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Bose-Einstein condensation

In 1995, the Bose-Einstein condensation (BEC) was observed in experiments:
Many bosons occupy a common quantum state at low temperatures
Macroscopic quantum effects: superfluidity, quantized vortices, ...

Cornell, Wieman, Ketterle (2001 Nobel Prize in Physics)

Mathematical analysis of Bose and Einstein (1924-25) for non-interacting gas
N0
N =

[
1−

( T
Tc

)3/2]
+

Our goal: Rigorous understanding of the BEC for interacting systems
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Many-body quantum mechanics

Wave function ΨN : a normalized function in L2((R3)N)

|ΨN |2 position probability density, |Ψ̂N |2 momentum probability density
Indistinguishable particles/bosonic symmetry

ΨN(..., xk , ..., x`, ...) = ΨN(..., x`, ..., xk , ...)

Hamiltonian HN : a self-adjoint operator on L2
s ((R3)N)

〈ΨN ,HNΨN〉 = energy expectation

Schrödinger equations

HNΨN = ENΨN (stationary states)

i∂tΨN(t) = HNΨN(t) (dynamical states)

Schrödinger equations are linear but have too many variables. For practical
computation, people rely on effective equations which are nonlinear but have
fewer variables. Our task is to justify these approximations when N →∞
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A dilute Bose gas
Consider a quantum gas of N bosons in R3 described by the Hamiltonian

HN =
N∑

i=1
(−∆xi + U(xi )) +

N∑
i<j

VN(xi − xj) on L2
s ((R3)N)

External potential 0 ≤ U ∈ L∞loc(R3) is trapping
U(x)→∞, |x | → ∞

Interaction potential 0 ≤ VN ∈ C∞c (R3) is short-range

VN(x) = N2V (Nx) ∼ b
N δ0(x)

The Hamiltonian HN is bounded from below and can be extended to be a
self-adjoint operator on L2

s (R3) by Friedrichs’s method. We are interested in the
stationary solutions

HNΨN = EN(k)ΨN

where EN(k) is the k-th lowest eigenvalue of HN . In particular, when k = 1 we
have the ground state energy

EN = inf spec(HN) = inf
‖ΨN‖L2 =1

〈ΨN ,HNΨN〉
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Gross–Pitaevskii theory

Mean–field approximation: restriction to uncorrelated states

u⊗N(x1, ..., xN) = u(x1)...u(xN)

Formally replacing VN by (b/N)δ0 leads to the Gross–Pitaevskii functional

EGP(u) =
∫
R3

(
|∇u|2 + U|u|2 + b

2 |u|
4
)

The variational problem
eGP = inf

‖u‖L2(R3)=1
EGP(u)

has a unique minimizer u0 ≥ 0 which solves the nonlinear Gross–Pitaevskii
equation

−∆u0 + Uu0 + b|u0|2u0 = µ0u0, µ ∈ R.

By standard regularity theory, u0 is smooth if U is smooth
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Scattering length
In the formal approximation

VN(x) = N2V (Nx) ∼ b
N δ0(x)

a natural guest is b =
∫

V . However, this choice does not describes correctly the
dilute Bose gas because strong correlations at short distances lead to a nonlinear
correction. The right choice is the scattering energy

b = inf
{∫

R3
2|∇f |2 + V |f |2, lim

|x |→∞
f (x) = 1

}
The unique minimizer 0 ≤ f ≤ 1 solves the zero–scattering equation

(−2∆ + V )f = 0, f (x) = 1− a|x |−1 + o(|x |−1)|x |→∞
Equivalently b = 8πa with a called the scattering length of V

If V is the hard sphere potential of B(0,R), then a = R
If V is smooth, we have Born’s series

8πa =
∫
R3

Vf =
∫
R3

V −
∫
R3

V (2∆ + V )−1V = ...

The scattering length of VN = N2V (N·) is a/N
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Main result
Consider the N-body Hamiltonian

HN =
N∑

i=1
(−∆xi + U(xi )) +

N∑
i<j

N2V (N(xi − xj)) on L2
s ((R3)N)

and the Gross–Pitaevskii functional

EGP(u) =
∫
R3

(
|∇u|2 + U|u|2 + 4πa|u|4

)
Theorem (N.–Napiórkowski–Ricaud–Triay 2020, arXiv:2001.04364)
Assume 0 ≤ U ∈ L∞loc(R3), U(x)→∞ as |x | → ∞. Assume 0 ≤ V ∈ L3(R3)
radial, compactly supported with the scattering length a > 0 small. Then:

The eigenvalues of HN satisfies |EN(k)− NeGP| ≤ Ck for any fixed k ∈ N
The eigenfunctions of HN satisfies the Bose–Einstein condensation〈

ΨN ,

N∑
i=1

Pi ΨN

〉
= N +O(1).

Here P = |u0〉〈u0| with u0 the unique Gross–Pitaevskii minimizer.
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History

Leading order ground state energy: Lieb–Seiringer–Yngvason (’00)

EN = NeGP + o(N)

Leading order BEC: Lieb–Seiringer (’02-06), N.–Rougerie–Seiringer (’16)

〈
ΨN ,

N∑
i=1

Pi ΨN

〉
= N + o(N)

Dynamical results: Erdös–Schlein–Yau (’09-10), Benedikter–de
Oliveira–Schlein (’14), Pickl (2015), Brennecke–Schlein (’19)

If ΨN ≈ u(0)⊗N , then ΨN(t) = e−itHN ΨN ≈ u(t)⊗N with GP equation

i∂tu(t, x) = (−∆x + U(x) + 8πa|u(t, x)|2)u(t, x)

E. H. Lieb, R. Seiringer, J. Yngvason. Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61 (2000).
E. H. Lieb, R. Seiringer. Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88 (2002).
E. H. Lieb, R. Seiringer. Derivation of the Gross–Pitaevskii equation for rotating Bose gases, Commun. Math. Phys. 264 (2006).
L. Erdös, B. Schlein, H.-T. Yau. Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate, Ann. of Math. (2) 172 (2010).
L. Erdös, B. Schlein, H.-T. Yau. Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Amer. Math. Soc. 22 (2009).
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Homogeneous case
In the simpler case when the particles live in the torus T3 = [0, 1]3 with U = 0,
the system is translation-invariant and the Gross–Pitaevskii minimizer is

u0(x) = 1, ∀x ∈ [0, 1]3.

Next order is known by Boccato-Brennecke-Cenatiempo-Schlein (’19)

EN = 4πaN −
∑

06=p∈2πZ3

[
p2 + 8πa−

√
p4 + 16πap2− (8πa)2

2p2

]
+ ca + o(1)N→∞

This is related to the Lee–Huang–Yang formula for the thermodynamic energy

lim
N→∞

N/Vol=ρ

EN
N = 4πaρ

(
1 + 128

15
√
π

√
ρa3 + o(1)ρa3→0

)

Dyson (1957), Lieb-Yngvason (’98), Yau-Yin (2009), Fournais-Solovej (’19)

F. J. Dyson. Ground-State Energy of a Hard-Sphere Gas. Phys. Rev. 106, 1957.
E. H. Lieb, J. Yngvason, Ground State Energy of the Low Density Bose Gas. Phys. Rev. Lett. 80, 1998.
H.-T. Yau, J. Yin. The Second Order Upper Bound for the Ground Energy of a Bose Gas. J. Stat. Phys. 136, (2009)
C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. Bogoliubov Theory in the Gross–Pitaevskii Limit. Acta Math. 222 (2019)
S. Fournais, J.P. Solovej. The energy of dilute Bose gases. Preprint 2019. arXiv:1904.06164.
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Upper bound
Applying the variational principle to uncorrelated states ΨN = u⊗N gives

EN
N ≤ inf

‖u‖L2 =1

∫
R3
|∇u|2 + U|u|2 + 1

2 (NVN ∗ |u|2)|u|2,

not enough as NVN = N3V (Nx) ⇀ δ0
∫

V and
∫

V > 8πa. A better choice is

ΨN(x1, ..., xN) =
N∏

j=1
u(xj)

N∏
k<`

fN(xk − x`)
where

fN(x) = f (Nx), (−∆ + 1
2VN)fN(x) = 0, lim

|x |→∞
fN(x) = 1

Since the probability to have 3 particles very close ( O(N−1)) is negligible,

〈ΨN ,HNΨN〉
N ≤ inf

‖u‖L2 =1

∫
R3
|∇u|2 + U|u|2 + 1

2 (gN ∗ |u|2)|u|2 + o(1)

where gN = N3g(Nx) ⇀ δ0
∫

g , g = 2|∇f |2 + V |f |2,
∫

g = 8πa

This gives EN ≤ NeGP + o(N). The bound EN ≤ NeGP +O(1) needs a refined
trial state constructed using Bogoliubov transformations on Fock space.
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Second quantization
To describe particles outside the condensate, we work on Fock space

F =
∞⊕

n=0
L2

s ((R3)n) = C⊕ L2(R3)⊕ L2
s ((R3)2)⊕ ...

For g ∈ L2(Rd ), define the creation and annihilation operators

(a∗(g)Ψ)(x1, . . . , xn+1) = 1√
n + 1

n+1∑
j=1

g(xj)Ψ(x1, . . . , xj−1, xj+1, . . . , xn+1)

(a(g)Ψ)(x1, . . . , xn−1) =
√

n
∫

g(xn)Ψ(x1, . . . , xn)dxn

They satisfy the canonical commutation relations (CCR)

[a(g1), a(g2)] = [a∗(g1), a∗(g2)] = 0, [a(g1), a∗(g2)] = 〈g1, g2〉

Take an orthonormal basis {un}n≥0 for L2(Rd ) and denote an = a(un). Then

[am, an] = [a∗m, a∗n] = 0, [am, a∗n ] = 〈g1, g2〉 = δm=n
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Reformulation the problem
The many-body Hamiltonian can be rewritten as

HN =
∑

m,n≥0
hmna∗man + 1

2
∑

m,n,p,q≥0
Wmnpqa∗ma∗napaq

where

hmn = 〈um, (−∆ + U)un〉 , Wmnpq =
∫∫

um(x)un(y)VN(x − y)up(x)uq(y)

The complete BEC can be reformulated as〈
ΨN ,

N∑
i=1

(|u0〉〈u0|)i ΨN

〉
=
〈

ΨN , a∗0a0ΨN

〉
= N +O(1)

which is equivalent to〈
ΨN ,N+ΨN

〉
= O(1), N+ :=

∑
n>0

a∗nan.

The energy lower bound and BEC in the main theorem follows from the operator
bound

HN ≥ NeGP + C−1N+ − C
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Bogoliubov theory
Bogoliubov approximation (1947)

Ignore all terms with 3 or 4 operators a#
n 6=0 in

HN =
∑

m,n≥0
hmna∗man + 1

2
∑

m,n,p,q≥0
Wmnpqa∗ma∗napaq

Replace any a#
0 by

√
N0 (c-number substitution). Heuristically,
N0 = 〈ΨN , a∗0a0ΨN〉 � [a0, a∗0 ] = 1

Diagonalize the resulting quadratic Hamiltonian by a
symplectic/Bogoliubov transformation

ap 7→ ãp = cosh(K )p,qaq + sinh(K )p,qa∗q , [ãp, ã∗q ] = δp,q

Anytime when you see
∫

V , replace it by 8πa (Landau’s correction)
All this leads to

HN ≈ NeGP + eBog +
∑

p,q≥1
ξp,q ã∗p ãq,

The complete BEC follows from the spectral gap inf spec{u0}⊥ (ξ) > 0

Justifying Bogoliubov’s approximation is nontrivial!
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Lower bound: homogeneous case I
We complete the square: on the two-particle space since VN ≥ 0,

(1− P ⊗ PfN)VN(1− fNP ⊗ P) ≥ 0

where VN = N2V (N(x − y)), fN = f (N(x − y)), P = |u0〉〈u0|. Consequently,

HN ≥
∑
p 6=0

(
|p|2a∗pap + 1

2 f̂NVN(p)a∗pa∗−pa0a0 + 1
2 f̂NVN(p)a∗0a∗0apa−p

)

+ 1
2

(∫
(2fN − f 2

N )VN

)
a∗0a∗0a0a0

Here ap = a(e ip·x ), p ∈ 2πZ3. This implements parts of Bogoliubov’s argument:

First step of removing cubic and quartic terms in a#
p 6=0

Last step of Landau’s correction: VN replaced by fNVN where∫
R3

fNVN = 1
N

∫
R3

fV = 8πa
N

Similar ideas used by Brietzke–Fournais–Solovej (2019) for LHY formula
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Lower bound: homogeneous case II
The rest of Bogoliubov’s argument (c-number substitution and symplectic
diagonalization) can be implemented by completing the square again

A(b∗p bp + b∗−pb−p) + B(b∗p b∗−p + bpb−p) ≥ (
√

A2 − B2 − A)
[bp, b∗p ] + [b−p, b∗−p]

2
which is equivalent to d∗d ≥ 0 for some d (Lieb–Solovej 2001). Taking

bp = a∗0ap√
N
, b∗p bp ≤ a∗pap, [bp, b∗p ] ≤ 1, ∀0 6= p ∈ 2πZ3

we find that for 0 < µ < 4π2 − 8πa

HN −
1
2

(∫
(2fN − f 2

N )VN

)
a∗0a∗0a0a0 − µN+

≥ 1
2
∑
p 6=0

(
(|p|2 − µ)(b∗p bp + b∗−pb−p) + Nf̂NVN(p)b∗p b∗−p + f̂NVN(p)bpb−p

)
≥ 1

2
∑
p 6=0

(√
(|p|2 − µ)2 − |Nf̂NVN(p)|2 − |p|2 + µ

)
= −N

2

∫
R3

Vf (1− f ) +O(1)

The last equality follows from the scattering equation (−2∆ + VN)fN = 0
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Lower bound: homogeneous case III
We have proved that for any 0 < µ < 4π2 − 8πa

HN ≥ µN+ + 1
2

(∫
(2fN − f 2

N )VN

)
a∗0a∗0a0a0 −

N
2

∫
R3

Vf (1− f ) +O(1)

Finally, using
a∗0a∗0a0a0 = a∗0a0(a∗0a0 − 1) = (N −N+)(N −N+ − 1)

we find that

HN ≥ (µ− 16πa)N+ + N
2

∫
(2f − f 2)V − N

2

∫
R3

Vf (1− f ) +O(1)

In the homogeneous case
1
2

∫
(2f − f 2)V − 1

2

∫
R3

Vf (1− f ) = 1
2

∫
fV = 4πa = eGP

If a < π/6, we can choose
16πa < µ < 4π2 − 8πa

and obtain the desired operator lower bound
HN ≥ (µ− 16πa)N+ + NeGP +O(1)
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Lower bound: general case I
Using the two-body inequality

(1− P ⊗ PfN)VN(1− fNP ⊗ P) ≥ 0

we obtain
HN ≥ H0 +H1 +H2

where

H0 =
∫
R3

(|∇u0|2 + U|u0|2)a∗0a0 + 1
2

∫
R3

(((2fN − f 2
N )VN) ∗ |u0|2)|u0|2a∗0a∗0a0a0

H1 =
∑
m≥1

(
〈um, (−∆ + U)u0〉a∗ma0 + 〈um, ((fNVN) ∗ |u0|2)u0〉a∗ma∗0a0a0

)
+ h.c.

H2 = 1
2
∑

m,n≥1

(
〈um, (−∆ + U)un〉a∗man + 〈umu0, (fNVN) ∗ (unu0)〉a∗ma∗na0a0

)
+ h.c.

Thus we have removed cubic and quartic terms in a#
p 6=0, and replace VN by fNVN
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Lower bound: general case II
Now consider the c-number substitution, i.e. replacing a#

0 by
√

N

Using a∗0a0 = N −N+, then up to an error O(a)N+ we have

H0 ≈ N
∫
R3

(|∇u0|2 + U|u0|2) + N
2

(∫
R3

(2f − f 2)V
)∫

R3
|u0|4

and H1 ≈ 0 thanks to the Gross–Pitaevskii equation

(−∆ + U)u0 + N((fNVN) ∗ |u0|2)u0 ≈ µ0u0

The terms a0a0 and a∗0a∗0 can be treated by a variational principle for quasi-free
states on Fock space. This gives

H2 ≥ inf spec(HBog)

where

HBog = 1
2
∑

m,n≥1

(
〈um, (−∆ + U)un〉a∗man + N〈umu0, (fNVN) ∗ (unu0)〉a∗ma∗n

)
+ h.c.
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Lower bound: general case III
We can diagonalize the quadratic Hamiltonian HBog and find that

inf spec(HBog) = −1
4 Tr((−∆ + U)−1K 2) +O(1)

where the operator K has kernel K (x , y) = u0(x)u0(y)(NfNVN)(x − y), i.e.

K = u0(x)Nf̂NVN(p)u0(x)
with u0(x) and v(p) are multiplication operators in the position and momentum
spaces. If the operators commuted, then by the scattering equation

Tr((−∆)−1K 2) = N2 Tr
(

p−2u0(x)f̂NVN(p)u2
0(x)f̂NVN(p)u0(x)

)
= N2 Tr

(
u0(x)p−2 f̂NVN(p)u2

0(x)f̂NVN(p)u0(x)
)

= 2N2 Tr
(

u2
0(x)1̂− fN(p)u2

0(x)f̂NVN(p)
)

= 2N
∫

((1− fN)fNVN ∗ u2
0)u2

0

which together with H0 gives NeGP. Rigorously, u0(x) and |p|−2 do not commute,
but the commutator can be controlled by the Kato–Seiler–Simon inequality

‖u(x)v(p)‖Sr ≤ Cd,r‖u‖Lr (Rd )‖v‖Lr (Rd ), 2 ≤ r <∞.
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An open problem
Our derivation of the BEC with optimal estimate is a step towards

Conjecture on the excitation spectrum (Bogoliubov 1947, Grech–Seiringer 2013)

Let 0 = e0 < e1 ≤ e2 ≤ ... be eigenvalues of (D1/2(D + 16πa|u0|2)D1/2)1/2 on
L2(R3), where

D := −∆ + U + 8πa|u0|2 − µ0 ≥ 0

Then all eigenvalues of HN − EN in the interval [0, o(N)] are the finite sums∑
i≥1

niei (1 + o(1)N→∞), ni ∈ {0, 1, 2, ...}

Proved for the mean-field regime with VN replaced by N−1V by Seiringer
(’11), Grech–Seiringer (’13), Lewin–N.–Serfaty–Solovej (’14),
Dereziński–Napiórkowski (’14)

Proved for the dilute homogeneous gas by Boccato–Brennecke
–Cenatiempo–Schlein (’19) where ep =

√
|p|4 + 16πa|p|2, p ∈ 2πZ3.

This verifies Landau’s criterion for superfluidity: a drop with velocity less
than infp 6=0 ep/|p| can move frictionlessly in the ground state of HN
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Thank you!
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