Numerics II

Homework Sheet 3
(Released 2.5.2024 - Discussed 7.5.2024)

E3.1 Show that $C^{1}(0,1)$ is not dense in L^{∞}, with L^{∞} norm.

E3.2 Let $f \in W^{1,1}(0,1) \cap C([0,1])$. Assume that we can find $\left\{f_{n}\right\} \subset C_{c}^{\infty}(0,1)$ such that $f_{n} \rightarrow f$ in $W^{1,1}(0,1)$. Prove that $f(0)=f(1)=0$. Deduce that $C_{c}^{\infty}(0,1)$ is not dense in $W^{1,1}(0,1)$.

E3.3 Construct a function in $W^{1,2}(0,1)$, but not in $W^{2,2}(0,1)$ and explain the answer.

E3.4 Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}, 0<x<1,|y|<x^{10}\right\}$ and define

$$
u(x, y)=x^{-\frac{1}{2}}
$$

(i) Prove that $u \in L^{2}(\Omega)$.
(ii) Prove that the weak derivatives $\partial_{x} u, \partial_{y} u$ exist and determinate them.
(iii) Prove that $u \in W^{1,2}(\Omega)$ and $u \notin L^{\infty}(\Omega)$.

Numerics II

Homework Sheet 2
(Released 24.4.2024 - Discussed 30.4.2024)

E2.1 In the lecture, we proved that if $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$ and $\int_{\mathbb{R}^{d}} f \varphi=0$ for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ then $f=0$ a.e. Prove the same result with \mathbb{R}^{d} replaced by a general open subset $\Omega \subset \mathbb{R}^{d}$.

E2.2 In this exercise we consider functions mapping from $\Omega \rightarrow \mathbb{R}$ with $\Omega=(-1,1)$.
(i) Prove that $f(x)=|x|^{\frac{3}{2}}-1$ has a weak derivative in $L_{\mathrm{loc}}^{1}(\Omega)$.
(ii) Is there a weak derivative in $L_{\text {loc }}^{1}(\Omega)$ of the following function?

$$
g(x)=\left\{\begin{array}{rc}
x & \text { if } x>0 \\
-1 & \text { if } x<0
\end{array}\right.
$$

E2.3 Consider the Cantor set $C_{\infty}=\bigcap_{k=1}^{\infty} C_{k}$, where C_{k} satisfy the following recurrence

$$
C_{0}=[0,1], \quad C_{k+1}=\frac{1}{3} C_{k} \cup\left\{\frac{2}{3}+\frac{1}{3} C_{k}\right\}, k \geq 1 .
$$

Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{rll}
x & \text { if } & x \in[0,1] \backslash C_{\infty} \\
2 x+1 & \text { if } & x \in C_{\infty}
\end{array}\right.
$$

(i) Find $\sup f, \inf f$, and $\|f\|_{L^{\infty}}$.
(ii) Find its weak derivative f^{\prime} and compute

$$
f(x)-\int_{0}^{x} f^{\prime}(s) d s
$$

E2.4 Let $u \in L_{\text {loc }}^{1}(\mathbb{R})$ which has a second order weak derivative $f^{\prime \prime} \in L_{\mathrm{loc}}^{1}(\mathbb{R})$. Show that it has also the first order weak derivative $f^{\prime} \in L_{\mathrm{loc}}^{1}(\mathbb{R})$.

E2.5 Let $f \in W^{1, p}\left(\mathbb{R}^{d}\right)$ for some $1 \leq p<\infty$. Let $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\chi(x)=1$ if $|x| \leq 1$. Denote $f_{n}(x)=\chi(n x) f(x)$. Prove that

$$
f_{n} \rightarrow f \text { in } W^{1, p}\left(\mathbb{R}^{d}\right) \text { as } n \rightarrow+\infty
$$

Recall that $\|f\|_{W^{1, p}}^{p}=\|f\|_{L^{p}}^{p}+\sum_{|\alpha|=1}\left\|D^{\alpha} f\right\|_{L^{p}}^{p}$.

Numerics II

Homework Sheet 1
(Released 18.4.2024 - Discussed 23.4.2024)

E1.1 Define

$$
V=\left\{u \in L^{2}(0,1) \mid a(u, u)<\infty \text { and } u(0)=0\right\}, \quad a(u, v)=\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x
$$

(i) Prove the Cauchy-Schwarz inequality

$$
|a(u, v)| \leq \sqrt{a(u, u)} \sqrt{a(v, v)}, \quad \forall u, v \in V
$$

When does the equality hold?
(ii) Define $\|u\|_{E}=\sqrt{a(u, u)}$. Verify that $\|\cdot\|_{E}$ is a norm. If we don't have the condition $u(0)=0$, is $\|\cdot\|_{E}$ a norm?
(iii) Prove the "Parallelogram law"

$$
\|u\|_{E}+\|v\|_{E}=\frac{1}{2}\left[\|u+v\|_{E}^{2}+\|u-v\|_{E}^{2}\right] \quad \forall u, v \in V .
$$

E1.2 Based on the lecture, formulate the weak formulation of the following problem

$$
\left\{\begin{aligned}
-u^{\prime \prime}+u & =f \\
u(0)=u(1) & =0
\end{aligned}\right.
$$

where $f \in L^{2}[0,1]$.
E1.3 Let V and $a(u, v)$ be given in E1.1. Prove that for $u \in V \cap C^{1}[0,1]$ we have
(i) $\|u\|_{L^{2}(0,1)}^{2} \leq \frac{1}{2}\left\|u^{\prime}\right\|_{L^{2}(0,1)}^{2}$
(ii) $\|u\|_{L^{2}(0,1)}^{2} \leq \frac{1}{\sqrt{8}}\left\|u^{\prime}\right\|_{L^{2}(0,1)}^{2}$ if we assume further $u(1)=0$
(iii) $\|u\|_{L^{2}(0,1)}^{2} \leq \frac{1}{6}\left\|u^{\prime}\right\|_{L^{2}(0,1)}^{2}$ if we assume further $\int_{0}^{1} u=0$
(iv) $\max _{x \in[0,1]}|u(x)|^{2} \leq 2 u^{2}(1)+2\left\|u^{\prime}\right\|_{L^{2}}^{2}$
(v) $\max _{x \in[0,1]}|u(x)|^{2} \leq 2\left(\|u\|_{L^{2}}^{2}+\left\|u^{\prime}\right\|_{L^{2}}^{2}\right)$

