Derivation of the Bose-Einstein condensation for trapped bosons

Phan Thành Nam
LMU Munich

Bose-Einstein condensation

In 1995, the Bose-Einstein condensation (BEC) was observed in experiments:

- Many bosons occupy a common quantum state at low temperatures
- Macroscopic quantum effects: superfluidity, quantized vortices, ...

Cornell, Wieman, Ketterle (2001 Nobel Prize in Physics)
Mathematical analysis of Bose and Einstein (1924-25) for non-interacting gas

$$
\frac{N_{0}}{N}=\left[1-\left(\frac{T}{T_{c}}\right)^{3 / 2}\right]_{+}
$$

Our goal: Rigorous understanding of the BEC for interacting systems

Many-body quantum mechanics

Wave function Ψ_{N} : a normalized function in $L^{2}\left(\left(\mathbb{R}^{3}\right)^{N}\right)$

- $\left|\Psi_{N}\right|^{2}$ position probability density, $\left|\widehat{\Psi}_{N}\right|^{2}$ momentum probability density
- Indistinguishable particles/bosonic symmetry

$$
\Psi_{N}\left(\ldots, x_{k}, \ldots, x_{\ell}, \ldots\right)=\Psi_{N}\left(\ldots, x_{\ell}, \ldots, x_{k}, \ldots\right)
$$

Hamiltonian H_{N} : a self-adjoint operator on $L_{s}^{2}\left(\left(\mathbb{R}^{3}\right)^{N}\right)$

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle=\text { energy expectation }
$$

Schrödinger equations

$$
\begin{aligned}
H_{N} \Psi_{N} & =E_{N} \Psi_{N} \quad \text { (stationary states) } \\
i \partial_{t} \Psi_{N}(t) & =H_{N} \Psi_{N}(t) \quad \text { (dynamical states) }
\end{aligned}
$$

Schrödinger equations are linear but have too many variables. For practical computation, people rely on effective equations which are nonlinear but have fewer variables. Our task is to justify these approximations when $N \rightarrow \infty$

A dilute Bose gas

Consider a quantum gas of N bosons in \mathbb{R}^{3} described by the Hamiltonian

$$
H_{N}=\sum_{i=1}^{N}\left(-\Delta_{x_{i}}+U\left(x_{i}\right)\right)+\sum_{i<j}^{N} V_{N}\left(x_{i}-x_{j}\right) \quad \text { on } \quad L_{s}^{2}\left(\left(\mathbb{R}^{3}\right)^{N}\right)
$$

- External potential $0 \leq U \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{3}\right)$ is trapping

$$
U(x) \rightarrow \infty, \quad|x| \rightarrow \infty
$$

- Interaction potential $0 \leq V_{N} \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ is short-range

$$
V_{N}(x)=N^{2} V(N x) \sim \frac{b}{N} \delta_{0}(x)
$$

The Hamiltonian H_{N} is bounded from below and can be extended to be a self-adjoint operator on $L_{s}^{2}\left(\mathbb{R}^{3}\right)$ by Friedrichs's method. We are interested in the stationary solutions

$$
H_{N} \Psi_{N}=E_{N}(k) \Psi_{N}
$$

where $E_{N}(k)$ is the k-th lowest eigenvalue of H_{N}. In particular, when $k=1$ we have the ground state energy

$$
E_{N}=\inf \operatorname{spec}\left(H_{N}\right)=\inf _{\left\|\Psi_{N}\right\|_{L^{2}=1}}\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle
$$

Gross-Pitaevskii theory

Mean-field approximation: restriction to uncorrelated states

$$
u^{\otimes N}\left(x_{1}, \ldots, x_{N}\right)=u\left(x_{1}\right) \ldots u\left(x_{N}\right)
$$

Formally replacing V_{N} by $(b / N) \delta_{0}$ leads to the Gross-Pitaevskii functional

$$
\mathcal{E}_{\mathrm{GP}}(u)=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+U|u|^{2}+\frac{b}{2}|u|^{4}\right)
$$

The variational problem

$$
e_{\mathrm{GP}}=\inf _{\|u\|_{L^{2}\left(\mathbb{R}^{3}\right)}=1} \mathcal{E}_{\mathrm{GP}}(u)
$$

has a unique minimizer $u_{0} \geq 0$ which solves the nonlinear Gross-Pitaevskii equation

$$
-\Delta u_{0}+U u_{0}+b\left|u_{0}\right|^{2} u_{0}=\mu_{0} u_{0}, \quad \mu \in \mathbb{R}
$$

By standard regularity theory, u_{0} is smooth if U is smooth

Scattering length

In the formal approximation

$$
V_{N}(x)=N^{2} V(N x) \sim \frac{b}{N} \delta_{0}(x)
$$

a natural guest is $b=\int V$. However, this choice does not describes correctly the dilute Bose gas because strong correlations at short distances lead to a nonlinear correction. The right choice is the scattering energy

$$
b=\inf \left\{\int_{\mathbb{R}^{3}} 2|\nabla f|^{2}+V|f|^{2}, \quad \lim _{|x| \rightarrow \infty} f(x)=1\right\}
$$

The unique minimizer $0 \leq f \leq 1$ solves the zero-scattering equation

$$
(-2 \Delta+V) f=0, \quad f(x)=1-\mathfrak{a}|x|^{-1}+o\left(|x|^{-1}\right)_{|x| \rightarrow \infty}
$$

Equivalently $b=8 \pi \mathfrak{a}$ with \mathfrak{a} called the scattering length of V

- If V is the hard sphere potential of $B(0, R)$, then $\mathfrak{a}=R$
- If V is smooth, we have Born's series

$$
8 \pi \mathfrak{a}=\int_{\mathbb{R}^{3}} V f=\int_{\mathbb{R}^{3}} V-\int_{\mathbb{R}^{3}} V(2 \Delta+V)^{-1} V=\ldots
$$

- The scattering length of $V_{N}=N^{2} V(N \cdot)$ is \mathfrak{a} / N

Main result

Consider the N-body Hamiltonian

$$
H_{N}=\sum_{i=1}^{N}\left(-\Delta_{x_{i}}+U\left(x_{i}\right)\right)+\sum_{i<j}^{N} N^{2} V\left(N\left(x_{i}-x_{j}\right)\right) \quad \text { on } \quad L_{s}^{2}\left(\left(\mathbb{R}^{3}\right)^{N}\right)
$$

and the Gross-Pitaevskii functional

$$
\mathcal{E}_{\mathrm{GP}}(u)=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+U|u|^{2}+4 \pi \mathfrak{a}|u|^{4}\right)
$$

Theorem (N.-Napiórkowski-Ricaud-Triay 2020, arXiv:2001.04364)

Assume $0 \leq U \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{3}\right), U(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. Assume $0 \leq V \in L^{3}\left(\mathbb{R}^{3}\right)$ radial, compactly supported with the scattering length $\mathfrak{a}>0$ small. Then:

- The eigenvalues of H_{N} satisfies $\left|E_{N}(k)-N e_{G P}\right| \leq C_{k}$ for any fixed $k \in \mathbb{N}$
- The eigenfunctions of H_{N} satisfies the Bose-Einstein condensation

$$
\left\langle\Psi_{N}, \sum_{i=1}^{N} P_{i} \Psi_{N}\right\rangle=N+\mathcal{O}(1)
$$

Here $P=\left|u_{0}\right\rangle\left\langle u_{0}\right|$ with u_{0} the unique Gross-Pitaevskii minimizer.

History

- Leading order ground state energy: Lieb-Seiringer-Yngvason ('00)

$$
E_{N}=N e_{\mathrm{GP}}+o(N)
$$

- Leading order BEC: Lieb-Seiringer ('02-06), N.-Rougerie-Seiringer ('16)

$$
\left\langle\Psi_{N}, \sum_{i=1}^{N} P_{i} \Psi_{N}\right\rangle=N+o(N)
$$

- Dynamical results: Erdös-Schlein-Yau ('09-10), Benedikter-de Oliveira-Schlein ('14), Pickl (2015), Brennecke-Schlein ('19)

$$
\text { If } \Psi_{N} \approx u(0)^{\otimes N} \text {, then } \Psi_{N}(t)=e^{-i t H_{N}} \Psi_{N} \approx u(t)^{\otimes N} \text { with GP equation }
$$

$$
i \partial_{t} u(t, x)=\left(-\Delta_{x}+U(x)+8 \pi \mathfrak{a}|u(t, x)|^{2}\right) u(t, x)
$$

E. H. Lieb, R. Seiringer. Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88 (2002).
E. H. Lieb, R. Seiringer. Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Commun. Math. Phys. 264 (2006).
L. Erdös, B. Schlein, H.-T. Yau. Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. of Math. (2) 172 (2010).
L. Erdös, B. Schlein, H.-T. Yau. Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J. Amer. Math. Soc. 22 (2009).

Homogeneous case

In the simpler case when the particles live in the torus $\mathbb{T}^{3}=[0,1]^{3}$ with $U=0$, the system is translation-invariant and the Gross-Pitaevskii minimizer is

$$
u_{0}(x)=1, \quad \forall x \in[0,1]^{3} .
$$

Next order is known by Boccato-Brennecke-Cenatiempo-Schlein ('19)

$$
E_{N}=4 \pi \mathfrak{a} N-\sum_{0 \neq p \in 2 \pi \mathbb{Z} \mathfrak{z}^{3}}\left[p^{2}+8 \pi \mathfrak{a}-\sqrt{p^{4}+16 \pi a p^{2}}-\frac{(8 \pi \mathfrak{a})^{2}}{2 p^{2}}\right]+c_{a}+o(1)_{N \rightarrow \infty}
$$

This is related to the Lee-Huang-Yang formula for the thermodynamic energy

$$
\lim _{\substack{N \rightarrow \infty \\ N / \text { Vol }=\rho}} \frac{E_{N}}{N}=4 \pi \mathfrak{a} \rho\left(1+\frac{128}{15 \sqrt{\pi}} \sqrt{\rho \mathfrak{a}^{3}}+o(1)_{\rho \mathfrak{a}^{3} \rightarrow 0}\right)
$$

Dyson (1957), Lieb-Yngvason ('98), Yau-Yin (2009), Fournais-Solovej ('19)
F. J. Dyson. Ground-State Energy of a Hard-Sphere Gas. Phys. Rev. 106, 1957.
E. H. Lieb, J. Yngvason, Ground State Energy of the Low Density Bose Gas. Phys. Rev. Lett. 80, 1998.
H.-T. Yau, J. Yin. The Second Order Upper Bound for the Ground Energy of a Bose Gas. J. Stat. Phys. 136, (2009)
C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. Bogoliubov Theory in the Gross-Pitaevskii Limit. Acta Math. 222 (2019)
S. Fournais, J.P. Solovej. The energy of dilute Bose gases. Preprint 2019. arXiv:1904.06164.

Upper bound

Applying the variational principle to uncorrelated states $\Psi_{N}=u^{\otimes N}$ gives

$$
\frac{E_{N}}{N} \leq \inf _{\|u\|_{L^{2}=1}} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+U|u|^{2}+\frac{1}{2}\left(N V_{N} *|u|^{2}\right)|u|^{2}
$$

not enough as $N V_{N}=N^{3} V(N x) \rightharpoonup \delta_{0} \int V$ and $\int V>8 \pi \mathfrak{a}$. A better choice is
where

$$
\Psi_{N}\left(x_{1}, \ldots, x_{N}\right)=\prod_{j=1}^{N} u\left(x_{j}\right) \prod_{k<\ell}^{N} f_{N}\left(x_{k}-x_{\ell}\right)
$$

$$
f_{N}(x)=f(N x), \quad\left(-\Delta+\frac{1}{2} V_{N}\right) f_{N}(x)=0, \quad \lim _{|x| \rightarrow \infty} f_{N}(x)=1
$$

Since the probability to have 3 particles very close $\left(\mathcal{O}\left(N^{-1}\right)\right)$ is negligible,

$$
\frac{\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle}{N} \leq \inf _{\|u\|_{L^{2}=1}} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+U|u|^{2}+\frac{1}{2}\left(g_{N} *|u|^{2}\right)|u|^{2}+o(1)
$$

where $g_{N}=N^{3} g(N x) \rightharpoonup \delta_{0} \int g, \quad g=2|\nabla f|^{2}+V|f|^{2}, \quad \int g=8 \pi \mathfrak{a}$
This gives $E_{N} \leq N e_{G P}+o(N)$. The bound $E_{N} \leq N e_{G P}+\mathcal{O}(1)$ needs a refined trial state constructed using Bogoliubov transformations on Fock space.

Second quantization

To describe particles outside the condensate, we work on Fock space

$$
\mathcal{F}=\bigoplus_{n=0}^{\infty} L_{s}^{2}\left(\left(\mathbb{R}^{3}\right)^{n}\right)=\mathbb{C} \oplus L^{2}\left(\mathbb{R}^{3}\right) \oplus L_{s}^{2}\left(\left(\mathbb{R}^{3}\right)^{2}\right) \oplus \ldots
$$

For $g \in L^{2}\left(\mathbb{R}^{d}\right)$, define the creation and annihilation operators

$$
\begin{gathered}
\left(a^{*}(g) \Psi\right)\left(x_{1}, \ldots, x_{n+1}\right)=\frac{1}{\sqrt{n+1}} \sum_{j=1}^{n+1} g\left(x_{j}\right) \Psi\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n+1}\right) \\
(a(g) \Psi)\left(x_{1}, \ldots, x_{n-1}\right)=\sqrt{n} \int \overline{g\left(x_{n}\right)} \Psi\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{n}
\end{gathered}
$$

They satisfy the canonical commutation relations (CCR)

$$
\left[a\left(g_{1}\right), a\left(g_{2}\right)\right]=\left[a^{*}\left(g_{1}\right), a^{*}\left(g_{2}\right)\right]=0, \quad\left[a\left(g_{1}\right), a^{*}\left(g_{2}\right)\right]=\left\langle g_{1}, g_{2}\right\rangle
$$

Take an orthonormal basis $\left\{u_{n}\right\}_{n \geq 0}$ for $L^{2}\left(\mathbb{R}^{d}\right)$ and denote $a_{n}=a\left(u_{n}\right)$. Then

$$
\left[a_{m}, a_{n}\right]=\left[a^{*} m, a^{*} n\right]=0, \quad\left[a_{m}, a_{n}^{*}\right]=\left\langle g_{1}, g_{2}\right\rangle=\delta_{m=n}
$$

Reformulation the problem

The many-body Hamiltonian can be rewritten as

$$
H_{N}=\sum_{m, n \geq 0} h_{m n} a_{m}^{*} a_{n}+\frac{1}{2} \sum_{m, n, p, q \geq 0} W_{m n p q} a_{m}^{*} a_{n}^{*} a_{p} a_{q}
$$

where

$$
h_{m n}=\left\langle u_{m},(-\Delta+U) u_{n}\right\rangle, \quad W_{m n p q}=\iint \overline{u_{m}(x) u_{n}(y)} V_{N}(x-y) u_{p}(x) u_{q}(y)
$$

The complete BEC can be reformulated as

$$
\left\langle\Psi_{N}, \sum_{i=1}^{N}\left(\left|u_{0}\right\rangle\left\langle u_{0}\right|\right)_{i} \Psi_{N}\right\rangle=\left\langle\Psi_{N}, a_{0}^{*} a_{0} \Psi_{N}\right\rangle=N+\mathcal{O}(1)
$$

which is equivalent to

$$
\left\langle\Psi_{N}, \mathcal{N}_{+} \Psi_{N}\right\rangle=\mathcal{O}(1), \quad \mathcal{N}_{+}:=\sum_{n>0} a_{n}^{*} a_{n}
$$

The energy lower bound and BEC in the main theorem follows from the operator bound

$$
H_{N} \geq N e_{G P}+C^{-1} \mathcal{N}_{+}-C
$$

Bogoliubov theory

Bogoliubov approximation (1947)

- Ignore all terms with 3 or 4 operators $a_{n \neq 0}^{\#}$ in

$$
H_{N}=\sum_{m, n \geq 0} h_{m n} a_{m}^{*} a_{n}+\frac{1}{2} \sum_{m, n, p, q \geq 0} W_{m n p q} a_{m}^{*} a_{n}^{*} a_{p} a_{q}
$$

- Replace any $a_{0}^{\#}$ by $\sqrt{N_{0}}$ (c-number substitution). Heuristically,

$$
N_{0}=\left\langle\Psi_{N}, a_{0}^{*} a_{0} \Psi_{N}\right\rangle \gg\left[a_{0}, a_{0}^{*}\right]=1
$$

- Diagonalize the resulting quadratic Hamiltonian by a symplectic/Bogoliubov transformation

$$
a_{p} \mapsto \widetilde{a}_{p}=\cosh (K)_{p, q} a_{q}+\sinh (K)_{p, q} a_{q}^{*}, \quad\left[\widetilde{a}_{p}, \widetilde{a}_{q}^{*}\right]=\delta_{p, q}
$$

- Anytime when you see $\int V$, replace it by $8 \pi \mathfrak{a}$ (Landau's correction) All this leads to

$$
H_{N} \approx N e_{\mathrm{GP}}+e_{\mathrm{Bog}}+\sum_{p, q \geq 1} \xi_{p, q} \widetilde{a}_{p}^{*} \widetilde{a}_{q},
$$

The complete BEC follows from the spectral gap inf $\operatorname{spec}_{\left\{u_{0}\right\}^{\perp}}(\xi)>0$ Justifying Bogoliubov's approximation is nontrivial!

Lower bound: homogeneous case I

We complete the square: on the two-particle space since $V_{N} \geq 0$,

$$
\left(\mathbb{1}-P \otimes P f_{N}\right) V_{N}\left(\mathbb{1}-f_{N} P \otimes P\right) \geq 0
$$

where $V_{N}=N^{2} V(N(x-y)), f_{N}=f(N(x-y)), P=\left|u_{0}\right\rangle\left\langle u_{0}\right|$. Consequently,

$$
\begin{gathered}
H_{N} \geq \sum_{p \neq 0}\left(|p|^{2} a_{p}^{*} a_{p}+\frac{1}{2} \widehat{f_{N} V_{N}}(p) a_{p}^{*} a_{-p}^{*} a_{0} a_{0}+\frac{1}{2} \widehat{f_{N} V_{N}}(p) a_{0}^{*} a_{0}^{*} a_{p} a_{-p}\right) \\
+\frac{1}{2}\left(\int\left(2 f_{N}-f_{N}^{2}\right) V_{N}\right) a_{0}^{*} a_{0}^{*} a_{0} a_{0}
\end{gathered}
$$

Here $a_{p}=a\left(e^{i p \cdot x}\right), p \in 2 \pi \mathbb{Z}^{3}$. This implements parts of Bogoliubov's argument:

- First step of removing cubic and quartic terms in $a_{p \neq 0}^{\#}$
- Last step of Landau's correction: V_{N} replaced by $f_{N} V_{N}$ where

$$
\int_{\mathbb{R}^{3}} f_{N} V_{N}=\frac{1}{N} \int_{\mathbb{R}^{3}} f V=\frac{8 \pi \mathfrak{a}}{N}
$$

Similar ideas used by Brietzke-Fournais-Solovej (2019) for LHY formula

Lower bound: homogeneous case II

The rest of Bogoliubov's argument (c-number substitution and symplectic diagonalization) can be implemented by completing the square again

$$
A\left(b_{p}^{*} b_{p}+b_{-p}^{*} b_{-p}\right)+B\left(b_{p}^{*} b_{-p}^{*}+b_{p} b_{-p}\right) \geq\left(\sqrt{A^{2}-B^{2}}-A\right) \frac{\left[b_{p}, b_{p}^{*}\right]+\left[b_{-p}, b_{-p}^{*}\right]}{2}
$$

which is equivalent to $d^{*} d \geq 0$ for some d (Lieb-Solovej 2001). Taking

$$
b_{p}=\frac{a_{0}^{*} a_{p}}{\sqrt{N}}, \quad b_{p}^{*} b_{p} \leq a_{p}^{*} a_{p}, \quad\left[b_{p}, b_{p}^{*}\right] \leq 1, \quad \forall 0 \neq p \in 2 \pi \mathbb{Z}^{3}
$$

we find that for $0<\mu<4 \pi^{2}-8 \pi \mathfrak{a}$

$$
\begin{gathered}
H_{N}-\frac{1}{2}\left(\int\left(2 f_{N}-f_{N}^{2}\right) V_{N}\right) a_{0}^{*} a_{0}^{*} a_{0} a_{0}-\mu \mathcal{N}_{+} \\
\geq \frac{1}{2} \sum_{p \neq 0}\left(\left(|p|^{2}-\mu\right)\left(b_{p}^{*} b_{p}+b_{-p}^{*} b_{-p}\right)+N \widehat{f_{N} V_{N}}(p) b_{p}^{*} b_{-p}^{*}+\widehat{f_{N} V_{N}}(p) b_{p} b_{-p}\right) \\
\geq \frac{1}{2} \sum_{p \neq 0}\left(\sqrt{\left(|p|^{2}-\mu\right)^{2}-\left|N \widehat{f_{N} V_{N}}(p)\right|^{2}}-|p|^{2}+\mu\right)=-\frac{N}{2} \int_{\mathbb{R}^{3}} V f(1-f)+\mathcal{O}(1)
\end{gathered}
$$

The last equality follows from the scattering equation $\left(-2 \Delta+V_{N}\right) f_{N}=0$

Lower bound: homogeneous case III

We have proved that for any $0<\mu<4 \pi^{2}-8 \pi \mathfrak{a}$

$$
H_{N} \geq \mu \mathcal{N}_{+}+\frac{1}{2}\left(\int\left(2 f_{N}-f_{N}^{2}\right) V_{N}\right) a_{0}^{*} a_{0}^{*} a_{0} a_{0}-\frac{N}{2} \int_{\mathbb{R}^{3}} V f(1-f)+\mathcal{O}(1)
$$

Finally, using

$$
a_{0}^{*} a_{0}^{*} a_{0} a_{0}=a_{0}^{*} a_{0}\left(a_{0}^{*} a_{0}-1\right)=\left(N-\mathcal{N}_{+}\right)\left(N-\mathcal{N}_{+}-1\right)
$$

we find that

$$
H_{N} \geq(\mu-16 \pi \mathfrak{a}) \mathcal{N}_{+}+\frac{N}{2} \int\left(2 f-f^{2}\right) V-\frac{N}{2} \int_{\mathbb{R}^{3}} V f(1-f)+\mathcal{O}(1)
$$

In the homogeneous case

$$
\frac{1}{2} \int\left(2 f-f^{2}\right) V-\frac{1}{2} \int_{\mathbb{R}^{3}} V f(1-f)=\frac{1}{2} \int f V=4 \pi \mathfrak{a}=e_{G P}
$$

If $\mathfrak{a}<\pi / 6$, we can choose

$$
16 \pi \mathfrak{a}<\mu<4 \pi^{2}-8 \pi \mathfrak{a}
$$

and obtain the desired operator lower bound

$$
H_{N} \geq(\mu-16 \pi \mathfrak{a}) \mathcal{N}_{+}+N e_{\mathrm{GP}}+\mathcal{O}(1)
$$

Lower bound: general case I

Using the two-body inequality

$$
\left(\mathbb{1}-P \otimes P f_{N}\right) V_{N}\left(\mathbb{1}-f_{N} P \otimes P\right) \geq 0
$$

we obtain

$$
H_{N} \geq \mathcal{H}_{0}+\mathcal{H}_{1}+\mathcal{H}_{2}
$$

where

$$
\begin{gathered}
\mathcal{H}_{0}=\int_{\mathbb{R}^{3}}\left(\left|\nabla u_{0}\right|^{2}+U\left|u_{0}\right|^{2}\right) a_{0}^{*} a_{0}+\frac{1}{2} \int_{\mathbb{R}^{3}}\left(\left(\left(2 f_{N}-f_{N}^{2}\right) V_{N}\right) *\left|u_{0}\right|^{2}\right)\left|u_{0}\right|^{2} a_{0}^{*} a_{0}^{*} a_{0} a_{0} \\
\mathcal{H}_{1}=\sum_{m \geq 1}\left(\left\langle u_{m},(-\Delta+U) u_{0}\right\rangle a_{m}^{*} a_{0}+\left\langle u_{m},\left(\left(f_{N} V_{N}\right) *\left|u_{0}\right|^{2}\right) u_{0}\right\rangle a_{m}^{*} a_{0}^{*} a_{0} a_{0}\right)+\text { h.c. } \\
\mathcal{H}_{2}=\frac{1}{2} \sum_{m, n \geq 1}\left(\left\langle u_{m},(-\Delta+U) u_{n}\right\rangle a_{m}^{*} a_{n}+\left\langle u_{m} u_{0},\left(f_{N} V_{N}\right) *\left(u_{n} u_{0}\right)\right\rangle a_{m}^{*} a_{n}^{*} a_{0} a_{0}\right)+\text { h.c. }
\end{gathered}
$$

Thus we have removed cubic and quartic terms in $a_{p \neq 0}^{\#}$, and replace V_{N} by $f_{N} V_{N}$

Lower bound: general case II

Now consider the c-number substitution, i.e. replacing $a_{0}^{\#}$ by \sqrt{N} Using $a_{0}^{*} a_{0}=N-\mathcal{N}_{+}$, then up to an error $\mathcal{O}(a) \mathcal{N}_{+}$we have

$$
\mathcal{H}_{0} \approx N \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{0}\right|^{2}+U\left|u_{0}\right|^{2}\right)+\frac{N}{2}\left(\int_{\mathbb{R}^{3}}\left(2 f-f^{2}\right) V\right) \int_{\mathbb{R}^{3}}\left|u_{0}\right|^{4}
$$

and $\mathcal{H}_{1} \approx 0$ thanks to the Gross-Pitaevskii equation

$$
(-\Delta+U) u_{0}+N\left(\left(f_{N} V_{N}\right) *\left|u_{0}\right|^{2}\right) u_{0} \approx \mu_{0} u_{0}
$$

The terms $a_{0} a_{0}$ and $a_{0}^{*} a_{0}^{*}$ can be treated by a variational principle for quasi-free states on Fock space. This gives

$$
\mathcal{H}_{2} \geq \inf \operatorname{spec}\left(\mathbb{H}_{\text {Bog }}\right)
$$

where

$$
\mathbb{H}_{\text {Bog }}=\frac{1}{2} \sum_{m, n \geq 1}\left(\left\langle u_{m},(-\Delta+U) u_{n}\right\rangle a_{m}^{*} a_{n}+N\left\langle u_{m} u_{0},\left(f_{N} V_{N}\right) *\left(u_{n} u_{0}\right)\right\rangle a_{m}^{*} a_{n}^{*}\right)+\text { h.c. }
$$

Lower bound: general case III

We can diagonalize the quadratic Hamiltonian $\mathbb{H}_{\text {Bog }}$ and find that

$$
\inf \operatorname{spec}\left(\mathbb{H}_{\text {Bog }}\right)=-\frac{1}{4} \operatorname{Tr}\left((-\Delta+U)^{-1} K^{2}\right)+\mathcal{O}(1)
$$

where the operator K has kernel $K(x, y)=u_{0}(x) u_{0}(y)\left(N f_{N} V_{N}\right)(x-y)$, i.e.

$$
K=u_{0}(x) N \widehat{f_{N} V_{N}}(p) u_{0}(x)
$$

with $u_{0}(x)$ and $v(p)$ are multiplication operators in the position and momentum spaces. If the operators commuted, then by the scattering equation

$$
\begin{gathered}
\operatorname{Tr}\left((-\Delta)^{-1} K^{2}\right)=N^{2} \operatorname{Tr}\left(p^{-2} u_{0}(x) \widehat{f_{N} V_{N}}(p) u_{0}^{2}(x) \widehat{f_{N} V_{N}}(p) u_{0}(x)\right) \\
=N^{2} \operatorname{Tr}\left(u_{0}(x) p^{-2} \widehat{f_{N} V_{N}}(p) u_{0}^{2}(x) \widehat{f_{N} V_{N}}(p) u_{0}(x)\right) \\
=2 N^{2} \operatorname{Tr}\left(u_{0}^{2}(x) \widehat{1-f_{N}}(p) u_{0}^{2}(x) \widehat{f_{N} V_{N}}(p)\right)=2 N \int\left(\left(1-f_{N}\right) f_{N} V_{N} * u_{0}^{2}\right) u_{0}^{2}
\end{gathered}
$$

which together with \mathcal{H}_{0} gives $N e_{\text {GP }}$. Rigorously, $u_{0}(x)$ and $|p|^{-2}$ do not commute, but the commutator can be controlled by the Kato-Seiler-Simon inequality

$$
\|u(x) v(p)\|_{\mathfrak{S}^{r}} \leq C_{d, r}\|u\|_{L^{r}\left(\mathbb{R}^{d}\right)}\|v\|_{L^{\prime}\left(\mathbb{R}^{d}\right)}, \quad 2 \leq r<\infty .
$$

An open problem

Our derivation of the BEC with optimal estimate is a step towards
Conjecture on the excitation spectrum (Bogoliubov 1947, Grech-Seiringer 2013)
Let $0=e_{0}<e_{1} \leq e_{2} \leq \ldots$ be eigenvalues of $\left(D^{1 / 2}\left(D+16 \pi \mathfrak{a}\left|u_{0}\right|^{2}\right) D^{1 / 2}\right)^{1 / 2}$ on $L^{2}\left(\mathbb{R}^{3}\right)$, where

$$
D:=-\Delta+U+8 \pi \mathfrak{a}\left|u_{0}\right|^{2}-\mu_{0} \geq 0
$$

Then all eigenvalues of $H_{N}-E_{N}$ in the interval $[0, o(N)]$ are the finite sums

$$
\sum_{i \geq 1} n_{i} e_{i}\left(1+o(1)_{N \rightarrow \infty}\right), \quad n_{i} \in\{0,1,2, \ldots\}
$$

- Proved for the mean-field regime with V_{N} replaced by $N^{-1} V$ by Seiringer ('11), Grech-Seiringer ('13), Lewin-N.-Serfaty-Solovej ('14), Dereziński-Napiórkowski ('14)
- Proved for the dilute homogeneous gas by Boccato-Brennecke -Cenatiempo-Schlein ('19) where $e_{p}=\sqrt{|p|^{4}+16 \pi \mathfrak{a}|p|^{2}}, \quad p \in 2 \pi \mathbb{Z}^{3}$. This verifies Landau's criterion for superfluidity: a drop with velocity less than $\inf _{p \neq 0} e_{p} /|p|$ can move frictionlessly in the ground state of H_{N}

Thank you!

