Homework Sheet 2

(Released 2.5.2025 – Discussed 9.5.2025)

E2.1 Let *H* be a self-adjoint operator on a Hilbert space \mathcal{H} . Assume that *H* is bounded from below and $\mu_{\infty} = \inf \sigma_{\text{ess}}(H)$ is finite.

(a) Prove that for every $N \in \mathbb{N}$, there exists an orthonormal family $\{u_n\}_{n=1}^N$ such that

$$\max_{1 \le n \le N} \langle u_n, Hu_n \rangle \le \mu_{\infty}.$$

(b) Prove that there exists an orthonormal family $\{u_n\}_{n=1}^{\infty}$ such that $\langle u_n, Hu_n \rangle \to \mu_{\infty}$.

E2.2 Let $A \ge 0$ be a self-adjoint compact operator on a Hilbert space \mathcal{H} . Prove that the following statements are equivalent:

(a) A is trace class;

(b) $\sum_{n\geq 1} \langle u_n, Au_n \rangle$ is finite for some orthonormal basis $\{u_n\}_{n\geq 1}$ for \mathcal{H} .

Prove also that in this case, $\operatorname{Tr} A = \sum_{n \geq 1} \langle u_n, Au_n \rangle$ for every orthonormal basis $\{u_n\}_{n \geq 1}$. Note: If $A \geq 0$ is self-adjoint and $\sum_{n \geq 1} \langle u_n, Au_n \rangle < \infty$ for some orthonormal basis $\{u_n\}_{n > 1}$, then we can still deduce that A is trace class. But the proof is more difficult.

E2.3 Let *H* be a self-adjoint operator on a Hilbert space \mathcal{H} which is bounded from below, namely $\mathcal{H} \geq -C$. Let Γ be a (mixed) state, namely $\Gamma \geq 0$ and $\operatorname{Tr} \Gamma = 1$. Prove that

$$Tr[\Gamma^{1/2}H\Gamma^{1/2}] = Tr[(H+C)^{1/2}\Gamma(H+C)^{1/2}] - C$$

where the both sides make sense as a number in $[-C, \infty]$. We denote this by $\text{Tr}[H\Gamma]$.

E2.4 Let Γ be a (mixed) state on a Hilbert space \mathcal{H} . Let $S(\Gamma) = -\operatorname{Tr}[\Gamma \log \Gamma]$.

- (a) Prove that $S(\Gamma) = 0$ if and only if Γ is a pure state (i.e. a rank-1 operator).
- (b) Prove that if Γ is a rank-N operator (namely dim $\Gamma \mathcal{H} = N$), then

$$0 \le \Gamma(\Gamma) \le N \log N.$$

Deduce that if $S(\Gamma) = \infty$, then Γ is an infinite-rank operator.

(c) Give an example where Γ is infinite-rank but $S(\Gamma) < \infty$.

E2.5 Let *H* be a self-adjoint operator on a Hilbert space \mathcal{H} such that $\operatorname{Tr}(e^{-H/T}) = \infty$ for some temperature T > 0. Prove that

$$F_T := \inf\{\operatorname{Tr}[H\Gamma] + T\operatorname{Tr}[\Gamma\log\Gamma] : \Gamma \ge 0, \operatorname{Tr}\Gamma = 1\} = -\infty.$$

Hint: If \mathcal{H} has compact resolvent, you may construct a sequence of trial states Γ using eigenfunctions of \mathcal{H} . If H has essential spectrum, then E2.1 is helpful.

Mathematisches Institut LMU Phan Thành Nam & Dong Hao Ou Yang

Homework Sheet 1

(Released 25.4.2025 – Discussed 2.5.2025)

E1.1 Let $f \in L^2(\mathbb{R})$. Prove that if both f and \hat{f} are compactly supported, then f = 0. This is an illustration for the uncertainty principle.

E1.2 Let Ω be a measurable subset of \mathbb{R}^d . Let $N \geq 2$. Consider the two operators P_{\pm} on $\mathcal{H}^N = L^2(\Omega^N)$ defined by

$$(P_{+}\Psi)(x_{1},...,x_{N}) = (N!)^{-1} \sum_{\sigma \in S_{N}} \Psi(x_{\sigma(1)},...,x_{\sigma(N)}), \quad x_{j} \in \Omega$$
$$(P_{-}\Psi)(x_{1},...,x_{N}) = (N!)^{-1} \sum_{\sigma \in S_{N}} (-1)^{\sigma} \Psi(x_{\sigma(1)},...,x_{\sigma(N)}).$$

Here S_N is the permutation group of $\{1, 2, ..., N\}$ and $(-1)^{\sigma}$ is the sign of $\sigma \in S_N$.

- (a) Prove that P_+ and P_- are two orthogonal projections on \mathcal{H}^N (i.e. $P = P^*, P^2 = P$).
- (b) Prove that the subspaces $\mathcal{H}_{s}^{N} = P_{+}\mathcal{H}^{N}$ and $\mathcal{H}_{a}^{N} = P_{-}\mathcal{H}^{N}$ satisfy $\mathcal{H}_{s}^{N} \cap \mathcal{H}_{a}^{N} = \{0\}$.

The symmetric space \mathcal{H}_{s}^{N} corresponds to bosons, while the antisymmetric space \mathcal{H}_{a}^{N} corresponds to fermions.

E1.3 Let Ω be a measurable subset of \mathbb{R}^d . Let $u_1, u_2, ..., u_N$ be orthonormal functions in $L^2(\Omega)$. Consider the *Slater determinant*

$$(u_1 \wedge \dots \wedge u_N)(x_1, \dots, x_N) = (N!)^{-1/2} \det \begin{pmatrix} u_1(x_1) & \cdots & u_N(x_1) \\ u_1(x_2) & \cdots & u_N(x_2) \\ & \vdots \\ u_1(x_N) & \cdots & u_N(x_N) \end{pmatrix}.$$

Prove that $u_1 \wedge \cdots \wedge u_N$ is a normalized vector in the antisymmetric space \mathcal{H}^N_a .

E1.4 Let Ω be a measurable subset of \mathbb{R}^d . Let $w : \mathbb{R}^d \to \mathbb{R}$ be a regular even function.

(a) Consider the Hamiltonian $H_N = \sum_{j=1} (-\Delta_{x_j}) + \sum_{j < k} w(x_j - x_k)$ and a function $u \in H^1(\Omega), \|u\|_{L^2(\Omega)} = 1$. Compute the expectation

$$\mathcal{E}(u) = N^{-1} \langle u^{\otimes N}, H_N u^{\otimes N} \rangle, \quad u^{\otimes N}(x_1, ..., x_N) = u(x_1) ... u(x_N).$$

(b) Prove that if u_0 is a minimizer for $\mathcal{E}(u)$ under the constraint $||u||_{L^2(\Omega)} = 1$, then

$$-\Delta u_0 + (N-1)(w * |u_0|)u_0 = \mu u_0$$

in the distributional sense $\mathcal{D}'(\Omega)$, with a parameter $\mu \in \mathbb{R}$.