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Homework Sheet 14
(Released 29.1.2025 – Discussed 5.2.2025)

E14.1 Let A : D(A)→ H be a self-adjoint operator on a separable Hilbert space H. Let

u0 ∈ H and assume that

MT =
1

T

∫ T

0
|e−itAu0〉〈e−itAu0|⇀M∞

weakly in the Hilbert–Schmidt topology when T →∞, namely Tr[MTB]→ Tr[M∞B] for

every Hilbert–Schmidt operator B on H.

(a) Prove that e−itAM∞e
itA = M∞ for all t ∈ R.

(b) Prove that M∞ commutes with A.

(c) Deduce that there exist λn ≥ 0 and an orthonormal family {un} of eigenfunctions

of A such that

M∞ =

∞∑
n=1

λn|un〉〈un|.

(d) Conclude that if u0 is orthogonal to all eigenfunctions of A, then M∞ = 0.

Hint: E13.3 is helpful for (d). We used these ingredients in the proof of RAGE theorem.

E14.2 Let d ≥ 1, p ∈ [1, 2] and 1/p+ 1/p′ = 1. Prove the dispersive estimate

‖eit∆ϕ‖Lp′ (Rd) ≤ |t|
− d

2
( 1
p
− 1
p′ )‖ϕ‖Lp(Rd).

Hint: You may interpolate from two cases p = 1 and p = 2.

E14.3 Let V ∈ L2(R3,R) +Lp(R3,R) for some 2 < p < 3. Prove that the wave operators

Ω± = lim
t→±∞

e−itAe−it∆

are well defined on L2(Rd).
Hint: You can use Cook method and E14.1

E14.4 A : D(A)→ L2(Rd) is a self-adjoint operator and ϕ ∈ L2(Rd) such that the limit

Ω±ϕ = lim
t→±∞

e−itAe−it∆ϕ

exists. Prove that the vectors Ω±ϕ are orthogonal to all eigenfunctions of A.
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Homework Sheet 13
(Released 22.1.2025 – Discussed 29.1.2025)

E13.1 Let A : D(A)→ H be a self-adjoint operator on a separable Hilbert space H.

(a) Prove that for every x0 ∈ H and t ∈ Rd, the vector x(t) = e−itAx0 satisfies that

d

dt
〈ϕ, ix(t)〉 = 〈Aϕ, x(t)〉, ∀ϕ ∈ D(A).

(b) Prove that ‖x(t)‖ = ‖x0‖ for all t ∈ R if x0 ∈ H. Moreover, ‖Ax(t)‖ = ‖Ax0‖ for

all t ∈ R if x0 ∈ D(A).

(c) Prove that for every x0 ∈ H, if y(t) satisfies

d

dt
〈ϕ, iy(t)〉 = 〈Aϕ, y(t)〉, ∀ϕ ∈ D(A), ∀t ∈ R

and y(0) = x0, then y(t) = x(t) for all t ∈ R (namely the weak solution is unique).

E13.2 Consider the free Schrödinger evolution eit∆ on L2(Rd). Let f ∈ L1(Rd) ∩ L2(Rd).
(a) Prove that for all ε > 0, we have

e−(it+ε)|2πk|2 f̂(k) = Ĝε ∗ f(k), with Gε(x) =
1

(4π(it+ ε))d/2
exp

(
− |x|2

4(it+ ε)

)
(b) Deduce that

eit∆f(x) =
1

(4πit)d/2

∫
Rd

exp

(
−|x− y|

2

4it

)
f(y)dy.

E13.3 Let A be a self-adjoint operator on L2(Rd) and f ∈ span{eigenfunctions of A}.
Prove that for every ε ∈ (0, 1), there exists R = Rε > 0 such that for all t ∈ R,∫

|x|≤R
|(e−itAf)(x)|2dx ≥ (1− ε)

∫
Rd
|f |2.

E13.4 InH = L2([0, 1]), we have seen in the lecture that the momentum operator pα = i ddx
is self-adjoint when defined on

D(pα) = {f ∈ J : f absolutely continious with derivative in H, f(0) = eiαf(1)}

for a phase 0 ≤ α < 2π. Find an explicit expression for the one parameter group Uα(t) =

eitpα provided by Stone’s theorem.

Hint: Note that Uα is defined on all of H but taking the t-derivative must yield the

different pα with their respective domains!
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Homework Sheet 12
(Released 15.1.2025 – Discussed 22.1.2025)

In this homework we only consider the dimension d ≥ 3.

E12.1 Let {un}Nn=1 ⊂ H1(Rd) such that {∇un}Nn=1 are orthonormal in L2(Rd).
(a) Prove that {

√
−∆un}Nn=1 are orthonormal.

(b) Prove that for all E > 0 we have

N∑
n=1

∣∣∣∣∣
∫
|k|2≤E

e2πik·xûn(k)dk

∣∣∣∣∣
2

≤ CdE
d−2
2 .

(c) Prove that

N =

N∑
n=1

‖∇un‖2L2 ≥ Kd

∫
Rd
ρ

d
d−2 .

Here Cd > 0 and Kd > 0 are constants depending only on d.

E12.2 Let V ∈ Ld/2(Rd,R) and let A = −∆+V (x) be the self-adjoint operator on L2(Rd)
by Friedrichs’ method (c.f. E8.3).

(a) Use the characterization in E11.5 to prove directly that infess(A) ≥ 0.

(b) Assume that A has N negative eigenvalues and let W be the space spanned by

the corresponding eigenfunctions. Prove that 〈ϕ,Aϕ〉 ≤ 0 for all ϕ ∈ W and that

dim
√
−∆W = N . Deduce that we can find N functions {un}Nn=1 such that {

√
−∆un}Nn=1

are orthonormal and that 〈un, Aun〉 < 0 for all n = 1, 2, ..., N .

(c) Use E12.1 to prove that the number of negative eigenvalues of A is bounded by

Cd
∫
Rd |V−|

d/2. This is the CLR inequality. Here V−(x) = min(V (x), 0).

E12.3 Consider A = −∆+|x|2. We know that it is a self-adjoint operator with eigenvalues

0 < µ1 ≤ µ2 ≤ ... and µn →∞.

(a) Use the CLR inequality to prove that for all λ > 0, the number of eigenvalues {µn}
in the interval (0, λ) is bounded from above by Cdλ

d.

(b) Prove that µn ≥ cdn1/d for all n = 1, 2, ...

Here Cd > 0, cd > 0 are constants depending only on d.

E12.4 (a) Let A and B be two self-adjoint operators on a separable Hilbert space H such

that D(A) ∩ D(B) is dense in H. Prove that if A ≥ B, then the number of negative

eigenvalues of A is smaller than or equal to the number of negative eigenvalues of B.

(b) Prove that V ∈ L
d/2
loc (Rd,R) and V (x) ≥ −λ|x|−2 for |x| large, with a constant

0 < λ < (d − 2)2/4, then the Schrödinger operator −∆ + V (x) has only finitely many

negative eigenvalues.
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Homework Sheet 11
(Released 8.1.2025 – Discussed 15.1.2025)

E11.1 Let A = Ma be the multiplication operator on L2(Rd, µ), with µ a Borel locally

finite measure on Rd and a ∈ L∞loc(Rd,R). Let λ ∈ R.

(a) Prove that λ is an eigenvalue of A if and only if µ(a−1({λ})) > 0.

(b) Prove that if λ ∈ σ(A) but λ is not an eigenvalue, then limε→0 µ(a−1((λ−ε, λ+ε)) =

0. Deduce that there exists a sequence εn → 0 such that

µ(a−1((λ− εn, λ+ εn)\(λ− εn+1, λ+ εn+1)) = 0, ∀n ∈ N.

(c) Prove that if λ is an isolated point of σ(A), namely here exists ε > 0 such that

σ(A) ∩ (λ− ε, λ+ ε) = {λ}, then λ is an eigenvalue and

|A− λ|2 ≥ ε21Ker⊥λ
, Kλ = Ker(A− λ).

Hint: We used these properties to prove Weyl’s criterion for spectrum. Here a−1(U) =

{x : a(x) ∈ U}. You can use σ(A) = ess-range(a) (see E3.5).

E11.2 Use Weyl’s criterion to prove that σ(−∆) = σess(−∆) = [0,∞). Here −∆ is the

Laplacian in L2(Rd).

E11.3 Let A : D(A) → H be a self-adjoint operator on a separable Hilbert space and

B : D(A)→ H be a symmetric operator. Assume that B is A-relatively compact, namely

B(A+ i)−1 is a compact operator.

(a) Prove that

lim
n→∞

‖B(A+ in)−1‖ = 0.

(b) Prove that B is A-relatively bounded with any relative bound ε ∈ (0, 1), namely

‖Bu‖ ≤ ε‖Au‖+ Cε‖u‖, ∀u ∈ D(A).

Hint: You can show that An = (A+ i)(A+ in)−1 satisfies ‖Anu‖ → 0 for all u ∈ H.

E11.4 Let d ∈ N. Let V ∈ Lp(Rd) with max(2, d/2) ≤ p < ∞ and additionally 2 < p if

d = 4. Prove that V is ∆-relatively compact.

E11.5 Let A : D(A)→ H be a self-adjoint operator on an (infinite dimensional) separable

Hilbert space H which is bounded from below. Prove that

inf σess(A) = inf{lim inf
n→∞

〈un, Aun〉 : {un} ⊂ D(A) orthonormal}

= inf{lim inf
n→∞

〈un, Aun〉 : {un} ⊂ D(A) normalized, un ⇀ 0}.
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Homework Sheet 10
(Released 20.12.2024 – Discussed 8.1.2025)

E10.1 Show that the space of states of Mat(2 × 2,C) as a convex space is the unit ball

in R3. Hint: The identity I and the Pauli matrices σx, σy, σz for a basis of the hermitean

2× 2 matrices. Show explicitly that the pure states are those that come from rays in C2.

E10.2 Let ρ be a density matrix for Mat(2 × 2,C). Work out explicitly the GNS con-

struction for ωρ(A) = Tr(ρA). What is its dimension? You can assume that ρ is diagonal

(why?) and you will have to distinguish two cases.

E10.3 Alice and Bob have each their separted labs each with their local Hilbert spaces

HA and Hb respectively which we assume to be finite dimesional. The whole “bipartite”

set up is described by the Hilbert space H = HA ⊗HB and observables A = B(H ) =

B(HA ⊗HB). Let ω : A → C be a state.

Alice can only make measurements in her own lab, thus she has only access to observ-

ables of the form A⊗ I for A ∈ B(HA). Show that those form a sub-C*-algebra of A and

we have thuse an inclusion B(HA) ↪−→ B(HA ⊗HB). Accordingly, we can define a state

on Alices’s subsystem B(HA) via

ωA := ω|B(HA).

Express the density matrix for ωA in terms of the density matrix of ω!
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Homework Sheet 9
(Released 11.12.2024 – Discussed 17.12.2024)

E9.1 Instead of two types of generators, one can also write the CCR algebra in terms of

operators W (z) for z ∈ C and

W (s+ it) = e−ist/2U(s)V (t)

with relations W (z1)W (z2) = ei=(z1z̄2)/2W (z1 + z2). (In fact, this can be defined for any

symplectic vector space, that is a real vector space with a non-degenerate anti-symmetric

bi-linear form σ. In this case only replace =(z1z̄2) by the symplectic form σ). Show that

all W (z) are unitary. Thus their spectrum has to be contained in the unit circle.

Then compute W (u)W (z)W (−u) and use this to argue that the spectrum of W (z)

is either empty (this is impossible) or it is all of the unit circle. You can use that the

spectrum is invariant under unitary conjugation.

This tells you about the spectrum of W (z)− I. Finally conclude that for z 6= 0

‖W (z)− I‖ = 2

.

E9.2 Prove the Stone-von Neumann theorem. Assume that you have a regular irreducible

represenations π : CCR→ B(H). Show first that

P :=
1

2π

∫
d2z π(W (z))e−|z|

2/4

(defined in terms of matrix elements) is an orthogonal projection. Show also that

Pπ(W (z))P = e−|z|
2/4P.

If Ω ∈ PH normalized, show that the span of all π(W (z)) for z ∈ C is invariant under

the action of all Weyl-operators W . From the irriducubility of the representation conclude

that PH is one dimensional.

Use this to construct the unitary equivalence of two regular irreducible representations

of CCR.

E9.3 Construct an irreducuble representation of CCR on a Hilbert space of functions

ψ : R→ C where π(U(s)) is the multiplication operator eisx and (π(V (t))ψ)(x) = ψ(x+t),

both act as unitary operators. Different from the Schrödinger representation, letH contain

the function that is 1 everywhere (assume this to be normalized to ‖1‖ = 1). Show that

this representation is inequivalten to the Schrödinger representation.
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Homework Sheet 8
(Released 4.12.2024 – Discussed 11.12.2024)

E8.1 Let d ≥ 1, s > d/2 and f ∈ Hs(Rd). Prove that f is Hölder’s continuous, namely

sup
x 6=y

|f(x)− f(y)|
|x− y|ε

≤ C‖f‖Hs(Rd)

for some constants ε ∈ (0, 1) and C = C(d, s, ε) independent of f .

Hint: You can use the inverse Fourier and |1− eia| ≤ min(2, |a|) for all a ∈ R.

In the following we always consider the Schrödinger operator A = −∆+V (x) on L2(Rd)
with domain D(A) = C2

c (Rd). Here V : Rd → R is a real-valued potential.

E8.2 Let d = 2.

(a) Prove that for all q ∈ [2,∞) we have the Sobolev inequality

‖u‖Lq(R2) ≤ Cq‖u‖H1(R2), ∀u ∈ H1(R2).

Hint: You can mimic the proof of the case d ≥ 3.

(b) Prove that −∆ + V is bounded from below if V ∈ Lp(R2) + L∞(R2) for p > 1.

E8.3 Let d ≥ 3.

(a) Prove that the Sobolev inequality ‖u‖L2∗ (Rd) ≤ C‖∇u‖L2(Rd), with 2∗ = 2d/(d− 2),

is equivalent to the fact that −∆ + V ≥ 0 if ‖V ‖Ld/2 small enough.

(b) Prove that −∆ + V is bounded from below if V ∈ Ld/2(Rd) + L∞(Rd).

E8.4 Prove that for all dimensions d ≥ 1 and V ∈ L1+d/2(Rd) we have

−∆ + V ≥ −C
∫
Rd
|V (x)|1+d/2(x).

E8.5 Let {un}∞n=1 ⊂ H1(Rd) be orthonormal functions in L2(Rd) such that∫
Rd
|x|2|un(x)|2dx ≤ C, ∀n ∈ N.

Prove that

lim
n→∞

∫
Rd
|∇un(x)|2dx =∞.
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Homework Sheet 7
(Released 27.11.2024 – Discussed 4.12.2024)

E7.1 Let s, d ∈ N and f ∈ Hs(Rd). Let χ ∈ C∞c (Rd) such that χ(x) = 1 if |x| ≤ 1 and

χ(x) = 0 if |x| ≥ 2. Define

fn(x) = χ(x/n)

∫
Rd
ndχ̂(n(x− y))f(y)dy.

Prove that fn ∈ C∞c (Rd) and fn → f in Hs(Rd).

E7.2 Prove that if f, g ∈ H1(Rd), then we have the integration by part∫
Rd

(∂jf)(x)g(x)dx = −
∫
Rd
f(x)(∂jg)(x)dx, j = 1, 2, ..., d.

Hint: You first consider f, g smooth, and then use a density argument (thanks to E7.1).

E7.3 (a) Let d ≥ 1. Prove that the equation(
−∆− (d− 2)2

4|x|2
)
f(x) = 0

has a solution f(x) = |x|−α for a suitable α > 0. Deduce that∫
Rd
|∇u(x)|2dx ≥

∫
Rd

(d− 2)2

4|x|2
|u(x)|2dx

for all u ∈ C∞c (Rd) such that u = 0 in a neighborhood of 0.

(b) Let d ≥ 3. Prove that the above Hardy inequality holds true for all u ∈ H1(Rd).
Hint: You can use the Perron-Frobenius principle for (a) and a density argument for (b).

E7.4 (a) Use the hydrogen atom lower bound to prove the following inequality∫
R3

|∇u(x)|2dx ≥
(∫

R3

1

|x|
|u(x)|2dx

)2

, ∀u ∈ H1(R3), ‖u‖L2(R3) = 1.

(b) Use the above inequality to prove the Heisenberg uncertainty principle(∫
R3

|∇u(x)|2dx

)(∫
R3

|x|2|u(x)|2dx

)
≥ 1, ∀u ∈ H1(R3), ‖u‖L2(R3) = 1.

Note: The optimal constant in the Heisenberg uncertainty principle is d2/4 = 9/4.

E7.5 Let d ≥ 3 and 1 ≤ p ≤ ∞. We denote by Cd,p a constant depending only on d, p.

(a) Prove that if ‖u‖Lp(Rd) ≤ Cd,p‖∇u‖L2(Rd) for all u ∈ H1(Rd), then p = 2∗ = 2d
d−2 .

(b) Prove that if ‖u‖Lp(Rd) ≤ Cd,p‖u‖H1(Rd) for all u ∈ H1(Rd), then 2 ≤ p ≤ 2∗.
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Homework Sheet 6
(Released 20.11.2024 – Discussed 27.11.2024)

E6.1 Let A : D(A)→ H be a symmetric operator on a Hilbert space H. Let A : D(A) be

the closure of A.

(a) Prove that A is a closed operator, namely the graph {(x,Ax) : x ∈ D(A)} is close

in H⊕H. Here (x, y)H⊕H = ‖x‖+ ‖y‖ with the norm ‖.‖ in H.

(b) Prove that if A is a closed operator, namely if the graph {(x,Ax) : x ∈ D(A)} is

close in H⊕H, then A = A.

E6.2 Let A : D(A)→ H be an operator on a Hilbert space H and A ≥ 1. Prove that

〈x, y〉Q = 〈x,Ay〉H, ∀x, y ∈ D(A)

is an inner product on D(A). (We used this to defined Q(A) = D(A)
‖.‖Q

.)

E6.3 Let A : D(A)→ H be a symmetric operator on a Hilbert space (H, ‖.‖) with A ≥ 1.

Let AF be the Friedrichs extension of A.

(a) Prove that the quadratic form domain Q(A) is the same with the domain D(
√
AF ).

(b) Prove that

inf
x∈D(A),‖x‖=1

〈x,Ax〉 = inf
x∈Q(A),‖x‖=1

‖x‖2Q(A) = inf
x∈D(AF ),‖x‖=1

〈x,AFx〉.

E6.4 Let A : D(A)→ H be a symmetric operator on a Hilbert space H such that A ≥ 1.

Prove that if A is essentially self-adjoint, namely A is self-adjoint, then A coincides with

the Friedrichs extension of A.

E6.5 Let A : D(A)→ H be a symmetric operator on a Hilbert space H. Prove that A is

self-adjoint if and only if C = (A+ i)(A− i)−1 is well-defined as a unitary operator on H.

(This is called the Cayley transform.)
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Homework Sheet 5
(Released 13.11.2024 – Discussed 20.11.2024)

E5.1 Let A : D(A)→ H be a symmetric operator on a Hilbert space. Let i2 = −1.

(a) Prove that ‖(A± i)x‖ ≥ ‖x‖ for all x ∈ D(A).

(b) Prove that if Ran(A+ i) = H, then (A+ i)−1 is a bounded operator.

(c) Prove that A is self-adjoint if and only if Ran(A± i) = H.

E5.2 Let A : D(A) → H be a symmetric operator on a Hilbert space. Prove that A is

self-adjoint if and only if its spectrum is real, namely σ(A) ⊂ R.

E5.3 Let A : D(A)→ H be a self-adjoint operator on a Hilbert space. Then S = (A+i)−1

is a bounded operator by Problem E5.1. Prove that S is a normal operator, namely

SS∗ = S∗S. (Note: You are not allowed to use the spectral theorem here, since we used

this fact to prove the spectral theorem for self-adjoint unbounded operators.)

E5.4 Let A : D(A) → H be a self-adjoint operator on a Hilbert space H. Define the

spectral projection

An = 1(A ≤ n), n ∈ N

by functional calculus (i.e. via the spectral theorem). Prove that An converges to the

identity 1 strongly, namely Anu→ u strongly for every u ∈ H as n→∞.

E5.5 (a) Let (X, ‖.‖X) and (X, ‖.‖Y ) be two Banach spaces (the same vector space X

with two different norms). Assume that ‖u‖X ≤ ‖u‖Y for all u ∈ X. Prove that there

exists a constant C > 0 such that ‖u‖Y ≤ C‖u‖X for all u ∈ X.

(b) Let (Ω, µ) be a sigma-finite measure space. Let a : Ω→ R be a measurable function

such that af ∈ L2(Ω, µ) for all f ∈ L2(Ω, µ). Prove that a ∈ L∞(Ω, µ).

(c) Let A : D(A) → H be a self-adjoint operator on a Hilbert space H. Prove that if

D(A) = H, then A is a bounded operator. (This is called the Hellinger–Toeplitz theorem.)
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Homework Sheet 4
(Released 8.11.2024 – Discussed 13.11.2024)

E4.1 Let A be a self-adjoint compact operator on a Hilbert space with the representation

A =
∑
n≥1

λn|un〉〈un|

where {un} is an orthonormal family and λn ∈ R, λn → 0. Prove that

σ(A) = {0}
⋃
{λn : n ≥ 1}.

E4.2 Let B be a bounded operator on a Hilbert space H such that

‖u‖ ≤ C‖Bu‖, ‖u‖ ≤ C‖B∗u‖, ∀u ∈ H

with a constant C > 0 independent of u. Prove that B−1 is a bounded operator.

E4.3 In the lecture, we have proved that if A is a self-adjoint bounded operator on a

Hilbert space H, then

sup
‖u‖≤1

|〈u,Au〉| ≤ sup |σ(A)| ≤ ‖A‖.

Use these inequalities to prove that sup |σ(A)| = ‖A‖ (this is what we actually need to

prove the Spectral theorem). Hint: You can apply the above inequalities to A and A2.

E4.4 Let A be a self-adjoint bounded operator on a Hilbert space H. For any polynomial

f(t) =
∑N

j=1 αjt
j , αj ∈ C, we defined f(A) =

∑N
j=1 αjA

j .

(a) Prove that for any polynomial, σ(f(A)) = f(σ(A)), and then deduce that

||f(A)|| = sup
t∈σ(A)

|f(t)|.

Hint: You can consider the factorized form of λ− f(t) (fundamental theorem of algebra).

(b) Prove that we can extend the definition f(A) for any f ∈ C(σ(A),C) by Weierstrass

theorem. Moreover, we have

f(A)g(A) = (fg)(A), ∀f, g ∈ C(σ(A),C).

This means that f 7→ f(A) is a C∗- isomorphism from C(σ(A),C) to B(H).

E4.5 Let A be a self-adjoint bounded operator on a Hilbert space H. Let u ∈ H and let

µu be the spectral measure associated with A. Prove that

µu(σ(A)) = ‖u‖2.
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Homework Sheet 3
(Released 30.10.2024 – Discussed 6.11.2024)

E3.1 Let A : H → H be a trace class operator on a Hilbert space. Let {xn}n≥1 be an

orthonormal basis for H (not necessary the eigenfunctions of A). Prove that

Tr(A) =
∑
n≥1

〈xn, Axn〉.

E3.2 Let A : H → H be a bounded self-adjoint operator on a Hilbert space.

(a) Assume that A ≥ 0 and that there exists an orthonormal basis {xn}n≥1 such that∑
n≥1

〈xn, Axn〉 <∞.

Prove that A is trace class.

(b) Can we relax the condition A ≥ 0 in (a)? Namely, if we only assume that A

is bounded self-adjoint and that there exists an orthonormal basis {xn}n≥1 satisfying∑
n |〈xn, Axn〉| <∞, then can we conclude that A is trace class?

E3.3 Let A ≤ 0 be a compact operator on a Hilbert space H. Prove that its eigenvalues

λ1 ≤ λ2 ≤ ... (counting multiplicity) satisfy the min-max principle

λn = min
M⊂H

dimM=n

max
u∈M
‖u‖=1

〈u,Au〉, ∀n = 1, 2, ...

Hint: The minimum is attained when M is the space spanned by the first n eigenfunctions.

E3.4 Prove that if A is a bounded operator on a Hilbert space and B ∈ Sp, the Schatten

space with 1 ≤ p ≤ ∞, then both AB and BA belong to Sp.

Hint: You can estimate the singular values of X via those of X∗X or XX∗ and use E3.3.

E3.5 Let (Ω, µ) be a σ-finite measure space. Let a : Ω→ C be a measurable. Define the

multiplication operator Ma on L2(Ω, µ) by

(Maf)(x) = f(x)a(x), D(Ma) = {f ∈ L2 : af ∈ L2}.

Prove the following statements:

(a) The spectrum of Ma is equal to the essential range of a.

(b) Ma is bounded if and only if a is bounded. Moreover, in this case ‖Ma‖ = ‖a‖L∞ .
(c) Ma is self-adjoint if and only if a is real-valued almost everywhere.



13

Mathematisches Institut LMU Mathematical Quantum Mechanics

Robert Helling & Phan Thành Nam Winter 2024-2025
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E2.1 Let A : D(A)→ H be a densely defined operator on a Hilbert space. Prove that the

following statements are equivalent:

(a) A is a symmetric operator.

(b) 〈x,Ax〉 ∈ R for all x ∈ D(A).

(c) A ⊂ A∗.

E2.2 Let A : H → H be a linear operator on a Hilbert space.

(a) Prove that A is bounded if and only if A∗ is bounded, and in this case ‖A‖ = ‖A∗‖.
(b) Prove that A is compact if and only if A∗ is compact.

E2.3 Let A : H → H be a linear operator on a Hilbert space. Prove that A is bounded

if and only if A maps weak convergence to weak convergence, namely if xn ⇀ x weakly

then Axn ⇀ Ax weakly.

E2.4 Let A : H → H be a bounded operator on a Hilbert space. Prove that A∗A and AA∗

have the same non-zero eigenvalues with the same multiplicities. Moreover, A maps each

eigenspace of A∗A with a non-zero eigenvalue to the corresponding eigenspace of AA∗.

E2.5 Let A : H → H be a bounded operator on a Hilbert space such that for every

orthonormal sequence {xn}, we have Axn → 0 strongly. Can we conclude that A is a

compact operator?
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E1.1 Let (H, ‖.‖) be a Banach space. Prove that it is a Hilbert space if and only if the

norm satisfies

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2), ∀u, v ∈ H.

How can we write the inner product 〈u, v〉 in terms of the norm of suitable vectors?

E1.2 Let V be a (complex) vector space and let Q : V × V → C be a bilinear form (in

particular Q(u, v) is linear in v and anti-linear in u). Prove that if Q(u, u) ≥ 0 for all

v ∈ H, then we have the Cauchy–Schwarz inequality

|Q(u, v)| ≤
√
Q(u, u)

√
Q(v, v), ∀u, v ∈ V.

E1.3 Let V be a dense subspace of a separable Hilbert space H. Prove that there exists

an orthonormal basis {un}n≥1 for H such that un ∈ V for all n ≥ 1.

E1.4 (a) Argue that for symmetric operators A,B on a Hilbert space H, we have

〈∆A〉 · 〈∆B〉 ≥ 1

4
〈Im[A,B]〉2

where 〈∆A〉 = 〈ψ,A2ψ〉 − 〈ψ,Aψ〉2, 〈∆B〉 = 〈ψ,B2ψ〉 − 〈ψ,Bψ〉2 and 〈Im[A,B]〉 =

Im〈ψ, [A,B]ψ〉 with a suitable vector ψ ∈ H which belongs to the domain of all relevant

operators. When does the equality occur?

(b) For A = −i∂x (momentum operator) and B = x (multiplication operator) on

H = L2(R), what do we get from (a)? Determine all functions Ψ ∈ L2(R) satisfying the

corresponding equality.

E1.5 Let p, q ∈ (1,∞) such that 1/p+ 1/q = 1.

(a) Prove Young’s identity

ap

p
= sup

b∈[0,∞)

(
ab− bq

q

)
, ∀a ∈ [0,∞).

(b) Deduce Hölder’s inequality

‖f‖Lp = sup
‖g‖Lq≤1

∣∣∣∣∫
Rd
fg

∣∣∣∣ , ∀f ∈ Lp(Rd)

and the triangle inequality

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp , ∀f, g ∈ Lp(Rd).


