CTBT)BC)

= det(CT(BTB)C)

= det(CTInC)

= det(CTC)

= det(C)2

=

n∏
k=1

| < σk, bk > |2

≤
n∏
k=1

n∑
i=1

| < σi, bk > |2

=

n∏
k=1

||σk||2.

Note that by the previous inequality we get the following necessary and
sufficient condition for getting the equality in the main inequality of the
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exercise. Namely,

det(A)2 =
n∏
k=1

||σk||2 ↔ ∀k∈{1,...,n}(| < σk, bk > |2 =
n∑
i=1

| < σi, bk > |2)

↔ ∀k∈{1,...,n}(σk =< σk, bk > bk)

↔ ∀i 6=j(σi ⊥ σj),

since the vectors b1, . . . , bn are pairwise perpendicular to each other.

Question 5. Can we assert that

|det(A)| ≤
n∏
1

||τi||,

where τi are the row-vectors of A?

Blatt 2, Aufgabe 4

Next follows the material necessary to a complete presentation of the
solution.

Definition 6. If I ⊆ R and f : I → Rn, then there are functions f1, . . . , fn :
I → R such that we can write f as

f = (f1, . . . , fn),

f(t) = (f1(t), . . . , fn(t)),

for every t ∈ I. We say that f is differentiable at t ∈ I, if f1, . . . , fn are
differentiable at t and

f ′(t) := (f1
′(t), . . . , fn

′(t)).

We say that f is differentiable on I, if it is differentiable at every t ∈ I.

It is straightforward to show the following proposition.
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Proposition 7. Let g, h : I → R be differentiable on I, P ∈ Rn and
δ, ε : I → Rn differentiable on I. The following hold:

(i) The function γ : I → Rn, defined by

γ(t) := g(t)P, t ∈ I,

is differentiable on I and

γ′(t) := g′(t)P, t ∈ I.

(ii) δ + ε is differentiable on I and

(δ + ε)′(t) := δ′(t) + ε′(t), t ∈ I.

(iii) The function f : I → Rn, defined by

f(t) :=< g(t), h(t) >, t ∈ I,

is differentiable on I and

f ′(t) :=< g′(t), h(t) > + < g(t), h′(t) >, t ∈ I.

(iv) If A ∈Mn(R), the function f : I → Rn, defined by

f(t) := Aδ(t), t ∈ I,

is differentiable on I and

f ′(t) := Aδ′(t), t ∈ I.

Definition 8. We denote by

Sn−1 := {x ∈ Rn | ||x|| = 1},

the unit sphere of Rn.

For example,
S1 := {(x, y) ∈ R2 | x2 + y2 = 1}

is the standard unit circle. In Exercise 1 of Blatt 2 we showed that S1 is
a compact subset of R2, and similarly one shows that Sn−1 is a compact
subset of Rn.

Definition 9. Let f : Rn → R and P ∈ Rn. We say that P is a maximum
for f on Sn−1, if P ∈ Sn−1 i.e., ||P || = 1, and if

∀x∈Sn−1(f(x) ≤ f(P )).
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Note that P is not necessarily unique, while unique is the maximum value
f(P ). If f is continuous, then f has always a maximum on Sn−1, since Sn−1

is compact. The next proposition explains why the function considered in
Exercise 4 of Blatt 2 is continuous, therefore it is meaningful to talk about
its maximum value on Sn−1.

If (X, d) is a metric space, (xn)∞n=1 ⊂ X and x ∈ X, we use the notation

xn
n−→ x := lim

n→∞
xn = x.

Proposition 10. (i) If < . >: X×X → R is a scalar product on the vector
space X, then < . > is a continuous functions i.e.,

(xn, yn)
n−→ (x, y) ⇒ < xn, yn >

n−→< x, y >,

for every (xn)∞n=1, (yn)∞n=1 ⊂ X and x, y ∈ X. Note that

(xn, yn)
n−→ (x, y) ⇔ ||xn − x||

n−→ 0 ∧ ||yn − y||
n−→ 0.

(ii) If A ∈Mn(R), then the function g : Rn → Rn defined by

g(x) := Ax,

for every x ∈ Rn, is continuous.

(iii) If A ∈Mn(R), then the function f : Rn → R defined by

f(x) :=< x,Ax >,

for every x ∈ Rn, is continuous.

Proof. (i) With the use of the Cauchy-Schwarz inequality.
(ii) First you need to unfold the multiplication Ax.
(iii) Use (i) and (ii).

Theorem 11. Let A ∈ Sn(R) and f : Rn → R defined by

f(x) :=< x,Ax >,

for every x ∈ Rn. If P is a maximum for f on Sn−1, then P is an eigenvector
of A.

Proof. We consider the set

Y = {y ∈ Rn |< y, P >= 0} = {λP | λ ∈ R}⊥,
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which is a subspace of Rn of dimension n− 1, since

dim(Y ) + dim(Y ⊥) = n.

Let y ∈ Y such that ||y|| = 1, and γy : [−1, 1]→ Rn is defined by

γy(t) := (cos t)P + (sin t)y, t ∈ [−1, 1].

We show the following:

(i) γy(t) ∈ Sn−1.
(ii) γy(0) = P .
(iii) γy

′(0) = y.
(iv) γy is a curve on Sn−1 passing through P and the direction of γy at 0 is
the direction of y.

(i) We have that

||γy(t)||2 =< γy(t), γy(t) >

=< (cos t)P + (sin t)y, (cos t)P + (sin t)y >

= (cos2 t)||P ||2 + (sin2 t)||y||2

= 1.

(ii) γy(0) = (cos 0)P + (sin 0)y = 1P = P .
(iii) Using Proposition 7 we get γy

′(t) = (− sin t)P + (cos t)y, therefore
γy
′(0) = y.

(iv) This is (i)-(iii) in words.

Next we define the function g : [−1, 1]→ R by

g(t) := f(γy(t)) =< γy(t), Aγy(t) >, t ∈ [−1, 1].

By Proposition 7(iii) and (iv), and by the fundamental property of symmet-
ric matrices

< x,Ay >=< Ax, y >

we have that

g′(t) =< γy
′(t), Aγy(t) > + < γy(t), (Aγy(t))

′ >

=< γy
′(t), Aγy(t) > + < γy(t), Aγy

′(t) >

=< γy
′(t), Aγy(t) > + < Aγy(t), γy

′(t) >

=< γy
′(t), Aγy(t) > + < γy

′(t), Aγy(t) >

= 2 < γy
′(t), Aγy(t) > .

10



Since f(P ) is a maximum and g(0) = f(γy(0)) = f(P ), we get

g′(0) = g′(f(P )) = 0↔ 2 < γy
′(0), Aγy(0) >= 0

↔ 2 < y,AP >= 0

→ AP⊥y, y ∈ Y
↔ AP ∈ Y ⊥

↔ AP = λP,

for some λ ∈ R.

The next corollary is exactly Exercise 4 of Blatt 2.

Corollary 12. Let A ∈ Sn(R) and f : Rn → R defined by

f(x) :=< x,Ax >,

for every x ∈ Rn. The maximum value of f on Sn−1 is the maximal eigen-
value of A.

Proof. Let λ be a non-zero eigenvalue of A (it always exists, since A is
symmetric). Let P is an eigenvector of A with eigenvalue λ such that ||P || =
1 (why can I always tale P ∈ Sn−1?). Then we have

f(P ) =< P,AP >

=< P, λP >

= λ < P, P >

= λ||P ||2

= λ.

By the previous theorem the maximum of f on Sn−1 occurs at an eigenvec-
tor, therefore by the previous equality this maximum value is the maximum
eigenvalue of A.

11



II. Convexity of C2-functions
(For Exercise 3, Blatt 7)

First we give some necessary definitions.

Definition 13. Let A ∈ Mn(R) be a symmetric matrix. A minor ∆k of
order k of A is called principal, if it is obtained by deleting n− k rows and
the n− k columns with the same numbers. The leading principal minor Dk

of A of order k is the minor of order k obtained by deleting the last n − k
rows and columns of A.

For example, if n = 2 and A is given by

A =

(
a b
b c

)
,

it has the following principal minors ∆1 = a and ∆2 = c of order one
and the principal minor ∆2 = ac − b2 of order two. Moreover, it has the
leading principal minor D1 = a of order one and the leading principal minor
D2 = ac− b2 of order two.

Note that there are
n!

k!(n− k)!

principal minors of order k.

Theorem 14. Let A ∈Mn(R) be a symmetric matrix.

(i) A is positive definite if and only if Dk > 0, for all leading principal
minors Dk of order k of A, where 1 ≤ k ≤ n.

(ii) A is negative definite if and only if (−1)kDk > 0, for all leading principal
minors Dk of order k of A, where 1 ≤ k ≤ n.

(iii) A is positive semi-definite if and only if ∆k ≥ 0, for all principal
minors ∆k of order k of A, where 1 ≤ k ≤ n.

(iv) A is negative semi-definite if and only if (−1)k∆k ≥ 0, for all leading
principal minors ∆k of order k of A, where 1 ≤ k ≤ n.

Definition 15. If U ⊆ Rn is open, a function f : U → R is called C2, if
the partial derivatives on U

∂2f

∂xi∂xj
(x)

exist and are continuous.
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Theorem 16. If U ⊆ Rn is open and f : U → R is C2, then its Hessian
matrix Hf (x), x ∈ U , is symmetric.

Theorem 17. Let U ⊆ Rn be open and convex, and let f : U → R be C2.

(i) f is convex in U if and only if Hf is positive semi-definite in U .

(ii) f is concave in U if and only if Hf is negative semi-definite in U .

(iii) If Hf is positive definite in U , then f is strictly convex in U .

(iv) If Hf is negative definite in U , then f is strictly concave in U .

For the part (ii) of Exercise 3 one needs to use the following simple fact.

Proposition 18. Let U ⊆ Rn be convex and f : U → R be continuous. If
f is (strictly) convex in U , then f is convex in the closure U of U .

Aufgabe 4, Blatt 7

Seien p, q ∈ (1,+∞), so dass

1

p
+

1

q
= 1,

und seien x1, . . . , xk, y1, . . . , yk ∈ R. Zeigen Sie, dass die folgenden Gle-
ichungen stimmen.

(i)

k∑
i=1

(|xi|+ |yi|)p =

k∑
i=1

(|xi|+ |yi|)p−1|xi|+
k∑
i=1

(|xi|+ |yi|)p−1|yi|.

(ii)
k∑
i=1

(|xi|+ |yi|)p−1|xi| ≤

(
k∑
i=1

(|xi|+ |yi|)p
) 1

q
(

k∑
i=1

|xi|p
) 1

p

.

(iii)

(
k∑
i=1

(|xi|+ |yi|)p
) 1

p

≤

(
k∑
i=1

|xi|p
) 1

p

+

(
k∑
i=1

|yi|p
) 1

p

.

Proof. (i) First not that if a, b ∈ R, then

(|a|+ |b|)p = (|a|+ |b|)p−1(|a|+ |b|)
= (|a|+ |b|)p−1|a|+ (|a|+ |b|)p−1|b|.
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Hence

k∑
i=1

(|xi|+ |yi|)p =
k∑
i=1

[(|xi|+ |yi|)p−1|xi|+ (|xi|+ |yi|)p−1|yi|]

=

k∑
i=1

(|xi|+ |yi|)p−1|xi|+
k∑
i=1

(|xi|+ |yi|)p−1|yi|.

(ii) The Hölder inequality is the following:

k∑
i=1

|xiyi| ≤

(
k∑
i=1

|xi|p
) 1

p
(

k∑
i=1

|yi|q
) 1

q

.

Since (p− 1)q = p, by Hölder inequality we get

k∑
i=1

(|xi|+ |yi|)p−1|xi| ≤

(
k∑
i=1

|xi|p
) 1

p
(

k∑
i=1

(
(|xi|+ |yi|)p−1

)q) 1
q

=

(
k∑
i=1

|xi|p
) 1

p
(

k∑
i=1

(|xi|+ |yi|)(p−1)q
) 1

q

=

(
k∑
i=1

|xi|p
) 1

p
(

k∑
i=1

(|xi|+ |yi|)p
) 1

q

.

(iii) Because of (ii) we also have

k∑
i=1

(|xi|+ |yi|)p−1|yi| ≤

(
k∑
i=1

|yi|p
) 1

p
(

k∑
i=1

(|xi|+ |yi|)p
) 1

q

.

Hence by (i) we get

k∑
i=1

(|xi|+ |yi|)p ≤

(
k∑
i=1

(|xi|+ |yi|)p
) 1

q

( k∑
i=1

|xi|p
) 1

p

+

(
k∑
i=1

|yi|p
) 1

p

 ,
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therefore

∑k
i=1(|xi|+ |yi|)p(∑k
i=1(|xi|+ |yi|)p

) 1
q

≤

(
k∑
i=1

|xi|p
) 1

p

+

(
k∑
i=1

|yi|p
) 1

p

↔

(
k∑
i=1

(|xi|+ |yi|)p
)1− 1

q

≤

(
k∑
i=1

|xi|p
) 1

p

+

(
k∑
i=1

|yi|p
) 1

p

↔

(
k∑
i=1

(|xi|+ |yi|)p
) 1

p

≤

(
k∑
i=1

|xi|p
) 1

p

+

(
k∑
i=1

|yi|p
) 1

p
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