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1 “Postulates” of QM. . . and of classical mechan-
ics

1.1 An analogy

Quantum Classical

State Ψ ∈ H (general: density matrix ρ) Prob. distr. ρ(x, p) on phase space
Property “Observable”, lin.op. A on H Function A(x, p) on phase space

Measur.val. a Eigenvalues of A Function values of A(x, p)
Probab. for a

∑
|a〉∈Ker(A−a) |〈a|Ψ〉|2

∫
Ker(A−a) dx dp ρ(x, p)

After result a Vector Φa ∈ Ker(A− a) Prob. distr. φa(x, p) on Ker(A− a)

Dynamics(I) d
dtΨ(t) = −iHΨ(t) d

dtρ = LHρ (Lie-derivative)
Dynamics(II) Ψ(t) = UtΨ(0), 〈Ψ(t)|Ψ(t)〉 ≡ 1 ρ(t) = Φt[ρ(0)],

∫
dxdp ρ(t) ≡ 1

(I) and (II) are equivalent alternatives

1.1.1 |a〉 ∈ Ker(A− a)

By that we denote, somewhat loosely, a set of orthonormal eigenvectors to a
(possibly degenerate) eigenvalue a:

A|a, i〉 = |a, i〉a, (1)

where i labels the degeneracy. We recover a spectral projector for the eigenvalue
a of A:

Pa =
∑
i

|a, i〉〈a, i| (2)

Projector implies Pa = P 2
a and we will see that is a property that we expect of

any operation that represents a “measurement”. The probability for finding a
is therefor the expectation value of

〈Ψ|Pa|Ψ〉 =
∑
i

〈Ψ|a, i〉〈a, i|Ψ〉 (3)

After a measurement with result a we know the system is in a state from
the subspace onto which Pa projects, namely

Φa = PaΨ (4)

(up to normalization).

1.1.2 Lie-derivative and probability preserving flow

For the sake of making the analogy more striking, we have used the Lie-derivative,
which, however, for the present purpose can be re-expressed by the Poisson-
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bracket of Hamiltonian mechanics:

LXH
ρ = {H, ρ} =

∑
i

∂H

∂qi

∂ρ

∂pi
− ∂H

∂pi

∂ρ

∂qi
(5)

We see that, with the help of the Poisson-bracket, we can consider ordinary
functions on phase-space as “operators”, acting on other functions on phase-
space. Intriguing also the analogy:

{qi, pj} = δij (6)

The Lie-derivative LX is a more general object that can be defined for any
given vector field X on a manifold. This is a subject of differential geometry.
The differential equation defines a differential “flow” Φt that transports ρ across
the manifold. The specific form of the Poisson brackets ensures that the integral
over ρ — total probability — remains constant.

1.1.3 Classical uncertainty

The necessarily finite precision of measurement implies that ρ(x, p) always ex-
tends over a finite domain. This implies an “uncertainty principle” also for
classical mechanics. However, this is qualitatively different from quantum me-
chanics. For a more detailed discussion, see Asher Peres: Quantum Theory —
Concepts and Methods (highly recommended!)

The differential geometric analogy to for quantum mechanics can be carried
further by actually introducing quantization. See, for example, lecture notes by
Bates and Weinstein
(http://math.berkeley.edu/˜alanw/GofQ.pdf).

1.1.4 Differences between quantum and classical theory

Essential: two operators A,B do not commute in general, but A(x, p), B(x, p)
do
Unessential: Ψ are complex valued from a Hilbert space, ρ are real-valued and
normalized.
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2 Do we really need quantum mechanics?

[see Asher Peres: Quantum Theory — Concepts and Methods]
There is a persistent uneasiness in our perception of quantum mechanics. It

appears to be at odds with very fundamental elements of our concept of the
world. This was brought to a point by the famous paper by Einstein, Podolsky,
and Rosen, Phys. Rev. 47, 777 (1934).

Based on very plausible elements of our world concept, Bell [J.S. Bell, Physics
1, 195 (1964)] has derived his famous inequalities that put limits on the cor-
relations of completely separated systems. The inequalities are at odds with
quantum mechanics. The inequalities are also at odds with experiments — at
least one of the “plausible elements of our world concept” is wrong.

2.1 Strange observations

The strangeness of observations on small systems can be abstracted into the
following simple description.

Suppose there is a particle that occurs in two different colors, red and green
(r/g) and it can be hard or soft (h/s). We can distinguish these two properties

by two aparatuses, a “colorizer” Ĉ and a “statesplitter” S. On each aparatus
sends particles of a given property to one of its two exits, spatially separted.
We have some source for these particles, but do not know their status or color.

1. Ĉ0: We determine the color distribution by sending the particles through
Ĉ and we find a distribution, say, 50%:50%. We conclude that half of the
particles are red, half of them green.

2. We take the particles leaving one of the exits, say the r-exit, and send
it through another colorizer Ĉ1: now we find all that indeed all these
particles leave through the r-exit of Ĉ1: we have made a measurement,
we know the particles “are” red. Same works for g and, analogously, for
h/s.

3. We take the 50% r-particles leaving Ĉ0 and send them through Ŝ and,
say, we find half of these, i.e. 25% of the original sample, to be h.

4. We tentatively conclude that our ensemble of particles is uniformily dis-
tributed over the four possible states rh,rs,gh,gs and a sorting maching
consisting of a sequence ĈŜ should have at its 4 respective exits particles
with fully determined properties.

5. If we now check the colors, just to make sure, by sending each cohort
through Ĉ, we are dispointed: we find that the population splits again
into two different colors, obtaining a total of 8 separate cohorts. Denote
this sequence of measurements as ĈŜĈ.

6. We have already seen that ĈĈŜ = ĈŜ separates into only 4 different
cohorts, i.e. ĈŜĈ 6= ĈĈŜ
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7. Similarly, one finds ŜĈŜ 6= ŜŜĈ

8. Considering that Ŝ and Ĉ measure all properties of the particles, it appears
that ŜĈ 6= ĈŜ for any of the particles.

The above, of course, is describes an experiment of the Stern-Gerlach kind, with
Ĉ and Ŝ being two spin-measurements at non-parallel axes.

We will see later that the non-commutativity (8) allows to (almost) “boot-
strap” all that you know as standard quantum mechanics. The fact that there
are non-commuting “properties” in quantum systems is the only fundamental
distinction from classical mechanics.

A possible explanations for the observation is that our aparatuses are no
good, as each changes the property that it does not measure. If this were true,
we should try to improve the aparatuses. If we start to think that this is funda-
mentally impossible, as QM claims, we need to reconsider what is the reality of
a property that cannot, in principle, be observed independently. Occam’s razor
(English monk, died in Munich, 14’th century!) would advice us to do away
with this specific idea of independent properties.

2.2 The EPR paradox

Quantum mechanics claims that a particle does not “have” simultaneously a
momentum and a position, the complete information is in the wave function.

EPR construct a quantum mechanical state that supposedly shows (or de-
mands) that a system must “have” position and momentum simultaneously,
even if they may not be accessible to direct measurement.

There are two essential ingredients for setting up this paradox:

(1) Locality : the idea that large spatial separation can ensure independence
of two systems.

(2) Realism: an operational concept of “physical reality” which should allow
us to talk about which properties a system “has”.

Although (2) appears much more fuzzy, it seems that physicists’ suspicion is
also directed against (1).

We take QM at face value in the sense that two subsystems are represented
by any state in the tensor product space of the two spaces characterizing each
of the subsystems:

Ψ(a,b) ∈ Ha ⊗Hb = L2(dxa dxb,R3 × R3) (7)

while
Ψ(a) ∈ Ha, and Ψ(b) ∈ Hb. (8)

Suppose at some instant in time, you have a system of two particles in a
peculiar wave packet state:

Ψ = d(xa − xb − L)d(pa + pb) (9)
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where d is a function very well localized near 0 (approximating the δ function).
You might ask whether this is a state in the two particle Hilbert space.

It is: we can just change coordinates (xa, xb) → (xa − xb, xa + xb) and
Fourier transform with respect to xa + xb → pa + pb and then safely set up
our wavepacket as above. Sure, this is an “entangled” state Ψ(xa, xb), not just
the product of two single-particle states Ψ(xa, xb) 6= Ψ(a)(xa)Ψ(b)(xb), this is
essential for the argument.

This is a very formal argument with the purpose to show that the wave
function is a legitimate one within the formal framework of quantum mechanics.
It describes two particles about which we only know (1) they are separated by L
and (2) they move at equal momenta in opposite directions. The functions d can
be as close to a δ-function as we like, i.e. the error in each of these two pieces
of informations can be arbitrarily small. Quantum mechanics claims that this
contains the complete information about the system. We cannot determine the
system better, because through its wave-function we already know everything
about it. EPR introduce the idea of “physical reality” to reason that even if
this may be all that is accessible to us, there is more “reality” in such a system.

Element of physical reality: “If, without in any way disturbing a system, we
can predict with certainty . . . the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity” (Quote
from EPR).

A theory can only be legitimately called “complete”, if it includes all “ele-
ments of physical reality”.

The position of particle b is an “element of physical reality”: we can deter-
mine it by measuring the position of particle a. As the particles are arbitrarily
far separated, by assumption (1) we do this measurement “without in any way
disturbing” particle b. By the same argument, we could just as well measure
pa, and therefore also momentum pb is an element of physical reality. There-
fore, EPR reason, quantum mechanics is not “complete”: The word “physical
reality” implies that somehow particle b “has” a momentum pb and position xb,
which by quantum theory would be a meaningless statement.

The construction of the EPR paradox was criticized by Bohr on the basis
of the notion of “elements of physical reality”, as there is no measurement
that would provide us with both, xa and pa. This would deprive us of any
predictions for xb and pb simultaneously: so in which sense could both quantities
independently considered “real”? This may or may not be a justified argument.
If it were justified, the EPR paradox would be reduced to the problem of particle-
wave dualism, which I personally consider rather disquieting in the first place.
I am inclined to this point of view.

2.3 Bell’s inequalities

The assumption that somehow a particle does carry all properties that determine
an experimental outcome, has immediate consequences, even if we cannot find
any way to reveal the hidden properties directly: the simple assumption that
each particle carries with it everything that determines a measurement, leads to
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a prediction about the statistical correlations of measurements on independent
particles: these are Bell’s inequalities.

The fact that the particle in that sense “has” all properties that determine
a measurements means that these properties, in some sense, are real: these
properties are not generated by a given observation, they do not depend on our
intentions, or any other thing outside the particle. They will invariably cause a
well-defined response of the apparatus to the particle.

“Independent” is important here. In physics we believe that sufficient sepa-
ration in space ensures independence, so if we require the hidden properties to
be local, independence is ensured. As you know, Bell’s inequalities are violated
in experiment. The assumption that a particle has properties that determine
its behavior fully, is at variance with observation.

Note that, giving up locality is to open yet another Pandora’s box: we start
having a problems to split the universe into reasonably independent parts, or
speak of something like a “particle” (local by definition), or, with too naive form
of non-locality (”geisterhafte Fernwirkung”) problems with causality.

Bell, instead of discussing the specific form of quantum theory, he set up his
famous inequalities based on pretty much the two assumptions underlying the
EPR criticism of quantum theory. He then shows that for theories based on these
assumptions some inequalities hold that are violated by quantum mechanics. It
appears that they also are violated by experiments.

Except for locality, which seems to be a rather clear cut concept, the essence
of Bell’s realism is that it is meaningful to speak of a system to “have” a set of
properties irrespective of whether we can measure them simultaneously or not,
similar to Einstein’s “element of physical reality”.

Let us assume that we have two particles that are well separated such that
manipulations (or measurement) on one particle cannot influence measurements
on the other (“locality”, requires space-like separation of the two measurement
events in the sense of special relativity). Let us further assume that each particle
“has” an internal state that completely determines the outcome of any measure-
ment made on that particle (“realism” or “determinism”). A “particle” here is
local by definition (different from a “wave”, that is defined by its variation over
space). It does not matter whether we can in principle measure the complete
information of that internal state or not.

For an example we imagine the two particles to be photons originating from
a common source. We measure passage of the photo through a polarizer with
two possible outcomes: 1 for pass, -1 for do not pass. We do a series of measure-
ments j = 1, 2, 3, . . ., on these photons. We assume in the jth measurement the
first particle has the internal state λj and particle two has µj , which uniquely
determine the outcome of any possible measurement on the respective particle.
Each λj is a sufficiently large set of numbers to fully characterize the internal
state of the first particle, likewise µj for the second particle. The internal states
are also called “hidden variables”. As by assumption each particle has its own
λj and µj we call them local hidden variables. In particular, the internal states
would determine which result, +1 or −1, we would find if we measure polariza-
tion in arbitrary directions ~α, ~β or ~γ. Denote the outcome of measurements in
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the corresponding directions on the first particle by the functions a(λj), b(λj),
c(λj), and for the second particle a(µj), b(µj), c(µj). With the restriction to
values ±1 this looks like we are extracting a very small part of the internal
information, but maybe that is just what what typically happens in the lab.

Now assume that we generated the two particles in a correlated fashion, such
that we know that for any measurement c(λj) = c(µj). This can be achieved
e.g. with photons that for symmetry reasons must have parallel polarization.

For the first particle, we use two directions of the polarizer ~α and ~γ, for the
second particle we use ~β and ~γ. We call the measurement results a(λj), b(µj),c(λj) =
c(µj) for polarizer angles α, β, γ, respectively. The possible outcomes for all
measurements are ±1 in quantum mechanics; in our general model think of a
digital switch that can only show these two results. We could measure c on one
particle, and we know for sure, by construction of the source, that the outcome
would be the same for the other particle. In practice, the source is often para-
metric down-conversion of photons, where symmetries guarantee an identity of
that kind. (If you do not like this reasoning, there is a slightly more complex
inequality by the name CHSH that does not use this, but rather relies on 4 dif-
ferent measurement angles.) The potential measurement results for each photon
pair with internal states λj and µj fulfill

1− b(µj)c(λj) = +a(λj)[b(µj)− c(µj)] (10)

or = −a(λj)[b(µj)− c(µj)] (11)

which can be easily verified by inserting the values ±1 for b and c.
Note that we cannot actually measure the b(µj)−c(µj) unless we assume that

we do not disturb µj by our measurement of b(µj). However, with a polarizer
we do disturb the measured system. This is sometimes called “counterfactual
reasoning”. It assumes that a property is somehow “there”, even if we cannot
give a prescription how to determine it. It reasons that if we were able to do
that measurement, we would get the inequality for each j. This is similar to the
EPR concept of “physical reality”: it imagines something could be done, even
if nobody can tell us how.

Now we take the average value of these functions over many measurements
j = 1, 2, 3, ..., i.e. sum up all potential results and divide by the number of
measurements. As the left hand side is ≥ 0, while the right hand side changes
sign, we find

1− 〈bc〉 ≥ 〈a[b− c]〉 and [1− 〈bc〉] ≥ −〈a[b− c]〉 (12)

or
|〈ab〉 − 〈ac〉| ≤ 1− 〈bc〉. (13)

This is Bell’s inequality.
We cannot measure 〈ab−ac〉, but we may measure the “correlation func-

tions” 〈ab〉 and 〈ac〉 separately. If the distribution of λj and µj is statistical,
random, we can split our measurement indices j = 1, 2, 3, . . . into three subsets
J and K and L, compute the average values for each subset 〈ab〉J , 〈ac〉K and
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〈bc〉L and assume 〈ab〉J ∼ 〈ab〉 and likewise for 〈bc〉 and 〈ac〉. Randomness of
the “internal states” λj and µj may be ensured by randomly selecting the sub-
sets J , K and L. This hypothesis may be experimentally corroborated by just
extending the measurement series to ever larger numbers. Bell’s inequality puts
a rigorous bound on the correlation functions of different correlation functions
of the same observable.

In view of this statistical argument in is difficult to see what could be wrong
with counterfactual reasoning; but of course, we are here at the very limits of
our imagination and logics, far form the terrain that is secured by everyday
experience. Therefore we need to proof statements, not ask, why they should
be wrong. Thus, it remains a sore point in this whole chain of reasoning. It may
limit the validity of the arguments to models, where in principle we can measure
b(µj)− c(µj). After all, what is the point of talking of a property, if there is no
effect which can be identify as an unambiguous consequence of this property?
In the end, connecting an effect to a property is what we call a measurement.
A property that does not lead to any effect ever, isn’t a property. Permission
for counterfactual reasoning after all is somehow subsumed in the “reality” of
the “hidden” variables.

2.4 The correlation of polarization measurements

The crucial tests of the assumptions of “physical reality” and locality of nature
to date were all performed with light, i.e. with photons. We therefore briefly
discuss the quantum mechanical polarization measurements of photons.

Polarization state of a photon: we can measure the polarization of a photon
by inserting a polarizer into its path of propagation, say, along direction z. Then
the photon can have polarization directions in the xy-plane. A polarizer lets the
photon pass, if the polarizer’s direction is parallel to the polarization direction of
the photon, it does not let it pass, if the polarization direction is perpendicular
to the direction of the polarizer. After the polarizer we know the polarization
direction of the photon to be the same a the polarizer’s: measuring a photon
behind a polarizer means to project the wave function on the polarization state
in direction of the projector.

If |x〉 and |y〉 designate polarization states in the respective directions, a
polarization measurement with a polarizer in direction ~α = (cosα, sinα, 0) is
represented by the operator

Pα = (|x〉 cosα+ |y〉 sinα)(cosα〈x|+ sinα〈y|) (14)

This is manifestly a projector with eigenvalues 0 and 1. For convenience, we
will work with the derived operators

σα = 2Pα − 1 = (|x〉〈x| − |y〉〈y|) cos 2α+ (|x〉〈y|+ |y〉〈x|) sin 2α (15)

with eigenvalues ±1. This can also be written in matrix form

σα =

(
|x〉
|y〉

)
·
[(

1 0
0 −1

)
cos 2α+

(
0 1
1 0

)
sin 2α

](
〈x|
〈y|

)
(16)
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With respect to the basis |x〉, |y〉 these operators are represented by the Pauli
matrices σα = cos 2ασz + sin 2ασx and we see that polarization measurement
can be mathematically mapped onto measurements of spin directions in the
xz-plane.

Problem 2.1: Verify the mathematical form of the observable for polariza-
tion measurement used for discussing the violation of Bell’s inequalities:

Pα = (|x〉 cosα+ |y〉 sinα)(cosα〈x|+ sinα〈y|) (17)

σα = 2Pα − 1 = (|x〉〈x| − |y〉〈y|) cos 2α+ (|x〉〈y|+ |y〉〈x|) sin 2α (18)

and finally

σα =

(
|x〉
|y〉

)
·
[(

1 0
0 −1

)
cos 2α+

(
0 1
1 0

)
sin 2α

](
〈x|
〈y|

)
(19)

Problem 2.2: Show that the expectation value for a simultaneous measure-
ment of polarization for a state |e〉 := [|x〉 ⊗ |x〉+ |y〉 ⊗ |y〉]/

√
2 is

〈e|σα ⊗ σβ |e〉 = cos 2(α− β). (20)

Assume you have a source of light that emits two photons at a time and that
is rotationally invariant. Such a source could be an atom in an excited s-state
(L = 0) that decays to its L = 0 ground state by emitting two photons. As the
atomic initial state is rotationally invariant, the total system after decay must
also be rotationally invariant. And as the final atomic state is L = 0 also the
state of the photons must be L = 0. This is a requirement of symmetry only.

Assume we measure only photons emitted in a well-defined direction (call
it the z-direction) from the atom at two far separated locations A and B. A
complete basis for the polarization states of the two photons is |x〉 ⊗ |x〉, |x〉 ⊗
|y〉, |y〉⊗|x〉, |y〉⊗|y〉. As the total state is rotationally invariant, it is in particular
invariant under rotations around the z-axis, which leave only the “entangled”
two-photon polarization states

|x〉 ⊗ |x〉+ |y〉 ⊗ |y〉 and |x〉 ⊗ |y〉 − |y〉 ⊗ |x〉 (21)

where the latter has odd particle exchange symmetry. That means that in two
photons emitted from a rotationally invariant process have parallel polariza-
tions. If we measure the polarization of one we can infer the polarization of the
other. This discrete quantity now replaces what was momentum in the original
formulation of the EPR paradox.

2.5 Experimental test of Bell’s inequalities

It is easy to see that the expectation value of the photon-pair state for two
polarizers at the angles α and β

[〈x| ⊗ 〈x|+ 〈y| ⊗ 〈y|]σα ⊗ σβ [|x〉 ⊗ |x〉+ |y〉 ⊗ |y〉] = cos 2(α− β) (22)
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Be that as it may, Bell’s inequality relates expectation values of measure-
ments to each other that can be computed by quantum mechanics. When we
choose e.g. angles α = 0◦, β = 30◦ and γ = 60◦ we violate Bell’s inequality

| cos(−60◦)− cos(−120◦)|+ cos(−60◦) = |1/2 + 1/2|+ 1/2 = 3/2 > 1 (23)

This would be bad for quantum mechanics, if experiments had not found the
same kind of violation of Bell’s inequality. So, it is bad for our preferred,
intuitive, and only known way of thinking about reality.

2.6 CHSH inequality

The actual experiment [Aspect et al., Phys. Rev. Lett. 49, 1804 (1982)] uses
four different angles α, β, γ, δ and the inequality

|〈ab〉+ 〈bc〉+ 〈cd〉 − 〈da〉| ≤ 2 (24)

which was found to be violated by 5 standard deviations, but in perfect agree-
ment with the QM prediction.

The CHSH inequality is named after the authors Clauser, Horne, Shimony,
Holt (Phys. Rev. Lett. 1969). It uses 4 different measurement arrangements
(angles)

(a+ c)b+ (a− c)d ≡ ±2 (25)

Here, the quantum prediction for angles differing pairwise α, β β, γ, and γ, δ
by 22.5o is

| cos 45o + cos 45o + cos 45o − cos 135o| = 2
√

2. (26)

2.7 Experiment by Alain Aspect (1982)

The final breakthrough, as the experiment could be performed using non-blocking
polarizers, where the photon polarization would be determined without destroy-
ing the photon. As an atomic photon source, Ca40 where a two-photon transi-
tion from the 4s21S0 into the 4p21S0 atomic state was driven using two lasers
with 406 and 581 nm wave length. The two states are both spin singlet and
rotationally invariant states. The spin singlet ensures the comples system is ro-
tationally invariant and thus the above reasoning for the symmetry of emitted
photons applies. The fluorescence de-excitation goes through emission of one
photon at 551,3 nm into the 4s4p1P1 state and then further into the initial state
by emitting a 442,7 nm photon.

These optical photons can be efficiently split into two polarization compo-
nents |x〉 and |y〉 using a polarizing beam splitter consisting of two prism stuck
together with a thin dielectric film between, causing reflection of the polarization
component parallel to the surface and transmission of the other.

The find the expectation value

S = 2.697± 0.015 (27)
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compared to a QM value
S = 2.7± 0.05. (28)

Note that the theoretical value includes corrections for detection efficiency and
a small uncertainty due to the asymmetry of transmission and reflection in the
polarimeters. (The ideal theoretical value is 2

√
2 ≈ 2.82.) A flagrant violation

of Bell’s inequalities.

2.8 Conclusions

It appears that “local realism” is not a property of the world. The violation of
Bell’s inequalities has been confirmed many times since the first experiment, and
with even more striking error margins. There is a struggle to close the remaining
“detection efficiency” loophole and to get rid of the “fair sampling” assumption.
Note that these appear rather contrived objections to the reasoning. Yet, of
course, they need to be eliminated.

This is where we stand today. We do not know whether “realism”, the idea
that a system somehow “has” all properties that we can measure, and has them
simultaneously, or the concept that far separated systems are independent of
each other, or both are wrong. Certain explicit formulations of non-local the-
ories have been ruled out by an experiment 2007, but this is not a universal
statement for all non-local theories. Currently there seems to be popular in-
clination to think of the world as being inherently non-local. Thinking of the
possible implications of this for our ability to understand and predict events
makes me shudder. The alternative of it being not “real”, i.e. the properties of
things not being only “their” properties but rather a joint product of “us” and
“them”, is not much of a consolation. I dare say that all of mankind’s thinking
is based on the concept of objects “out there” which we can perceive and about
which we can think, but which have their “nature” or “reality” independently
of us. Philosophers have always known that this may be an untenable position
because the idea is very difficult to make precise. However, they have not offered
useful alternatives. Now we have measurements that seem to tell us that the
idea is wrong. Quantum mechanics may be right. But who understands it? So
how shall we form a correct image of reality?
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