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Literature

The following discussion is largely based on (but brutally abbreviated here):
F. Strocchi, Mathematical Structure of Quantum Mechanics
W. Thirring, Mathematical Physics III: Quantum Mechanics
J.v. Neumann: Mathematische Grundlagen der Quantenmechanik

1 The C∗-algebra approach to classical and quantum physics

In this section I will expose the single and only relevant difference between classical and quantum mechan-
ics: quantum mechanics has non-commutative observables. The rest is only mathematical apparatus. In
particular, the Hilbert space can be generated using two ingredients: the assumption that observables
are algebraic objects and the concept of a “state” of a system.

1.1 Algebraic operations with lab-experiments

The properties of systems such as position, momentum and energy are abstractions from actual experi-
ments. We can perform algebraic operations on experiments by adding and multiplying the numbers we
find in them.

In that sense experiments can be considered elements from a (C∗-) algebra. Very loosely, a C∗-
algebra is an algebra that has a ∗-operation analogous to complex or hermitian conjugation and where
every element has some finite norm. The norm has the standard properties of a norm. A precise definition
will be given after the motivation.

1.1.1 Observables

The idea of an “observable” is that is represents an actual experiment. In that sense, a classical observable
is a function on phase space that can be realized in one specific experimental setup. Its value A(~r, ~p) is
the number extracted from the measurement, given the system is at the phase-space point ~r, ~p ∈ Γ, e.g.
Γ = R2n The requirement of realization in an experiment restricts observables in this sense to bounded
functions:

||A|| := sup
Γ
|A(~r, ~p)| <∞, (1)

which also defines our norm. We see that this operational definition excludes much of what we would
consider “properties” of a system (position, momentum, energy, etc.), but it includes everything we could
ever measure in an experiment, which could be considered the more scientific (in an empirical sense)
statement. We will re-encounter this fundamental problem of abstraction, when we will deal with the
unbounded operators of quantum mechanics.

The abstract “properties” of a system can be considered as limits of the observables. These limits may
exist, but they will not in general be themselves observables (in particular not be bounded), because the
series is not convergent in the supremum norm. If a sequence of measurement arrangement is convergent,
then, by the completeness of the C∗ algebra, the limit is also an bounded and may/should have an
experimental realization.

1.1.2 States

As an idealization, the state of a classical systems is fully defined by a point in Γ. However, this is not
what any scientist ever has been able to observe. If we restrict ourselves to what we can really do, we
arrive at a slightly different “operational” definition of a state: It is a procedure that we can repeat many
times with what we consider high precision. That “preparation procedure” defines what we call a state.
Repeated observations of the same observable using the same preparation procedure will give a certain
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distribution of observed values. We can compute the expectation value of the observables for a given
preparation procedure ω as the average over many measurement results ai:

〈A〉ω =
1

N

N∑
i=1

ai ∈ R (2)

The individual value of one measurement is of little significance because of the statistical uncertainty of
our preparation procedure.

A “high precision” measurement (for the purpose of a given experiment) is one where the measurement
values scatter little, e.g. when the variance is small and higher powers of the expectation values obey

〈An〉 ≈ 〈A〉n (3)

A state is a functional on the observables, more generally on the C∗-algebra that contains the ob-
servables: it maps any element A ∈ A into 〈A〉ω ∈ C, in physics terms: the state (=preparation) of the
system determines the average value of a measurement (and also its variance etc.). We usually construct
observables as to be real numbers.

In our specific example we see three properties that we will consider the defining properties of a state,
linearity, normalization 〈1〉ω = 1,∀ω, and positivity, i.e. that a state will give non-negative expectation
value for any function that has all non-negative values:

Definition: State of a system
A state is a normalized positive linear functional on the the C∗ algebra of bounded functions.

1.2 Justification of the C∗ algebraic nature of observables

Above we have seen that classical mechanics is “embedded” in a C∗ algebra, i.e. any observable that
corresponds to realizable experiments can be considered as an element in a larger structure, which forms a
C∗ algebra. The assumptions underlying this are very “natural”, in the sense that this is how we perceive
our experimental procedures. However, one must warn already here, the C∗ structure cannot be fully
motivated by such considerations: it may well be that there is a meaningful (maybe even the ultimately
correct?) description of nature that cannot be embedded into a C∗ algebra but still fulfills all procedural
requirements (linearity, normalizability, etc.) that we put a priori into a scientific theory. The Hilbert
space formulation follows from the C∗-structure and the definition of states. It is a convenient technical
representation of the algebra and it is guaranteed to have the essential properties of meaningful theory.
There is further structure, though, not required by reason a priori. Therefor this specific form may not
be the only choice. However, we find to this point no statements in the theory that would contradict
experiment.

We will now justify a few aspects of the algebraic form of the physical theory and than make the leap
of faith that it is best to realize these properties as part of a C∗ algebra. Much of the justification was
already anticipated in the discussion of the classical mechanics case.

1.2.1 Observables

An observable A is an experimental apparatus that produces real numbers a ∈ R as its results. Clearly,
we can, e.g. just by changing measurement units, multiply an observable by a real number λ. We can
form powers of the measurement results by forming the power of the result a. We can define an observable
A as positive if any measurement results in a non-negative number a.

1.2.2 State

A state ω of a physical system is an experimental procedure that can be repeated an arbitrary number
of times. The expectation value for the results is a (real) number ω(A) for any observable. In the sense
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of empirical science, a state is completely characterized, if we know the expectation values of all possible
observables. Two states that give the same result for anything we measure are plausibly called equal:
there is simply no experiment that can distinguish them. By its definition as the average over repeated
measurements, we find the properties for a given observable A:

ω(λA) = λω(A), ω(Am + An) = ω(Am) + ω(An), (4)

where the power is simply formed by replacing every measurement value in the ai by ami .

1.2.3 Normalization and positivity of a state

Normalization and positivity (for A := B2)

ω(1) = 1 and ω(A) = ω(B2) ≥ 0 (5)

follow easily.

1.2.4 Equality of observables

We can reason in a similar way for the observables: any two observables, that give the same result for all
possible states defined are equal:

ω(A) = ω(B) ∀ω ↔ A = B. (6)

Here we assume that a state can be applied to all observables. This is not completely obvious if we
adhere to a strict operational description as a certain way of preparing a systems may be incompatible
with certain ways of measuring things. Of course, as soon as we abstract the procedure into some internal
property of the “system” we should be able to perform any possible measurement on it.

1.2.5 C∗-structure

Linear structure and norm can be plausibly deduced along the same lines (see Strocchi): for the linear
structure, we use that we call two observables equal, when their expectation value for all states ω is equal.
This, in particular, means that we know an observable, if we know its expectation value for all states

A+B = C : ω(C) = ω(A+B) ∀ω (7)

We can define the norm of an observable as “the largest possible expectation value in any experiment”.
As it is not a priori obvious whether this largest value will ever be actually assumed by for a single state,
we use the supremum sup rather than the maximum:

||A|| = sup
ω
ω(A). (8)

Problem 1.1: Show that this has the properties of a norm in a linear space.
One may ask, however whether the observable C = A + B can be mapped onto a single realizable

experiment. If not, it may define an object that does not comply with the original definition of observables.
Our forming of powers of C relies on this operational prescription: we need to take powers of the individual
measurement results ai + bi. If we cannot obtain ai and bi for the same individual measurement i, we
have no procedure to form a power of C by averaging over powers of ci = ai + bi.

At this point we withdraw from the real world of experimental arrangements into mathematics by
assuming that, for whichever are the mathematical objects that represent an observable C, the powers of
C can be formed in a meaningful way. This is certainly the case in classical and quantum mechanics, but
we see no reasons for considering it an a priori necessity of a theory describing experimental practice.
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If we accept the assumptions so far, we can make a few more steps to prove the triangular inequality
for the norm, but this is where our beautiful story ends. We terminate our motivation here and assume
that the observables are embedded in a C∗-algebra. This is the case for classical and quantum mechanics,
but it is not a requirement for mapping measured numbers into a mathematical structure.

Our goal is not to “deduce” quantum mechanics, but a different one: we will show that the structure
of a C∗-algebra together with a state generates a Hilbert space and that, actually, any Hilbert space with
a set of (bounded) observables on it is equivalent to a sum of such Hilbert space representations for states
ωi. The states may be infinitely many. This structure comprises both, quantum and classical mechanics.
Classical mechanics is the special case, where the algebra is commutative.

1.2.6 Basic structure of a physical theory

1. A physical system is defined by a C∗-algebra that contains all its observables

2. A state is a positive normalized linear functional on the C∗ algebra

3. An observable is fully defined by its expectation values on all possible states. Conversely, a state is
fully defined by its expectation values for all elements of the algebra.

Note:

• There is a duality between states and observables, as we know it from linear functionals on vector
spaces.

• In reality, we know exactly two theories that comply with this definition: classical and quantum
mechanics. In case of classical mechanics, it appears to be an overblown definition, but it precisely
fits quantum mechanics as we know it.
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2 C∗ algebra

Definition: Algebra
An algebra over the complex numbers C:

1. A is a vector space

2. there is an associative multiplication: (P,Q)→ O =: PQ ∈ A with the properties

P(Q1 + Q2) = PQ1 + PQ2 for P,Q1,Q2 ∈ A
O(PQ) = (OP)Q

P(αQ) = α(PQ) for α ∈ C
∃1 ∈ A : 1Q = Q1 = Q

Definition: ∗-Algebra
An algebra is a called a ∗-algebra if there is a map ∗ : A → A with the properties (PQ)∗ = Q∗P∗,
(P + Q)∗ = P∗ + Q∗, (αQ) = α∗Q∗, Q∗∗ = Q. The element Q∗ is called the adjoint of Q.

Obviously this abstracts what you have encountered as “hermitian conjugate” of a matrix or an op-
erator.

Definition: C∗-Algebra
A *-algebra A is called C∗ if it has the following properties:

1. There is a norm 0 ≤ ||Q|| ∈ R with the usual properties (positivity, compatible with scalar multi-
plication, and triangular inequality) of a norm on a vector space and in addition

||PQ|| ≤ ||P|| ||Q||
||Q∗|| = ||Q||
||QQ∗|| = ||Q|| ||Q∗||
||1|| = 1.

2. The algebra is complete w.r.t. to that norm (Banach space).

2.1 Classes of elements of a C∗ algebra

1. Hermitian: Q∗ = Q

2. Unitary: Q∗Q = QQ∗ = 1

3. Normal: Q∗Q = QQ∗

4. Projector: Q2 = Q = Q∗ (more strictly: orthogonal projector)

5. Positive: ∃C ∈ A : Q = C∗C
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2.2 The spectrum of A ∈ A

Definition: Resolvent set and spectrum
The set

z ∈ C : ∃(A− z)−1 (9)

is called resolvent set of A. Its complement σ(A) is called the Spectrum of A.

2.2.1 Series expansion of the resolvent

(z −A)−1 = z−1
∞∑
n=0

(z−1A)n. (10)

That series, depending on the size of |z|, may or may not be convergent.

2.2.2 The resolvent set is an open set

Let z0 be in the resolvent set and let |z − z0| < ε < 1/||(z0 −A)−1||. Then the formal series

(z −A)−1 = (z − z0 + z0 −A)−1 = (z0 −A)−1
∞∑
n=0

{
(z − z0)(z0 −A)]−1

}n
(11)

is norm-convergent and therefore has its limit in the C∗ algebra. To see norm-convergence, we need to
the estimate

||
N∑
n=0

[(z − z0)(z0 −A)]−1|| ≤︸︷︷︸
triangular

N∑
n=0

||[(z − z0)(z0 −A)]−n|| (12)

≤︸︷︷︸
||PQ||≤||P||||Q||

N∑
n=0

|(z − z0)|n ||(z0 −A)]−1||n (13)

and choose |z − z0|||(z0 −A)−1|| < 1 or z ∈ Bε(z0) with ε = 1/||(z0 −A)−1||

2.2.3 Algebra element properties and spectrum

There is a close relation between the class of an element and its spectrum. In fact, the spectral properties
fully characterize hermitian, unitary, positive and projector elements, if we assume that Q is normal. You
can study this as an exercise (with instructions).

2.3 Problems

Continuity is an essential property of maps, as it allows us to take limits, i.e. to approximate, e.g. an
idealized measurement by a sequence of increasingly accurate measurements and assume that the perfect
measurement would be close to our “increasingly accurate” measurements. In a sense, it is the idea of
“continuity” makes the concept of “accuracy” meaningful.

For functions f between sets with a norm, continuity can be best understood as “the limit of the
function values is the function value of the limit”, i.e.

f is continuous ⇔ f(xn)→ f(x) if xn → x. (14)

This is not the most general definition of continuity, but it serves all our purposes and matches intuition.
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A bounded operator is an operator with finite operator norm (problem above). In linear spaces,
boundedness of a linear map and continuity are intimately related.

Problem 2.2: Boundedness and continuity Let E and F be two normed linear spaces and

let B̂ : E→ F be a linear map. Show that the following statements are equivalent:

1. B̂ is continuous at the point 0 = x ∈ E

2. B̂ is bounded

3. B̂ is continuous everywhere

w.r.t. to the supremum-norm.

Hint: This is a standard result for linear maps. For those who have not been exposed to it, here a few
hints: show 1⇒ 2⇒ 3⇒ 1. In the first step use the fact that in a linear space, any vector ||x|| = 1 can

be scaled to length ε. Apply this to ||B̂x||/||x|| that appear in the definition of the norm. For the step
bounded⇒ continuous, observe that ||B(xn−x)|| < ||B||||xn−n|| by construction of the operator norm.

Problem 2.3: Positivity Show that for hermitian A the element ||A||1±A is positive .
Hint: Write ||A|| ± A = C2 for hermitian C and explicitly construct C using the fact that there is a
convergent Taylor series for

√
1± x. Use the properties of the algebra to show the series converges with

a limit in the algebra.

Problem 2.4: Positivity and boundedness Show that any positive linear functional on a
C∗ algebra is bounded.
Hint: Use Cauchy-Schwartz and positivity of ||A|| ±A for hermitian A.

Problem 2.5: Resolvent Let A ∈ A be an element of a C∗ algebra. Then also A− z ∈ A, where
we use the notation A−z for A−z1, z ∈ C. We call (A−z)−1 : (A−z)−1(A−z) = (A−z)(A−z)−1 = 1
the resolvent RA(z) of A at z if it exists and (A− z)−1 ∈ A.

(a) Show that the formal series expansion

(z −A)−1 = z−1
∞∑
n

(Az−1)n (15)

converges for |z| > ||A||.
Hint: Use the properties of the norm on a C∗-algebra to show the the series of finite sums is
Cauchy.

(b) Conclude from the above that (A− z)−1 ∈ A for ||A|| < |z|.

Problem 2.6: Classes of algebra elements and spectrum Normality is an important
property that is not at all guaranteed.

(a) Using the C∗ algebra of n× n matrices, give an example (the example ;-)) of a non-normal matrix.

Properties like hermiticity, projector, unitarity, positivity of elements of a C∗ algebra are reflected in the
spectra of the respective elements. This is trivial once we can use the spectral theorem, but it can be
proven directly as well. For the following cases this can be done without any particular tricks:

(b) σ(A∗) = σ(A)∗

Hint: Of course, you should prove this for the complement of the spectrum, the resolvent set, first.
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(c) σ(U) ⊂ (unit circle) for U unitary.
Hint: Determine ||U || and ||U−1|| and Taylor-expand (U − z)−1 and (U∗ − z∗)−1 = (U−1 − z∗).

The next to cases need some tricks, that are hard to guess. For the enthusiasts, try taking advantage
of the hints.

(d) σ(P ) ⊂ {0, 1} for P (orthogonal) projector.
Hint: Study Ra = (1 + P/(a− 1))/a, which exist for all a 3 0, 1.

(e) σ(A) ⊂ R for A hermitian.
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2.4 State on a C∗ algebra

A linear functional ω on a C∗ algebra A is called positive if ω(A∗A) ≥ 0∀A ∈ A. If ω(1) = 1, we call it
a state.

Examples

1. In quantum mechanics: 〈x|Ax〉

2. In classical mechanics:
∫

Γ
dxdpρ(x, p)A(x, p) for ρ ≥ 0.

3. On matrices, Tr ρA for a “density matrix” ρ, i.e. a positive matrix (equivalent hermitian with
non-negative eigenvalues) with Tr ρ = 1.

4. Positive measures on function spaces

2.4.1 Notes

1. There holds a Cauchy-Schwartz inequality, i.e.

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B) (16)

This will be left to you as an exercise.

2. Positivity of ω implies its boundedness.

3. As always with linear maps, boundedness implies continuity. Intuitively, if two vectors do not differ
too much, ||P −Q|| < ε, the also the images do not differ too much: ω(P −Q) ≤ Cω||P −Q||, which
is the motivation for general definition of continuity: the pre-image of any open set is an open set.
(See exercises).

Problem 2.7: Cauchy-Schwartz Prove the generalized Cauchy-Schwartz inequality for states
ω

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B) (17)

Hint: This can be modeled after one standard form of proving Cauchy-Schwartz. Follow these steps:
(a) study 0 ≤ ω((A∗ + B∗)(A + B)), (b) show that ω(A∗B) can be considered as real without loss of
generality; (c) use positivity of ω to show that ω(A∗B) = ω(B∗A), (d) look at the square of (a).

2.4.2 The states form a convex set

ω = αω1 + (1− α)ω2, α ∈ [0, 1], ω1, ω2 states (18)

is a state. They do not form a linear space, e.g. 2ω is not a state, if ω is one.

2.4.3 Pure and mixed states

There are special states, the pure states, which cannot be written as a linear combination of states.
Conversely, one can prove that any state can be written as a convex combination of pure states:

ω =
∑
i

αi~ui,
∑
i

αi = 1, νi pure (19)

States that are not pure are called mixed.
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We know and we will provide the prove later that a quantum mechanical wave function ψ defines a
pure state ωψ

ωψ(Â) = 〈ψ|Â|ψ〉.

We see that this, according to our general principles, is not the only possibility for a state. The more
general mixed states come by the name of density matrix that is

ωρ =
∑
i

ρiωψi
,
∑
i

ρi = 1, (20)

with the action
ωρ(Â) =

∑
i

ρiωψi(Â) =
∑
i

〈ψi|Â|ψi〉 (21)
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3 Gelfand isomorphism

The essence of this isomorphism is that Abelian C∗ algebras are isomorphic to algebras of functions and
further that the algebra spanned by {1, A,A∗} for normal A is equivalent to the functions over σ(A).
This contains the essence of the spectral theorem for normal bounded operators.

Definition: Abelian algebra
is an algebra where the product is commutative.

In general, in mathematics, the term “homomorphism” designates a map from algebra into another
that preserves the algebraic operations in the sense that the image of a sum is the sum of the images,
the image of a product is the product of the images. For *-algebras, one defines the

Definition: Algebraic *-Homomorphism
A map π : A → B between *-algebras A,B is called *-homomorphism if

1. π(AB) = π(A)π(B)

2. π(αA+ βB) = απ(A) + βπ(B)

3. π(A∗) = π(A)∗.

Definition: Character
An algebraic *-homomorphism χ of an Abelian C∗ algebra into the complex numbers C is called char-
acter. We denote the set of all characters of an algebra A as X(A).

Illustration

1. Let ~e be a joint eigenvector of all elements the algebra formed by commutating matrices. Then
χ~e(Â) = ~e · Â~e is a character of the algebra.

2. Bounded functions on a compact set: values at a given element from the compact set.

Comments

1. (χ(A)− z)−1 exists if z 6∈ σ(A), therefore σ(χ(A)) ⊂ σ(A).

2. A character is trivially positive χ(A∗A) = χ(A)∗χ(A) ≥ 0. Therefore it is also bounded.

3. Any character is a state: it is a positive, linear map A → C and χ(A1) = χ(1)χ(A) shows
normalization.

4. But not all states are characters: characters do not form a convex space.

5. As states, also characters are bounded by ||A||: |χ(A)| ≤ ||A||.

6. The Cauchy-Schwartz inequality that holds for states and therefore for characters |χ(A∗B)|2 ≤
χ(A∗A)χ(B∗B) implies |χ(A)| ≤ ||A||: choose B = 1 and use that 0 ≤ χ(||A||2 − A∗A) = ||A||2 −
χ(A)χ(A)∗.

7. Characters are pure states: let χ be a character and ω1 and ω2 two general states, then (α1ω1+α2ω2)
(α1 + α2 = 1) will not be a homomorphism
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8. There exists character that corresponds to a pure state ωχ ωχ(A) = ||A||: this conforms with our

analogy that characters are correspond to eigenvectors and norm of a matrix ||Â|| is the modulus
of its largest eigenvalue.

One can explicitly construct that state ωχ as follows: Given any A ∈ A, we construct the subspace
of all vectors α1 + βA∗A. On that subspace, χs(α1 + βA∗A) = α + βA∗A is a positive functional
with χs(1) = 1 and χs(A

∗A) = ||A||2. This χs is only defined on the subspace. However (theorems
of Hahn-Banach and Krein) there are states on all of A that behave as χs on the subspace. Now
that we know that such states exist, let us denote the states with ω(A∗A) = ||A||2 by Z: Z is a
clearly a convex set. The extremal states χe ∈ Z are pure states: because of ω(A∗A) ≤ ||A||2,
χs = αω1 + (1 − α)ω2 implies ωi(A

∗A) = ||A||2, i.e. ωi ∈ Z and χe would not be extremal in Z.
Note that we have not shown that ωχ is a character.

We had not proven that states are bounded. For characters that prove is really easy and all that we
need for now: For hermitian A we know (from one of the problems) 0 ≤ ||A||±A, therefore 0 < ||A||±χ(A),
i.e. |χ(A)| ≤ ||A||. For general A, we note that A∗A is hermitian and therefore (using properties of || · ||

||A||2 = ||A∗A|| ≥ χ(A∗A) = χ(A)∗χ(A) = |χ(A)|2. (22)

3.1 Weak *-topology

Strictly a topology on any set is given, if we define all open subsets of the set.
Topology is required to define continuity: a function is continuous at a point, if the pre-image (“Ur-

bild”) of any open neighborhood of a image of the point is an open neighborhood. This is an abstraction
and generalization of our intuition for continuous functions on Cn.

We will want to define continuous functions from the character set X(A) into the real numbers. We
need a topology, i.e. we need to define the “open sets” ⊂ X(A). Now the characters are subsets of the
linear functionals on the algebra: they are subsets of the dual space of the algebra.

The open sets M in the dual space are defined at those where for any point W ∗ ∈M and any v there
is a Bv,ε(W

∗) = {U∗ ∈ V||U∗(v)−W ∗(v)| < ε} ⊂M .
We define when we call a sequence in the dual space as convergent in the sense of this topology: a

sequence of elements χn from the dual space of some vector space V is said to converge in the sense of
weak convergence, if χn(v) converges as a sequence in C for each v ∈ V.

Illustration and comments on weak convergence In finite dimensions most topologies are equiv-
alent and also the distinction between the a linear space and the linear functionals on that space is not
essential. In infinite dimensions the distinctions become crucial.

1. Continuous functions on a compact set S: a character χx maps a function f ∈ C0 : χ(f) = f(x)
into its value at one point. A sequence of characters χxn

converges, if the function values f(xn)
converge at that point, which, as f is continuous, is the case if xn converge in the sense of the
topology of S. (You may recognize the δ-functions as characters of that algebra.)

2. n-component complex vectors ∈ Cn: we do not have an algebraic structure and therefor no charac-
ters. We have a dual, of course. Choosing a basis ei ∈ Cn, any linear functional W ∗ can be written
as W ∗(v) =

∑
iW
∗(ei)vi =

∑
i wivi, where the wi are components in the dual space. A sequence

W ∗n converges, if each of its components w
(n)
i converges. This dual is the isomorphic to (“for all

practical purposes the same as”) the original space.

3. On a finite dimensional vector space we can use an alternative concept with equal result: As we
have a norm for the v ∈ Cn and as we can identify every W ∗ ∈ dual(Cn) with some w ∈ C2, we
can use that norm also for the W ∗: ||W ∗|| := ||w||. Sequences that are convergent w.r.t. the norm
(“strongly convergent”) are also weakly convergent. In finite dimensions, also the converse is true.
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4. In infinity dimensions weak convergence does no longer imply strong convergence. Hilbert space:
weak convergence does not imply strong convergence: trivial, but also typical example is ~vn : (~vn)i =
δin

5. Example from physics: a (purely continuous) spreading wave packet converges → 0 in the weak
topology!

A ∈ A is a continuous function on X(A): We are seemingly going in circles: we just introduced the
characters χ as functionals on A. We can turn the roles around and consider the elements of the algebra
as functions on the set of characters

A 3 A : X → C : χ→ χ(A). (23)

As a direct consequence of the construction of the weak-* topology, A is a continuous function w.r.t. the
*-topology on X(A).

Problem 3.8: Continuity of A : X(A)→ C Show that the map A : χ→ χ(A) is continuous
w.r.t. the weak *-topology on X.

3.2 Gelfand isomorphism

An Abelian C∗ algebra is isomorphic to the continuous functions C(X) on the character set X = X(A)
if we use the weak *-topology for X and the norm C(X) 3 f : ||f || = supχ |f(χ)|.

Isomorphic By isomorphic we denote maps that are bijections and that conserve the essential structural
characteristics such as algebraic properties, *-map, and norm. In colloquial language, things that are
isomorphic “are the same”, just represented in different ways.

Outline of the proof Even if this remains very incomplete, the reasoning with approximations by
algebras, dense sets, and compact sets is of general value and therefore useful to look at:

1. We have seen that any element A of the algebra defines a continuous function fA ∈ C(X). Let
fA, A ∈ A denote the set of these functions. Clearly, as characters are *-homomorphisms, any
algebraic combination of these fA’s matches the algebraic combination of the corresponding A’s
e.g.

fAB(χ) = χ(AB) = χ(A)χ(B) = fA(χ)fB(χ), (24)

and similarly for all other algebraic operations. That means that each element of the algebra
re-appears as a function on X(A) and that these functions form a *-algebra. The map is injective.

2. Next we convince ourselves that the C∗-algebra norm maps onto the (supremum) norm of fA ∈
C(X):

||A|| !
= sup

χ
|fA(χ)| = sup

χ
|χ(A)|. (25)

As also all χ are states, |χ(A)| ≤ ||A||. Here we use the fact that all characters are states and that
there is a character with |χ(A)| = ||A||, a fortiori the supremum of fA(χ) over all χ is indeed the
norm.

3. The main mathematical task is to show that A → fA is also surjective, i.e. that indeed all con-
tinuous functions f ∈ C(X) have a correspondence in the algebra. Rather then proving anything
here, we appeal to your knowledge of a fact from the theory of ordinary functions (Weierstraß):
polynomials approximate any continuous function on a compact set arbitrarily well in the sense of
the supremum norm: they are dense in the continuous functions. Compactness must be understood
for the *-topology on X.
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In fact, this holds not only for polynomials but for any algebra of complex-valued functions on a
compact set. Now our fA definitely form an algebra of complex valued functions on X(A), which
is compact. Therefore the fA are dense in C(X). This means that any function f ∈ C(X) can be
approximated by a sequence fAn with An ∈ A. As ||An|| = ||fAn || we know that An is a Cauchy
sequence and An → A ∈ A with fA = f .

Comment on this sketch: There are a few very important holes in this; but as it is not our main
purpose to follow up on this, we only list these holes here clearly:

1. The proof that the pure state with ω(A) = ||A|| is a character is missing. This proof will be
delivered later: the GNS construction shows that pure states for abelian algebras indeed produce
*-homomorphisms into the complex numbers, i.e. characters.

2. We have not discussed compactness, which for the special case of weak *-topologies can get tricky.
Nonetheless we assert that the character set is compact as needed as input for Weierstraß.

3. Even if we take Weierstraß for granted, its generalization for algebras needs to be looked up in math
literature.

3.2.1 Terms: Closure and dense sets

Closure of a subset Let D be a subset of a space X where a distance is defined between all elements
(metric space). Then the closure D of D is

D = D ∪ {x ∈ X|∃dn → x} (26)

Dense subset A subset D of a metric space X (space with a norm) is called dense in X if

D = X. (27)

3.2.2 The spectral theorem in nuce

Let A be a normal element of any (also non-commutative) C∗-algebra A and consider the sub-algebra
generated by {1, A,A∗}. Normality implies that the algebra of all polynomials of A and A∗ is Abelian.
If we consider the closure of the algebra of the polynomials, we obtain again a now Abelian C∗ algebra.
(Strictly, one needs to show that commutativity survives the limit). By the Gel’fand theorem, this algebra
is isomorphic to the functions on the character set. This implies, in particular, that

∃(A− z)−1 ⇔ ∃(fA(χ)− z)−1∀χ (28)

or
σ(A) = ran(fA) (29)

i.e. the “range” of the function fA (=image fA(X)) is just the spectrum of A. Considering now that

fA(χ) = χ(A) ∈ σ(A) (30)

we see that a character maps A into the spectrum. We can also consider polynomials P

fP (A)(χ) = χ(P (A)) = P (χ(A)) = P (χ(A)) = P (a) for a := χ(A) ∈ σ(A) (31)

to see that all f ’s are just functions on the spectrum of A.
To make the spectral theorem as you know it complete, we need the Hilbert space. This rabbit we

will magically pull out using any innocent state as our top-hat.

Problem 3.9: Spectra and Gelfand isomorphism Use Gelfand isomorphism to prove the
spectral characterization of hermitian, unitary, positive and projector elements of a C∗ algebra.
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4 Representations in Hilbert space

4.1 Representation of an algebra

We have dealt with algebras reduced to their abstract properties, i.e. by defining the results of addition,
multiplication. In practice, such an algebra is realized by objects like matrices, differential operators etc.
One and the same algebra can be realized in different ways. Also, the realization may only represent part
of the complete properties (it may not be an isomorphism).

Definition: Representation
A representation π of a C∗-algebra A is a *-homomorphism from A into the bounded operators B(H) on
a Hilbert space H. If ker(π) = 0 ∈ A the representation is faithful. Two representations π1 on H1 and
π2 on H)2 are equivalent, if there is an isomorphism U : H1 → H2 such that

π2(A) = Uπ1(A)U−1 ∀A ∈ A. (32)

4.1.1 Note

• Continuity of π follows from positivity.

• As representations may not be faithful, we can have ker(π) 6= 0. A simple example is to have the
C∗-algebra of N ×N diagonal matrices and consider a representation on C, considered as a rather
trivial one-dimensional Hilbert space. Specifically, πi(A) = ai with ai the i’th diagonal element
would not be faithful.

• This example also hints upon the relation of characters to the spectral values of operators.

4.2 Irreducible representation

Definition: Invariant subspace
Let V ⊆ H be a subspace of H, i.e. V is a linear space. V is called an invariant subspace of H for a
representation π, if

~v ∈ V ⇒ π(A)~v ∈ V, ∀A ∈ A (33)

Definition: Cyclic vector
A vector ~c ∈ H is called cyclic vector for a representation π, if

C := {π(A)~c|A ∈ A} (34)

is dense in H, i.e.
C = H. (35)

Definition: Irreducible representation
The following two properties are equivalent

1. The only closed invariant subspaces V ⊆ H are {0} and H.

2. Any vector φ ∈ H is cyclic.

The first version can also be formulated as “there are no non-trivial projectors ∈ H that commute with
π(A)∀A ∈ A.
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4.3 Sum and tensor product of representations

The concepts of direct sum and tensor product can be introduced more abstractly than what we do here.
We, in both cases, assume that our Hilbert spaces are equipped with a denumerable bases {|i〉} (it is a
separable Hilbert space) and use these for the following definition.

Definition: Direct sum of Hilbert spaces
Let J and K be Hilbert spaces with the bases {|j〉} and {|k〉}. Then the space spanned by the basis

|i〉⊕ = |ji〉 ⊕ |ki〉 (36)

with the addition rules

|m〉⊕ + |n〉⊕ = |jm〉 ⊕ |km〉+ |jn〉 ⊕ |kn〉 = |jm + jn〉 ⊕ |km + kn〉 (37)

and the scalar product
〈m|n〉⊕ = 〈jm|jn〉+ 〈km|kn〉 (38)

and analogously for the multiplication by a scalar α ∈ C is a Hilbert space. Show completeness

Definition: Tensor product of Hilbert spaces
Let J and K be Hilbert spaces with the bases {|j〉} and {|k〉}. Then the space spanned by the basis

|i〉⊗ = |ji〉 ⊗ |ki〉 (39)

and the scalar product
〈m|n〉⊕ = 〈jm|jn〉〈km|kn〉 (40)

and analogously for the multiplication by a scalar α ∈ C is a pre-Hilbert space. Its completion

span(|j〉 ⊗ |k〉) = J ⊗K = H (41)

and is called the tensor product of J with K.

4.3.1 Illustration

Definition: Direct sum of operators
Let B ∈ B(J ) and C ∈ B(K) be operators on two Hilbert spaces. Their direct sum is defined by its
action on the basis functions:

B(J ⊕K) 3 C|i〉 =: (B⊕C)(|ji〉 ⊕ |ji〉) = (B|ji〉)⊕ (C|ki〉). (42)

As the operators are bounded (=continuous), this can be extended to a definition on the complete space.

Definition: Tensor product of operators
Let B ∈ B(J ) and C ∈ B(K) be operators on two Hilbert spaces. Their tensor product is defined by
its action on the basis functions:

B(J ⊗K) 3 C|i〉 =: (B⊗C)(|ji〉 ⊗ |ji〉) = (B|ji〉)⊗ (C|ki〉). (43)

As the operators are bounded (=continuous), this can be extended to a definition on the complete space.
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Definition: Direct sum of representations
Let π1 and π2 be two representations of the same algebra on the Hilbert spaces H1 and H2. The direct
sum of the representations is defined by

π1 ⊕ π2 = π : A → B(H1 ⊕H2) : π(A) = π1(A)⊕ π2(A) (44)

Direct sums of representations are the prototypical form a reducible representations.

4.4 Illustration

• Draw vectors and matrices

• Point out the important differences!

• Remind of tensor product; as to direct sum: archetypical form of reducible representation

4.5 Problems

Problem 4.10: Irreducibility Let π be a representation of an algebra A on a Hilbert space H.
Show that the two definitions of irreducibility are equivalent:

1. The only closed invariant subspaces under π are H and {0}.

2. Any non-zero vector of H is cyclic.

Problem 4.11: Positivity and boundedness

(a) Use the Gel’fand isomorphism to argue that A∗A ≤ ||A∗A||1

(b) Convince yourself, that for operators in Hilbert space the definition of positivity translates into
〈ψ|Bψ〉 ≥ 0∀ψ ∈ H.

(c) Show that positivity is conserved in representation, i.e. A positive ⇒ π(A) positive

(d) Use the above to show that any representation π : A → B(H) is a continuous map. (Remember the
relation between continuous and bounded for linear maps.)

5 The GNS construction

It is easy to see that, given a C∗ algebra (which in particular is a linear space) and a state, one can
construct a linear space with a hermitian sesquilinear form

〈A|B〉 := ω(A∗B). (45)

One can easily show hermiticity of the scalar product using positivity. Unfortunately, positive definiteness
is missing: 〈A|A〉 = 0 6⇒ A = 0. We never excluded that a given ω has 0 expectation value for some
observable A∗A. We resolve this by removing these vectors with zero “ω-length”

√
ω(A∗A) = 0.

To make this precise, we need to introduce a few concepts. First, we note that elements of the algebra
with ω-length 0 transmit this property by multiplication:
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The left-sided ideal Nω Denote the set of elements with zero length by

Nω = {A ∈ A|ω(A∗A) = 0}. (46)

Then for any N ∈ Nω we have ω(N∗A∗AN) ≤ ||A∗A||ω(N∗N) = 0, i.e

N ∈ N ⇒ AN ∈ Nω. (47)

(One says: Nω is a left-sided ideal of A).

Proof. • A∗A < ||A∗A||1 - through Gel’fand isomorphism, function is positive,
√
||A||2 −A∗A =:

C ∈ A exists.

• then 0 < (CB)∗CB = B∗C2B = B∗(||A||2 −A∗A)B or B∗A∗AB < ||A∗A||B∗B.

• by positivity and linearity of states: 0 < ω(||A∗A||B∗B−B∗A∗AB) = ||A∗A||ω(B∗B)−ω(B∗A∗AB)

• N ∈ N , A ∈ A: ω(N∗A∗AN) ≤ ||A∗A||ω(N∗N) = 0

We can now define an algebra, from which N is “divided out” (the quotient algebra): the idea is that
if any two elements differ only by an element of ω-length 0, they are considered as equivalent, both being
the valid representatives of an equivalence class.

Definition: Quotient space
We denote by bB the sets

bB := {A ∈ A|∃N ∈ Nω : A = B +N} (48)

The set of the equivalence classes b is denoted by A/Nω (the quotient space).

Equivalence class The relation

A ∼ A′ : A = A′ +N ∈ N (49)

defines an equivalence relation

A ∼ A

A ∼ B ⇔ B ∼ A
A ∼ B, B ∼ C ⇒ A ∼ C

The sets bB form equivalence classes, meaning

A ∼ B ⇔ bB = aA (50)

Any representative B from the class is equally good. Note in particular that the 0 ∈ A/Nω corresponds
to Nω ⊂ A (it is a true subset, why?).

With this we can construct a pre-Hilbert space

Lemma Let ω be a state, then the quotient space A/Nω with the scalar product

〈bB |bB′〉 = ω(B∗B′) (51)

is a pre-Hilbert space.
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Proof. The only non-trivial thing to show is bB = 0 ⇒ 〈bB |bB〉 = 0. Assume bB 6= 0, i.e. B = A + N
with A 6∈ Nω:

ω(B∗B) = ω(A∗A) + ω(N∗A)︸ ︷︷ ︸
|ω(N∗A)|2≤ω(N∗N)ω(A∗A)

+ω(A∗N) + ω(N∗N)︸ ︷︷ ︸
=0

> 0 = ω(A∗A).

We know |ω(A∗N)| ≤ ω(A∗A)ω(N∗N) = 0 and we get A/Nω 3 b 6= 0⇒ 〈b|b〉 6= 0.

From this we can obtain a Hilbert space by including all limits w.r.t. to the ω-length into our space,
by operating in the closure A/Nω.

We can immediately define an action of our algebra on the vectors of this space: let b ∈ A/Nω and
B ∈ A a representative of b, i.e. b = bB . Then

π(A)|b〉 = |c〉, cAB = {C ∈ A|C = AB +N,N ∈ Nω}. (52)

Strictly speaking this is only defined for the quotient algebra A/Nω, but by continuity we can extend it
to being defined also on its completion A/Nω.

5.1 Reducible and irreducible GNS representations

5.1.1 1 ∈ A/N is cyclic

Trivially so, as any A/N 3 b = bB = π(B)1.

5.1.2 Irrep ⇔ pure state

In the exercises you have shown that the GNS representation corresponding to a pure state is irreducible.
We do not prove that also the converse holds: if a GNS representation is irreducible, the corresponding
state is pure.

5.1.3 Irreps for abelian C∗ algebras

For an abelian algebra, any irreducible representation must be one-dimensional. This may be intuitive
(if somewhat circular), if you have bought into the the analogy to diagonal matrices for an abelian C∗

algebra, similarly using the Gel’fand isomorphism.
For any finite-dimensional representation of an abelian C∗ on can quite näıvely show that it cannot

be irrep: irreducibility implies that any two vectors in the N -dimensional Hilbert space are connected
by at least one element of the algebra. By that one can construct more than N linearly indepmenent
matrices within the algebra. As the spaces of commuting matrices is N -dimensional, the space spanned
by these then includes non-commuting matrices, e.g. the typical non-normal matrix with one non-zero
elemente above the diagonal.

For those familiar with the terms: The more general proof of this goes through the equivalent charac-
terization of irreducibility by the the commutant being proportional to the unit matrix and the fact that
the bi-commutant is the closure of the algebra under strong convergence. The closure is still abelian and
then includes also projectors onto true subspaces. These projectors define non-trivial invariant subspaces.

The GNS representation derived from a pure state is irrep. Therefore for an abelian it is one-
dimensional algebra i.e. it is equivalent to a *-homomorphism into C. That implies that a pure state
on an abelian algebra is a character. We had used this for Gel’fand theorem. Note that in the present
construction we have not made any reference to Gel’fand, ie. the argument is not circular.

Problem 5.12: Pure states and characters Accepting the fact that any irrep of an Abelian
C∗ algebra is one-dimensional, show that pure states on Abelian C∗ algebras are characters.
Hint: Evaluate for GNS 〈1|(πω(A)|1〉) and note that in 1-d πω(A)|b〉 ∝ |b〉.
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5.1.4 Any representation is the (possibly infinite) sum of irreps

Suppose we have a representation in a separable Hilbert space H. Remember that any vector |i〉 ∈ H
defines a pure state. According to the previous statement, the selected state defines an irrep GNS, and
the GNS space is isomorphic to an invariant subspace of Hi ⊂ H. We can now pick a state |j〉 6∈ Hi and
repeat the procedure to obtain an new irrep on Hj ∩ Hi = {0} (being irreps, if they share one vector
they need to be identical). As the Hilbert space is separable, the iteration of the procedure exhausts the
complete space.

Each of the irreps is isomorphic to the corresponding irrep GNS.

Problem 5.13: GNS representation

(a) Find at least one cyclic vector for the GNS representation

Show that a pure state ω produces a irreducible GNS representation πω. We denote by G the GNS space,
by B(G) the set of all bounded operators on it, and by |Ω〉 ∈ G the vector that corresponds to 1 ∈ A.
Follow the steps:

(b) Show that ω pure ⇔ any positive linear functional µ with µ ≤ ω is µ = λω.
Hint: ⇒: convince yourself that ω = µ+ (ω − µ) is a convex linear combination of two states
Hint: ⇐: construct µ 6= λω, 0 < µ < ω from ω = αω1 + (1− α)ω2. E.g., imagine a density matrix
ρ with two entries on the diagonal and construct a matrix that is not proportional to that one, but
still smaller.

(c) Let P 2 = P, P = P ∗ ∈ B(G) be a projector onto an invariant subspace. Convince yourself that
Pπ(A) = π(A)P ∀A.

(d) Show that µ(A) : A → 〈PΩ|π(A)PΩ〉 is a positive linear functional on A with the property
µ(C∗C) ≤ ω(C∗C), ∀C ∈ A, i.e. µ ≤ ω.

(e) Consider the matrix elements 〈π(A)Ω|Pπ(B)Ω〉 and determine the possible values of λ of µ = λω.
Conclude that P = 1 or = 0.

Interestingly, also the converse is true, i.e. a GNS representation for a state ω is irreducible if and only
if ω is pure.

Problem 5.14: Convergence of operators Let B(H) denote the space of bounded operators
on a finite-dimensional Hilbert space H and let {Bn} denote a sequence of operators. Show that the
three following definitions of convergence are equivalent

1. Norm-convergence: Bn → B ⇔ ||Bn −B|| → 0 (Remember: ||B|| = sup||ψ||=1 ||Bψ||)

2. “Strong” convergence: Bn
s→ B ⇔ ||Bnψ −Bψ|| → 0∀ψ ∈ H

3. “Weak” convergence: Bn ⇀ B ⇔ 〈φ|(Bn −B)ψ〉 → 0∀φ, ψ ∈ H
(Note the notation by ⇀).

On infinite-dimensional Hilbert spaces this is not the case, there is only the implication norm-convergence
⇒ strong convergence ⇒ weak convergence.

(a) Using H = l2, i.e. the space of infinite length vectors, construct Bn
s→ B, but Bn 6→ B

(b) Construct Bn ⇀ B, but Bn 6
s→ B.

Hint: In both cases the trick is to let escape the maps Bn to ever new directions, e.g. by a sequence of
operators that connect ever new pairs of entries etc.
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