Analysis II for Statisticians - $\mathrm{SS16}$

Iosif Petrakis petrakis@math.lmu.de

June 24, 2016

These notes include part of the material discussed in our Exercises-session for the lecture course "Analysis II for Statisticians" of Prof. Dr. Tomasz Cieslak.

Please feel free to send me your comments and suggestions regarding these notes.

.

I. Symmetric matrices

Definition 1. If $(X, +, 0, \cdot, 1)$ is a vector space, a scalar product (or an inner product) on X is a map $\langle , \rangle \colon X \times X \to \mathbb{R}$ satisfying, for every $x, y, z \in X$ and $\lambda \in \mathbb{R}$, the following properties:

 $\begin{array}{l} (i) < x, x \ge 0. \\ (ii) < x, x \ge 0 \to x = 0. \\ (iii) < x, y \ge < y, x \ge \\ (iv) < x, y + z \ge < x, y \ge + < x, z \ge. \\ (v) < \lambda x, y \ge < x, \lambda y \ge = \lambda < x, y \ge. \end{array}$

It is immediate to check that the map $\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, defined by

$$\langle x, y \rangle := x^{\mathrm{T}} y$$

= $\sum_{i=1}^{n} x_i y_i,$

<

is a scalar product on the vector space \mathbb{R}^n . Note that in the expression $x^T y$ we consider the elements x, y of \mathbb{R}^n as column vectors i.e., $n \times 1$ -matrices, therefore x^T , the transpose matrix of x, is an $1 \times n$ -matrix. Hence the multiplication $x^T y$ between an $1 \times n$ -matrix and an $n \times 1$ -matrix is well defined and results to an 1×1 -matrix, the real number $\sum_{i=1}^n x_i y_i$.

Definition 2. If $A = (a_{ij})$ is an $n \times m$ -matrix and $B = (b_{jk})$ is an $m \times k$ -matrix, their product $AB = (c_{ik})$ is an $n \times k$ -matrix, where

$$c_{ik} := \sum_{i=1}^{n} a_{ij} b_{jk}.$$

We also use the notation

 $M^{n}(\mathbb{R}) := \{A \mid A \text{ is an } n \times n \text{-matrix over } \mathbb{R}\}.$

Definition 3. If $A = (a_{ij})$ is an $n \times m$ -matrix, its transpose $A^{\mathrm{T}} = (b_{ji})$ is an $m \times n$ -matrix, where $b_{ji} = a_{ij}$. Moreover, if $A = (a_{ij}) \in M^n(\mathbb{R})$, its trace $\mathrm{Tr}(A)$ is defined by

$$\operatorname{Tr}(A) := \sum_{i=1}^{n} a_{ii}.$$

One basic property of the transpose of a matrix that we'll use is that

$$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$$

Exercise 4. Let $S^n(\mathbb{R})$ be defined by

 $S^{n}(\mathbb{R}) := \{ A \in M^{n}(\mathbb{R}) \mid A \text{ is symmetric} \}.$

(i) Show that Sⁿ(R) is a vector space.
(ii) Show that the map defined by

$$\langle A, B \rangle := \operatorname{Tr}(AB),$$

for every $A, B \in S^n(\mathbb{R})$, is a scalar product on $S^n(\mathbb{R})$.

Blatt 1, Aufgabe 4

If $A \in M^2(\mathbb{R})$ such that

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right),$$

it is easy to see that

$$|ad - bc|^2 \le (a^2 + c^2)(b^2 + d^2) \leftrightarrow (ab + cd)^2 \ge 0.$$

The general case for some n > 2 is treated as follows. Let

$$A = (\sigma_1 \dots \sigma_n).$$

By the Gram-Schmidt process there exist $b_1, \ldots, b_n \in \mathbb{R}^n$ such that (i) $||b_i|| = 1$, for every i. (ii) $\langle b_i, b_j \rangle = 0$, for every $i \neq j$. (iii) $\forall_{x \in \mathbb{R}^n} \exists_{\lambda_1, \ldots, \lambda_n \in \mathbb{R}} (x = \sum_{i=1}^n \lambda_i b_i)$.

(iv) span{ $\sigma_1, \ldots, \sigma_k$ } = span{ b_1, \ldots, b_k }, for every $1 \le k \le n$.

Consequently, the $n \times n$ -matrix

$$B = (b_1 \dots b_n)$$

is orthogonal and $B^{\mathrm{T}}B = BB^{\mathrm{T}} = \mathbb{I}_n$, where \mathbb{I}_n is the unit element of $M^n(\mathbb{R})$. Moreover, if $x \in \mathbb{R}^n$, we have that

$$x = \sum_{k=1}^{n} \langle x, b_k \rangle b_k,$$
 (1)

since

$$< x, b_k = <\sum_{i=1}^n \lambda_i b_i, b_k >$$
$$= \sum_{i=1}^n < \lambda_i b_i, b_k >$$
$$= \sum_{i=1}^n \lambda_i < b_i, b_k >$$
$$= \lambda_k < b_k, b_k >$$
$$= \lambda_k.$$

Using (1) we also get that

$$||x||^{2} = \sum_{k=1}^{n} |\langle x, b_{k} \rangle|^{2}, \qquad (2)$$

since

$$||x||^{2} = \langle x, x \rangle$$

= $\langle \sum_{k=1}^{n} \langle x, b_{k} \rangle b_{k}, \sum_{k=1}^{n} \langle x, b_{k} \rangle b_{k} \rangle$
= $\sum_{k=1}^{n} \langle \langle x, b_{k} \rangle b_{k}, \langle x, b_{k} \rangle b_{k} \rangle$
= $\sum_{k=1}^{n} \langle x, b_{k} \rangle^{2} \langle b_{k}, b_{k} \rangle$
= $\sum_{k=1}^{n} \langle x, b_{k} \rangle^{2}$
= $\sum_{k=1}^{n} |\langle x, b_{k} \rangle|^{2}$.

By (iv) each σ_k has a shorter expansion than the one found in (1), since

$$\sigma_k \in \operatorname{span}\{b_1, \dots, b_k\} \leftrightarrow \sigma_k = \sum_{j=1}^k \mu_j b_j \leftrightarrow \sigma_k = \sum_{j=1}^k \langle \sigma_k, b_j \rangle b_j.$$
(3)

Next we define the matrix $C = (c_{kl})$ by

$$c_{kl} = \begin{cases} <\sigma_l, b_k > &, \text{ if } 1 \le k \le l \\ 0 &, \text{ if } l < k \le n \end{cases}$$

Clearly we have that

$$C = \begin{pmatrix} <\sigma_1, b_1 > <\sigma_2, b_1 > & \dots < \sigma_n, b_1 > \\ 0 & <\sigma_2, b_2 > & \dots < \sigma_n, b_2 > \\ 0 & 0 & \dots < \sigma_n, b_3 > \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & <\sigma_n, b_n > \end{pmatrix}$$

i.e., C is an upper triangular matrix, and because of (3) we get that

$$A = BC.$$

Since B is orthogonal, and since the determinant of a triangular matrix is the product of its diagonal elements, we have that

$$\det(A)^{2} = \det(A^{\mathrm{T}}A)$$

$$= \det((BC)^{\mathrm{T}}BC)$$

$$= \det((C^{\mathrm{T}}B^{\mathrm{T}})BC)$$

$$= \det(C^{\mathrm{T}}(B^{\mathrm{T}}B)C)$$

$$= \det(C^{\mathrm{T}}B)C)$$

$$= \det(C^{\mathrm{T}}C)$$

$$= \det(C^{\mathrm{T}}C)$$

$$= \det(C)^{2}$$

$$= \prod_{k=1}^{n} |<\sigma_{k}, b_{k} > |^{2}$$

$$\leq \prod_{k=1}^{n} \sum_{i=1}^{n} |<\sigma_{i}, b_{k} > |^{2}$$

$$= \prod_{k=1}^{n} ||\sigma_{k}||^{2}.$$

Note that by the previous inequality we get the following necessary and sufficient condition for getting the equality in the main inequality of the exercise. Namely,

$$\det(A)^2 = \prod_{k=1}^n ||\sigma_k||^2 \leftrightarrow \forall_{k \in \{1,\dots,n\}} (|<\sigma_k, b_k>|^2 = \sum_{i=1}^n |<\sigma_i, b_k>|^2)$$
$$\leftrightarrow \forall_{k \in \{1,\dots,n\}} (\sigma_k = <\sigma_k, b_k>b_k)$$
$$\leftrightarrow \forall_{i \neq j} (\sigma_i \perp \sigma_j),$$

since the vectors b_1, \ldots, b_n are pairwise perpendicular to each other.

Question 5. Can we assert that

$$|\det(A)| \le \prod_{1}^{n} ||\tau_i||,$$

where τ_i are the row-vectors of A?

Blatt 2, Aufgabe 4

Next follows the material necessary to a complete presentation of the solution.

Definition 6. If $I \subseteq \mathbb{R}$ and $f: I \to \mathbb{R}^n$, then there are functions $f_1, \ldots, f_n: I \to \mathbb{R}$ such that we can write f as

$$f = (f_1, \dots, f_n),$$
$$f(t) = (f_1(t), \dots, f_n(t)),$$

for every $t \in I$. We say that f is differentiable at $t \in I$, if f_1, \ldots, f_n are differentiable at t and

$$f'(t) := (f_1'(t), \dots, f_n'(t)).$$

We say that f is differentiable on I, if it is differentiable at every $t \in I$.

It is straightforward to show the following proposition.

Proposition 7. Let $g, h : I \to \mathbb{R}$ be differentiable on $I, P \in \mathbb{R}^n$ and $\delta, \varepsilon : I \to \mathbb{R}^n$ differentiable on I. The following hold: (i) The function $\gamma : I \to \mathbb{R}^n$, defined by

$$\gamma(t) := g(t)P, \quad t \in I,$$

is differentiable on I and

$$\gamma'(t) := g'(t)P, \quad t \in I.$$

(ii) $\delta + \varepsilon$ is differentiable on I and

$$(\delta + \varepsilon)'(t) := \delta'(t) + \varepsilon'(t), \quad t \in I.$$

(iii) The function $f: I \to \mathbb{R}^n$, defined by

$$f(t) := \langle g(t), h(t) \rangle, \quad t \in I,$$

is differentiable on I and

$$f'(t) := \langle g'(t), h(t) \rangle + \langle g(t), h'(t) \rangle, \quad t \in I.$$

(iv) If $A \in M^n(\mathbb{R})$, the function $f: I \to \mathbb{R}^n$, defined by

$$f(t) := A\delta(t), \quad t \in I,$$

is differentiable on I and

$$f'(t) := A\delta'(t), \quad t \in I.$$

Definition 8. We denote by

$$S^{n-1} := \{ x \in \mathbb{R}^n \mid ||x|| = 1 \},\$$

the unit sphere of \mathbb{R}^n .

For example,

$$S^1 := \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \}$$

is the standard unit circle. In Exercise 1 of Blatt 2 we showed that S^1 is a compact subset of \mathbb{R}^2 , and similarly one shows that S^{n-1} is a compact subset of \mathbb{R}^n .

Definition 9. Let $f : \mathbb{R}^n \to \mathbb{R}$ and $P \in \mathbb{R}^n$. We say that P is a maximum for f on S^{n-1} , if $P \in S^{n-1}$ i.e., ||P|| = 1, and if

$$\forall_{x \in S^{n-1}} (f(x) \le f(P)).$$

Note that P is not necessarily unique, while unique is the maximum value f(P). If f is continuous, then f has always a maximum on S^{n-1} , since S^{n-1} is compact. The next proposition explains why the function considered in Exercise 4 of Blatt 2 is continuous, therefore it is meaningful to talk about its maximum value on S^{n-1} .

If (X, d) is a metric space, $(x_n)_{n=1}^{\infty} \subset X$ and $x \in X$, we use the notation

$$x_n \xrightarrow{n} x := \lim_{n \to \infty} x_n = x.$$

Proposition 10. (i) If $< .>: X \times X \to \mathbb{R}$ is a scalar product on the vector space X, then < .> is a continuous functions i.e.,

$$(x_n, y_n) \xrightarrow{n} (x, y) \Rightarrow \langle x_n, y_n \rangle \xrightarrow{n} \langle x, y \rangle,$$

for every $(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty} \subset X$ and $x, y \in X$. Note that

$$(x_n, y_n) \xrightarrow{n} (x, y) \Leftrightarrow ||x_n - x|| \xrightarrow{n} 0 \land ||y_n - y|| \xrightarrow{n} 0$$

(ii) If $A \in M^n(\mathbb{R})$, then the function $g : \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$g(x) := Ax,$$

for every $x \in \mathbb{R}^n$, is continuous.

(iii) If $A \in M^n(\mathbb{R})$, then the function $f : \mathbb{R}^n \to \mathbb{R}$ defined by

$$f(x) := < x, Ax >,$$

for every $x \in \mathbb{R}^n$, is continuous.

Proof. (i) With the use of the Cauchy-Schwarz inequality.(ii) First you need to unfold the multiplication Ax.(iii) Use (i) and (ii).

Theorem 11. Let $A \in S^n(\mathbb{R})$ and $f : \mathbb{R}^n \to \mathbb{R}$ defined by

$$f(x) := < x, Ax >$$

for every $x \in \mathbb{R}^n$. If P is a maximum for f on S^{n-1} , then P is an eigenvector of A.

Proof. We consider the set

$$Y = \{ y \in \mathbb{R}^n \mid < y, P \ge 0 \} = \{ \lambda P \mid \lambda \in \mathbb{R} \}^{\perp},\$$

which is a subspace of \mathbb{R}^n of dimension n-1, since

$$\dim(Y) + \dim(Y^{\perp}) = n$$

Let $y \in Y$ such that ||y|| = 1, and $\gamma_y : [-1, 1] \to \mathbb{R}^n$ is defined by

$$\gamma_y(t) := (\cos t)P + (\sin t)y, \quad t \in [-1, 1].$$

We show the following:

(i) γ_y(t) ∈ Sⁿ⁻¹.
(ii) γ_y(0) = P.
(iii) γ_y'(0) = y.
(iv) γ_y is a curve on Sⁿ⁻¹ passing through P and the direction of γ_y at 0 is the direction of y.

(i) We have that

$$\begin{aligned} ||\gamma_y(t)||^2 &= <\gamma_y(t), \gamma_y(t) > \\ &= <(\cos t)P + (\sin t)y, (\cos t)P + (\sin t)y > \\ &= (\cos^2 t)||P||^2 + (\sin^2 t)||y||^2 \\ &= 1. \end{aligned}$$

(ii) $\gamma_y(0) = (\cos 0)P + (\sin 0)y = 1P = P.$ (iii) Using Proposition 7 we get $\gamma_y'(t) = (-\sin t)P + (\cos t)y$, therefore $\gamma_y'(0) = y.$

(iv) This is (i)-(iii) in words.

Next we define the function $g: [-1,1] \to \mathbb{R}$ by

$$g(t) := f(\gamma_y(t)) = \langle \gamma_y(t), A\gamma_y(t) \rangle, \quad t \in [-1, 1].$$

By Proposition 7(iii) and (iv), and by the fundamental property of symmetric matrices

$$\langle x, Ay \rangle = \langle Ax, y \rangle$$

we have that

$$g'(t) = \langle \gamma_y'(t), A\gamma_y(t) \rangle + \langle \gamma_y(t), (A\gamma_y(t))' \rangle$$

$$= \langle \gamma_y'(t), A\gamma_y(t) \rangle + \langle \gamma_y(t), A\gamma_y'(t) \rangle$$

$$= \langle \gamma_y'(t), A\gamma_y(t) \rangle + \langle A\gamma_y(t), \gamma_y'(t) \rangle$$

$$= \langle \gamma_y'(t), A\gamma_y(t) \rangle + \langle \gamma_y'(t), A\gamma_y(t) \rangle$$

$$= 2 \langle \gamma_y'(t), A\gamma_y(t) \rangle.$$

Since f(P) is a maximum and $g(0) = f(\gamma_y(0)) = f(P)$, we get

$$g'(0) = g'(f(P)) = 0 \leftrightarrow 2 < \gamma_y'(0), A\gamma_y(0) >= 0$$

$$\leftrightarrow 2 < y, AP >= 0$$

$$\rightarrow AP \bot y, \quad y \in Y$$

$$\leftrightarrow AP \in Y^{\bot}$$

$$\leftrightarrow AP = \lambda P,$$

for some $\lambda \in \mathbb{R}$.

The next corollary is exactly Exercise 4 of Blatt 2.

Corollary 12. Let $A \in S^n(\mathbb{R})$ and $f : \mathbb{R}^n \to \mathbb{R}$ defined by

$$f(x) := < x, Ax >,$$

for every $x \in \mathbb{R}^n$. The maximum value of f on S^{n-1} is the maximal eigenvalue of A.

Proof. Let λ be a non-zero eigenvalue of A (it always exists, since A is symmetric). Let P is an eigenvector of A with eigenvalue λ such that ||P|| = 1 (why can I always tale $P \in S^{n-1}$?). Then we have

$$f(P) = \langle P, AP \rangle$$
$$= \langle P, \lambda P \rangle$$
$$= \lambda \langle P, P \rangle$$
$$= \lambda ||P||^{2}$$
$$= \lambda.$$

By the previous theorem the maximum of f on S^{n-1} occurs at an eigenvector, therefore by the previous equality this maximum value is the maximum eigenvalue of A.

II. Convexity of C²-functions (For Exercise 3, Blatt 7)

First we give some necessary definitions.

Definition 13. Let $A \in M^n(\mathbb{R})$ be a symmetric matrix. A minor Δ_k of order k of A is called principal, if it is obtained by deleting n - k rows and the n - k columns with the same numbers. The leading principal minor D_k of A of order k is the minor of order k obtained by deleting the last n - k rows and columns of A.

For example, if n = 2 and A is given by

$$A = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right),$$

it has the following principal minors $\Delta_1 = a$ and $\Delta_2 = c$ of order one and the principal minor $\Delta_2 = ac - b^2$ of order two. Moreover, it has the leading principal minor $D_1 = a$ of order one and the leading principal minor $D_2 = ac - b^2$ of order two.

Note that there are

$$\frac{n!}{k!(n-k)!}$$

principal minors of order k.

Theorem 14. Let $A \in M^n(\mathbb{R})$ be a symmetric matrix.

(i) A is positive definite if and only if $D_k > 0$, for all leading principal minors D_k of order k of A, where $1 \le k \le n$.

(ii) A is negative definite if and only if $(-1)^k D_k > 0$, for all leading principal minors D_k of order k of A, where $1 \le k \le n$.

(iii) A is positive semi-definite if and only if $\Delta_k \geq 0$, for all principal minors Δ_k of order k of A, where $1 \leq k \leq n$.

(iv) A is negative semi-definite if and only if $(-1)^k \Delta_k \ge 0$, for all leading principal minors Δ_k of order k of A, where $1 \le k \le n$.

Definition 15. If $U \subseteq \mathbb{R}^n$ is open, a function $f : U \to \mathbb{R}$ is called C^2 , if the partial derivatives on U

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$$

exist and are continuous.

Theorem 16. If $U \subseteq \mathbb{R}^n$ is open and $f : U \to \mathbb{R}$ is C^2 , then its Hessian matrix $H_f(x), x \in U$, is symmetric.

Theorem 17. Let $U \subseteq \mathbb{R}^n$ be open and convex, and let $f: U \to \mathbb{R}$ be C^2 .

(i) f is convex in U if and only if H_f is positive semi-definite in U.

(ii) f is concave in U if and only if H_f is negative semi-definite in U.

(iii) If H_f is positive definite in U, then f is strictly convex in U.

(iv) If H_f is negative definite in U, then f is strictly concave in U.

For the part (ii) of Exercise 3 one needs to use the following simple fact.

Proposition 18. Let $U \subseteq \mathbb{R}^n$ be convex and $f: U \to \mathbb{R}$ be continuous. If f is (strictly) convex in U, then f is convex in the closure \overline{U} of U.

Aufgabe 4, Blatt 7

Seien $p, q \in (1, +\infty)$, so dass

$$\frac{1}{p} + \frac{1}{q} = 1,$$

und seien $x_1, \ldots, x_k, y_1, \ldots, y_k \in \mathbb{R}$. Zeigen Sie, dass die folgenden Gleichungen stimmen.

(i)
$$\sum_{i=1}^{k} (|x_i| + |y_i|)^p = \sum_{i=1}^{k} (|x_i| + |y_i|)^{p-1} |x_i| + \sum_{i=1}^{k} (|x_i| + |y_i|)^{p-1} |y_i|.$$

(ii)
$$\sum_{i=1}^{k} (|x_i| + |y_i|)^{p-1} |x_i| \le \left(\sum_{i=1}^{k} (|x_i| + |y_i|)^p\right)^{\frac{1}{q}} \left(\sum_{i=1}^{k} |x_i|^p\right)^{\frac{1}{p}}.$$

(iii)
$$\left(\sum_{i=1}^{k} (|x_i| + |y_i|)^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{k} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{k} |y_i|^p\right)^{\frac{1}{p}}.$$

Proof. (i) First not that if $a, b \in \mathbb{R}$, then

$$\begin{aligned} (|a|+|b|)^p &= (|a|+|b|)^{p-1}(|a|+|b|) \\ &= (|a|+|b|)^{p-1}|a| + (|a|+|b|)^{p-1}|b|. \end{aligned}$$

Hence

$$\sum_{i=1}^{k} (|x_i| + |y_i|)^p = \sum_{i=1}^{k} [(|x_i| + |y_i|)^{p-1} |x_i| + (|x_i| + |y_i|)^{p-1} |y_i|]$$
$$= \sum_{i=1}^{k} (|x_i| + |y_i|)^{p-1} |x_i| + \sum_{i=1}^{k} (|x_i| + |y_i|)^{p-1} |y_i|.$$

(ii) The Hölder inequality is the following:

$$\sum_{i=1}^{k} |x_i y_i| \le \left(\sum_{i=1}^{k} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{k} |y_i|^q\right)^{\frac{1}{q}}.$$

Since (p-1)q = p, by Hölder inequality we get

$$\sum_{i=1}^{k} (|x_i| + |y_i|)^{p-1} |x_i| \le \left(\sum_{i=1}^{k} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{k} ((|x_i| + |y_i|)^{p-1})^q\right)^{\frac{1}{q}}$$
$$= \left(\sum_{i=1}^{k} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{k} (|x_i| + |y_i|)^{(p-1)q}\right)^{\frac{1}{q}}$$
$$= \left(\sum_{i=1}^{k} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{k} (|x_i| + |y_i|)^p\right)^{\frac{1}{q}}.$$

(iii) Because of (ii) we also have

$$\sum_{i=1}^{k} (|x_i| + |y_i|)^{p-1} |y_i| \le \left(\sum_{i=1}^{k} |y_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{k} (|x_i| + |y_i|)^p\right)^{\frac{1}{q}}.$$

Hence by (i) we get

$$\sum_{i=1}^{k} (|x_i| + |y_i|)^p \le \left(\sum_{i=1}^{k} (|x_i| + |y_i|)^p\right)^{\frac{1}{q}} \left[\left(\sum_{i=1}^{k} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{k} |y_i|^p\right)^{\frac{1}{p}} \right],$$

therefore

$$\frac{\sum_{i=1}^{k} (|x_{i}| + |y_{i}|)^{p}}{\left(\sum_{i=1}^{k} (|x_{i}| + |y_{i}|)^{p}\right)^{\frac{1}{q}}} \leq \left(\sum_{i=1}^{k} |x_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{k} |y_{i}|^{p}\right)^{\frac{1}{p}} \leftrightarrow \left(\sum_{i=1}^{k} (|x_{i}| + |y_{i}|)^{p}\right)^{1-\frac{1}{q}} \leq \left(\sum_{i=1}^{k} |x_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{k} |y_{i}|^{p}\right)^{\frac{1}{p}} \leftrightarrow \left(\sum_{i=1}^{k} (|x_{i}| + |y_{i}|)^{p}\right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{k} |x_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{k} |y_{i}|^{p}\right)^{\frac{1}{p}}$$

References

- [1] S. Lang: Linear Algebra, UTM, Springer, (2nd edition) 1986.
- [2] S. Lang Calculus of Several Variables, UTM, Springer, (3d edition) 1987.
- [3] M. O'Searcoid: Metric Spaces, Springer, 2007.