Partial Differential Equations II Prof. Nam

Unofficial Lecture Notes

Martin Peev

Contents

$1 \quad L^{p}$-Spaces 5
2 Distributions 19
3 Fourier Transform 25
4 Sobolev Space $H^{m}\left(\mathbb{R}^{d}\right)$ 35
5 Sobolev Inequalities 41
6 Ground States for Schrödinger Operators 57
7 Harmonic Functions 69
8 Smoothness of Weak Solutions 83
9 Concentration Compactness Method 89
10 Boundary Value Problem 115
10.1 Trace on $\mathbb{R}^{d}(d \geqslant 1)$ 121
11 Schrödinger Dynamics 139

Chapter 1

L^{p}-Spaces

Definition 1.1. Let Ω be a set, Σ a collection of subsets of Ω which is a σ-algebra and let $\mu: \Sigma \rightarrow[0, \infty]$ be a measure. We call (Ω, Σ, μ) a measure space.

Example 1.2. Let $\Omega \subset \mathbb{R}^{d}$ be open, Σ the Borel- σ-algebra, $\mu:=\lambda^{d}$ the Borel-Lebesgue measure, uniquely characterised by

$$
\mu\left(\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]\right)=\prod_{j=1}^{n}\left|b_{j}-a_{j}\right| .
$$

Definition 1.3. Given a measure space (Ω, Σ, μ) and $f: \Omega \rightarrow \mathbb{R}$ and f measurable.
Define $S f(t):=f^{-1}((t, \infty))$ and note that $S f$ is monotone and non-increasing. Then $F f: \mathbb{R} \rightarrow[0, \infty], F f(t)=\mu(S f(t))$, for $t \in \mathbb{R}$, is decreasing in t.
For $f \geqslant 0$ everywhere define

$$
\int_{\Omega} f(x) \mathrm{d} \mu(x):=\int_{0}^{\infty} F f(t) \mathrm{d} t
$$

where the r.h.s. is a Riemann-integral.
If the integral is not infinite, we say that f is Lebesgue-integrable.
For $f: \Omega \rightarrow \mathbb{C}, f$ is measurable iff $\mathfrak{R} f$ and $\Im f$ are. For all $x \in \mathbb{R}$ let $x_{ \pm}:=\max \{ \pm x, 0\}$. Then

$$
f=(\Re f)_{+}-(\Re f)_{-}+i(\Im f)_{+}-i(\Im f)_{-}
$$

If $(\Re f)_{ \pm}$and $(\Im f)_{ \pm}$are integrable, we say that f is integrable and

$$
\int_{\Omega} f \mathrm{~d} \mu:=\int_{\Omega}(\Re f)_{+} \mathrm{d} \mu-\int_{\Omega}(\Re f)_{-} \mathrm{d} \mu+i \int_{\Omega}(\Im f)_{+} \mathrm{d} \mu-i \int_{\Omega}(\Im f)_{-} \mathrm{d} \mu
$$

An alternative construction: First define the Lebesgue integral on simple function and then pass to $f: \Omega \rightarrow[0, \infty)$ by approximation.

Corollary 1.4. For all $f: \Omega \rightarrow \mathbb{C}$ measurable and integrable for all $\varepsilon>0$ there exists a $\varphi_{\varepsilon} \in \mathcal{S}$ such that

$$
\int_{\Omega}\left|f(x)-\varphi_{\varepsilon}(x)\right| \mathrm{d} \mu(x)<\varepsilon
$$

Theorem 1.5 (Monotone Convergence). Let $\left(f_{j}\right)_{j \in \mathbb{N}}$ a non-decreasing sequence of nonnegative integrable functions on (Ω, Σ, μ) (i.e. μ-a.e. $\left(f_{j}(x)\right)_{j}$ for $x \in \Omega$ is increasing), then

$$
\lim _{j \rightarrow \infty} f_{j}(x)=f(x)
$$

is measurable and

$$
\lim _{j \rightarrow \infty} \int_{\Omega} f_{j}(x) \mathrm{d} \mu(x)=\int_{\Omega} \lim _{j \rightarrow \infty} f_{j}(x) \mathrm{d} \mu(x)
$$

Theorem 1.6 (Dominated Convergence). Let $\left(f_{j}\right)_{j \in \mathbb{N}}$ be a sequence of integrable complexvalued function on (Ω, Σ, μ) which converge to f pointwise μ-a.e. If there exists a $G \geqslant 0$ integrable on (Ω, Σ, μ) satisfying $\left|f_{j}(x)\right| \leqslant G(x)$ for all $j \in \mathbb{N} \mu$-a.e., then f is integrable and

$$
\lim _{j \rightarrow \infty} \int_{\Omega} f(x) \mathrm{d} \mu(x)=\int_{\Omega} f(x) \mathrm{d} \mu(x)
$$

Theorem 1.7 (Fatou's Lemma). Let $\left(f_{j}\right)_{j \in \mathbb{N}}$ be a non-negative, integrable on (Ω, Σ, μ). Then $f(x):=\liminf _{j \rightarrow \infty} f_{j}(x)$ is measurable and

$$
\liminf _{j \rightarrow \infty} \int_{\Omega} f_{j}(x) \mathrm{d} \mu(x) \geqslant \int_{\Omega} f(x) \mathrm{d} \mu(x)
$$

Theorem 1.8 (Brezis-Lieb, refinement of Fatou's Lemma). Let $\left(f_{j}\right)_{j \in \mathbb{N}}: \Omega \rightarrow \mathbb{C}$ be measurable and converging towards to $f: \Omega \rightarrow \mathbb{C} \mu$-a.e. and for $p \in(0, \infty)$ let there exist a $C>0$ such that for all $j \in \mathbb{N} \int_{\Omega}\left|f_{j}(x)\right|^{p} \mathrm{~d} \mu(x) \leqslant C$. Then

$$
\left.\lim _{j \rightarrow \infty} \int_{\Omega}| | f_{j}(x)\right|^{p}-\left|f_{j}(x)-f(x)\right|^{p}-|f(x)|^{p} \mid \mathrm{d} \mu(x)=0
$$

Corollary.

$$
\int_{\Omega}\left|f_{j}(x)\right|^{p} \mathrm{~d} \mu(x)=\int_{\Omega}|f|^{p} \mathrm{~d} \mu+\int_{\Omega}\left|f-f_{j}\right|^{p} \mathrm{~d} \mu+o(1)
$$

Proof of Theorem 1.8. By Fatou's lemma $\int_{\Omega}|f|^{p} \mathrm{~d} \mu \leqslant C$.
We claim that for all $p \in(0, \infty)$ and all $\varepsilon>0$ there exists $c_{\varepsilon}>0$ such that for all $a, b \in \mathbb{C}$

$$
\left||a+b|^{p}-|b|^{p}\right| \leqslant \varepsilon|b|^{p}+c_{\varepsilon}|a|^{p}
$$

the proof of which is an exercise.
For all $j \in \mathbb{N}$ let $g_{j}:=f_{j}-f$, then $\lim _{j \rightarrow \infty} g_{j}(x)=0 \mu$-a.e. Now fix $\varepsilon>0$.

$$
0 \leqslant \int_{\Omega}| | f+\left.g_{j}\right|^{p}-\left|g_{j}\right|^{p}-\left.|f|^{p}\left|\mathrm{~d} \mu \leqslant \varepsilon \int_{\Omega}\right| g_{j}\right|^{p} \mathrm{~d} \mu+\int_{\Omega} G_{j, \varepsilon} \mathrm{~d} \mu
$$

with

$$
G_{j, \varepsilon}(x):=(\underbrace{\| f+\left.g_{j}\right|^{p}-\left|g_{j}\right|^{p}-|f|^{p} \mid}_{\leqslant \|\left|f+g_{j}\right|^{p}-\left.\left|g_{j}\right|^{p}\left|+|f|^{p} \leqslant \varepsilon\right| g_{j}\right|^{p}+\left(1+c_{\varepsilon}\right)|f|^{p}}-\varepsilon\left|g_{j}\right|^{p})_{+} \leqslant\left(1+c_{\varepsilon}\right)|f|^{p}
$$

and thus by dominated convergence $\int G_{j, \varepsilon} \mathrm{~d} \mu \xrightarrow{j \rightarrow \infty} 0$, on the other hand

$$
\int\left|g_{j}\right|^{p} \mathrm{~d} \mu \leqslant \int\left(|f|+\left|f_{j}\right|\right)^{p} \mathrm{~d} \mu 2^{p} \leqslant 2^{p+1} C
$$

taking $\lim \sup$ and letting $\varepsilon \rightarrow 0$ and the claim follows.
For $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right),\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right) \sigma$-finite measure spaces and define the product σ-algebra, $\Sigma_{1} \otimes \Sigma_{2}$ as the smallest σ-algebra containing all rectangles $\left\{A_{1} \times A_{2} \mid A_{1} \in \Sigma_{1}, A_{2} \in \Sigma_{2}\right\}$. Then there exists a unique product measure $\mu_{1} \otimes \mu_{2}$ on $\Sigma_{1} \otimes \Sigma_{2}$ that satisfies

$$
\forall A_{j} \in \Sigma_{j}, j=1,2 \quad\left(\mu_{1} \otimes \mu_{2}\right)\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right)
$$

Theorem 1.9 (Fubini-Tonelli). If $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{C}$ is $\Sigma_{1} \otimes \Sigma_{2}$ measurable, then for $g \in\left\{(\Re f)_{+},(\Re f)_{-},(\Im f)_{+},(\Im f)_{-}\right\}$the maps

$$
\begin{aligned}
& x_{1} \longmapsto \int_{\Omega_{2}} g\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{2}\left(x_{2}\right) \\
& x_{2} \longmapsto \int_{\Omega_{1}} g\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right)
\end{aligned}
$$

are respectively μ_{1} and μ_{2} measurable.
If $f \geqslant 0, \mu_{1} \otimes \mu_{2}$-a.e., then

$$
\int_{\Omega_{1} \times \Omega_{2}} f \mathrm{~d}\left(\mu_{1} \otimes \mu_{2}\right)=\int_{\Omega_{1}} \int_{\Omega_{2}} f\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{2}\left(x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right)=\int_{\Omega_{2}} \int_{\Omega_{1}} f\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right) \mathrm{d} \mu_{2}\left(x_{2}\right)
$$

The same holds for $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{C}$ provided one the above integrals is finite for $|f|$.

Let (Ω, Σ, μ) be a measure space.

Definition 1.10 (L^{p}-space). For $p \in[1, \infty)$, let

$$
\tilde{L}^{p}(\Omega, \mathrm{~d} \mu):=\left\{f: \Omega \rightarrow \mathbb{C} \mid f \text { is measurable and }|f|^{p} \text { is integrable }\right\} .
$$

Introducing the equivalence relation

$$
f \sim g: \Longleftrightarrow \exists N \in \Sigma: \mu(N)=0 \wedge \forall x \in N^{C}: f(x)=g(x) \Longleftrightarrow f=g \mu \text {-a.e. }
$$

We define $L^{p}(\Omega, \mathrm{~d} \mu):=\tilde{L}^{p}(\Omega, \mathrm{~d} \mu) / \sim . L^{p}$ is a vector space over \mathbb{C} with pointwise linear operations on \tilde{L}^{p}. This follows from $|\alpha+\beta|^{p} \leqslant 2^{p-1}\left(|\alpha|^{p}+|\beta|^{p}\right)$ for all $\alpha, \beta \in \mathbb{C}$.
We define the norm

$$
\|f\|_{p}:=\left(\int_{\Omega}|f(x)|^{p} \mathrm{~d} \mu(x)\right)^{1 / p}
$$

on $L^{p}(\Omega, \mathrm{~d} \mu)$, which is only a semi-norm on $\tilde{L}^{p}(\Omega, \mathrm{~d} \mu)$.
Further

$$
\tilde{L}^{\infty}(\Omega, \mathrm{d} \mu):=\{f: \Omega \rightarrow \mathbb{C} \mid f \text { is measurable, } \exists K \geqslant 0:|f(x)| \leqslant K \mu \text {-a.e. }\}
$$

For $f \in L^{\infty}(\Omega, \mathrm{d} \mu)$ we define the norm

$$
\|f\|_{\infty}:=\inf \{K| | f(x) \mid \leqslant K \mu \text {-а.е. }\} .
$$

Theorem 1.11 (Hölder's Inequality). Let $p, q \in[1, \infty]$ be daul indices, i.e. $\frac{1}{p}+\frac{1}{q}=1$. For $f \in L^{p}(\Omega, \mathrm{~d} \mu), g \in L^{q}(\Omega, \mathrm{~d} \mu)$ then $f g \in L^{1}(\Omega, \mathrm{~d} \mu)$ and

$$
\left|\int_{\Omega} f g \mathrm{~d} \mu\right| \stackrel{(a)}{\leqslant} \int|f||g| \mathrm{d} \mu \stackrel{(b)}{\leqslant}\|f\|\|g\|_{q} .
$$

Equality holds at (a) iff there exists a $\vartheta \in \mathbb{R}$ such that $f(x) g(x)=e^{i \vartheta}|f(x)||g(x)| \mu$-a.e. For $f \neq 0$, equality holds at (b) iff there exists $a \lambda \in \mathbb{R}$ such that for $p \in(1, \infty)$, $|g(x)|=\lambda|f(x)|^{p-1} \mu$-a.e. For $p=1,|g(x)| \leqslant \lambda \mu$-a.e. and $|g(x)|=\lambda \mu$-a.e. when $f(x) \neq 0$. For $p=\infty,|f(x)| \leqslant \lambda \mu$-a.e. and $|f(x)|=\lambda \mu$-a.e. when $g(x) \neq 0$.

Theorem 1.12 (Minkowski). Let (Ω, Σ, μ) and (Γ, Ξ, ν) be measure spaces with σ-finite measures. Then if $p \in[1, \infty)$ and $f \geqslant 0 \mu \otimes \nu$ measurable

$$
\left(\int_{\Omega}\left(\int_{\Gamma} f(x, y) \mathrm{d} \nu(y)\right)^{p} \mathrm{~d} \mu(x)\right)^{1 / p} \leqslant \int_{\Gamma}\left(\int_{\Omega} f(x, y)^{p} \mathrm{~d} \mu(x)\right)^{1 / p} \mathrm{~d} \nu(y)
$$

holds. Equality and finiteness for $p \in(1, \infty)$ imply the existence of a μ-measurable $\alpha: \Omega \rightarrow[0, \infty)$ and a ν-measurable $\beta: \Gamma \rightarrow[0, \infty)$ such that $f(x, y)=\alpha(x) \beta(y)$ for $\mu \otimes \nu$-a.e.

Corollary 1.13. For all $p \in[1, \infty]$ and all $f, g \in L^{p}(\Omega, \mathrm{~d} \mu)$

$$
\|f+g\|_{p} \leqslant\|f\|_{p}+\|g\|_{p}
$$

If $f \neq 0$ and $p \in(1, \infty)$, equality holds iff there exists $a \lambda \geqslant 0$ with $g=\lambda f \mu$-a.e.

Theorem 1.14 (Completeness of $\left.L^{p}\right)$. For $p \in[1, \infty]$ let $\left(f_{j}\right)_{j \in \mathbb{N}} \subset L^{p}(\Omega)$ be a Cauchy sequence, i.e.

$$
\left\|f_{j}-f_{k}\right\| \xrightarrow{\min \{j, k\} \rightarrow \infty} 0 .
$$

Then there exists a $f \in L^{p}(\Omega)$ such that $f_{j} \xrightarrow[L^{p}]{j \rightarrow \infty}$ converges (strongly) in L^{p}. Moreover there exists a subsequence $\left(f_{j_{k}}\right)_{k}$ and $F \geqslant 0 \in L^{p}(\Omega)$ such that for all $k \in \mathbb{N}\left|f_{j_{k}}\right| \leqslant F$ μ-a.e. and

$$
f_{j_{k}}(x) \xrightarrow{k \rightarrow \infty} f(x) \mu \text {-a.e. }
$$

Definition 1.15 (Convolution). Let f, g be measurable on $\left(\mathbb{R}^{d}, \mathcal{B}^{d}, \lambda^{d}\right)$. The convolution is defined as

$$
(f * g)(x):=\int_{\mathbb{R}^{n}} f(x-y) g(y) \mathrm{d} y=(g * f)(x)
$$

For $f \in L^{p}\left(\mathbb{R}^{d}\right), g \in L^{q}\left(\mathbb{R}^{d}\right)$ with p, q dual $g * f$ is well-defined and bounded by Hölder's inequatity for all $x \in \mathbb{R}^{d} n$. It is also measurable by Fubini's theorem.

Theorem 1.16 (Young's Inequality). For $f \in L^{1}\left(\mathbb{R}^{d}\right), g \in L^{p}\left(\mathbb{R}^{d}\right)$ with $p \in[1, \infty]$, then $f * g \in L^{p}\left(\mathbb{R}^{d}\right)$ and

$$
\|f * g\|_{p} \leqslant\|f\|_{1}\|g\|_{p}
$$

Proof.
$(p=\infty)$

$$
\|(f * g)(x)\|_{\infty} \leqslant\|g\|_{\infty} \int_{\mathbb{R}^{n}}|f(x-y)| \mathrm{d} y=\|g\|_{\infty}\|f\|_{1} .
$$

$(p \in[1, \infty))$

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{n}}|(f * g)(x)|^{p} \mathrm{~d} x\right)^{1 / p} & \leqslant\left(\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|g(x-y)||f(y)| \mathrm{d} y\right)^{p} \mathrm{~d} x\right)^{1 / p} \frac{1 \text { Theorem 1.12 }}{\leqslant} \\
& \leqslant \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|g(x-y)|^{p} \mathrm{~d} x\right)^{1 / p}|f(y)| \mathrm{d} y=\|g\|_{p}\|f\|_{1}
\end{aligned}
$$

q.e.d.

Theorem 1.17. For all $\Omega \subset \mathbb{R}^{d}$ open, for all $f \in L^{p}\left(\Omega, d \lambda^{d}\right)$, $p \in[1, \infty)$ there exists $\left(f_{j}\right)_{j \in \mathbb{N}} \subset \mathscr{C}_{c}^{\infty}(\Omega)$ such that

$$
f_{j} \xrightarrow[L^{p}]{j \rightarrow \infty} f .
$$

Theorem 1.18. For $\Omega \subset \mathbb{R}^{d}$ and $p \in[1, \infty)$. $L^{p}\left(\Omega, \mathrm{~d} \lambda^{d}\right)$ is separable, i.e. there exists $\mathcal{F} \subset L^{p}\left(\Omega, \mathrm{~d} \lambda^{d}\right)$ countable and dense, i.e. for all $f \in L^{p}(\Omega)$ for all $\varepsilon>0$ there exists $g \in \mathcal{F}$, such that $\|f-g\|_{p}<\varepsilon$.

Proof. Given $f \in L^{p}(\Omega)$ there exists $h \in \mathscr{C}_{c}^{\infty}(\Omega)$ such that $\|f-h\|<\frac{\varepsilon}{2}$. Hence w.l.o.g. let us assume that $f \in \mathscr{C}_{c}^{\infty}$. For all $N \in \mathbb{N}$ we have

$$
\mathbb{R}^{d}=\bigcup_{j \in \mathbb{Z}^{d}} \underbrace{\left(\left[0,2^{-N}\right)^{d}+2^{-N} j\right)}_{C_{j, N}}
$$

The set of step functions with support in $C_{j, N}$ and \mathbb{C}-rational values is a countable set. Given N, j we can choose

$$
c_{N, j}:=\frac{1}{\left(2^{-N}\right)^{n}} \int_{C_{j, N}} f(x) \mathrm{d} x
$$

Since $f \in \mathscr{C}_{c}^{\infty}$ it is uniformly continuous, i.e. we can find for all $\delta>0$ an N big enough such that for all $x \in C_{j, N}$

$$
\left|f(x)-c_{N, j}\right|<\frac{\delta}{2}
$$

Further we can choose a $\tilde{c}_{N, j}$ in the rational complex numbers such that $\left|c_{N, j}-\tilde{c}_{N, j}\right|<\frac{\delta}{2}$, therefore

$$
\left\|h-\sum_{j \in \mathbb{Z}^{d}} \tilde{c}_{N, j} \chi_{C_{j, N}}(x)\right\|_{\infty}<\delta
$$

By construction the sum of step functions is compactly supported as f is therefore there exists some compact set K such that

$$
\left\|h-\sum_{j \in \mathbb{Z}^{d}} \tilde{c}_{N, j} \chi_{C_{j, N}}(x)\right\|_{p} \leqslant\left\|h-\sum_{j \in \mathbb{Z}^{d}} \tilde{c}_{N, j} \chi_{C_{j, N}}(x)\right\|_{\infty} \mu(K)
$$

thus by choosing $\delta<\frac{\varepsilon}{2 \mu(K)}$, we have found the approximating function.

Definition 1.19. $L: L^{p}(\Omega, \mathrm{~d} \mu) \rightarrow \mathbb{C}$ is a linear function iff for all $f_{1}, f_{2} \in L^{p}, \alpha \in \mathbb{C}$

$$
L\left(\alpha f_{1}+f_{2}\right)=\alpha L\left(f_{1}\right)+L\left(f_{2}\right)
$$

L is bounded iff there exists a $K>0$ such that $|L(f)| \leqslant K\|f\|_{p}$ for all $f \in L^{p}$.
L is (sequentially) continuous iff for all $\left(f_{j}\right)_{j \in \mathbb{N}} \subset L^{p}$ with $f_{j} L^{p} \xrightarrow{j \rightarrow \infty} f$ implies that $L\left(f_{j}\right) \xrightarrow{j \rightarrow \infty} L(f)$.
In the case of linear functionals/maps the latter two properties are equivalent.
The space of bounded linear functionals on $L^{p}(\Omega)$, denoted by $\left(L^{p}(\Omega)\right)^{*}$ is a complete
vector space with norm

$$
\|L\|:=\sup _{f \in L^{p}(\Omega) \backslash\{0\}} \frac{|L f|}{\|f\|_{p}}
$$

A sequence $\left(f_{j}\right)_{j \in \mathbb{N}} \subset L^{p}(\Omega)$ converges weakly to $f \in L^{p}(\Omega)$ iff for all $L \in\left(L^{p}(\Omega)\right)^{*}$, $L f_{j} \xrightarrow{j \rightarrow \infty} L f$. This is written as

$$
f_{j} \stackrel{j \rightarrow \infty}{\longrightarrow} f
$$

By Hölder's inequality $L^{p^{\prime}}(\Omega) \rightarrow\left(L^{p}(\Omega)\right)^{*}$ (injectively) for all $p \in[1, \infty]$ via

$$
g \mapsto L_{g}
$$

with

$$
L_{g}(f):=\int_{\Omega} f(x) g(x) \mathrm{d} \mu(x)
$$

with $\|L g\| \leqslant\|g\|_{p^{\prime}}$.

Theorem 1.20 (Linear Functionals Separate). Let $p \in[1, \infty]$ (for $p=\infty,(\Omega, \Sigma, \mu)$ must be σ-finite). Let $f \in L^{p}(\Omega)$ such that for all $L \in L^{p}(\Omega)^{*} L(f)=0$ holds then $f=0$. Consequently, if $f_{j} \xrightarrow{j \rightarrow \infty} k$ and $f_{j} \xrightarrow{j \rightarrow \infty} l$, then $k=l$, i.e. weak limits are unique.

Proof. For $p \in[1, \infty)$, take

$$
g(x):= \begin{cases}\overline{f(x)}|f(x)|^{p-2}, & f(x) \neq 0 \\ 0, & f(x)=0\end{cases}
$$

and

$$
L_{g} h:=\int g(x) h(x) \mathrm{d} \mu(x)
$$

Since, by Hölder's inequality

$$
\infty>\int|f(x)|^{p} \mathrm{~d} x=\int|g(x)|^{p^{\prime}} \mathrm{d} x
$$

it follows that $g \in L^{p^{\prime}}(\Omega)$ and $L_{g} \in L^{p}(\Omega)^{*}$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. For this functional we have

$$
L_{g}(f)=\int_{\Omega} \overline{f(x)}|f(x)|^{p-2} f(x) \mathrm{d} \mu(x)=\int_{\Omega}|f|^{p} \mathrm{~d} \mu(x)=\|f\|_{p}^{p}
$$

For $p=\infty$, for $\varepsilon>0$ choose Ω_{ε} with $\mu\left(\Omega_{\varepsilon}\right)<\infty$ such that $|f(x)|>\|f\|_{\infty}-\varepsilon$ for all $x \in \Omega_{\varepsilon}$.
Choosing

$$
g(x):=\frac{\overline{f(x)}}{|f(x)|} \chi_{\Omega_{\varepsilon}}(x) \in L^{1}(\Omega) \Longrightarrow L_{g} \in L^{\infty}(\Omega)^{*}
$$

One finds that

$$
L_{g}(f)=\int_{\Omega_{\varepsilon}} \frac{\overline{f(x)}}{|f(x)|} f(x) \mathrm{d} \mu(x)=\int_{\Omega_{\varepsilon}}|f(x)| \mathrm{d} \mu(x) \leqslant\|f\|_{\infty} \mu\left(\Omega_{\varepsilon}\right)
$$

and on other hand using the definition of Ω_{ε}

$$
L_{g}(f) \geqslant\left(\|f\|_{\infty}-\varepsilon\right) \int_{\Omega_{\varepsilon}} \mathrm{d} \mu(x)=\left(\|f\|_{\infty}-\varepsilon\right) \mu\left(\Omega_{\varepsilon}\right)
$$

q.e.d.

Theorem 1.21 (Hanner's Inequality). Let $f, g \in L^{p}(\Omega), p \in[1,2]$. Then

$$
\begin{equation*}
\left(\|f\|_{p}+\|g\|_{p}\right)^{p}+\left|\|f\|_{p}-\|g\|_{p}\right|^{p} \leqslant\|f+g\|_{p}^{p}+\|f-g\|_{p}^{p} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\|f+g\|_{p}+\|f-g\|_{p}\right)^{p}+\left|\|f+g\|_{p}-\|f-g\|_{p}\right|^{p} \leqslant 2^{p}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right) \tag{2}
\end{equation*}
$$

For $p \in[2, \infty)$ the inequalities are reversed.

Remark. For $\|f-g\|_{p} \leqslant\|f+g\|_{p}, p \in[1,2]$, then the

$$
\operatorname{LHS}(2) \geqslant 2\|f+g\|_{p}^{p}+p(p-1)\|f+g\|_{p}^{p-2}\| \| f-g \|_{p}^{2}
$$

which follows from the inequality for $a, b \geqslant$

$$
(a+b)^{p}+|a-b|^{p} \geqslant 2 a^{p}+p(p-1) a^{p-2} b^{2} .
$$

To prove it we may assume w.l.o.g. that $a \neq 0$ (since otherwise the inequality holds
trivially) and devide by b to get the inequality

$$
(1+x)^{p}+|1-x|^{p} \geqslant 2+p(p-1) x^{2}
$$

Noting that by assumption $1 \geqslant x$ hence $|1-x|=(1-x)$ Since by differentiating twice this expression

$$
(p-1)\left((1+x)^{p-2}+(1-x)^{p-2}\right) \geqslant 2(p-1)
$$

which indeed holds. Then by integration one finds the asserted inequality.

Theorem 1.22 (Uniform Convexity). For all $p \in(1, \infty)$
$\forall \varepsilon>0 \exists \delta>0 \forall f, g \in L^{p}(\Omega):\|f\|_{p}=\|g\|_{p}=1,\left\|\frac{f+g}{2}\right\|_{p}^{p} \geqslant 1-\delta \Longrightarrow\left\|\frac{f-g}{2}\right\|_{p}<\varepsilon$

Lemma. Let $\alpha(r):=(1+r)^{p-1}+(1-r)^{p-1}$, and $\beta(r):=\left((1+r)^{p-1}-(1-r)^{p-1}\right) r^{1-p}$ for $r \in[0,1]$ with $\beta(0):=0(\beta(0):=\infty$ for $p \in[2, \infty))$. Then for all $A, B \in \mathbb{C}$

$$
\begin{equation*}
\alpha(r)|A|^{p}+\beta(r)|B|^{p} \leqslant|A+B|^{p}+|A-B|^{p} \tag{*}
\end{equation*}
$$

for $p \in[1,2)$. Equality holds iff $r=\frac{|B|}{|A|} \in[0,1]$.

Proof. It is sufficient to assume $A, B \geqslant 0$. Otherwise $a:=|A|, b:=|B|$ satisfy

$$
|A+B|^{p}+|A-B|^{p}=\left(a^{2}+b^{2}+2 a b \cos (\vartheta)\right)^{p / 2}+\left(a^{2}+b^{2}-2 a b \cos (\vartheta)\right)^{p / 2} \geqslant(a+b)^{p}+(a-b)^{p}
$$

Let $R:=\frac{B}{A}$, and rewrite the asserted inequality as

$$
\alpha(r)+R^{p} \beta(r) \leqslant(1+R)^{p}+(1-R)^{p}
$$

differentiating both sides

$$
\begin{aligned}
\frac{d}{d r}\left(\alpha(r)+R^{p} \beta(r)\right)= & (p-1)(1+r)^{p-2}-(p-1)(1+r)^{p-2}+R^{p}(p-1)\left((1+r)^{p-2}+(1-r)^{p-2}\right)+ \\
& +R^{p}(1-p)\left((1+r)^{p-2}(1+r)-(1-r)^{p-2}(1-r)\right) r^{-p}= \\
= & (p-1)\left((1+r)^{p-2}-(1-r)^{p-2}\right)\left(1-\left(\frac{R}{r}\right)^{p}\right)
\end{aligned}
$$

which vanishes only for $r=R$. Further since the derivative for $R \leqslant 1$ is positive for $r<R$ and negative for $r>R$, this is indeed the maximum. q.e.d.

Proof of Theorem 1.21. Noting that $R \leqslant 1$ can always be attained by exchanging f and g if necessary one finds that for all $r \in[0,1]$

$$
|f+g|^{p}+|f-g|^{p} \geqslant \alpha(r)|f|^{p}+\beta(r)|g|^{p}=\alpha(R)|f|^{p}+\beta(R)|g|^{p}
$$

for $R:=\frac{\|g\|_{p}}{\|f\|_{p}}$. Integrating one finds that
$\|f+g\|_{p}^{p}+\|f-g\|_{p}^{p} \geqslant \alpha(R)\|f\|_{p}^{p}+\beta(R)\|g\|_{p}^{p}=\left(\|f+g\|_{p}+\|f-g\|_{p}\right)^{p}+\left|\|f+g\|_{p}-\|f-g\|_{p}\right|^{p}$
(2) follows immediately from (1) by substituting $f \rightarrow f+g$ and $g \rightarrow f-g$.

For $p=2$ this is just the standard parallelogram identity. For $p \in[1,2)$, otherwise reverse all the inequalities.
q.e.d.

Theorem 1.23 (Lower Semi-Continuity of Norms). For $p \in[1, \infty]$ if

$$
f_{j} \stackrel{j \rightarrow \infty}{ } f \Longrightarrow \liminf _{j \rightarrow \infty}\left\|f_{j}\right\|_{p} \geqslant\|f\|_{p}
$$

(For $p=\infty, \mu$ needs to σ-finite). If $p \in(1, \infty)$ and $\lim _{j \rightarrow \infty}\left\|f_{j}\right\|_{p}=\|f\|_{p}$ then

$$
f_{j} \xrightarrow[L^{p}]{j \rightarrow \infty} f .
$$

Theorem 1.24 (Uniform Boundedness Principle). Let $p \in[1, \infty]$ (for $p=\infty,(\Omega, \Sigma, \mu)$ need be σ-finite). Let $\left(f_{j}\right)_{j \in \mathbb{N}} \subset L^{p}(\Omega)$ such that for all $L \in L^{p}(\Omega)^{*}$ there exists a $C_{L}>0$ such that $\left|L\left(f_{j}\right)\right| \leqslant C_{L}$ for all $j \in \mathbb{N}$. Then there exists a $C>0$ such that $\left\|f_{j}\right\| \leqslant C$ for
all $j \in \mathbb{N}$.

Theorem 1.25 (The Dual of $\left.L^{p}(\Omega)\right)$. For $p \in[1, \infty), L^{p}(\Omega)^{*}=L^{q}(\Omega)$ for $\frac{1}{p}+\frac{1}{q}=1$, i.e for all $L \in L^{p}(\Omega)^{*}$ there exists a $v \in L^{q}(\Omega)$ such that for all $g \in L^{p}(\Omega)$

$$
L(g)=L_{v}(g):=\int v g \mathrm{~d} \mu
$$

with $\|L\|=\|v\|$.

Theorem 1.26 (Banach-Alaoglu). For $p \in(1, \infty)$ let $\left(f_{j}\right)_{j \in \mathbb{N}}$ be bounded in $L^{p}(\Omega)$. Then there exists a subsequence $\left(f_{j_{n}}\right)_{n \in \mathbb{N}}$ and $f \in L^{p}(\Omega)$ such that

$$
f_{j_{n}} \frac{n \rightarrow \infty}{L^{p}} f
$$

Chapter 2

Distributions

Remark 2.1. $\left(L^{p}\left(\mathbb{R}^{d}\right)\right)^{*}=L^{q}\left(\mathbb{R}^{d}\right)$ for $\frac{1}{p}+\frac{1}{q}, 1 \leqslant p<\infty$.

Definition 2.2 (Test Functions). Let $\Omega \subset \mathbb{R}^{d}$ be open. We define the set of test functions to be $\mathscr{D}(\Omega)=\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. We define a topology on this space by requiring that a sequence $\varphi_{n} \rightarrow \varphi$ in $\mathscr{D}(\Omega)$ converges iff

$$
\left\{\begin{array}{l}
\exists \text { compact set } K \subset \Omega: \operatorname{supp} \varphi_{n} \subset K \\
\forall \alpha \in \mathbb{N}^{n}: \sup _{x \in \Omega}\left|D^{\alpha} \varphi_{n}-D^{\alpha} \varphi\right| \xrightarrow{n \rightarrow \infty} 0
\end{array}\right.
$$

Definition 2.3 (Distributions). We define the space of distributions to be dual space to the space of test functions, i.e. $\mathscr{D}^{\prime}(\Omega)$

$$
T \in \mathscr{D}^{\prime}(\Omega): \Longleftrightarrow T: \mathscr{D}(\Omega) \rightarrow \mathbb{C} \text {, linear \& continuous. }
$$

We define the weak-* topology on this space, i.e. a sequence $T_{n} \rightarrow T$ converges in $\mathscr{D}^{\prime}(\Omega)$ iff for all $\varphi \in \mathscr{D}(\Omega), T_{n}(\varphi) \xrightarrow{n \rightarrow \infty} T(\varphi)$.

Example 2.4. If $f \in L_{\mathrm{loc}}^{1}(\Omega)$, then

$$
\begin{aligned}
& T_{f}: \mathscr{D}(\Omega) \\
& \longrightarrow \mathbb{C} \\
& \longmapsto \int_{\Omega} f(x) \varphi(x) \mathrm{d} x
\end{aligned}
$$

is a distribution.

Example 2.5 (Dirac delta function). The linear functional

$$
\begin{aligned}
\mathscr{D}\left(\mathbb{R}^{n}\right) & \longrightarrow \mathbb{C} \\
\varphi & \longmapsto \varphi(0)
\end{aligned}
$$

Informally one may one may say that $\delta(x)=0$ for all $x \neq 0$ and $\delta(0)=\infty$ such that $\int_{\mathbb{R}^{n}} \delta=1$.

One might now ask the question whether if for $f, g \in L_{\mathrm{loc}}^{1}(\Omega)$ with $T_{f}=T_{g}$ does imply that $f=g$.

Theorem 2.6 (Fundamental Theorem of the Calculus of Variations). If $f \in L_{l o c}^{1}(\Omega)$ such that for all $\varphi \in \mathscr{C}_{c}^{\infty}(\Omega)$

$$
\int_{\Omega} f \varphi=0
$$

then $f=0$.

Proof. Assume that $f \in L^{1}\left(\mathbb{R}^{d}\right)$. Then

$$
\int_{\mathbb{R}^{n}} f(x) \varphi(x) \mathrm{d} x=0
$$

for all $\varphi \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ implies that

$$
0=\int_{\mathbb{R}^{d}} f(x) \varphi(y-x) \mathrm{d} x=(f * \varphi)(y)
$$

for all $y \in \mathbb{R}^{d}$.

Recall now that if $\varphi \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, with $\int \varphi \mathrm{d} \lambda=1$, and $\varphi_{n}(x)=n^{d} \varphi(n x)$ then $\varphi_{n} * f \rightarrow f$ in $L^{1}\left(\mathbb{R}^{d}\right)$, since for all $y \in \mathbb{R}^{d}$

$$
\left(f * \varphi_{n}\right)(y)=0
$$

it follows that $f=0$ in $L^{1}\left(\mathbb{R}^{d}\right)$, i.e. $f(x)=0$ a.e.
Now let us consider the general case, let $\Omega \subset \mathbb{R}^{d}$ be open, and $f \in L_{\text {loc }}^{1}(\Omega)$ such that

$$
\int f(x) \varphi(y-x) \mathrm{d} x=0
$$

for all $\varphi \in \mathscr{C}_{c}^{\infty}(\Omega)$. We need $x \in \Omega_{2}, \bar{\Omega}_{2} \subset \subset \Omega$ such that $y-x \in \operatorname{supp} \varphi$, then

$$
y=x+(y-x) \in \Omega_{2}+\operatorname{supp} \varphi .
$$

We choose $\varphi \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\operatorname{supp} \varphi \subset B(0,1)$. Define $\varphi_{n}(x)=n^{d} \varphi(n x)$. Then $\operatorname{supp} \varphi_{n} \subset B\left(0, \frac{1}{n}\right)$. Then we have

$$
\int f(x) \varphi_{n}(y-x) \mathrm{d} x=0
$$

for all $y \in \Omega_{2}$, with $\Omega_{2} \subset \subset \Omega$. Then

$$
x=y-(y-x) \in \Omega_{2} \backslash \operatorname{supp} \varphi_{n} \subset \Omega_{2}+B_{\frac{1}{n}}(0) \subset \Omega_{3}
$$

when n is large enough. Thus we have

$$
\int_{\Omega} f(x) \varphi_{n}(y-x) \mathrm{d} x=\int_{\Omega} \mathbf{1}_{\Omega_{3}} f(x) \varphi_{n}(y-x) \mathrm{d} x=\int_{\mathbb{R}^{n}} \mathbf{1}_{\Omega_{3}} f(x) \varphi_{n}(y-x) \mathrm{d} x=\left(\varphi_{n} * \mathbf{1}_{\Omega_{3}} f\right)(y)
$$

Since $\mathbf{1}_{\Omega_{3}} f \in L^{1}\left(\mathbb{R}^{d}\right)$, we have that $\varphi_{n} * \mathbf{1}_{\Omega_{3}} f \rightarrow \mathbf{1}_{\Omega_{3}} f$. Thus $\left.f\right|_{\Omega_{3}}=0$ which implies that $f(x)=0$ a.e. $x \in \Omega_{3}$ and thus also $x \in \Omega$.
q.e.d.

Definition 2.7 (Derivative of Distributions). For a $T \in \mathscr{D}^{\prime}(\Omega)$ we define its α-derivative to be the distribution $D^{\alpha} T \in \mathscr{D}^{\prime}(\Omega)$ such that

$$
\left(D^{\alpha} T\right)(\varphi)=(-1)^{|\alpha|} T\left(D^{\alpha} \varphi\right)
$$

for all $\varphi \in \mathscr{D}$.

Remark 2.8. This definition is motivated by the fact that for $f \in \mathscr{C}{ }^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\int\left(D^{\alpha} f\right) \varphi=(-1)^{|\alpha|} \int f\left(D^{\alpha} \varphi\right)
$$

In particular we have that if $T_{n} \rightarrow T$ in $\mathscr{D}^{\prime}(\Omega)$, then $D^{\alpha} T_{n} \rightarrow D^{\alpha} T$ for any $\alpha \in \mathbb{N}^{n}$.

Proof. For all $\varphi \in \mathscr{D}(\Omega)$ we have

$$
\left(D^{\alpha} T_{n}\right)(\varphi)=(-1)^{|\alpha|} T_{n}\left(D^{\alpha} \varphi\right) \xrightarrow{n \rightarrow \infty}(-1)^{|\alpha|} T\left(D^{\alpha} \varphi\right)=\left(D^{\alpha} T\right)(\varphi) .
$$

q.e.d.

Example 2.9. Let $f(x)=|x|$. Then its distributional derivative is

$$
f^{\prime}(x)= \begin{cases}-1, & y<0 \\ +1, & y>0\end{cases}
$$

and its second distributional derivative is

$$
f^{\prime \prime}=2 \delta
$$

Theorem 2.10 (Equivalence of Classical and Distributional Derivatives). 1) If $f \in$ $\mathscr{C}^{1}(\Omega) \subset L_{l o c}^{1}(\Omega)$, then $g_{i}=\partial_{x_{i}} f \in \mathscr{C}(\Omega)$ and $\partial_{i}\left(T_{f}\right)=T_{g_{i}}$.
2) Let $T \in \mathscr{D}^{\prime}(\Omega)$ and assume that $T_{g_{i}}=\partial_{x_{i}} T$ and $g_{i} \in \mathscr{C}(\Omega)$, for all $i=1, \ldots, n$. Then there exists a $f \in \mathscr{C}^{1}(\Omega)$ such that $T=T_{f}$ and $\partial_{x_{i}} f=g_{i}$.

Proof. Let $\Omega=\mathbb{R}^{d}$.

1) If $f \in \mathscr{C}^{1}\left(\mathbb{R}^{d}\right)$ and $g_{i}=\partial_{i} f \in \mathscr{C}(\Omega)$. Then for all $\varphi \in \mathscr{D}^{\prime}(\Omega)$

$$
\left(\partial_{i}\left(T_{f}\right)\right)(\varphi)=-T_{f}\left(\partial_{i} \varphi\right)=-\int f(x) \partial_{i} \varphi(x) \mathrm{d} x=\int \partial_{i} f(x) \varphi(x) \mathrm{d} x=T_{\partial_{i} f}(\varphi)
$$

i.e. $\partial_{i} T_{f}=T_{\partial_{i} f}$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$.
2) Assume that $T \in \mathscr{D}^{\prime}()$
q.e.d.

Chapter 3

Fourier Transform

Definition 3.1. For $f \in L^{1}\left(\mathbb{R}^{d}\right)$ one defines its Fourier transform to be

$$
\hat{f}(k)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i k \cdot x} \mathrm{~d} x
$$

Remark (Motivation). 1) For nice enough functions one has

$$
\widehat{\partial_{x_{i}} f}(k)=2 \pi i k_{i} \hat{f}(k) .
$$

Formally we have

$$
\widehat{\partial_{x_{i}} f}(k)=\int_{\mathbb{R}^{d}}\left(\partial_{x_{i}} f\right)(x) e^{-2 \pi i k \cdot x} \mathrm{~d} x=-\int_{\mathbb{R}^{d}} f(x) \partial_{x_{i}} e^{-2 \pi i k \cdot x} \mathrm{~d} x=2 \pi i k_{i} \hat{f}(k) .
$$

More generally one has

$$
\widehat{D^{\alpha} f}(k)=(2 \pi i k)^{\alpha} \hat{f}(k) .
$$

2) Further we have for nice enough functions that

$$
\widehat{f * g}(k)=\hat{f}(k) \hat{g}(k)
$$

because formally

$$
\begin{aligned}
\widehat{f * g}(k) & =\iint f(x-y) g(y) e^{-2 \pi i k \cdot x} \mathrm{~d} y \mathrm{~d} x=\iint f(x-y) g(y) e^{-2 \pi i k \cdot(x-y)} e^{-2 \pi i k \cdot y} \mathrm{~d} x \mathrm{~d} y= \\
& =\iint f(x-y) e^{-2 \pi i k \cdot(x-y)} \mathrm{d} x g(y) e^{-2 \pi i k \cdot y} \mathrm{~d} y=\hat{f}(k) \hat{g}(k)
\end{aligned}
$$

Theorem 3.2 (Plancherl). If $f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right)$, then

$$
\|f\|_{2}=\|\hat{f}\|_{2}
$$

Consequently, $f \mapsto \hat{f}$ can be extended into an isometry on $L^{2}\left(\mathbb{R}^{d}\right)$, as $L^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right)$ is dense in $L^{2}\left(\mathbb{R}^{d}\right)$. Moreover for all $f, g \in L^{2}\left(\mathbb{R}^{d}\right)$

$$
\langle f, g\rangle=\langle\hat{f}, \hat{g}\rangle \underline{1}
$$

Theorem 3.3 (Inverse Formula). Define $\check{f}(k)=\int f(x) e^{2 \pi i k \cdot x} \mathrm{~d} x=\hat{f}(-k)$. Then for all $f \in L^{2}\left(\mathbb{R}^{d}\right)$

$$
\check{\hat{f}}=f
$$

We know that $f \mapsto \hat{f}$ is a bounded map from $L^{1}\left(\mathbb{R}^{d}\right) \rightarrow L^{\infty}\left(\mathbb{R}^{d}\right)$ as

$$
|\hat{f}(k)|=\left|\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i k \cdot x} \mathrm{~d} x\right| \leqslant \int_{\mathbb{R}^{n}}|f(x)| \mathrm{d} x=\|f\|_{L^{1}}
$$

and $L^{2} \rightarrow L^{2}$ with $\|\hat{f}\|_{2}=\|f\|_{2}$.
Theorem 3.4 (Hausdorff-Young inequality). If $f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{p}\left(\mathbb{R}^{d}\right)$ for $1<p \leqslant 2$, then

$$
\|\hat{f}\|_{p^{\prime}} \leqslant\|f\|_{p}
$$

[^0]Consequently, $f \mapsto \hat{f}$ is a bounded mapping from $L^{p} \rightarrow L^{p^{\prime}}=\left(L^{p}\right)^{*}$.

Theorem 3.5 (Riesz-Thorin Interpolation inequality). Let $1 \leqslant p_{0}, p_{1}, q_{0}, q_{1} \leqslant \infty$. If

$$
\begin{array}{ll}
\mathscr{L}: L^{p_{0}} \longrightarrow L^{q_{0}}, & \text { with }\|\mathscr{L}\|_{p_{0}, q_{0}} \leqslant 1 \\
\mathscr{L}: L^{p_{1}} \longrightarrow L^{q_{1}}, & \text { with }\|\mathscr{L}\|_{p_{1}, q_{1}} \leqslant 1
\end{array}
$$

Then $\|\mathscr{L} u\|_{p_{s}, q_{s}}$ for all $s \in(0,1)$ where

$$
\frac{1}{p_{s}}=\frac{1-s}{p_{0}}+\frac{s}{p_{1}}, \quad \frac{1}{q_{s}}=\frac{1-s}{q_{0}}+\frac{s}{q_{1}}
$$

The proof this theorem is based on Hadamard's 3-line Theorem.
Theorem (Hadamard 3-lines theorem). Let $\mathbb{C} \ni z=x+i y$, and let f be holomorphic on $\Omega=\{z=x+i y, 0<x<1\}$. Define $M(x)=\sup _{y \in \mathbb{R}}|f(x+i y)|$, then

$$
M(x) \leqslant M(0)^{1-x} M(1)^{x}
$$

Sketch of Proof. Assume that $M(0)=1=M(1)$. We need to prove that $|f(x+i y)| \leqslant 1$ in Ω. Define now $F_{n}(x)=f(z) e^{\frac{z^{2}-1}{n}}$ for $n \in \mathbb{N}$. Then $\left|F_{n}(z)\right| \leqslant 1$, for all $z \in \partial \Omega$, and $\left|F_{n}(z)\right| \rightarrow 0$ as $|z| \rightarrow \infty$. Applying the maximum principle we find that $\left|F_{n}(z)\right| \leqslant 1$ for all $z \in \Omega$. q.e.d.

Proof of Theorem 3.5. To prove this, we neeed the duality

$$
\|\mathscr{L}\|_{q_{s}}=\sup _{\|\varphi\|_{q_{s}^{\prime}} \leqslant 1}\left|\int(\mathscr{L} u) \varphi\right| .
$$

Then define u_{z} and φ_{z} in an appropriate way

$$
\sup \left|\int\left(\mathscr{L} u_{z}\right) \varphi_{z}\right| \leqslant\|u\|_{p_{s}^{\prime}}
$$

Proof of Theorem 3.4. Define $\mathscr{L} u=\hat{u}$. Then

$$
\begin{aligned}
& \mathscr{L}: L^{1} \longrightarrow L^{\infty}, \quad \text { with }\|\mathscr{L}\|_{1, \infty} \leqslant 1 \\
& \mathscr{L}: L^{2} \longrightarrow L^{2}, \quad \text { with }\|\mathscr{L}\|_{2,2}=1
\end{aligned}
$$

By Riesz-Thorin we have that $\|\hat{u}\|_{q_{s}} \leqslant\|u\|_{p_{s}}$ for all $s \in(0,1)$

$$
\frac{1}{p_{s}}=\frac{1-s}{1}+\frac{s}{2}, \quad \frac{1}{q_{s}}=\frac{1-s}{\infty}+\frac{s}{2}
$$

which implies that $\frac{1}{p_{s}}=1-\frac{s}{2}$ and $\frac{1}{q_{s}}=\frac{s}{2}$ and thus

$$
\frac{1}{p_{s}}+\frac{1}{q_{s}}, \quad 1 \leqslant p_{s} \leqslant 2 \leqslant q_{s}
$$

This means that $q_{s}=\left(p_{s}\right)^{\prime}$.

Theorem 3.6. If $f \in L^{p}, g \in L^{q}$, then $f * g \in L^{r}$ for $\frac{1}{q}+\frac{1}{p}=1+\frac{1}{r}$ and $\|f * g\|_{r} \leqslant$
$\|f\|_{p}\|g\|_{q}$.

Proof. Take $f \in L^{p}$ fixed and define

$$
\mathscr{L} g=f * g
$$

We know that

$$
\begin{aligned}
& \|f * g\| \leqslant\|f\|_{p}\|g\|_{p^{\prime}} \\
& \|f * g\|_{p} \leqslant\|f\|_{p}\|g\|_{1}
\end{aligned}
$$

By Riesz-Thorin,

$$
\|f * g\|_{q_{s}} \leqslant\|f\|_{p}\|g\|_{p_{s}}
$$

for all $s \in(0,1)$. In particular

$$
\frac{1}{p_{s}}=\frac{1-s}{p^{\prime}}+\frac{s}{1}, \quad \frac{1}{q_{s}}=\frac{1-s}{\infty}+\frac{s}{p}
$$

from which follows that for $q_{s}=r, \frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}$. q.e.d.

Corollary 3.7. If $f \in L^{p}, g \in L^{q}, 1 \leqslant q, p \leqslant 2$ then $f * g \in L^{r}$, for $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}$, then

$$
\widehat{f * g}(k)=\hat{f}(k) \hat{g}(k)
$$

Proof. Do it for $f, g \in \mathscr{D}$, and then approximate.
q.e.d.

Theorem 3.8 (Fourier Transform of Gaussian).

$$
\widehat{e^{-\pi|\cdot|^{2}}}(k)=e^{-\pi|k|^{2}}
$$

More generally

$$
\widehat{e^{-\pi \lambda|\cdot|^{2}}}(k)=\lambda^{-\frac{n}{2}} e^{-\frac{\pi|k|}{\lambda}}
$$

for all $\lambda>0$.

Proof. For $\lambda=1$, and $n=1$ we have

$$
\widehat{e^{-\pi|\cdot|^{2}}}(k)=\int_{\mathbb{R}} e^{-\pi x^{2}} e^{-2 \pi i k \cdot x} \mathrm{~d} x=\int_{\mathbb{R}} e^{-\pi k^{2}} e^{-\pi(x+i k)^{2}} \mathrm{~d} x=e^{-\pi k^{2}} \int_{\mathbb{R}} e^{-\pi x^{2}} \mathrm{~d} x=e^{-\pi k^{2}}
$$

where the penultimate equality follows from the Cauchy formula.
q.e.d.

Theorem 3.9 (Heat Equation). Consider for $t \geqslant 0$

$$
\begin{aligned}
\partial_{t} u-\Delta u & =0 \\
u(0, x) & =f(x) \in L^{2}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

The unique L^{2} solution is given by

$$
u(t, x)=\frac{1}{(4 \pi t)^{d / 2}} \int_{\mathbb{R}^{n}} e^{-\frac{|x-y|^{2}}{4 t}} f(y) \mathrm{d} y
$$

Proof. Via the Fourier transform we find the equivalent equation

$$
\begin{aligned}
\partial_{t} \hat{u}-(2 \pi|k|)^{2} \hat{u} & =0 \\
\hat{u}(0, k) & =\hat{f}(k) \in L^{2}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

which can be rewritten as

$$
\begin{aligned}
\partial_{t}\left(\hat{u} e^{(2 \pi|k|)^{2} t}\right) & =0 \\
\left.\hat{u}(t, k) e^{(2 \pi|k|)^{2} t}\right|_{t=0} & =\hat{f}(k) \in L^{2}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

which implies that $\hat{u}(t, k) e^{(2 \pi|k|)^{2} t}=\hat{f}(k)$ for all $t \geqslant 0$ and therefore $\hat{u}(t, k)=e^{-(2 \pi|k|)^{2}} \hat{f}(k)=$ $\hat{G}_{t}(k) \hat{f}(k)=\widehat{G_{t} * f}(k)$. Thus $u(t, x)=\left(G_{t} * f\right)(x)$.
What is $G_{t}(x)$. We need $\hat{G}_{t}(k)=e^{-(2 \pi|k|)^{2} t}$. Using the formula for the Fourier transform of a Gaussian

$$
\widehat{e^{-\pi \lambda|\cdot|^{2}}}(k)=\lambda^{-\frac{n}{2}} e^{-\frac{\pi|k|^{2}}{\lambda}}
$$

Choosing $(2 \pi|k|)^{2} t=\frac{\pi|k|^{2}}{\lambda}$ which implies that $\lambda=\frac{1}{4 \pi t}$, from wich the assertoin follows.
q.e.d.

Remark 3.10. If K is a linear operator $L^{2} \rightarrow L^{2}$ such that

$$
(K u)(x)=\int K(x, y) u(y) \mathrm{d} y
$$

for all $u \in L^{2}$, then $K(x, y)$ is called the kernel of K. In particular

$$
G(t, x, y)=\frac{1}{(4 \pi t)^{-\frac{n}{2}}} e^{-\frac{|x-y|^{2}}{4 t}}
$$

is called the heat kernel.

Theorem 3.11 (Heat Kernel). Let $G(t, x)=\frac{1}{(4 \pi t)^{-\frac{n}{2}}} e^{-\frac{|x|^{2}}{4 t}}$. Then for $t>0$

$$
\partial_{t} G-\Delta G=0
$$

and

$$
\lim _{t \rightarrow 0^{+}} G(t, x) \xrightarrow{\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)} \delta_{x}
$$

Proof. For all $\varphi \in \mathscr{D}\left(\mathbb{R}^{d}\right)$
$\int\left(\partial_{t} G(t, x)-\Delta G(t, x)\right) \varphi(y-x) \mathrm{d} x=\partial_{t}(G * \varphi)(y)-(\Delta G * \varphi)(y)=\partial_{t}(G * \varphi)(y)-\Delta(G * \varphi)(y)=0$.
Because $u=G * \varphi$ solves the heat equation. Thus $\partial_{t} G-\Delta G=0$.
Moreover, formally we find that

$$
\begin{gathered}
\int G(t, x) \varphi(x) \mathrm{d} x=\left(G_{t} * \varphi\right)(0)=u(t, 0) \xrightarrow{t \rightarrow 0} u(0)=\varphi(0)=\delta(\varphi) \\
\lim _{t \downarrow 0} G(t, x)=\delta(x) \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)
\end{gathered}
$$

The last step can be made rigorous by using the fact that

$$
u(t, x)=G_{t} * f \xrightarrow{L^{2}} f
$$

strongly, since from Theorem 3.9 we have

$$
\|u(t, \cdot)-f\|_{L^{2}}=\|\hat{u}(t, \cdot)-\hat{f}\|=\left\|\left(e^{-(2 \pi|k|)^{2} t}-1\right) \hat{f}(k)\right\|_{2} \xrightarrow{\text { Dom Conv }} 0 .
$$

q.e.d.

Now let us consider the Poisson equation

$$
-\Delta u=f, \quad f \in L^{2}\left(\mathbb{R}^{d}\right)
$$

Formally we find that

$$
(2 \pi|k|)^{2} \hat{u}(k)=\hat{f}(k)
$$

which implies that

$$
\hat{u}(k)=(2 \pi|k|)^{-2} \hat{f}(k)=\hat{G}(k) \hat{f}(k)
$$

with $\hat{G}(k)=\frac{1}{(2 \pi|k|)^{2}}$. Then $\hat{u}(k)=\widehat{G * f}(k)$, i.e. $u=G * f$.
What is $G ? \hat{G}(k)=\frac{1}{(2 \pi|k|)^{2}}$. More generally what is the Fourier transform of $\frac{1}{|x|^{s}}$.

Theorem 3.12. For $0<s<d$, then

$$
c_{s} \frac{\hat{1}}{|x|^{s}}=c_{d-s} \frac{1}{|k|^{d-s}}
$$

in the sense of distributions and $c_{s}=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)$. This means that for all $\varphi \in \mathscr{D}\left(\mathbb{R}^{d}\right)$, then

$$
\left(\widehat{c_{s} \frac{1}{|\cdot|^{s}}} \check{\varphi}\right)(k)=c_{d-s}\left(\frac{1}{|k|^{d-s}} * \varphi\right)(k)
$$

The latter formula serves as a definition of a convolution of distribution and a test function and is well-defined since for $0<s<n, \frac{1}{|x|^{s}} \check{\varphi}(x) \in L^{1}\left(\mathbb{R}^{d}\right)$.

Proof. Formally we have

$$
c_{s}=\pi^{-\frac{s}{2}} \int_{0}^{\infty} \lambda^{\frac{s}{2}-1} e^{-\lambda} \mathrm{d} \lambda=\pi^{-\frac{s}{2}} \int_{0}^{\infty}\left(\pi|x|^{2} t\right)^{\frac{s}{2}-1} e^{-\pi|x|^{2} t} \mathrm{~d} t=|x|^{s} \int_{0}^{\infty} t^{\frac{s}{2}-1} e^{-\pi|x|^{2} t} \mathrm{~d} t
$$

which implies that $\frac{c_{s}}{|x|^{s}}=\int_{0}^{\infty} t^{\frac{s}{2}-1} e^{-\pi|x|^{2} t} \mathrm{~d} t$ and thus

$$
\begin{aligned}
\widehat{\frac{c_{s}}{|\cdot| s}}(k) " & =" \int_{0}^{\infty} t^{\frac{s}{2}-1} \widehat{e^{-\pi|\cdot|^{2} t}}(k) \mathrm{d} t=\int_{0}^{\infty} t^{\frac{s}{2}-1} t^{-\frac{d}{2}} e^{-\frac{\pi|k|^{2}}{t}} \mathrm{~d} t=\int_{0}^{\infty}\left(\frac{\pi|k|^{2}}{\lambda}\right)^{\frac{s}{2}-\frac{d}{2}-1} e^{-\lambda} \pi|k|^{2} \frac{\mathrm{~d} \lambda}{\lambda^{2}}= \\
& =|k|^{s-d} \pi^{-\frac{d-2}{2}} \int_{0}^{\infty} \lambda^{\frac{d-s}{2}-1} e^{-\lambda} \mathrm{d} \lambda=\frac{c_{d-s}}{|k|^{d-s}}
\end{aligned}
$$

Rigorously we have

$$
\begin{aligned}
\left(\frac{c_{s}}{\left.|\cdot|\right|^{s}} \check{\varphi}\right)(k) & =\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{c_{s}}{|x|^{s}} \varphi(p) e^{2 \pi i p \cdot x} e^{-2 \pi i k \cdot x} \mathrm{~d} p \mathrm{~d} x \xlongequal{\text { Fubini }} \int_{0}^{\infty} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} t^{\frac{s}{2}-1} e^{-\pi|x|^{2} t} \varphi(p) e^{2 \pi i p \cdot x} e^{-2 \pi i k \cdot x} \mathrm{~d} p \mathrm{~d} x \mathrm{~d} t= \\
& =\int_{0}^{\infty} t^{\frac{s}{2}-1}\left(\widehat{e^{-\pi|\cdot|^{2} t}} \check{\varphi}\right)(k) \mathrm{d} t=\int_{0}^{\infty} t^{\frac{s}{2}-1} c\left(e^{-\frac{\pi \cdot| |^{2}}{t} * \varphi}\right)(k) \mathrm{d} t
\end{aligned}
$$

Corollary 3.13. If $0<2 s<d$ and $f \in L^{p}, p=\frac{2 d}{d+2 s}$, then, since $1 \leqslant p \leqslant 2, \hat{f}(k)$ makes sense and

$$
\frac{c_{2 s}}{|k|^{2 s}} \hat{f}(k)=\left(\frac{c_{d-2 s}}{|\cdot|^{d-2 s}} * f\right)(k) .
$$

Moreover

$$
c_{d-2 s} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{\overline{f(x)} f(y)}{|x-y|^{d-2 s}}=c_{2 s} \int_{\mathbb{R}^{d}} \frac{|\hat{f}(k)|^{2}}{|k|^{2 s}} \mathrm{~d} k \geqslant 0 .
$$

Proof. First formula, take $\varphi_{n} \in \mathscr{D}$ such that $\varphi_{n} \rightarrow f$ in L^{p}. Using the formula for φ_{n} and passing to $n \rightarrow \infty$ we find that

$$
\left\|\hat{\varphi}_{n}-\hat{f}\right\|_{p^{\prime}} \leqslant C\left\|\varphi_{n}-f\right\| \rightarrow 0
$$

The first formula combined with Plancherl's theorem yields the second formula as

$$
\begin{aligned}
c_{d-2 s} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{\overline{f(x)} f(y)}{|x-y|^{d-2 s}} \mathrm{~d} x \mathrm{~d} y & =c_{d-2 s} \int_{\mathbb{R}^{d}} \overline{f(x)}\left(f * \frac{1}{|x|^{d-2 s}}\right)(x) \mathrm{d} x=\left\langle f, f * \frac{c_{d-2 s}}{|\cdot| d-2 s}\right\rangle= \\
& =\left\langle\hat{f}, f * \frac{c_{d-2 s}}{|x|^{d-2 s}}\right\rangle=\left\langle\hat{f}, \frac{c_{2 s}}{|\cdot|^{2 s}} \hat{f}\right\rangle=c_{2 s} \int_{\mathbb{R}^{d}} \frac{|\hat{f}(k)|^{2}}{|k|^{2 s}} \mathrm{~d} k
\end{aligned}
$$

Returning to the Poisson equation we find that

$$
G(x)=\frac{1}{4 \pi^{2}} \frac{\check{1}}{|\cdot|^{2}}=\frac{1}{4 \pi^{2}} \frac{c_{d-2}}{c_{n}} \frac{1}{|x|^{d-2}}= \begin{cases}\frac{1}{4 \pi|x|}, & d=3 \\ \frac{1}{(d-2)\left|\mathbb{S}^{d-1}\right|} \frac{1}{|x|^{d-2}}, & d \geqslant 3\end{cases}
$$

for $d \geqslant 3$.

Remark 3.14.

$$
G(x)= \begin{cases}\frac{1}{(d-2)\left|S^{n-2}\right|} \frac{1}{|x|^{n-2}}, & d \geqslant 3 \\ -\frac{1}{2 \pi} \ln (x), & d=2 \\ -|x|, & d=1\end{cases}
$$

is called the Greens function of the Laplacian $(-\Delta)$ in \mathbb{R}^{d}. In particular $G(x-y)$ is
the kernel of the operator $(-\Delta)^{-1}$ in $L^{2}\left(\mathbb{R}^{d}\right)$, i.e.

$$
(-\Delta)^{-1} f(x)=\int_{\mathbb{R}^{d}} G(x-y) f(y) \mathrm{d} y
$$

Theorem 3.15 (Poisson Equation). If $f \in L^{2}\left(\mathbb{R}^{d}\right)$, then $u=G * f \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ and
$-\Delta u=f$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$. Consequently, $-\Delta G=\delta$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$.

Proof. For $n \geqslant 3$ Take $\varphi_{n} \in \mathscr{D}, \varphi_{n} \rightarrow f$ in $L^{2}\left(\mathbb{R}^{d}\right)$. Then

$$
-\widehat{\Delta\left(G * \varphi_{n}\right)}=G * \widehat{\left(-\Delta \varphi_{n}\right)}=\hat{G} \widehat{-\Delta \varphi_{n}}=\frac{1}{\left(2 \pi|k|^{2}\right)}\left(2 \pi|k|^{2}\right) \hat{\varphi}_{n}(k)=\hat{\varphi}_{n}(k) .
$$

Thus $-\Delta\left(G * \varphi_{n}\right)=\varphi_{n}$. Since $G * \varphi_{n} \rightarrow G * f$ in \mathscr{D}^{\prime} it follows that $-\Delta\left(G * \varphi_{n}\right) \rightarrow-\Delta(G * f)$ in \mathscr{D}^{\prime}. We conclude that $-\Delta(G * f)=f$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$. Moreover

$$
\int G(-\Delta \varphi)=\int \hat{G} \widehat{-\Delta \varphi}=\int \hat{\varphi}=\varphi(0)
$$

for all $\varphi \in \mathscr{D}$, thus $-\Delta G=\delta$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$.
q.e.d.

We now turn to the Yukawa equation

$$
\mu u-\Delta u=f
$$

for $\mu>0$. By taking the Fourier transform we find that

$$
\left(\mu+(2 \pi|k|)^{2}\right) \hat{u}=\hat{f}
$$

which implies that $\hat{u}=\hat{G} \hat{f}$ with

$$
\hat{G}(k)=\frac{1}{\mu+(2 \pi|k|)^{2}}
$$

which belong to $L^{2}\left(\mathbb{R}^{d}\right)$ for $n \geqslant 3$. Thus we find that the Green's function of the Yukawa equation is

$$
G(x)= \begin{cases}\frac{1}{2 \mu} e^{-\mu|x|}, & d=1 \\ \frac{1}{4 \pi|x|} e^{-\mu|x|}, & d=3\end{cases}
$$

Chapter 4

Sobolev Space $H^{m}\left(\mathbb{R}^{d}\right)$

Definition 4.1. We define the Sobelev spaces to be

$$
\begin{aligned}
H^{1}\left(\mathbb{R}^{d}\right) & =\left\{f \in L^{2}\left(\mathbb{R}^{n}\right) \mid \partial_{x_{i}} f \in L^{2}\left(\mathbb{R}^{d}\right), i=1, \ldots, d\right\} \\
H^{m}\left(\mathbb{R}^{d}\right) & =\left\{f \in L^{2}\left(\mathbb{R}^{d}\right)\left|D^{\alpha} f \in L^{2}\left(\mathbb{R}^{d}\right),|\alpha| \leqslant m\right\}\right.
\end{aligned}
$$

where the derivatives are taken in the distributional sense.

Theorem 4.2. $H^{m}\left(\mathbb{R}^{d}\right)$ is a Hilbert space with inner product,

$$
\langle f, g\rangle_{H^{m}}=\sum_{|\alpha| \leqslant m}\left\langle D^{\alpha} f, D^{\alpha} g\right\rangle_{2}
$$

Proof. For H^{1} it is easy to see that $\langle\cdot, \cdot\rangle_{H_{1}}$ is a well-defined inner product. Concerning completeness, if $\left\{\varphi_{n}\right\}$ is a Cauchy sequence in H^{1}, then both $\left\{f_{n}\right\}$ and $\left\{\partial_{x_{i}} f_{n}\right\}$ are Cauchy sequences in $L^{2}\left(\mathbb{R}^{d}\right)$. Hence there exist $f, g_{i} \in L^{2}$ such that $f_{n} \xrightarrow{L^{2}} f$ and $\partial_{x_{i}} f_{n} \xrightarrow{L^{2}} g_{i}$. We need to prove that $\partial_{x_{i}} f=g_{i}$ for all $i=1, \ldots, n$ from which follows that $f \in H^{1}$. Take any test function $\varphi \in \mathscr{D}^{\prime}$, then per definitionem we have

$$
\int \partial_{x_{i}} f_{n} \varphi=-\int f_{n} \partial_{x_{i}} \varphi \xrightarrow{n \rightarrow \infty}-\int f \partial_{x_{i}} \varphi=\int \partial_{x_{i}} f \varphi
$$

thus $\partial_{x_{i}} f_{n} \xrightarrow{n \rightarrow \infty} g_{i}$ from which follows that $\partial_{x_{i}} f=g_{i}$ and therefore $f \in H^{1}\left(\mathbb{R}^{d}\right)$. . q.e.d.

Theorem 4.3. $\mathscr{D}\left(\mathbb{R}^{d}\right)$ is dense in $H^{m}\left(\mathbb{R}^{d}\right)$.

Proof. We shall only prove the case of H^{1}. Take $f \in H^{1}\left(\mathbb{R}^{d}\right)$. We need to find $f_{\varepsilon} \in \mathscr{D}$, such that $f_{\varepsilon} \rightarrow f$ in H^{1}.

Step 1. Find a sequence $g_{\varepsilon} \in H^{1}$, such that g_{ε} has compact support such that $g_{\varepsilon} \rightarrow f$ in H^{1}. Choose $h \in \mathscr{D}$ such that $h(x)=1$ for all $|x| \leqslant 1$ and choose $g_{\varepsilon}(x)=f(x) h(\varepsilon x)$ has compact support and $g_{\varepsilon}(x)=f(x)$, when $|x| \leqslant \frac{1}{\varepsilon}$. We have

$$
\left\|g_{\varepsilon}-f\right\|_{2}^{2}=\int|1-h(\varepsilon x)|^{2}|f(x)|^{2} \mathrm{~d} x \longrightarrow 0
$$

by dominated convergence. Similarly

$$
\begin{aligned}
\left\|\partial_{x_{i}} g_{\varepsilon}-\partial_{x_{i}} f\right\|_{2}^{2} & =\int\left|\partial_{x_{i}} f(h(\varepsilon x)-1)+f(x) \partial_{x_{i}} h(\varepsilon x)\right|^{2} \mathrm{~d} x \leqslant \\
& \leqslant 2 \int\left|\partial_{x_{i}} f(x)(h(\varepsilon x)-1)\right|^{2} \mathrm{~d} x+2 \int|f(x)|^{2}\left|\partial_{x_{i}} h(\varepsilon x)\right|^{2} \mathrm{~d} x
\end{aligned}
$$

Here $\int\left|\partial_{x_{i}} f(x)(h(\varepsilon x)-1)\right|^{2} \mathrm{~d} x \rightarrow 0$ and since $\partial_{x_{i}} h=0$ in $|x| \leqslant \frac{1}{\varepsilon}$

$$
\int|f(x)|^{2}\left|\partial_{x_{i}} h(\varepsilon x)\right|^{2} \mathrm{~d} x=\int_{B_{\frac{1}{\varepsilon}}(x)^{C}}|f(x)|^{2}\left|\partial_{x_{i}} h(\varepsilon x)\right|^{2} \mathrm{~d} x \longrightarrow 0
$$

by dominated convergence.
Step 2. Consider $g_{\varepsilon} \in H^{1}$ with compact support. Take $\varphi \in \mathscr{D}$ with $\int \varphi=1$ and define $\varphi_{k}(x)=k^{n} \varphi(k x)$. We know that $\varphi_{n} * g_{\varepsilon} \in \mathscr{C}^{\infty} c$ and $D^{\alpha}\left(\varphi_{n} * g_{\varepsilon}\right) \rightarrow D^{\alpha} g_{\varepsilon}$ in $L^{2}\left(\mathbb{R}^{n}\right)$ for $|\alpha| \leqslant 1$

We conclude by noting that

$$
\left\|\varphi_{k} * g_{\varepsilon}-f\right\|_{H^{1}} \leqslant\left\|\varphi_{n} * g_{\varepsilon}-g_{\varepsilon}\right\|_{H^{1}}+\left\|g_{\varepsilon}-f\right\|_{H^{1}} \xrightarrow[k \rightarrow \infty]{\varepsilon \rightarrow 0} 0
$$

Theorem 4.4. $\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $H^{m}\left(\mathbb{R}^{d}\right)$.

Remark 4.5. If Ω is a bounded set of \mathbb{R}^{d}, then

$$
H^{1}(\Omega)=\left\{f \in L^{2}(\Omega) \mid \partial_{x_{i}} f \in L^{2}(\Omega), i=1, \ldots, n\right\}
$$

Then $\mathscr{C}_{c}^{\infty}(\Omega)$ is not dense in $H^{1}(\Omega)$. In fact $H_{0}^{1}(\Omega)=\overline{\mathscr{C}}_{c}^{\infty} H^{1}(\Omega) \neq H^{1}(\Omega)$. We well come back to this (boundary value problems).

Theorem 4.6 (Chain Rule). If $G \in \mathscr{C}^{1}(\mathbb{C}, \mathbb{C}),\left|G^{\prime}\right| \leqslant C, G(0)=0$. Then for all $f \in H^{1}\left(\mathbb{R}^{d}\right), G(f) \in H^{1}\left(\mathbb{R}^{d}\right)$ and

$$
\partial_{x^{i}} G(f)=G^{\prime}(f) \partial_{x_{i}} f
$$

in $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$.

Proof. Since $f \in H^{1}\left(\mathbb{R}^{d}\right)$, we can find a sequence $\left\{\varphi_{n}\right\} \subset \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\varphi_{n} \rightarrow f$ in $H^{1}\left(\mathbb{R}^{d}\right)$. We can also assume that

$$
\begin{aligned}
\varphi_{n}(x) & \longrightarrow f(x) \quad \text { a.e. } \\
\partial_{x_{i}} \varphi_{n}(x) & \longrightarrow \partial_{x_{i}} f(x) \quad \text { a.e. } \\
\left|\varphi_{n}\right|+\sum_{i=1}^{n}\left|\partial_{x_{i}} \varphi_{n}\right| & \leqslant F \in L^{2}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

We can do this by Theorem 1.14. We have (by the usual chain rule)

$$
\partial_{x_{i}} G\left(\varphi_{n}(x)\right)=G^{\prime}\left(\varphi_{n}(x)\right) \partial_{x_{i}} \varphi_{n}(x)
$$

and

$$
\begin{gathered}
G^{\prime}\left(\varphi_{n}(x)\right) \partial_{x_{i}} \varphi_{n}(x) \longrightarrow G^{\prime}(f(x)) \partial_{x_{i}} f(x), \quad \text { a.e. } \\
\left|G^{\prime}\left(\varphi_{n}(x)\right) \partial_{x_{i}} \varphi_{n}(x)\right| \leqslant\left|G^{\prime}\right|\left|\partial_{x_{i}} \varphi_{n}(x)\right| \leqslant C F(x) \in L^{2}\left(\mathbb{R}^{d}\right)
\end{gathered}
$$

which implies that

$$
\partial_{x_{i}} G\left(\varphi_{n}(x)\right)=G^{\prime}\left(\varphi_{n}(x)\right) \partial_{x_{i}} \varphi_{n}(x) \xrightarrow{L^{2}} G^{\prime}(f(x)) \partial_{x_{i}} f(x)
$$

Moreover, we have $G\left(\varphi_{n}(x)\right) \rightarrow G(f(x))$ a.e. since

$$
\left|g\left(\varphi_{n}(x)\right)-G(f(x))\right| \leqslant\left(\sup \left|G^{\prime}\right|\right)\left|\varphi_{n}(x)-f(x)\right| \leqslant C\left|\varphi_{n}(x)-f(x)\right| \xrightarrow{n \rightarrow 0} 0
$$

and thus $G\left(\varphi_{n}(x)\right) \rightarrow G(f(x))$ in L^{2}. The result follows from a general fact. q.e.d.

Lemma 4.7. If $f_{n} \rightarrow f$ in $L^{2}\left(\mathbb{R}^{d}\right)$ and $\partial_{x_{i}} f_{n} \rightarrow g_{i}$ in $L^{2}\left(\mathbb{R}^{d}\right)$ for $i=1, \ldots, d$, then $f \in H^{1}\left(\mathbb{R}^{d}\right)$ and $\partial_{x_{i}} f=g_{i}$ for $i=1, \ldots, n$.

Proof. Take $\varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$. Compute

$$
\int g_{i} \varphi \longleftarrow \int\left(\partial_{x_{i}} f_{n}\right) \varphi=-\int f_{n}\left(\partial_{x_{i}} \varphi\right) \longrightarrow-\int f\left(\partial_{x_{i}} \varphi\right)
$$

and thus $-\int f\left(\partial_{x_{i}} \varphi\right)=\int g_{i} \varphi$ for all $\varphi \in \mathscr{D}\left(\mathbb{R}^{d}\right)$ and therefore $\partial_{x_{i}} f=g_{i}$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$, i.e. $f \in H^{1}\left(\mathbb{R}^{d}\right)$.

Theorem 4.8 (Derivative of $|f|)$. If $f \in H^{1}\left(\mathbb{R}^{d}\right)$ then $|f| \in H^{1}\left(\mathbb{R}^{d}\right)$ and

$$
\partial_{x_{j}}|f(x)|= \begin{cases}\frac{u \partial_{j} u+v \partial_{j} v}{|f(x)|}, & \text { if } f(x) \neq 0 \\ 0, & \text { if } f(x)=0\end{cases}
$$

where $f(x)=u(x)+i v(x)$, where $u, v: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Consequently we have the diamagnetic inequality

$$
|\nabla f(x)| \geqslant|\nabla| f|(x)| \quad \text { a.e. }
$$

Proof. Let $\varepsilon>0$ and define $G_{\varepsilon}(t)=\sqrt{\varepsilon^{2}+|t|^{2}}-\varepsilon$
Then $G \in \mathscr{C}^{1}, G_{\varepsilon}(0)=0$ and

$$
\left|G_{\varepsilon}^{\prime}(t)\right|=\left|\frac{t}{\sqrt{\varepsilon^{2}+|t|^{2}}}\right| \leqslant 1
$$

By the chain rule $G_{\varepsilon}(f(x)) \in H^{1}\left(\mathbb{R}^{d}\right)$ and

$$
\partial_{x_{j}} G_{\varepsilon}(f(x))=\frac{\left(|f(x)|^{2}\right)^{\prime}}{2 \sqrt{\varepsilon^{2}+|f(x)|^{2}}} \partial_{x_{i}} f(x)=\frac{u(x) \partial_{j} u(x)+v(x) \partial_{j} v(x)}{2 \sqrt{\varepsilon^{2}+|f(x)|^{2}}} \partial_{x_{i}} f(x), \quad \text { a.e. }
$$

Passing to $\varepsilon \rightarrow 0$ we obtain

$$
\begin{gathered}
G_{\varepsilon}(f)=\sqrt{\varepsilon^{2}+|f|^{2}}-\varepsilon \longrightarrow|f| \quad \text { in } L^{2}\left(\mathbb{R}^{d}\right) \\
\partial_{x_{j}} G_{\varepsilon}(f) \longrightarrow g_{j}(x)
\end{gathered}
$$

From

$$
\partial_{x_{j}}|f(x)|= \begin{cases}\frac{u \partial_{j} u+v \partial_{j} v}{|f(x)|}, & \text { if } f(x) \neq 0 \\ 0, & \text { if } f(x)=0\end{cases}
$$

it follows that

$$
\partial_{x_{j}}|f(x)| \leqslant \frac{\left|u \partial_{j} u+v \partial_{j} v\right|}{|f|} \leqslant \frac{\sqrt{|u|^{2}+|v|^{2}} \sqrt{\left.\left|\partial_{j} u\right|^{2}+\mid \partial\right)\left.j v\right|^{2}}}{|f|}=\frac{|f|\left|\partial_{j} f\right|}{|f|}=\left|\partial_{j} f\right|
$$

Thus $|\nabla| f|(x)| \leqslant|\nabla f(x)|$.
q.e.d.

Theorem 4.9 (Fourier Characterisation of $H^{m}\left(\mathbb{R}^{d}\right)$). If $f \in L^{2}\left(\mathbb{R}^{d}\right)$, then $f \in H^{m}\left(\mathbb{R}^{d}\right)$ if and only if

$$
\int\left(1+2 \pi|k|^{2}\right)^{m}|\hat{f}(k)|^{2} \mathrm{~d} k<\infty .
$$

Proof. For $m=1$. Let $f \in H^{1}\left(\mathbb{R}^{d}\right)$, then
$\|f\|_{H^{1}}^{2}=\|f\|_{2}^{2}+\sum_{i=1}^{n}\left\|\partial_{x_{i}} f\right\|_{2}^{2}=\int|\hat{f}(k)|^{2} \mathrm{~d} k+\sum_{i=1}^{n} \int\left(2 \pi k_{i}\right)^{2}|\hat{f}(k)|^{2} \mathrm{~d} k=\int\left(1+(2 \pi|k|)^{2}\right)|\hat{f}(k)|^{2} \mathrm{~d} k$.
For $m>1$

$$
\|f\|_{H^{m}}^{2}=\sum_{|\alpha| \leqslant m}\left\|D^{\alpha} f\right\|_{2}^{2}=\sum_{|\alpha| \leqslant m} \int\left|(2 \pi k)^{\alpha} \hat{f}(k)\right|^{2} \mathrm{~d} k
$$

q.e.d.

Corollary 4.10. If $f \in L^{2}\left(\mathbb{R}^{d}\right)$, then $f \in H^{m}\left(\mathbb{R}^{d}\right)$ iff

$$
(-\Delta)^{\frac{m}{2}} f \in L^{2}\left(\mathbb{R}^{d}\right) \Longleftrightarrow \int(2 \pi|k|)^{2 m}|\hat{f}(k)|^{2} \mathrm{~d} k<\infty
$$

Proof. For $m=2$, let $f \in L^{2}$, then $f \in H^{2}\left(\mathbb{R}^{d}\right)$ iff $\Delta f \in L^{2}\left(\mathbb{R}^{d}\right)$ for all $|\alpha| \leqslant 2$, e.g. $\partial_{x_{1}} \partial_{x_{2}} f \in L^{2}$, while $\Delta f \in L^{2}$ only iff $\left(\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}\right) f \in L^{2}$. But this follow easily from the Fourier characterisation. Indeed if $\Delta f \in L^{2}$ iff

$$
\int(2 \pi|k|)^{4}|\hat{f}(k)|^{2} \mathrm{~d} k<\infty
$$

So if $f, \Delta f \in L^{2}$ then

$$
\int\left(1+(2 \pi|k|)^{4}\right)\left|\hat{f}\left(k_{j}\right)\right|^{2} \mathrm{~d} k<\infty
$$

hence by $1+(2 \pi|k|)^{4} \geqslant \frac{1}{2}\left(1+|2 \pi k|^{2}\right)^{2}$ (which follows from $A^{2}+B^{2} \geqslant \frac{1}{2}(A+B)^{2}$ for $A, B \geqslant 0$)

$$
\int\left(1+|2 \pi k|^{2}\right)^{2}|\hat{f}(k)|^{2}<\infty
$$

which implies that $f \in H^{2}\left(\mathbb{R}^{d}\right)$ by the last theorem. q.e.d.

Chapter 5

Sobolev Inequalities

These inqualities find great practical application in physics for example. Consider in the context of quantum mechanics the energy functional of a wave function ψ

$$
\mathcal{E}(\psi):=\int|\nabla \psi(x)|^{2} \mathrm{~d} x+\int V(x)|\psi(x)|^{2} \mathrm{~d} x
$$

An important question concerns the stability of such a system, i.e. when does

$$
\inf _{\|\psi\|_{2}} \mathcal{E}(\psi) \geqslant-C
$$

for some $C \geqslant 0$ hold. A particular example of this would be an atom with the Coloumb potential

$$
\mathcal{E}(\psi)=\int|\nabla \psi(x)|^{2} \mathrm{~d} x-\int \frac{|\psi(x)|^{2}}{|x|} \mathrm{d} x
$$

To prove the stability of this system one can use an uncertainty principle,

$$
\int|\nabla \psi|^{2} \geqslant\left. G\left|\int V(x)\right| \psi(x)\right|^{2} \mathrm{~d} x \mid
$$

An example would be the Heisenberg uncertainty principle which states that

$$
\left(\int|\nabla \psi(x)|^{2}\right)\left(\int|x|^{2}|\psi(x)|^{2} \mathrm{~d} x\right) \geqslant \frac{n^{2}}{4}
$$

for all $n \geqslant 1$ and all $\psi \in H^{1}\left(\mathbb{R}^{d}\right)$. This can be proven using the commutation relation

$$
\nabla \cdot x-x \cdot \nabla=n
$$

and the Cauchy Schwarz inequality. Note that for all $f \in H^{1}$ there exists a $\varphi_{n} \in H^{1}\left(\mathbb{R}^{d}\right)$ such that $\varphi_{n} \rightarrow f$ in H^{1} and

$$
\int|x|^{2}\left|\varphi_{n}(x)\right|^{2} \mathrm{~d} x \rightarrow \infty
$$

i.e. the Heisenberg principle becomes "trivial" for φ_{n}. Hence we need a stronger inequality

Sobolev Inequality For all $\psi \in H^{1}\left(\mathbb{R}^{d}\right)$

$$
\|\nabla \psi\|_{2} \geqslant C\|\psi\|_{p}
$$

holds. Now what is p ? Let us assume that the Sobolev inequality holds and let $\psi_{l}(x)=\psi(l x)$ for some $\psi \in H^{1}$. Then

$$
\begin{aligned}
\left\|\nabla \psi_{l}\right\|_{1} & =\left(\int\left\|\nabla \psi_{l}\right\|^{2}\right)^{1 / 2}=\left(\int|l \nabla \psi(l x)|^{2}\right)^{1 / 2}=\left(\int l^{2}|\nabla \psi(l x)|^{2}\right)^{1 / 2}=\left(l^{2-d} \int|\nabla \psi(y)| \mathrm{d} y\right)^{1 / 2}= \\
& =l^{\frac{2-d}{2}}\|\nabla \psi\|_{2} \\
\left\|\psi_{l}\right\|_{p} & =\left(\int|\psi(l x)|^{p} \mathrm{~d} x\right)^{1 / p}=\left(l^{-d} \int|\psi(y)| \mathrm{d} y\right)^{1 / p}=l^{-\frac{d}{p}}\|\psi\|_{p}
\end{aligned}
$$

Thus the Sobolev inequality $\left\|\nabla \psi_{l}\right\|_{2} \geqslant C\left\|\psi_{l}\right\|_{2}$ implies that

$$
l^{\frac{2-n}{2}}\|\nabla \psi\|_{2} \geqslant l^{-\frac{n}{p}}\|\psi\|_{p}
$$

for all $l>0$. This can be possible iff $\frac{2-d}{2}=-\frac{d}{p}$, i.e.

$$
p=\frac{2 d}{d-2}, \quad(n \geqslant 3) .
$$

Theorem 5.1. For all $d \geqslant 3$

$$
\|\nabla f\|_{2} \geqslant C\|f\|_{p}
$$

for all $f \in H^{1}\left(\mathbb{R}^{d}\right)$ and $p=\frac{2 d}{d-2}$. The constant $C>0$ is independent of f in particular this implies that if $f \in H^{1}$ then $f \in L^{p}$.

Lemma. For $\varphi \in \mathscr{D}\left(\mathbb{R}^{d}\right)$, then

$$
\|\nabla \varphi\|_{1} \geqslant\|\varphi\|_{\frac{d}{d-1}}
$$

Proof. Let us focus on $d=3$. Let $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. Then

$$
\varphi(x)=\varphi\left(x_{1}, x_{2}, x_{3}\right)=\int_{-\infty}^{x_{1}} \partial_{x_{1}} \varphi\left(x_{1}^{\prime}, x_{2}, x_{3}\right) \mathrm{d} x_{1}^{\prime}
$$

which implies that

$$
|\varphi(x)| \leqslant \int_{-\infty}^{x_{1}}\left|\partial_{x_{1}} \varphi\left(x_{1}^{\prime}, x_{2}, x_{3}\right)\right| \mathrm{d} x_{1}^{\prime} \leqslant \int_{\mathbb{R}}\left|\partial_{x_{1}} \varphi\left(x_{1}^{\prime}, x_{2}, x_{3}\right)\right| \mathrm{d} x_{1}^{\prime} \leqslant \int_{\mathbb{R}}\left|\nabla \varphi\left(x_{1}^{\prime}, x_{2}, x_{3}\right)\right| \mathrm{d} x_{1}^{\prime}=: g_{1}\left(x_{2}, x_{3}\right)
$$

Similarly, one finds that

$$
|\varphi(x)|^{3 / 2} \leqslant \sqrt{g_{1}\left(x_{2}, x_{3}\right)} \sqrt{g_{2}\left(x_{1}, x_{3}\right)} \sqrt{g_{3}\left(x_{1}, x_{2}\right)}
$$

which implies that

$$
\int_{\mathbb{R}}|\varphi(x)|^{3 / 2} \mathrm{~d} x_{1} \leqslant \sqrt{g_{1}} \int_{\mathbb{R}} \sqrt{g_{2}} \sqrt{g_{3}} \mathrm{~d} x_{1} \leqslant \sqrt{g_{1}} \sqrt{\int_{\mathbb{R}} g_{2} \mathrm{~d} x_{1}} \sqrt{\int_{\mathbb{R}} g_{3} \mathrm{~d} x_{1}}
$$

and thus

$$
\int_{\mathbb{R}} \int_{\mathbb{R}}|\varphi(x)|^{3 / 2} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \leqslant \sqrt{\int_{\mathbb{R}} g_{2} \mathrm{~d} x_{1}} \int_{\mathbb{R}}\left(\sqrt{g_{1}} \sqrt{\int_{\mathbb{R}} g_{3} \mathrm{~d} x_{1}}\right) \mathrm{d} x_{2} \leqslant \sqrt{\int_{\mathbb{R}} g_{2} \mathrm{~d} x_{1}} \sqrt{\int_{\mathbb{R}} g_{1} \mathrm{~d} x_{2}} \sqrt{\int_{\mathbb{R}} \int_{\mathbb{R}} g_{3} \mathrm{~d} x_{1} \mathrm{~d} x_{2}}
$$

and analogously

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}}|\varphi(x)|^{3 / 2} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \leqslant \sqrt{\int_{\mathbb{R}} \int_{\mathbb{R}} g_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}} \sqrt{\int_{\mathbb{R}} \int_{\mathbb{R}} g_{2} \mathrm{~d} x_{1} \mathrm{~d} x_{3}} \sqrt{\int_{\mathbb{R}} \int_{\mathbb{R}} g_{3} \mathrm{~d} x_{1} \mathrm{~d} x_{2}}=\|\nabla \varphi\|_{1}^{3 / 2}
$$

q.e.d.

Proof of Theorem 5.1. Consider $f \in \mathscr{D}\left(\mathbb{R}^{3}\right)$ and $n=3$. Choose $\varphi=|f|^{4}$ and applying the
above lemma one finds that

$$
\begin{aligned}
\|\varphi\|_{3 / 2} & =\left(\int|\varphi|^{3 / 2}\right)^{2 / 3}=\left(\int|f|^{6}\right)^{2 / 3} \\
\|\nabla \varphi\|_{1} & \leqslant \int 4 f^{3}|\nabla f| \leqslant 4\left(\int|f|^{6}\right)^{1 / 2}\|\nabla f\|_{2}
\end{aligned}
$$

Then from the lemma

$$
\left(\int|f|^{6}\right)^{2 / 4} \leqslant 4\left(\int|f|^{6}\right)^{1 / 2}\|\nabla f\|_{2}
$$

and thus $\|f\|_{6} \leqslant 4\|\nabla f\|_{2}$. For $n \geqslant 3$ choose $\varphi=|f|^{\frac{2(d-1)}{d-2}}$ and use

$$
\int|\nabla f|^{2} \geqslant \int|\nabla| f| |^{2}
$$

q.e.d.

Theorem 5.2 (Sobolev Inequality in low dimensions).

$$
\begin{aligned}
& d=2) \text { For all } f \in H^{1}\left(\mathbb{R}^{2}\right) \text { and } 2 \leqslant p<\infty \\
& \qquad\|f\|_{p} \leqslant C\|\nabla f\|_{2}^{\frac{p-2}{p}}\|f\|_{2}^{\frac{2}{p}}
\end{aligned}
$$

$$
(d=1) \text { For all } f \in H^{1}(\mathbb{R})
$$

$$
\|f\|_{\infty}^{2} \leqslant\left\|f^{\prime}\right\|_{2}\|f\|_{2}
$$

(General fact the Sobolev inequality becomes "weaker" in higher dimensions)

Proof.

$(d=2)$ From the above lemma it follows that for all $\varphi \in \mathscr{D}\left(\mathbb{R}^{2}\right),\|\varphi\|_{2} \leqslant\|\nabla \varphi\|_{1}$. Choose $\varphi=f^{\alpha}$ for $\alpha>0, f \in \mathscr{D}\left(\mathbb{R}^{2}\right)$ and $f \geqslant 0$. We have

$$
\left(\int f^{2 \alpha}\right)^{1 / 2} \leqslant \int \alpha f^{\alpha-1}|\nabla f| \leqslant \alpha\left(\int f^{2(\alpha-1)}\right)^{1 / 2}\|\nabla f\|_{2} .
$$

Using Hölder's inequality we find

$$
\int f^{2(\alpha-1)} \leqslant\left(\int f^{2 \alpha}\right)^{1 / q^{\prime}} \int\left(\int f^{2}\right)^{1 / q}
$$

with $\frac{1}{q^{\prime}}+\frac{1}{q}=1,2(\alpha-1)=\frac{2 \alpha}{q^{\prime}}+\frac{2}{q}$, hence
$2\left((\alpha-1)=\frac{2 \alpha}{q^{\prime}}+\frac{2}{q}=\frac{2 \alpha}{q^{\prime}}+\frac{2 \alpha}{q}+\frac{2-2 \alpha}{q}=2 \alpha+\frac{2-2 \alpha}{q} \Longrightarrow-2=\frac{2-2 \alpha}{q} \Longrightarrow q=\alpha-1\right.$
Thus

$$
\int f^{2 \alpha} \leqslant C\left(\int f^{2(\alpha-1)}\right)\|\nabla f\|_{2}^{2} \leqslant C\left(\int f^{2 \alpha}\right)^{1 / q^{\prime}}\left(\int f^{2}\right)^{1 / q}\|\nabla f\|_{2}^{2}
$$

hence

$$
\begin{aligned}
\left(\int f^{2 \alpha}\right)^{1 / q} \leqslant C\left(\int f^{2}\right)^{1 / q}\|\nabla f\|_{2}^{2} & \Longrightarrow \int f^{2 \alpha} \leqslant C\left(\int f^{2}\right)\|\nabla f\|_{2}^{2(\alpha-1)} \Longrightarrow \\
& \Longrightarrow\|f\|_{2 \alpha} \leqslant\|f\|_{2}^{1 / \alpha}\|\nabla f\|_{2}^{\frac{\alpha-1}{\alpha}}
\end{aligned}
$$

for all $\alpha>1$. Thus we have $\|f\|_{p} \leqslant C\|f\|_{2}^{2 / p}\|\nabla f\|_{2}^{\frac{p-2}{p}}$ for all $p \geqslant 2$. Thus the inequality holds for all $f \in \mathscr{D}, f \geqslant 0$, and therefore in can be extended to all $f \in H^{1}\left(\mathbb{R}^{2}\right)$ by density and the diamagnetic inequality Theorem 4.8.
$(d=1)$ For every $f \in \mathscr{D}$,

$$
\begin{aligned}
& f(x)=\int_{-\infty}^{x} f^{\prime}(t) \mathrm{d} t \Longrightarrow|f(x)| \leqslant \int_{-\infty}^{x}\left|f^{\prime}(t)\right| \mathrm{d} t \\
& f(x)=-\int_{x}^{\infty} f^{\prime}(t) \mathrm{d} t \Longrightarrow|f(x)| \leqslant \int_{x}^{\infty}\left|f^{\prime}(t)\right| \mathrm{d} t
\end{aligned}
$$

hence

$$
|f(x)| \leqslant \frac{1}{2} \int_{\mathbb{R}}\left|f^{\prime}(t)\right| \mathrm{d} t
$$

i.e. $\|f\|_{\infty} \leqslant \frac{1}{2}\left\|f^{\prime}\right\|_{1}$. Now we can replace f by f^{2} to find that

$$
\|f\|_{\infty}^{2} \leqslant \frac{1}{2} \int\left|\left(f^{2}\right)^{\prime}\right| \leqslant \int|f|\left|f^{\prime}\right| \leqslant\|f\|_{2}\left\|f^{\prime}\right\|_{2}
$$

for all $f \in \mathscr{D}$. Then by density we get the inequality for all $f \in H^{1}\left(\mathbb{R}^{d}\right)$.

Additional Proof of $d=2$. Recall that we have the Hausdorff-Young inequality, that

$$
\|\hat{f}\|_{p^{\prime}} \leqslant\|f\|_{p}
$$

for all $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and all $1 \leqslant p \leqslant 2 \leqslant p^{\prime} \leqslant \infty$ with $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. This inequality is equivalent to

$$
\|f\|_{p} \leqslant\|\hat{f}\|_{p^{\prime}}
$$

for all $f \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ with $p \geqslant 2 \geqslant p^{\prime}, \frac{1}{p}+\frac{1}{p^{\prime}}=1$. We have

$$
\begin{aligned}
\|f\|_{p} & \leqslant\left(\int|\hat{f}(k)|^{p^{\prime}}\right)^{1 / p^{\prime}}=\left(\int|\hat{f}(k)|^{p^{\prime}}(1+2 \pi|k|)^{p^{\prime}} \frac{1}{(1+2 \pi|k|)^{p^{\prime}}} \mathrm{d} k\right)^{1 / p^{\prime}} \leqslant \\
& \leqslant\left(\int|\hat{f}(k)|^{2}(1+2 \pi|k|)^{2} \mathrm{~d} k\right)^{\alpha / p^{\prime}}\left(\int \frac{1}{(1+2 \pi|k|)^{p p^{\prime}}} \mathrm{d} k\right)^{1-\alpha / p^{\prime}}
\end{aligned}
$$

when $p p^{\prime}>2$ we have

$$
\int \frac{1}{(1+2 \pi|k|)^{p p^{\prime}}} \mathrm{d} k \leqslant C<\infty
$$

Thus $\|f\|_{p} \leqslant C_{p}\|f\|_{H_{1}}$ for all $p \geqslant 2$ and all $f \in \mathscr{D}$. This implies the Sobolev inequality $\|f\|_{p} \leqslant C\|\nabla f\|^{\frac{p-2}{p}}\|f\|_{2}^{\frac{2}{p}}$, by a scaling argument, i.e. use $\|f\|_{p} \leqslant C\|f\|_{H^{1}}$, for $f \mapsto f_{l}(x)=$ $f(l x)$ for $l>0$ and optimise over $l>0$
q.e.d.

Theorem 5.3 (Sobolev Continuous Embedding).

$$
H^{1}\left(\mathbb{R}^{d}\right) \subset L^{p}\left(\mathbb{R}^{d}\right) \quad \text { for all } \begin{cases}2 \leqslant p \leqslant \frac{2 d}{d-2}, & \text { if } d \geqslant 3 \\ 2 \leqslant p<\infty, & \text { if } d=2 \\ 2 \leqslant p \leqslant \infty, & \text { if } d=1\end{cases}
$$

and the inclusion is continuous, i.e.

$$
\|f\|_{p} \leqslant C\|f\|_{H^{1}}
$$

Moreover, when $d=1, H^{1}(\mathbb{R}) \subset \mathscr{C}(\mathbb{R})$, i.e. for all $f \in H^{1}(\mathbb{R})$, there exists exactly one $\tilde{f} \in \mathscr{C}(\mathbb{R})$, such that $f=\tilde{f}$ almost everywhere.

Proof.
$(d \geqslant 3)$ We know that

$$
\|f\|_{\frac{2 d}{d-2}} \leqslant C\|\nabla f\|_{2} \leqslant C\|f\|_{H^{1}}
$$

By Hölder's inequality for all $2 \leqslant p \leqslant \frac{2 d}{d-2}$,

$$
\|f\|_{p} \leqslant C\|f\|_{H^{1}} .
$$

$(d=2)$

$$
\|f\|_{p} \leqslant C\|\nabla f\|_{2}^{\frac{p-2}{p}}\|f\|_{2}^{\frac{2}{p}} \leqslant C\|f\|_{H^{1}} .
$$

$(d=1)$

$$
\begin{aligned}
\|f\|_{\infty} & \leqslant\left\|f^{\prime}\right\|_{2}^{1 / 2}\|f\|_{2}^{1 / 2} \leqslant\|f\|_{H^{1}} \\
\|f\|_{2} & \leqslant\|f\|_{H^{1}}
\end{aligned}
$$

hence by Hölder's inequality for all $2 \leqslant p \leqslant \infty,\|f\|_{p} \leqslant\|f\|_{H^{1}}$
We now have to prove that $H^{1} \subset \mathscr{C}(\mathbb{R})$. Take $f \in H^{1}$. Then we can find a sequence φ_{n} such that $\varphi_{n} \in \mathscr{D}, \varphi_{n} \rightarrow f$ in H^{1} and $\varphi_{n}(x) \rightarrow f(x)$ a.e. $x \in \mathbb{R}$. We know that

$$
\varphi_{n}(x)-\varphi_{n}(y)=\int_{x}^{y} \varphi^{\prime}(t) \mathrm{d} t
$$

and thus for $x \leqslant y$

$$
\left|\varphi_{n}(x)-\varphi_{n}(y)\right| \leqslant\left|\int_{x}^{y} \varphi_{n}^{\prime}(t) \mathrm{d} t\right| \leqslant\left(\int_{x}^{y} \mathrm{~d} t\right)^{1 / 2}\left(\int_{x}^{y}\left|\varphi^{\prime}(t)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \leqslant \sqrt{|y-x|}\left\|\varphi_{n}^{\prime}\right\|_{2}
$$

for all $x, y \in \mathbb{R}$. Since $\varphi_{n} \rightarrow f$ in H^{1} and $\varphi_{n}(x) \rightarrow f(x)$ for all $x \in \mathbb{R} \backslash A$ with $|A|=0$. Then for all $x, y \in \mathbb{R} \backslash A$ we have

$$
|f(x)-f(y)|=\lim _{n \rightarrow \infty}\left|\varphi_{n}(x)-\varphi_{n}(y)\right| \leqslant \sqrt{|y-x|} \lim _{n \rightarrow \infty}\left\|\varphi_{n}^{\prime}\right\|_{2}=\sqrt{|x-y|}\left\|f^{\prime}\right\|_{2}
$$

Define $\tilde{f}(x)=f(x)$ for all $x \in \mathbb{R} \backslash A$. Then we can extend \tilde{f} to be a continuous function
on all of \mathbb{R} such that $|\tilde{f}(x)-\tilde{f}(y)| \leqslant \sqrt{|x-y|}\left\|f^{\prime}\right\|_{2}$ for all $x, y \in \mathbb{R}$.
q.e.d.

Theorem 5.4 (Sobolev Compact Embedding). Let B be a bounded set of $H^{1}\left(\mathbb{R}^{d}\right)$ and A a bounded set of \mathbb{R}^{d}. Then we have

$$
\mathbf{1}_{A} B \subset \subset L^{p}(A), \quad \text { with } \begin{cases}2 \leqslant p<\frac{2 n}{n-2}, & \text { if } n \geqslant 3 \\ 2 \leqslant p<\infty, & \text { if } n=2 \\ 2 \leqslant p \leqslant \infty, & \text { if } n=1\end{cases}
$$

Remark. By $\mathbf{1}_{A}$ we denote the indicator/characteristic function of the set A.

$$
\mathbf{1}_{A} B \subset \subset L^{p}(A)
$$

means that if $\left(f_{n}\right)_{n} \subset \mathbf{1}_{A} B$, i.e. $f_{n}=\mathbf{1}_{A} g_{n}$ with $g_{n} \in B$, then there exists a subsequence $f_{n_{k}}$ such that $f_{n_{k}}$ converges strongly in $L^{p}(A)$.

Corollary. If f_{n} is bounded in $H^{1}\left(\mathbb{R}^{d}\right)$, there exists a subsequence such that $f_{n}(x) \rightarrow$ $f(x)$ a.e. $x \in \mathbb{R}^{d}$.

Proof. A subsequence of $\mathbf{1}_{B_{R}(0)} f_{n}(x)$ converges strongly in $L^{p}\left(\mathbb{R}^{d}\right)$. Since L^{p} convergence implies that pointwise convergence of a subsequence we find that there exists a subsequence

$$
f_{n_{k_{l}}}(x) \longrightarrow f(x) \quad \text { a.e. }
$$

for $x \in B_{R}(0)$. Renaming this subsequence f_{n} and taking $R \rightarrow \infty$ using Cantor's diagonal argument one finds a subsequence of f_{n} such that it converges pointwise on almost all of $\mathbb{R}^{d}=\bigcup_{R \uparrow \infty} B_{R}(0)$. q.e.d.

Proof of Theorem 5.4.
$(d \geqslant 3)$ Take a sequence $\left(f_{n}\right)_{n} \subset B$, with $\left(f_{n}\right)_{n}$ bounded in $H^{1}\left(\mathbb{R}^{d}\right)$. By Banach-Alaoglu Theorem 1.26, we can find a subsequence

$$
f_{j_{n}} \frac{n \rightarrow \infty}{H^{1}} f
$$

We have to prove that $\mathbf{1}_{A} f_{n} \rightarrow \mathbf{1}_{A} f$ strongly in $L^{p}\left(\mathbb{R}^{n}\right)$. By linearity, we can assume that $f=0$ (i.e. we consider $f_{n}-f$ instead of f_{n}). Thus we need to prove that if $f_{n} \rightharpoonup 0$ in $H^{1}\left(\mathbb{R}^{d}\right)$, then $\mathbf{1}_{A} f_{n} \rightarrow 0$ strongly in $L^{p}\left(\mathbb{R}^{d}\right)$. Now we write

$$
\mathbf{1}_{A} f_{n}=\mathbf{1}_{A} e^{t \Delta} f_{n}+\mathbf{1}_{A}\left(f_{n}-e^{t \Delta} f_{n}\right)
$$

Recall that

$$
\widehat{e^{t \Delta}} f(k)=e^{-t 4 \pi^{2} k^{2}} \hat{f}(k)
$$

where $\left(e^{t \Delta} f\right)(x)=\int G(x-y) f(y) \mathrm{d} y$, where G is the heat kernel. We have

$$
\left\|\mathbf{1}_{A} f_{n}\right\|_{2} \leqslant\left\|\mathbf{1}_{A} e^{t \Delta} f_{n}\right\|_{2}+\left\|\mathbf{1}_{A}\left(f_{n}-e^{t \Delta} f_{n}\right)\right\|_{2}
$$

By the Fourier transform and the Plancherl theorem we have

$$
\begin{aligned}
\left\|\mathbf{1}_{A}\left(f_{n}-e^{t \Delta} f_{n}\right)\right\|_{2} & \leqslant\left\|f_{n}-e^{t \Delta} f_{n}\right\|_{2}=\left\|\hat{f}_{n}-\widehat{e^{t \Delta}} f_{n}\right\|_{2}=\left(\int\left(1-e^{-t 4 \pi^{2} k^{2}}\right)^{2}\left|\hat{f}_{n}(k)\right|^{2} \mathrm{~d} k\right)^{1 / 2} \stackrel{\square}{\leqslant} \\
& \leqslant\left(\int\left(t 4 \pi^{2} k^{2}\right)^{2}\left|\hat{f}_{n}(k)\right|^{2} \mathrm{~d} k\right)^{1 / 2}=\sqrt{t}\left\|\nabla f_{n}\right\|_{2} \leqslant \sqrt{t} C
\end{aligned}
$$

We have $\mathbf{1}_{A} e^{t \Delta} f_{n} \rightarrow 0$ strongly since, for every $x \in \mathbb{R}^{d}$

$$
e^{t \Delta} f_{n}(x)=\left\langle G(x-\cdot), f_{n}\right\rangle \rightarrow 0
$$

as $G(x-\cdot) \in L^{2}$ and f_{n} converges weakly and for all $x \in \mathbb{R}^{d}$

$$
\left|\left(e^{t \Delta} f_{n}\right)(x)\right| \leqslant\left(\int_{\mathbb{R}^{d}}|G(x-y)|^{2} \mathrm{~d} y\right)^{1 / 2}\left(\int_{\mathbb{R}^{d}}\left|f_{n}(y)\right|^{2} \mathrm{~d} y\right)^{1 / 2} \leqslant C_{t}
$$

i.e. $\quad \mathbf{1}_{A} e^{t \Delta} f_{n}$ is dominated by $C_{t} \mathbf{1}_{A}$ and thus as $e^{t \Delta} f_{n}$ converges pointwise it also converges strongly by the dominated convergence theorem.

[^1]Concluding we find that

$$
\left\|\mathbf{1}_{A} f_{n}\right\|_{2} \leqslant\left\|\mathbf{1}_{A} e^{t \Delta} f_{n}\right\|_{2}+C \sqrt{t} .
$$

Taking $n \rightarrow \infty$ we have

$$
\limsup _{n \rightarrow \infty}\left\|\mathbf{1}_{A} f_{n}\right\|_{2} \leqslant 0+C \sqrt{t}
$$

and taking $t \rightarrow 0$ we find that

$$
\limsup _{n \rightarrow \infty}\left\|\mathbf{1}_{A} f_{n}\right\|_{2} \leqslant 0
$$

i.e. $\mathbf{1}_{A} f_{n} \rightarrow 0$ converges strongly in $L^{2}\left(\mathbb{R}^{d}\right)$.

Moreover, we know that

$$
\left\|\mathbf{1}_{A} f_{n}\right\|_{q} \leqslant\left\|f_{n}\right\|_{q} \leqslant C\left\|f_{n}\right\|_{H^{1}}
$$

for all

$$
\begin{cases}q \leqslant \frac{2 d}{d-2}, & \text { if } d \geqslant 3 \\ q<\infty, & \text { if } d=2 \\ q \leqslant \infty, & \text { if } d n=1\end{cases}
$$

Then by interpolation (Hölder's inequality) we find that $\mathbf{1}_{A} f_{n} \rightarrow 0$ converges strongly in L^{p} for

$$
\left\{\begin{array}{l}
2 \leqslant p<\frac{2 d}{d-2}, \quad \text { if } d \geqslant 3 \\
2 \leqslant p<\infty, \quad \text { if } d \leqslant 2
\end{array}\right.
$$

$(d=1)$ As in $n \geqslant 3$ we can prove $\mathbf{1}_{A} B \subset \subset L^{p}\left(\mathbb{R}^{n}\right), 2 \leqslant p \leqslant \infty$.

Why can we include $p=\infty$? Let $f_{n} \rightharpoonup 0$ weakly in $H^{1}(\mathbb{R})$. We need to prove

$$
\sup _{x \in A}\left|f_{n}(x)\right| \xrightarrow{n \rightarrow \infty} 0
$$

Indeed, we can write

$$
f_{n}(x)=f_{n}(y)+f_{n}(x)-f_{n}(y) \Longrightarrow f_{n}(x)=\frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} f_{n}(y) \mathrm{d} y+\frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+\varepsilon}\left(f_{n}(x)-f_{n}(y)\right) \mathrm{d} y
$$

By the triangle inequality and Sobolev inequality we have

$$
\left.\left|f_{n}(x)\right| \leqslant \frac{1}{2 \varepsilon}\left|\int_{x-\varepsilon}^{x+\varepsilon} f_{n}(y) \mathrm{d} y\right|+\frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} \sqrt{|x-y|}\left|\left\|f_{n}^{\prime}\right\|_{2} \mathrm{~d} y \leqslant \frac{1}{2 \varepsilon}\right| \int_{x-\varepsilon}^{x+\varepsilon} f_{n}(y) \mathrm{d} y \right\rvert\,+\sqrt{\varepsilon}\left\|f_{n}^{\prime}\right\|_{2}
$$

Take $n \rightarrow \infty$, then

$$
\limsup _{n \rightarrow \infty}\left|f_{n}(x)\right| \leqslant \sqrt{\varepsilon}\left\|f^{\prime}\right\|_{2}
$$

since $f_{n} \rightharpoonup L^{2}$. Take $\varepsilon \rightarrow 0$ to see that $f_{n}(x) \rightarrow 0$ or all $x \in \mathbb{R}$. Now we assume that $\sup _{x \in A}\left|f_{n}(x)\right| \nrightarrow 0$, then there must exists a subsequence f_{n}, and a sequence $\left(x_{n}\right)_{n} \subset A$ such that

$$
\liminf _{n \rightarrow \infty}\left|f_{n}\left(x_{n}\right)\right|>0
$$

Because A is bounded, there must exists a subsequence such that $x_{n} \rightarrow x_{0}$. Then
$f_{n}\left(x_{n}\right)=f_{n}\left(x_{0}\right)+f_{n}\left(x_{n}\right)-f_{(}\left(x_{0}\right) \Longrightarrow\left|f_{n}\left(x_{n}\right)\right| \leqslant\left|f_{n}\left(x_{0}\right)\right|+\sqrt{\left|x_{n}-x_{0}\right|}| | f_{n}^{\prime} \|_{2} \xrightarrow{n \rightarrow \infty} 0$
which is a contradiction. \&
q.e.d.

Sobolev Spaces $W^{m, p}\left(\mathbb{R}^{d}\right)$

Definition 5.5.

$$
W^{m, p}\left(\mathbb{R}^{d}\right):=\left\{f \in L^{p}|\forall| \alpha \mid \leqslant m: D^{\alpha} f \in L^{p}\right\}
$$

Theorem 5.6. For all $m \in \mathbb{N}, p \in[1, \infty] W^{m, p}\left(\mathbb{R}^{d}\right)$ is a Banach space with the norm

$$
\|f\|_{W^{m, p}}=\left(\sum_{|\alpha| \leqslant m \mid}\left\|D^{\alpha} f\right\|_{p}^{p}\right)^{1 / p}
$$

(In particular $W^{m, 2}=H^{m}$ is a Hilbert space).

Theorem 5.7 (Weak Convergence). For $m \in \mathbb{N}, 1<p<\infty$, then $f_{n} \rightharpoonup f$ weakly in $W^{m, p}$ iff $D^{\alpha} f_{n} \rightharpoonup D^{\alpha} f$ weakly in $L^{p}\left(\mathbb{R}^{d}\right)$.

Proof. Analogous to H^{m}
q.e.d.

Theorem 5.8 (Sobolev Inequalities). Let $m \in \mathbb{N}, 1<p<\infty$. Then have a continuous embedding

$$
W^{m, p}\left(\mathbb{R}^{d}\right) \subset L^{q}\left(\mathbb{R}^{d}\right) \quad \text { with } \begin{cases}p \leqslant q \leqslant \frac{d p}{d-m p}, & \text { if } d>m p \\ p \leqslant q<\infty, & \text { if } d=m p \\ p \leqslant q \leqslant \infty, & \text { if } n<m p\end{cases}
$$

In particular if $n<m p$, then $W^{m, p}\left(\mathbb{R}^{n}\right) \subset \mathscr{C}\left(\mathbb{R}^{n}\right)$ and for $m=1$

$$
W^{1, p}\left(\mathbb{R}^{d}\right) \subset L^{q}\left(\mathbb{R}^{d}\right) \quad \text { with } \begin{cases}p \leqslant q \leqslant \frac{d p}{d-p}, & \text { if } d>m p \\ p \leqslant q<\infty, & \text { if } d=p \\ p \leqslant q \leqslant \infty, & \text { if } d<p\end{cases}
$$

Proof.

($m=1$) We consider $n>p$. We want to prove that

$$
\|f\|_{W^{1, p}} \geqslant c\|f\|_{q}, \quad p \leqslant q \leqslant \frac{d p}{d-p}
$$

Using the inequality $\|u\|_{\frac{d}{d-1}} \leqslant\|\nabla u\|_{1}$, for all $u \in \mathscr{D}\left(\mathbb{R}^{d}\right), d \geqslant 2$ with $u=f^{\alpha}, f \in \mathscr{D}$, $f \geqslant 0$. Then

$$
\left(\int f^{\alpha \frac{d}{d-1}}\right)^{\frac{n-1}{n}} \leqslant \alpha \int f^{\alpha-1}|\nabla f| \leqslant \alpha\left(\int f^{p^{\prime}(\alpha-1)}\right)^{1 / p^{\prime}}\|\nabla f\|_{p}, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

We need $\alpha \frac{n}{n-1}=p^{\prime}(\alpha-1)$ which is equivalent to

$$
\frac{d}{(d-1) p^{\prime}}=\frac{\alpha-1}{\alpha}=1-\frac{1}{\alpha} \Longrightarrow \frac{1}{\alpha}=1-\frac{d(p-1)}{(d-1) p}=\frac{d-p}{(d-1) p}
$$

i.e.

$$
\alpha=\frac{(d-1) p}{d-p}
$$

Hence,

$$
\alpha \frac{d}{d-1}=\frac{(d-1) p}{d-p} \frac{d}{d-1}=\frac{d p}{d-p}
$$

Thus

$$
\|f\|_{\frac{d p}{d-p}} \leqslant C\|\nabla f\|_{p}
$$

for all $f \in \mathscr{D}, f \geqslant 0$ and thus this holds for all $f \in W^{1, p}$ by density and the diagmagnetic inequality.

The case $p=d$ is similar to H^{1}. Let $p>d$. Why $W^{1, p} \subset L^{\infty}\left(\mathbb{R}^{d}\right) \cap \mathscr{C}\left(\mathbb{R}^{d}\right)$. Take $f \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. Write

$$
f(x)-f(y)=\int_{0}^{1} \nabla f(y+t(x-y)) \cdot(x-y) \mathrm{d} t
$$

Integrating over $B_{r}(y)$ we find that

$$
\begin{aligned}
\int_{B_{r}(y)}|f(x)-f(y)| \mathrm{d} x & \leqslant \int_{0}^{1} \int_{B_{r}(y)}|\nabla f(y+t(x-y))||x-y| \mathrm{d} x \mathrm{~d} t \stackrel{z=t(x-y)}{=} \\
& =\int_{0}^{1} \int_{|z|<t r}|\nabla f(y+z)| \frac{|z|}{t} \frac{d z}{t^{d}} \mathrm{~d} t \leqslant \\
& \leqslant \int_{0}^{1} \frac{1}{t^{d}}\left(\int_{|z|<t r} \mathrm{~d} z\right)^{1 / p^{\prime}}\left(\int_{|z|<t r}|\nabla f(y+z)|^{p} \mathrm{~d} z\right)^{1 / p} \mathrm{~d} t \leqslant \\
& \leqslant C r \int_{0}^{1} \frac{(t r)^{\frac{d}{p^{\prime}}}}{t^{d}}\|\nabla f\| \mathrm{d} t= \\
& =C r^{1+\frac{d}{p^{\prime}}}\left(\int_{0}^{\left.t^{\frac{d}{p^{\prime}}-d} \mathrm{~d} t\right)\|\nabla f\|_{p}}\right.
\end{aligned}
$$

Here

$$
\int_{0}^{1} t^{\frac{d}{p^{\prime}}-d} \mathrm{~d} t<\infty \Longleftrightarrow \frac{d}{p^{\prime}}-d>1 \Longleftrightarrow d-1<\frac{p}{p^{\prime}}=p-1 \Longleftrightarrow p>d
$$

Thus

$$
\int_{|x-y|<r}|f(x)-f(y)| \mathrm{d} x \leqslant C r^{1+\frac{d(p-1)}{p}}\|\nabla f\|_{p}
$$

note that

$$
1+\frac{d(p-1)}{p}>d \Longleftrightarrow d(p-1)>(d-1) p \Longleftrightarrow p>d
$$

Thus for some $s>0$

$$
\int_{|x-y|<r}|f(x)-f(y)| \mathrm{d} x \leqslant C r^{d+s}\|\nabla f\|_{p}
$$

Take $z \in \mathbb{R}^{d}$, we write

$$
f(y)-f(z)=f(y)-f(x)+f(x)-f(z) \Longrightarrow|f(y)-f(z)| \leqslant|f(y)-f(x)|+|f(x)-f(z)|
$$

integrating over x we find that $|x-y| \leqslant|y-z|=r$.

$$
\begin{aligned}
C|y-z|^{d}|f(y)-f(z)| & \stackrel{2}{\leqslant} \int_{|x-y| \leqslant|y-z|}|f(x)-f(y)| \mathrm{d} x+\int_{|x-z| \leqslant 2|y-z|}|f(x)-f(z)| \mathrm{d} x \leqslant \\
& \leqslant C^{\prime}|y-z|^{d+s}\|\nabla f\|_{p} \Longrightarrow|f(x)-f(y)| \leqslant C|y-z|^{s}\|\nabla f\|_{p}
\end{aligned}
$$

for some $s>0$. This implies that $W^{1, p}\left(\mathbb{R}^{n}\right) \subset \subset \mathscr{C}\left(\mathbb{R}^{n}\right)$. We still need to prove that $W^{1, p}\left(\mathbb{R}^{n}\right) \subset L^{\infty}\left(\mathbb{R}^{n}\right)$. Write $f(y)=f(x)+f(y)-f(x)$ and thus $|f(y)| \leqslant|f(x)|+$ $|f(y)-f(x)|$. Integrating over $|x-y|<1$

$$
C|f(y)| \leqslant \int_{|x-y|<1}|f(x)| \mathrm{d} x+\int_{|x-y|<1}|f(y)-f(x)| \mathrm{d} x \leqslant\left(\int_{|x-y|<1} \mathrm{~d} x\right)^{1 / p^{\prime}}\|f\|_{p}+C^{\prime}\|\nabla f\|_{p} \leqslant C^{\prime}\|f\|_{W^{1, p}}
$$

Thus $\sup _{y \in \mathbb{R}^{n}}|f(y)| \leqslant C\|f\|_{W^{1, p}}$.
For higher m, use that $f \in W^{m, p}\left(\mathbb{R}^{d}\right)$ implies that $\partial_{x_{i}} f \in W^{m-1, p}\left(\mathbb{R}^{d}\right)$. By induction and Sobolev inequality for $W^{1, p}$ implies that $\left\|\partial_{x_{i}} f\right\|_{q} \leqslant\|f\|_{W^{m, p}}$. Thus $f \in L^{p}$ and

$$
\partial_{x_{i}} f \in L^{q} .
$$

Example 5.9. This proof yields that $H^{1}\left(\mathbb{R}^{1}\right) \subset \mathscr{C}\left(\mathbb{R}^{1}\right)$, but $H^{1}\left(\mathbb{R}^{2}\right) \not \subset \mathscr{C}\left(\mathbb{R}^{2}\right), H^{1}\left(\mathbb{R}^{3}\right) \not \subset$ $\mathscr{C}\left(\mathbb{R}^{3}\right)$. However,

$$
H^{2}\left(\mathbb{R}^{2}\right) \subset \mathscr{C}\left(\mathbb{R}^{2}\right), \quad \text { and } H^{2}\left(\mathbb{R}^{3}\right) \subset \mathscr{C}\left(\mathbb{R}^{3}\right)
$$

Chapter 6

Ground States for Schrödinger

Operators

Definition. A Schrödinger operator is operator of the form

$$
-\Delta+V
$$

for $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ some external potential. The corresponding Schrödinger equation is

$$
(-\Delta+V) \psi=E \psi
$$

for some $E \in \mathbb{R}$ (the energy of the system).

Remark (Physical Interpretation). Let $\psi \in L^{2}\left(\mathbb{R}^{d}\right),\|\psi\|_{2}=1$ be the wave function of a quantum particle, then the ground state energy is given

$$
E=\inf \left\{\int_{\mathbb{R}^{d}}|\nabla \psi|^{2}+\int_{\mathbb{R}^{d}} V|\psi|^{2} \mid \psi \in H^{1}\left(\mathbb{R}^{d}\right),\|\psi\|_{2}=1\right\}
$$

Theorem 6.1 (Minimisers are Solutions). If $V \in L_{l o c}^{p}\left(\mathbb{R}^{d}\right)$ where

$$
\begin{cases}p \geqslant \frac{d}{2}, & \text { if } d \geqslant 3 \\ p>1, & \text { if } d=2 \\ p=1, & \text { if } d=1\end{cases}
$$

and ψ_{0} is a minimiser for E, then

$$
-\Delta \psi_{0}+V \psi_{0}=E \psi_{0} \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)
$$

(in particular, $V \psi_{0} \in L_{l o c}^{1}$.)

Example. Let $f \in \mathscr{C}^{1}(\mathbb{R})$. Then $f^{\prime}\left(x_{0}\right)=0$ if x_{0} is a minimiser of f, i.e. $f\left(x_{0}+t\right) \geqslant$ $f\left(x_{0}\right)$, hence for $t>0$

$$
\frac{f\left(x_{0}+t\right)-f\left(x_{0}\right)}{t} \geqslant 0 \Longrightarrow f^{\prime}\left(x_{0}\right) \geqslant 0
$$

and for $t<0$

$$
\frac{f\left(x_{0}+t\right)-f\left(x_{0}\right)}{t} \leqslant 0 \Longrightarrow f^{\prime}\left(x_{0}\right) \leqslant 0
$$

i.e. $f^{\prime}\left(x_{0}\right)=0$.

Proof. Let $\mathcal{E}(u)=\int|\nabla u|^{2}+\int V|u|^{2}$, then per definitionem of ψ_{0}

$$
\mathcal{E}(u) \geqslant \mathcal{E}\left(\psi_{0}\right)
$$

for all $u \in H^{1}$ with $\|u\|_{2}=1$. Thus for all $\varphi \in \mathscr{C}_{c}^{\infty}$ and $|t|$ small enough

$$
\mathcal{E}\left(\frac{\psi_{0}+t \varphi}{\left\|\psi_{0}+t \varphi\right\|_{2}}\right) \geqslant \mathcal{E}\left(\psi_{0}\right)
$$

i.e. $t \mapsto \mathcal{E}\left(\frac{\psi_{0}+t \varphi}{\left\|\psi_{0}+t \varphi\right\|_{2}}\right)$ attains its minimum, when $t=0$. Hence

$$
0=\frac{d}{d t} \mathcal{E}\left(\frac{\psi_{0}+t \varphi}{\left\|\psi_{0}+t \varphi\right\|_{2}}\right)=\frac{d}{d t} \frac{\mathcal{E}\left(\psi_{0}+t \varphi\right)}{\left\|\psi_{0}+t \varphi\right\|_{2}^{2}}
$$

Noting that

$$
\begin{aligned}
\frac{d}{d t} \mathcal{E}\left(\psi_{0}+t \varphi\right) & =2 \mathfrak{R} \int \overline{\nabla u_{0}} \nabla \varphi+2 \mathfrak{R} \int V \overline{\psi_{0}} \varphi \\
\left.\mathcal{E}\left(\psi_{0}+t \varphi\right)\right|_{t=0} & =E \\
\frac{d}{d t}\left\|\psi_{0}+t \varphi\right\|_{2}^{2} & =2 \Re \int \overline{u_{0}} \varphi \\
\left.\left\|\psi_{0}+t \varphi\right\|_{2}^{2}\right|_{t=0} & =1
\end{aligned}
$$

one finds that

$$
\begin{aligned}
0 & =\frac{d}{d t} \frac{\mathcal{E}\left(\psi_{0}+t \varphi\right)}{\left\|\psi_{0}+t \varphi\right\|_{2}^{2}}=2 \mathfrak{R} \int \overline{\nabla u_{0}} \nabla \varphi+2 \mathfrak{R} \int \overline{\psi_{0}} \varphi-2 E \mathfrak{R} \int \overline{u_{0}} \varphi= \\
& =2 \mathfrak{R}\left(-\int \overline{u_{0}} \Delta \varphi+\int V \overline{\psi_{0}} \varphi-2 E \int \overline{u_{0}} \varphi\right)
\end{aligned}
$$

By changing from φ to $i \varphi$ we find that the same must hold for the imaginary part and therefore

$$
0=\int \overline{u_{0}}(-\Delta \varphi+V \varphi-E \varphi)
$$

for all $\varphi \in \mathscr{D}$, i.e.

$$
-\Delta u_{0}+V u_{0}=E u_{0}
$$

in $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$. Here the condition $V \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{d}\right)$ ensures that $V u_{0} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$ because $u_{0} \in$ $H^{1} \subset L^{q}\left(\mathbb{R}^{d}\right)$ by the Sobolev embedding.
q.e.d.

Two different types of behaviour of external potentials

1) Trapping potential: $V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$, i.e. $\inf _{|x| \geqslant R} V(x) \rightarrow \infty$ as $R \rightarrow \infty$
2) Decaying potential: $V(x) \rightarrow 0$ as $|x| \rightarrow \infty$, i.e. $\sup _{|x| \geqslant R}|V(x)| \rightarrow 0$ as $R \rightarrow \infty$
3) There are also other potentials such as periodic ones.

Theorem 6.2 (Existence of Minimisers for Trapping Potentials). Assume that $0 \leqslant V$, $V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. Then

$$
E=\inf \left\{\int|\nabla \psi|^{2}+\int V|\psi|^{2} \mid \psi \in H^{1}\left(\mathbb{R}^{d}\right),\|\psi\|_{2}=1\right.
$$

has at least one minimiser.
Proof. Assume that $V \geqslant 0$, then $E=\inf (\cdots) \geqslant 0$, thus E is finite. By definition of E, we can find a sequence $\left(u_{n}\right)_{n} \subset H^{1}\left(\mathbb{R}^{d}\right)$ such that

$$
\mathcal{E}\left(u_{n}\right)=\int\left|\nabla u_{n}\right|^{2}+\int V\left|u_{n}\right| \xrightarrow{n \rightarrow \infty} E
$$

Since $\mathcal{E}\left(u_{n}\right) \rightarrow E$ it follows that $\mathcal{E}\left(u_{n}\right)$ is bounded (as $n \rightarrow \infty$) and thus $\int\left|\nabla u_{n}\right|^{2}$ and $\int V\left|u_{n}\right|^{2}$ are bounded. Thus $\left(u_{n}\right)_{n}$ is bounded in H^{1}, hence we may choose a subsequence such that $u_{n_{k}} \rightharpoonup u_{0}$ weakly in $H^{1}\left(\mathbb{R}^{d}\right)$ and $u_{n}(x) \rightarrow u_{0}(x)$ a.e. (by Theorem 5.4. Since $\nabla u_{n} \rightharpoonup \nabla u_{0}$ weakly in L^{2}

$$
\liminf _{n \rightarrow \infty} \int\left|\nabla u_{n}\right|^{2} \geqslant \int\left|\nabla u_{0}\right|^{2}
$$

Since $V\left|u_{n}\right|^{2} \rightarrow V\left|u_{0}\right|^{2}$ converges pointwise

$$
\liminf _{n \rightarrow \infty} \int V\left|u_{n}\right|^{2} \geqslant \int V\left|u_{0}\right|^{2}
$$

By Fatou's lemma. Thus

$$
E=\liminf _{n \rightarrow \infty} \mathcal{E}\left(u_{n}\right) \geqslant \mathcal{E}\left(u_{0}\right)
$$

Thus u_{0} is a minimiser iff $\left\|u_{0}\right\|_{2}=1$, which is an Exercise. q.e.d.

Now we shall turn to vanishing potentials, i.e. $V \uparrow 0$ as $|x| \uparrow 0$ and a singularity.

Example. The Hydrogen atom potential $-\Delta-\frac{1}{|x|}$ on $L^{2}\left(\mathbb{R}^{3}\right)$.
Why is this potential bounded, i.e.

$$
E=\inf \left\{\left.\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|} \mathrm{d} x \right\rvert\, u \in H^{1},\|u\|_{2}=1\right\}
$$

This is due to the Sobolev inequality $\|\nabla u\|_{2} \geqslant C\|u\|_{6}$. For $r>0$ we have

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|} \mathrm{d} x & =\int_{|x| \leqslant r} \frac{|u(x)|^{2}}{|x|} \mathrm{d} x+\int_{|x|>r} \frac{|u(x)|^{2}}{|x|} \mathrm{d} x \leqslant \\
& \leqslant\left(\int_{|x| \leqslant r}|u(x)|^{6}\right)^{1 / 3}\left(\int_{|x| \leqslant r} \frac{1}{|x|^{3 / 2}}\right)^{2 / 3}+\int_{|x|>r} \frac{|u(x)|^{2}}{r} \mathrm{~d} x \leqslant C_{s}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}\right) r+\frac{1}{r}
\end{aligned}
$$

i.e.

$$
\mathcal{E}(u)=\int|\nabla u|^{2}-\int \frac{|u(x)|^{2}}{|x|} \mathrm{d} x \geqslant \int|\nabla u|^{2}\left(1-C_{s} r\right)-\frac{1}{r}
$$

for all $r>0$. Choosing $r>0$ small enough one finds that

$$
\mathcal{E}(u) \geqslant \frac{1}{2} \int|\nabla u|^{2}-C>-\infty
$$

i.e. $E>-\infty$.

Lemma 6.3. If $V \in L^{p}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)$ where

$$
\begin{cases}p \geqslant \frac{d}{2}, & \text { if } d \geqslant 3 \\ p>1, & \text { if } d=2 \\ p \geqslant 1, & \text { if } d=1\end{cases}
$$

then $E>-\infty$ and

$$
\mathcal{E}(u) \geqslant \frac{1}{2} \int|\nabla u|^{2}-C
$$

for all $u \in H^{1}\left(\mathbb{R}^{d}\right),\|u\|_{2}=1$.

Remark 6.4. - $L^{p}+L^{\infty}=\left\{f+g \mid f \in L^{p}, g \in L^{\infty}\right\}$, for example

$$
\frac{1}{|x|}=\underbrace{\frac{1}{|x|} \mathbf{1}_{\{|x| \leqslant 1\}}}_{\in L^{3-\varepsilon}}+\underbrace{\frac{1}{|x|} \mathbf{1}_{\{|x|>1\}}}_{\in L^{\infty}}
$$

- IF $p<q<\infty$ then $L^{q}\left(\mathbb{R}^{n}\right) \subset L^{p}+L^{\infty}$.

Proof.
$(d \geqslant 3)$ Let $V \in L^{d / 2}+L^{\infty}$. Write $V=V_{1}+V_{2}$, where $V_{1}=V \mathbf{1}_{|V(x)|>\frac{1}{\varepsilon}}, V_{2}=V \mathbf{1}_{|V(x)| \leqslant \frac{1}{\varepsilon}}$. Then for $\varepsilon>0$ small, we have

$$
\begin{array}{ll}
V_{2} \in L^{\infty}, & \left\|V_{2}\right\|_{\infty} \leqslant \frac{1}{\varepsilon} \\
V_{1} \in L^{d / 2}, & \left\|V_{1}\right\|_{d / 2}=\left(\int|V(x)|^{d / 2} \mathbf{1}_{|V(x)| \geqslant \frac{1}{\varepsilon}} \mathrm{~d} x\right)^{2 / d} \xrightarrow{\varepsilon \searrow 0} 0
\end{array}
$$

by dominated convergence. We have

$$
\begin{aligned}
\left.\left|\int V\right| u\right|^{2} \mid & \leqslant \int\left|V_{1}\right|\left\|\left.u\right|^{2}+\int\left|V_{2}\right||u|^{2} \leqslant\right\| V_{1}\left\|_{d / 2}\right\| u\left\|_{d / d-2}+\right\| V_{2}\left\|_{\infty}\right\| u \|_{2} \leqslant \\
& \leqslant C_{S}\left\|V_{1}\right\|_{d / 2} \int_{\mathbb{R}^{d}}|\nabla u|^{2}+\frac{1}{\varepsilon}
\end{aligned}
$$

for all $u \in H^{1},\|u\|_{2}=1$. Then

$$
\mathcal{E}(u)=\int|\nabla u|^{2}\left(1-C_{S}\left\|V_{1}\right\|_{d / 2}\right)-\frac{1}{\varepsilon} \geqslant \frac{1}{2} \int|\nabla u|^{2}-C
$$

if we choose $\varepsilon>0$ small enough.
q.e.d.

Definition 6.5 (Vanishing in the Weak Sense). We say that $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ vanishes at ∞ in the weak sense if for all $\varepsilon>0$

$$
\lambda(\{|V(x)|>\varepsilon\})<\infty
$$

Example. $V(x) \rightarrow 0$ as $|x| \rightarrow \infty$ in the strong sense, i.e.

$$
\sup _{|x| \geqslant R}|V(x)| \xrightarrow{R \rightarrow \infty} 0
$$

Remark 6.6. If $V \in L^{p}\left(\mathbb{R}^{d}\right), 1 \leqslant p<\infty$, the V vanishes at ∞ in the weak sense.

Theorem 6.7. Assume that $V \in L^{p}\left(\mathbb{R}^{d}\right)+L_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, where

$$
\begin{cases}p \geqslant \frac{d}{2}, & \text { if } d \geqslant 3 \\ p>1, & \text { if } d=2 \\ p \geqslant 1, & \text { if } d=1\end{cases}
$$

and L_{0}^{∞} is the set of L^{∞} which vanish weakly at infinity. Assume that $E<0$ then E
has a minimiser $u_{0} \in H^{1}\left(\mathbb{R}^{d}\right)$ and

$$
-\Delta u_{0}+V u_{0}=E u_{0} \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)
$$

Moreover, we can choose $u_{0} \geqslant 0$.

Remark 6.8. Under certain conditions on V, then actually $u_{0}>0$ and it is unique. But we will prove this much later.

Lemma 6.9. Assume that $V \in L^{p}+L_{0}^{\infty}$. Assume that $u_{n} \rightharpoonup u_{0}$ weakly in $H^{1}\left(\mathbb{R}^{d}\right)$. Then

$$
\int V\left|u_{n}\right|^{2} \xrightarrow{n \rightarrow \infty} \int V\left|u_{0}\right|^{2} .
$$

Proof.
Case $1 V \in L^{p}, p=\frac{d}{2}, d \geqslant 3$. Then

$$
V=V_{1}+V_{2}+V_{3}=V \mathbf{1}_{\left\{\varepsilon<|V(x)|<\frac{1}{\varepsilon}\right\}}+V \mathbf{1}_{|V(x)| \leqslant \varepsilon}+V \mathbf{1}_{|V(x)| \geqslant \frac{1}{\varepsilon}}
$$

Then $V_{1} \in L^{\infty}, \lambda\left(\left\{V_{1}(x) \neq 0\right\}\right)<\infty$ and by the Sobolev embedding

$$
\int_{\left\{V_{1} \neq 0\right\}} V_{1}\left|u_{n}\right|^{2} \xrightarrow{n \rightarrow \infty} \int V_{1}\left|u_{0}\right|^{2}
$$

strongly in L^{2}.
$V_{2} \in L^{\infty}$ and $\left\|V_{2}\right\|_{\infty} \leqslant \varepsilon$, then for all $n \in \mathbb{N}$

$$
\left.\left|\int V_{2}\right| u_{n}\right|^{2}|\leqslant \varepsilon \Longrightarrow| \int V_{2}|u|^{2} \mid \leqslant \varepsilon
$$

$V_{3} \in L^{d / 2},\left\|V_{3}\right\|_{d / 2} \rightarrow 0$ as $\varepsilon \rightarrow 0$ and therefore

$$
\left.\left|\int V_{3}\right| u_{n}\right|^{2}\left|\leqslant\left\|V_{3}\right\|_{d / 2}\left\|\left|u_{n}\right|^{2}\right\|_{\frac{d}{d-2}} \leqslant C\left\|V_{3}\right\|_{d / 2}\right.
$$

Then

$$
\left.\left|\int V\right| u_{n}\right|^{2}-\int V\left|u_{0}\right|^{2}\left|\leqslant\left|\int V_{1}\right| u_{n}\right|^{2}-\int V_{1}\left|u_{0}\right|^{2} \mid+\varepsilon+C\left\|V_{3}\right\|_{d / 2}
$$

and therefore

$$
\left.\limsup _{n \rightarrow \infty}\left|\int V\right| u_{n}\right|^{2}-\int V\left|u_{0}\right|^{2} \mid \leqslant \varepsilon+C\left\|V_{3}\right\|_{d / 2} \longrightarrow 0
$$

Case $2 V \in L_{0}^{\infty}$, then

$$
V=V_{1}+V_{2}=V \mathbf{1}_{\left\{\varepsilon<|V(x)|<\frac{1}{\varepsilon}+V(x) \mathbf{1}_{|V(x)| \leqslant \varepsilon}\right\}}
$$

The rest of the proof works analogously to the above.
q.e.d.

Proof of Theorem 6.7.
($p=\frac{d}{2}, d \geqslant 3$) By the lemma

$$
\mathcal{E}(u) \geqslant \frac{1}{2} \int|\nabla u|^{2}-C
$$

for all $u \in H^{1}\left(\mathbb{R}^{d}\right),\|u\|_{2}=1$. In particular E is finite and we can find a minimising sequence $\left(u_{n}\right)_{n} \subset H^{1},\left\|u_{n}\right\|_{2}=1$, such that $\mathcal{E}\left(u_{n}\right) \rightarrow E$. Since

$$
E \longleftarrow \mathcal{E}\left(u_{n}\right) \geqslant \frac{1}{2} \int\left|\nabla u_{n}\right|^{2}-C
$$

hence $\left(u_{n}\right)_{n}$ is bounded in $H^{1}\left(\mathbb{R}^{d}\right)$. Thus by the Sobolev compact embedding theorem, there exists a subsequence $\left(u_{n_{k}}\right)_{k}, u_{n} \rightharpoonup u_{0}$ weakly in $H^{1}\left(\mathbb{R}^{d}\right)$ and $\mathbf{1}_{A} u_{n} \rightarrow \mathbf{1}_{A} u_{0}$ strongly in $L^{2}\left(\mathbb{R}^{d}\right)$ for any bounded set A. Because $\nabla u_{n} \rightharpoonup \nabla u$ weakly in L^{2}, and by Fatou's lemma

$$
\liminf _{n \rightarrow \infty} \int\left|\nabla u_{n}\right|^{2} \geqslant \int\left|\nabla u_{0}\right|^{2}
$$

and by the previous lemma, $\int V\left|u_{n}\right|^{2} \rightarrow \int V\left|u_{0}\right|^{2}$. Thus

$$
E=\liminf \mathcal{E}\left(u_{n}\right) \geqslant \mathcal{E}\left(u_{0}\right)
$$

It is not obvious that u_{0} is a minimiser as we do not whether $\left\|u_{0}\right\|_{2}=1$, because

$$
u_{n} \xrightarrow{n \rightarrow \infty} u_{0} \Longrightarrow\left\|u_{0}\right\|_{2} \leqslant \liminf \left\|u_{n}\right\|_{2}=1
$$

Now using the assumption $E<0$ we find that
$0>E \geqslant \mathcal{E}\left(u_{0}\right)=\int\left|\nabla u_{0}\right|^{2}+\int V\left|u_{0}\right|^{2}=\left\|u_{0}\right\|_{2}^{2}\left(\int|\nabla v|^{2}+\int V|v|^{2}\right) \geqslant \underbrace{\left\|u_{0}\right\|_{2}^{2}}_{\leqslant 1} E \Longrightarrow\left\|u_{0}\right\|_{2}=1$,
where $v=\frac{u_{0}}{\left\|u_{0}\right\|_{2}}$, thus u_{0} is a minimiser.
q.e.d.

Remark 6.10. If $E \geqslant 0$ then E might have no minimiser. For example if $V(x)=\frac{1}{|x|}$ in \mathbb{R}^{3}, then

$$
E=\inf _{\substack{u \in H^{1} \\\|u\|_{2}=1}}\left(\int|\nabla u|^{2} \mathrm{~d} x+\int \frac{|u(x)|^{2}}{|x|} \mathrm{d} x\right)=0
$$

but it has no minimiser.

Theorem 6.11 (Hydrogen Atom). Let

$$
E=\inf _{\substack{u \in H^{1} \\\|u\|_{2}=1}}\left(\int|\nabla u|^{2} \mathrm{~d} x-\int \frac{|u(x)|^{2}}{|x|} \mathrm{d} x\right)
$$

then $E=-\frac{1}{4}$ and $u_{0}(x)=c e^{-\frac{|x|}{2}}, c \in \mathbb{R}$, is a minimiser.

Theorem 6.12 (Perron-Frobenius Principle). Take $\Omega \subset \mathbb{R}^{d}$ open, $f \in \mathscr{C}^{2}(\Omega)$. Assume that $V \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right), f>0$ for all $x \in \Omega$ and

$$
-\Delta f+V f=0
$$

pointwise in Ω. Then for all $u \in \mathscr{C}_{c}^{1}(\Omega)$, we have

$$
\int|\nabla u|^{2} \mathrm{~d} x+\int V|u|^{2} \geqslant 0
$$

Proof. Since $u \in \mathscr{C}_{c}^{1}(\Omega)$ and $f>0$ we can write $u=f \varphi$ with $\varphi \in \mathscr{C}_{c}^{1}(\Omega)$ and

$$
\int|\nabla u|^{2}=\int|\nabla(f \varphi)|^{2}=\int|\nabla f \varphi+f \nabla \varphi|^{2}=\int|\nabla f|^{2}|\nabla \varphi|^{2}+\int|f|^{2}|\nabla \varphi|^{2}+2 \Re \int(\nabla f) f \bar{\varphi} \nabla \varphi .
$$

Thus

$$
\int\left|\partial_{x_{i}} f\right|^{2}|\varphi|^{2}=-\int f \partial_{x_{i}}\left(\left(\partial_{x_{i}} f\right)|\varphi|^{2}\right)=-\int f\left(\partial_{x_{i}}^{2} f\right)|\varphi|^{2}-\int f \partial_{x_{i}} f \partial_{x_{i}}|\varphi|^{2}
$$

hence

$$
\int|\nabla f|^{2}|\varphi|^{2}=-\int f \Delta f|\varphi|^{2}-\int f \nabla f 2 \mathfrak{R}(\bar{\varphi} \nabla \varphi) .
$$

Thus

$$
\int|\nabla u|^{2}=\int|f|^{2}|\nabla \varphi|^{2}+\int f(-\Delta f)|\varphi|^{2}
$$

and therefore

$$
\int|\nabla u|^{2}+\int V|u|^{2}=\int|f|^{2}|\nabla \varphi|^{2}+\int f \underbrace{(-\Delta f+V f)}_{=0}|\varphi|^{2}=\int|f|^{2}|\nabla \varphi|^{2} \geqslant 0 .
$$

q.e.d.

Proof. Let $\Omega=\mathbb{R}^{3} \backslash\{0\}$ and $f(x)=c e^{-\frac{|x|}{2}}$. Then $f \in \mathscr{C}^{2}(\Omega), f>0$ in Ω and

$$
-\Delta f-\frac{f}{|x|}+\frac{1}{4} f=0
$$

on Ω. By the Perron-Frobenius principle

$$
\int|\nabla u|^{2}-\int \frac{|u(x)|^{2}}{|x|}+\frac{1}{4} \int|u(x)|^{2} \geqslant 0
$$

for all $u \in \mathscr{C}_{c}^{1}\left(\mathbb{R}^{3} \backslash\{0\}\right)$. As $\mathscr{C}_{c}^{1}\left(\mathbb{R}^{3} \backslash\{0\}\right)$ is dense in $H^{1}\left(\mathbb{R}^{3}\right)$ (the proof of which is left as an exercise $)^{1}$.
The for all $u \in H^{1}\left(\mathbb{R}^{3}\right)$, we can find a $u_{n} \in \mathscr{C}_{c}^{1}\left(\mathbb{R}^{3} \backslash\{0\}\right)$ such that $u_{n} \rightarrow u$ in $H^{1}\left(\mathbb{R}^{3}\right)$ and $u_{n}(x) \rightarrow u(x)$ a.e. $x \in \mathbb{R}^{3}$. Thus

$$
\begin{aligned}
& \int\left|\nabla u_{n}\right|^{2} \mathrm{~d} x \xrightarrow{n \rightarrow \infty} \int|\nabla u|^{2} \mathrm{~d} x \\
& \int\left|u_{n}\right|^{2} \mathrm{~d} x \xrightarrow{n \rightarrow \infty} \int|u|^{2} \mathrm{~d} x \\
& \liminf _{n \rightarrow \infty} \int \frac{\left|u_{n}\right|^{2}}{|x|} \mathrm{d} x
\end{aligned}
$$

[^2]where the last inequality follows from Fatou's lemma and therefore we have
$$
0 \leqslant \limsup _{n \rightarrow \infty}\left(\int\left|\nabla u_{n}\right|^{2}-\int \frac{\left|u_{n}\right|^{2}}{|x|}+\frac{1}{4} \int\left|u_{n}\right|^{2}\right) \leqslant\left(\int|\nabla u|^{2}-\int \frac{|u|^{2}}{|x|}+\frac{1}{4} \int|u|^{2}\right) .
$$

Lemma 6.13. For all $u \in H^{1}\left(\mathbb{R}^{3}\right)$ with $\|u\|_{2}=1$ holds

$$
\int|\nabla u|^{2} \geqslant\left(\int \frac{|u(x)|^{2}}{|x|}\right)^{2}
$$

Proof. Take $u \in H^{1}\left(\mathbb{R}^{3}\right),\|u\|_{2}=1$. Let $u_{l}(x)=l^{3 / 2} u(l x)$ for which $\left\|u_{l}\right\|_{2}=\|u\|_{2}=1$. We have

$$
\int_{\mathbb{R}^{3}}\left|\nabla u_{l}\right|^{2}=l^{2} \int|\nabla u|^{2}, \quad \int \frac{\left|u_{l}\right|^{2}}{|x|} \mathrm{d} x=l \int \frac{|u|^{2}}{|x|} \mathrm{d} x
$$

then we have by the above that for all $l>0$

$$
l^{2} \int|\nabla u|^{2}-l \int \frac{|u|^{2}}{|x|} \mathrm{d} x \geqslant-\frac{1}{4}
$$

Noting that $l^{2} A-l B+C \geqslant 0$ for some $A, B, C \geqslant$ and $l \geqslant 0$ iff $4 A C \geqslant B^{2}$, we find that the inequality implies

$$
\int|\nabla u|^{2} \geqslant\left(\int \frac{|u|^{2}}{|x|}\right)^{2}
$$

for all $u \in H^{1}\left(\mathbb{R}^{3}\right)$ and $\|u\|_{2}=1$.

Remark 6.14. For all $u \in H^{1}\left(\mathbb{R}^{3}\right)$ and $\|u\|_{2}=1$ we have

$$
\begin{aligned}
\left(\int|\nabla u|^{2}\right)\left(\int|x|^{2}|u(x)|^{2} \mathrm{~d} x\right) & \geqslant\left(\int \frac{|u(x)|^{2}}{|x|}\right)^{2}\left(\int|x|^{2}|u(x)|^{2} \mathrm{~d} x\right) \geqslant \\
& \geqslant\left(\int|u(x)|^{2} \mathrm{~d} x\right)^{3}=1
\end{aligned}
$$

Comparing this to the Heisenberg uncertainty principle

$$
\left(\int|\nabla u|^{2}\right)\left(\int|x|^{2}|u(x)|^{2} \mathrm{~d} x\right) \geqslant \frac{g}{4}
$$

we see that the Sobolev inequality is "stronger" that the Heisenberg-principle

Theorem 6.15 (Hardy Inequality).

$$
\int|\nabla u|^{2} \geqslant \frac{1}{4} \int \frac{|u(x)|^{2}}{|x|^{2}} \mathrm{~d} x
$$

for all $u \in H^{1}\left(\mathbb{R}^{3}\right)$.

Proof. Homework.
q.e.d.

Remark 6.16. Hardy's inequality implies

$$
\int|\nabla u|^{2} \geqslant \frac{1}{4} \int \frac{|u|^{2}}{|x|^{2}} \geqslant \frac{1}{4}\left(\int \frac{|u|^{2}}{|x|}\right)^{2}
$$

if $\|u\|_{2}=1$.

Chapter 7

Harmonic Functions

Definition 7.1. Let $f \in L_{\text {loc }}^{1}(\Omega)$, for $\Omega \subset \mathbb{R}^{d}$ open. Then f is harmonic iff

$$
\Delta f=0 \quad \text { in } \mathscr{D}^{\prime}(\Omega)
$$

Theorem 7.2 (Equivalent Definition). $f \in L_{l o c}^{1}(\Omega)$. The f is harmonic iff

$$
f(x)=\frac{1}{\lambda\left(B_{r}\right)} \int_{B_{r}(x)} f(y) \mathrm{d} y:=\int_{B_{r}(x)} f(y) \mathrm{d} y \quad \text { a.e. }
$$

for all $r>0$ such that $B_{r}(x) \subset \Omega$.

Proof.

Step 1. Let $f \in \mathscr{C}_{c}^{\infty}$ and assume that $\Delta f=0$. Then

$$
0=\int_{B_{r}(x)} \Delta f(y) \mathrm{d} y=\int_{S_{r}(x)} \nabla f \cdot \nu \mathrm{~d} S(y)=r^{d-1} \int_{\mathbb{S}^{d-1}} \nabla f(x+r w) \cdot w \mathrm{~d} S(w)
$$

where $\mathbb{S}^{d-1}=S_{1}(0)$. Thus we have

$$
0=\int_{\mathbb{S}^{d-1}} \nabla f(x+r \omega) \cdot \omega \mathrm{d} S(\omega)=\int_{\mathbb{S}^{d-1}} \frac{d}{d r} f(x+r \omega) \mathrm{d} \omega=\frac{d}{d r} \int_{\mathbb{S}^{d-1}} f(x+r \omega) \mathrm{d} S(\omega)
$$

i.e. $r \mapsto \int_{\mathbb{S}^{d-1}} f(x+r \omega) \mathrm{d} S(\omega)$ is constant, i.e. for all $r>0$

$$
f(x) \lambda\left(\mathbb{S}^{d-1}\right)=\int_{\mathbb{S}^{d-1}} f(x+r \omega) \cdot w \mathrm{~d} S(\omega)
$$

and therefore

$$
\left|B_{r}(0)\right| f(x)=\int_{0}^{R} r^{d-1} \lambda\left(\mathbb{S}^{d-1}\right) f(x) \mathrm{d} r=\int_{0}^{r} r^{d-1} \int_{\mathbb{S}^{d-1}} f(x+r \omega) \cdot \omega \mathrm{d} S(\omega) \mathrm{d} r=\int_{B_{r}(x)} f(y) \mathrm{d} y
$$

from which $f(x)=f_{B_{r}(x)} f(y) \mathrm{d} y$ follows.
For the converse assume that $f(x)=f_{B_{r}(x)} f(y) \mathrm{d} y$ holds for all $x \in \Omega$ and $r>0$. From the assumption we have

$$
\lambda\left(\mathbb{S}^{d-1}\right) f(x)=\int_{\mathbb{S}^{d-1}} f(x+r \omega) \cdot \omega \mathrm{d} S(\omega)
$$

Taking the derivative with respect to r we get

$$
0=\frac{d}{d r} \int_{\mathbb{S}^{d-1}} f(x+r \omega) \mathrm{d} S(\omega)=\int_{\mathbb{S}^{d-1}} \nabla f(x+r \omega) \cdot \omega \mathrm{d} S(\omega)=\int_{B_{r}(x)} \Delta f(y) \mathrm{d} y
$$

Since this holds for all $r>0$ one finds that $\Delta f=0$.
Step 2. Consider $f \in L_{\text {loc }}^{1}(\Omega)$. Choosing $h \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, with $0 \leqslant h \leqslant 1$ and $\int h=1, h(x)=0$ if $|x|>1$ and h is a radial function, i.e. $h(x)=f(|x|)$. Letting

$$
h_{n}(x)=n^{d} h(n x)
$$

for $n \in \mathbb{N}$. We know that $h_{n} * f \rightarrow f$ in $L_{\text {loc }}^{1}(\Omega), h_{n} * f \in \mathscr{C}^{\infty}$ and $D^{\alpha}\left(h_{n} * f\right)=\left(D^{\alpha} h_{n}\right) * f$. Let $\Delta f=0$ in $\mathscr{D}^{\prime}(\Omega)$. Then

$$
\Delta\left(h_{n} * f\right)=0, \quad \text { in } \mathscr{D}^{\prime}(\Omega)
$$

since for all $\varphi \in \mathscr{C}_{c}^{\infty}(\Omega)$, in particular also $h_{n}(\cdot-x)$,

$$
\int \Delta \varphi(y) f(y) \mathrm{d} y=0
$$

hence we have classically $\Delta\left(h_{n} * f\right)=\left(\Delta h_{n} * f\right)=0$ and therefore also weakly. By step 1

$$
\left(h_{n} * f\right)(x)=f_{B_{r}(x)}\left(h_{n} * f\right)(y) \mathrm{d} y=\frac{\mathbf{1}_{B_{r}(0)}}{\lambda\left(B_{r}(0)\right)} *\left(h_{n} * f\right)(x)=h_{n} *\left(\frac{\mathbf{1}_{B_{r}(0)}}{\lambda\left(B_{r}(0)\right)} * f\right)(x)
$$

Taking the limit $n \rightarrow \infty$, the assertion follows.
For the converse assume that $f(x)=\left(\frac{\mathbf{1}_{B_{r}(0)}}{\lambda\left(B_{r}(0)\right)} * f\right)(x)$ then

$$
h_{n} * f(x)=h_{n} *\left(\frac{\mathbf{1}_{B_{r}(0)}}{\lambda\left(B_{r}(0)\right)} * f\right)(x)=\frac{\mathbf{1}_{B_{r}(0)}}{\lambda\left(B_{r}(0)\right)} *\left(h_{n} * f\right)(x)
$$

and therefore by step 1., $\Delta\left(h_{n} * f\right)=0$. Since $h_{n} * f \rightarrow f$ in $L_{\text {loc }}^{1}$ it does also converge in $\mathscr{D}^{\prime}(\Omega)$ and therefore $0=\Delta\left(h_{n} * f\right) \rightarrow \Delta f$ in $\mathscr{D}^{\prime}(\Omega)$.
q.e.d.

Corollary 7.3. If f is harmonic, then $f \in \mathscr{C}^{\infty}(\Omega)$ and $f(x)=f_{\lambda\left(S_{r}(0)\right)} f(y) \mathrm{d} y$.

Proof. The identity follows as in the case for smooth functions. For the smoothness we shall prove that $h_{n} * f=f$ everywhere.

$$
\begin{aligned}
\left(h_{n} * f\right)(x) & =\int f(y) f(x-y) \mathrm{d} y=\int_{0}^{\infty} \int_{S^{d-1}} r^{d-1} h_{n}(r \omega) f(x-r \omega) \mathrm{d} S(\omega) \mathrm{d} r= \\
& =\int_{0}^{\infty} h(r \omega) r^{d-1} \underbrace{\int_{\mathbb{S}^{d-1}} f(x-r \omega) \mathrm{d} S(\omega)}_{=f(x) \lambda\left(\mathbb{S}^{d-1}\right)} \mathrm{d} r=\left(\int_{\mathbb{R}^{d}} h_{n}(y) \mathrm{d} y\right) f(x)=f(x) .
\end{aligned}
$$

Thus since $h_{n} * f$ is smooth so must f.
q.e.d.

Theorem 7.4 (Harnack's Inequality). If f is harmonic on $B_{r}(0)$ and $f \geqslant 0$ then for all $x \in B_{\frac{R}{3}}(0)$, then

$$
\left(\frac{3}{2}\right)^{d} f(0) \geqslant f(x) \geqslant \frac{f(0)}{2^{d}}
$$

Proof.

$$
\begin{aligned}
& f(0)=f_{B_{R}(0)} f(y) \mathrm{d} y \\
& f(x)=f_{B_{\frac{2}{3} R}(x)} f(y) \mathrm{d} y
\end{aligned}
$$

for $x \in B_{\frac{R}{3}}(0)$. Thus we have

$$
f(0)=\frac{\lambda\left(B_{\frac{2}{3} R}(x)\right)}{\lambda\left(B_{R}(0)\right)} \frac{1}{\lambda\left(B_{\frac{2}{3} R}(x)\right)} \int_{B_{R}(0)} f(y) \mathrm{d} y \geqslant\left(\frac{2}{3}\right)^{d} f_{B_{\frac{2}{3} R}(x)} f(y) \mathrm{d} y=\left(\frac{2}{3}\right)^{d} f(x)
$$

The other inequality follows similarly using $B_{\frac{R}{3}}(0) \subset B_{\frac{2 R}{3}}(x)$. q.e.d.

Corollary 7.5. If f is harmonic on \mathbb{R}^{d} and f is bounded from above $f \leqslant c$ for some $c \in \mathbb{R}$ (or bounded from below), then f is constant

Proof. Assuming that $f(x) \geqslant-C$ for all $x \in \mathbb{R}^{d}$. We want to prove that f is constant. Let $E=\inf _{x \in \mathbb{R}^{d}} f(x)$ and define $g=f-E$, then $g \geqslant 0$ and g is harmonic, $\inf _{x \in \mathbb{R}^{d}} g(x)=0$. We want to prove that $g \equiv 0$. If not, then there must exist a x_{0}. If not then there exists a $x_{0} \in \mathbb{R}^{d}$ such that $g\left(x_{0}\right)>0$. By Harnack's inequality we find that

$$
g(x) \geqslant \frac{g\left(x_{0}\right)}{2^{d}}>0
$$

for all $x \in \mathrm{R}^{d}$. Thus

$$
\inf _{x \in \mathbb{R}^{d}} g(x) \geqslant \frac{g\left(x_{0}\right)}{2^{d}}>0
$$

which is a contradiction.

Theorem 7.6 (Newton's Theorem). Let μ be a positive Borel measure on \mathbb{R}^{n} and let μ be radial, i.e. $\mu(R A)=\mu(A)$ for all $R \in S O(3)$. Then for all $x \in \mathbb{R}^{3}$

$$
\int_{\mathbb{R}^{3}} \frac{\mathrm{~d} \mu(y)}{|x-y|}=\int_{\mathbb{R}^{3}} \frac{\mathrm{~d} \mu(y)}{\max \{|x|,|y|\}}=\frac{\int \mathrm{d} \mu}{|x|}
$$

Proof. Using $-\Delta \frac{1}{4 \pi|x|}=\delta$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{3}\right)$, in particular $\Delta \frac{1}{|x|}=0$ for all $x \in \mathbb{R}^{3} \backslash\{0\}$, hence $\frac{1}{|x|}$ is harmonic on $\Omega=\mathbb{R}^{3} \backslash\{0\}$. Thus

$$
f(x)=f_{\mathbb{S}_{r}(x)} f(y) \mathrm{d} S(y)
$$

Step 1 We consider the case μ is a uniform measure on a sphere. We want to prove that

$$
\int_{|y|=R} \frac{\mathrm{~d} y}{|x-y|}=\int_{|y|=R} \frac{\mathrm{~d} y}{\max \{|x|, R\}}
$$

If $|x|>R$ the function $y \mapsto \frac{1}{|x-y|}=: f(y)$ is a harmonic function on $B(0,|x|)$, because $\Delta\left(\frac{1}{|x|}\right)=0$ for all $x \in \mathbb{R}^{3} \backslash\{0\}$. By the mean value theorem then

$$
f(0)=f_{|y|=R} f(y) \mathrm{d} y \Longrightarrow \frac{1}{|x|}=f_{|y|=R} \frac{\mathrm{~d} y}{|x-y|}
$$

and therefore

$$
\int_{|y|=R} \frac{\mathrm{~d} y}{|x-y|}=\left|S_{R}(0)\right| \frac{1}{|x|}=\int_{|y|=R} \mathrm{~d} y \frac{1}{|x|}=\int_{|y|=R} \frac{\mathrm{~d} y}{\max \{|x|, R\}}
$$

If $|x|<R$

$$
\begin{aligned}
\int_{|y|=R} \frac{\mathrm{~d} y}{|x-y|} & =R^{2} \int_{\mathbb{S}^{2}} \frac{\mathrm{~d} \omega}{|x-R \omega|}=R^{2} \int_{\mathbb{S}^{2}} \frac{\mathrm{~d} \omega}{| | x\left|\omega-R y_{0}\right|} \stackrel{\text { Case }|x|>R}{=} \\
& =R^{2} \int_{\mathbb{S}^{2}} \frac{\mathrm{~d} \omega}{R}=\frac{\left|S_{R}(0)\right|}{R}=\int_{|y|=R} \frac{\mathrm{~d} y}{\max \{|x|, R\}}
\end{aligned}
$$

If $|x|=R$ then by the Dominated Convergence Theorem

$$
\int_{|y|=R} \frac{\mathrm{~d} y}{|x-y|}=\lim _{R_{n} \uparrow R} \int_{|y|=R_{n}} \frac{\mathrm{~d} y}{|x-y|}=\lim _{R_{n} \uparrow R} \frac{\left|S_{R_{n}}(0)\right|}{|x|}=\frac{\left|S_{R}(0)\right|}{|x|}=\int_{|y|=R} \frac{\mathrm{~d} y}{\max \{|x|, R\}} .
$$

Thus we proved for all $R>0$ and $x \in \mathbb{R}^{3}$

$$
\int_{|x-y|} \frac{\mathrm{d} y}{|x-y|}=\int_{|y|=R} \frac{\mathrm{~d} y}{\max \{|x|,|y|\}}
$$

Step 2 For general μ, with μ radial

$$
\int_{\mathbb{R}^{3}} \frac{\mathrm{~d} \mu(y)}{|x-y|}=\int_{0}^{\infty} r^{2} \int_{\mathbb{S}^{2}} \frac{\mathrm{~d} \mu(r \omega)}{|x-r \omega|}=\int_{0}^{\infty} r^{2} \int_{\mathbb{S}^{2}} \frac{\mathrm{~d} \mu(r \omega)}{\max \{|x|, r\}}=\int_{\mathbb{R}^{3}} \frac{\mathrm{~d} \mu(y)}{\max \{|x|,|y|\}}
$$

q.e.d.

Definition 7.7. Let $f \in L_{\mathrm{loc}}^{1}(\Omega)$. We say that f is super-harmonic if $-\Delta f \geqslant 0$ in $\mathscr{D}^{\prime}(\Omega) . f$ is called sub-harmonic if $-\Delta f \leqslant 0$ in $\mathscr{D}^{\prime}(\Omega)$.

Remark 7.8. In one dimension super-harmonic is equivalent to $-f^{\prime \prime} \geqslant 0$ i.e. f is a concave function.

If $T \in \mathscr{D}^{\prime}(\Omega)$, then we say that $T \geqslant 0$ if $T(\varphi) \geqslant 0$ for all $\varphi \in \mathscr{D}(\Omega)$, for $\varphi \geqslant 0$. Actually by the Riesz-Markov representation theorem, $T \in \mathscr{D}^{\prime}(\Omega), T \geqslant 0$ iff there exists a positive Borel measure μ such that

$$
\begin{cases}T(\varphi)=\int_{\Omega} \varphi(y) \mathrm{d} \mu(y), & \forall \varphi \in \mathscr{D}(\Omega) \\ \mu(K)<\infty, & \forall K \subset \Omega \text { compact }\end{cases}
$$

However, we shall not use this result in this course. One way to prove this is to define

$$
\begin{aligned}
& \mu(K)=\inf \{T(\varphi) \mid \varphi \in \mathscr{D}, \varphi \geqslant 0 \varphi=1 \text { on } K\} \\
& \mu(O)=\sup \{T(\varphi) \mid \varphi \in \mathscr{D}, 0 \leqslant \varphi \leqslant 1, \operatorname{supp} \varphi \subset O\}
\end{aligned}
$$

Theorem 7.9 (Mean-Value-Theorem). Let $f \in L_{\text {loc }}^{1}(\Omega)$. Then f is super-harmonic iff for a.e. $x \in \Omega$ and $R>0$ such that $\overline{B_{R}(x)} \subset \Omega$

$$
f(x) \geqslant f_{B_{R}(x)} f(y) \mathrm{d} y
$$

Proof. "Similar" to Theorem 7.2 for harmonic functions. First let $f \in \mathscr{C}^{\infty}$, if $-\Delta f \geqslant 0$, then

$$
0 \geqslant \int_{B_{r}(x)} \Delta f(y) \mathrm{d} y=r^{d-1} \frac{\mathrm{~d}}{\mathrm{~d} r} \int_{S^{d-1}} f(x+r \omega) \mathrm{d} \omega
$$

which means that $r \mapsto \int_{\mathbb{S}^{d-1}} f(x+r \omega) \mathrm{d} \omega$ is non-increasing and therefore

$$
f(x) \geqslant f_{B_{R}(x)} f(y) \mathrm{d} y
$$

Then for $f \in L_{\text {loc }}^{1}$, replace f by $h_{n} * f \in \mathscr{C}{ }^{\infty}$. q.e.d.

Theorem 7.10 (Strong Minimum Principle). Let $f \in L_{l o c}^{1}(\Omega),-\Delta f \geqslant 0$ in $\mathscr{D}^{\prime}(\Omega)$, where $\Omega \subset \mathbb{R}^{n}$ is open and path-connected. Let $E=\operatorname{essinf}_{\Omega} f$. Then either

1) $f(x)>E$, for a.e. $x \in \Omega$
2) $f=$ const on Ω.

Remark 7.11. The weak minimum principle tell us that $\operatorname{ess}_{\inf }^{\Omega}$ $f=\operatorname{ess}_{\inf }^{\partial \Omega}$ f.

Proof. Assume that $f(x) \geqslant f_{B_{R}(x)} f(y) \mathrm{d} y$ holds for all $R>0, B_{R}(x) \subset \Omega$ holds for all $x \in \Omega^{\prime}$, i.e. $\left|\Omega \backslash \Omega^{\prime}\right|=0$. If $x \in \Omega^{\prime}$ and $f(x)=E$, then

$$
E=f(x) \geqslant f_{B_{R}(x)} \underbrace{f(y)}_{\geqslant E} \mathrm{~d} y \geqslant E
$$

i.e. equality has to occur and therefore $f(y)=E$ for a.e. $y \in B_{R}(x) \subset \Omega$. Now for every $z \in \Omega$ there exists a continuous curve connecting x and z. We can find $r>0$ and finitely
many points x_{1}, \ldots, x_{N} such that $x_{1}=x$ and $x_{N}=z$ such that $B_{r}\left(x_{m}\right) \subset \Omega$ covering the curve. Then $f(X)=E$ implies that a.e. $y \in B_{r}(x)$ and by induction it follows that $f\left(x_{m}\right)=E$ and thus also $f(z)=E$.
q.e.d.

Theorem 7.12 (Mean-Value Theorem for $\left(-\Delta+\mu^{2}\right)$). Let $f \in L_{l o c}^{1}(\Omega),-\Delta f+\mu^{2} f \geqslant 0$ in $\mathscr{D}^{\prime}(\Omega), \mu \in \mathbb{R}$. Assume that Ω is open and path-connected.

1) Then for a.e. $x \in \Omega$ we have

$$
f(x) \geqslant C_{R} \int_{B_{R}(x)} f(y) \mathrm{d} y
$$

for all $R>0$ such that $B_{R}(x) \subset \Omega$, where $C_{R}>0$ depends only on $R>0$.
2) If $f \geqslant 0$ and $f \not \equiv 0$, then $f(x)>0$ for a.e. $x \in \Omega$. In fact for all $K \subset \Omega$ compact, we have

$$
f(x) \geqslant C_{K} \int_{K} f(y) \mathrm{d} y
$$

for a.e. $x \in K$, where C_{K} depends only on K.

Proof.

Step 1. We can find a function $J: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $J \geqslant 0, T \in L_{\mathrm{loc}}^{\infty}, J(0)=1$ and J is radial and

$$
\left(-\Delta+\mu^{2}\right) J(x)=0, \quad \text { pointwise }
$$

For example in 3-dimension this is

$$
J(x)=\frac{\sinh (\mu|x|)}{\mu|x|} .
$$

Step 2. Assume that $f \in \mathscr{C}^{\infty}$ and $-\Delta f+\mu^{2} f \geqslant 0$ pointwise. Then

$$
\int_{B_{r}(0)}\left(-\Delta f+\mu^{2} f\right) J \geqslant 0 .
$$

On the other hand

$$
\int_{B_{r}(0)} f\left(-\Delta J+\mu^{2} J\right)=0
$$

i.e.

$$
\begin{aligned}
0 & \leqslant \int_{B_{r}(x)}((-\Delta f) J-f(-\Delta J))=-r^{n-1} \int_{\mathbb{S}^{d-1}}(\nabla f J-f \nabla f) \cdot \omega \mathrm{d} \omega= \\
& =-r^{d-1} \int_{\mathbb{S}^{d-1}}\left(\frac{d}{d r} f(r \omega) j(r \omega)-f(r \omega) \frac{d}{d r} J(r \omega)\right) \mathrm{d} \omega= \\
& =-r^{d-1}\left(\frac{d}{d r}\left(\int_{\mathbb{S}^{d-1}} f(r \omega)\right) J(r)-\int_{\mathbb{S}^{d-1}} f(r \omega) \frac{d}{d r} J(r)\right)
\end{aligned}
$$

which implies that

$$
\left(\frac{d}{d r} g\right) J-g\left(\frac{d}{d r} J\right) \leqslant 0 \Longrightarrow \frac{d}{d r} \frac{g}{J} \leqslant 0
$$

Thus $r \mapsto \frac{g}{J}$ is non-increasing and therefore

$$
\left|\mathbb{S}^{d-1}\right| f(0) \geqslant \frac{g(R)}{J(R)}=\frac{1}{J(R)} \int_{B_{R}(0)} f(R \omega) \mathrm{d} \omega
$$

for all $R>0$ such that $B_{R}(0) \subset \Omega$ and thus also that

$$
f(0) \geqslant C_{R} \int_{B_{R}(0)} f(y) \mathrm{d} y
$$

and

$$
f(x) \geqslant C_{R} \int_{B_{R}(x)} f(y) \mathrm{d} y
$$

Step 3 Now let $f \in L_{\text {loc }}^{1}$ and consider $h_{n} * f \in \mathscr{C}$, with $h_{n} * f \rightarrow f$ in $L_{\text {loc }}^{1}(\Omega)$. From Step 2 we have

$$
\left(h_{n} * f\right)(x) \geqslant C_{R} \int_{B_{R}(x)}\left(h_{n} * f\right)(y) \mathrm{d} y=C_{R} \mathbf{1}_{B_{R}(0)} *\left(h_{n} * f\right)=C_{R} h_{n} *\left(\mathbf{1}_{B_{R}(0)} * f\right)
$$

Taking $n \rightarrow 0$ we find that

$$
f(x) \geqslant C_{R}\left(\mathbf{1}_{B_{R}(0)} * f\right)(x)=C_{R} \int_{B_{R}(x)} f(y) \mathrm{d} y
$$

for a.e. x.
Step 4 If $f \geqslant 0$ and $f \not \equiv 0$. Then the mean value inequality implies that

$$
f(x) \geqslant C_{R} \int_{B_{R}(x)} f(y) \mathrm{d} y
$$

implies that $f(x)>0$. The proof argument is the same as for the strong maximum principle.

Step $5 K$ is compact, we can find $x_{1}, \ldots, x_{n}, r>0$ such that $K \subset \bigcup_{i=1}^{N} B_{r}(x)=: U$

$$
\int_{K} f(y) \mathrm{d} y \leqslant \int_{U} f \leqslant \sum_{i=1}^{N} \int_{B_{r}(x)} f
$$

And thus if we assume that $B_{i} \cap B_{i+1} \neq 0$ and $x \in B\left(x_{1}, r\right)$

$$
f(x) \geqslant c \int_{B_{r}(x)} f(y) \mathrm{d} y \geqslant \int_{B\left(x_{1}, r\right) \cap B\left(x_{2}, r\right)} \geqslant c^{\prime}\left|B_{1} \cap B_{2}\right| \inf _{B_{1} \cap B_{2}} \geqslant c^{\prime} \int_{B_{r}\left(x_{2}\right)} f(y) \mathrm{d} y
$$

if $\left|B_{1} \cap B_{2}\right| \neq 0\left(\right.$ or $B_{i} \cap B_{i+1} \neq \emptyset$ for all $\left.i\right)$. Thu

$$
f(x) \geqslant c_{1} \int_{B_{1}} f(y) \mathrm{d} y \geqslant \cdots \geqslant c_{n} \int_{B_{N}} f(y) \mathrm{d} y
$$

hence

$$
f(x) \geqslant \tilde{c} \int_{K} f(y) \mathrm{d} y
$$

$\tilde{c}=\inf c_{i}$.

$$
q . e . d
$$

Theorem 7.13 (Uniqueness of Minimiser). Assume that $V \in L_{l o c}^{1}$ and E has a minimiser. Assume that $V_{+} \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right), V_{+}(x)=\max \{V(x), 0\}$. Then there exists a unique
$u_{0}>0$ minimiser for E. Moreover if u is another minimiser, then

$$
u=c u_{0}
$$

for a constant $c \in \mathbb{C},|c|=1$.
Proof. By the diamagnetic inequality, $\mathcal{E}(u) \geqslant(|u|)$. We may thus assume that E has a minimiser $u_{0} \geqslant 0$ and we have to prove that $u_{0}>0$.
Since u_{0} is a minimiser, it satisfies

$$
-\Delta u_{0}+V u_{0}=E u_{0} \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)
$$

Thus

$$
-\Delta u_{0}+V u_{0}=E u_{0}
$$

in $\mathscr{D}^{\prime}(B)$ for all open balls in \mathbb{R}^{d}. Since $V_{+} \in L^{\infty}(B)$ implies that $V \leqslant \mu^{2}$ in B for some constant $\mu \geqslant 0$. Thus

$$
-\Delta u_{0}+\left(\mu^{2}-E\right) u_{0} \geqslant 0 \quad \text { in } \mathscr{D}^{\prime}(B)
$$

By the above theorem it follows that

$$
u_{0}(x) \geqslant C_{K} \int_{K} u_{0}(y) \mathrm{d} y
$$

for all compact subsets of B and a.e. $x \in K$. This means that for every $y \in \mathbb{R}^{d}, r>0$, that

$$
u_{0}(x) \geqslant C_{r} \int_{B_{r}(y)} u_{0}(z) \mathrm{d} z
$$

Because $u_{0} \geqslant 0, u_{0} \not \equiv 0\left(\right.$ as $\left.\left\|u_{0}\right\|_{2}=1\right)$, then

$$
\int_{B_{R}(0)} u(z) \mathrm{d} z>0
$$

for R big enough. Therefore $u_{0}(x)>0$ for a.e. $x \in B_{R}(0)$ for all R large enough. Therefore $u_{0}(x)>0$ for a.e. $x \in \mathbb{R}^{d}$.
Next assume that u is another minimiser. We can write $u=f+i g$, with $f, g: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
$\mathcal{E}(u)=\int|\nabla u|^{2}+\int V|u|^{2}=\int\left(|\nabla f|^{2}+V|f|^{2}\right)+\int\left(|\nabla g|^{2}+V|g|^{2}\right)=E=E \int|f|^{2}+E \int|g|^{2}$

But

$$
\begin{aligned}
& \int|\nabla f|^{2}+\int V|f|^{2} \geqslant E \int|f|^{2} \\
& \int|\nabla g|^{2}+\int V|g|^{2} \geqslant E \int|g|^{2}
\end{aligned}
$$

By the definition of E. Thus $\frac{f}{\|f\|_{2}}$ and $\frac{g}{\|g\|_{2}}$ are also minimisers for E.
Then either u is real indeed, or we assume both $f, g \not \equiv 0$. Let us consider when both $f, g \neq 0$. Then $\frac{|f|}{\|f\|_{2}}, \frac{|g|}{\|g\|_{2}}$ are also minimisers by the diamagnetic inequality. We can therefore assume that $f>0$ and $g>0$.
Now we choose $|u|$, we know that

$$
\int|\nabla u|^{2}=\int|\nabla| u| |^{2}
$$

because u is minimiser. Because $f, g>0$

$$
\nabla|u|=\frac{f \nabla f+g \nabla g}{\sqrt{f^{2}+g^{2}}}
$$

which implies that

$$
\int|\nabla f|^{2}+|\nabla g|^{2}=\int \frac{|f \nabla f+g \nabla g|^{2}}{f^{2}+g^{2}}
$$

On the other hand

$$
\frac{|f \nabla f+g \nabla g|^{2}}{f^{2}+g^{2}} \leqslant|\nabla f|^{2}+|\nabla g|^{2} \quad \text { pointwise. }
$$

Thus

$$
\frac{|f \nabla f+g \nabla g|^{2}}{f^{2}+g^{2}}=|\nabla f|^{2}+|\nabla g|^{2} \quad \text { a.e. }
$$

Hence $f=$ const g. Consequently $u=f+i g=(1+i$ const $) g=$ const g, i.e. u is real valued and $u>0$ up to a phase.
Finally, since both u and u_{0} are minimisers (and positive)

$$
\varphi=\frac{u+i u_{0}}{\left\|u+i u_{0}\right\|_{2}}
$$

is also a minimiser and thus by the same argument we have $u=C u_{0}$.

Corollary 7.14. If there exists $a \lambda \in \mathbb{R}$ and $v \geqslant 0$ such that

$$
-\Delta v+V v=\lambda v \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)
$$

Then $\lambda=E$ and $v=u_{0}>0$ (where u_{0} is the unique minimiser of \mathcal{E}).

Proof. The PDE implies

$$
\int \nabla v \cdot \nabla \varphi+\int V v \varphi=\lambda \int v \varphi
$$

for all $\varphi \in \mathscr{D}\left(\mathbb{R}^{d}\right)$ and thus

$$
\int \nabla v \cdot \nabla u_{0}+\int V v u_{0}=\lambda \int v u_{0}
$$

(where we have omitted some conditions on V). Moreover,

$$
-\Delta u_{0}+V u_{0}=E u_{0}
$$

thus

$$
\int \nabla u_{0} \cdot \nabla v+\int V u_{0} v=E \int v u_{0}
$$

Thus $\lambda \int v u_{0}=E \int v u_{0}$. Since $\int v u_{0}>0\left(\right.$ as $\left.v \geqslant 0, u_{0}>0\right)$ which implies that $\lambda=E$, hence v is a minimiser and thus $v=u_{0}$.
q.e.d.

Chapter 8

Smoothness of Weak Solutions

Consider the Poisson equation

$$
-\Delta u=f \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)
$$

If $f \in \mathscr{C}\left(\mathbb{R}^{d}\right)$, can we conclude $u \in \mathscr{C}^{2}\left(\mathbb{R}^{d}\right)$. If $d=1$ yes otherwise no. But $f \in \mathscr{C}\left(\mathbb{R}^{d}\right)$ implies that $u \in \mathscr{C}^{1}\left(\mathbb{R}^{d}\right)$.
However, there exists the Elliptical optimal estimate that if $f \in \mathscr{C}^{\alpha}$ then $u \in \mathscr{C}^{2+\alpha}$ for $0<\alpha<1$, where \mathscr{C}^{α} are the Hölder spaces.

Theorem 8.1 (Basic Regularity). Assume that $u \in L_{l o c}^{1}(\Omega), f \in L_{l o c}^{p}(\Omega), \Omega \subset \mathbb{R}^{d}$ open. If

$$
-\Delta u=f \quad \text { in } \mathscr{D}^{\prime}(\Omega)
$$

Then

- $u \in \mathscr{C}(\Omega)$ if $p>\frac{d}{2}$
- $u \in \mathscr{C}^{1}(\Omega)$ if $p>d$.

Proof.

Step $1 f \in L^{p}\left(\mathbb{R}^{d}\right)$ and f has compact support

$$
-\Delta u=f \quad \text { in } \mathscr{D}^{\prime}(\Omega)
$$

Then a solution is $u(x)=(G * f)(x)=\int_{\mathbb{R}^{d}} G(x-y) f(y) \mathrm{d} y$ where

$$
G(x)= \begin{cases}\frac{1}{(d-2)\left|\mathbb{S}^{d-1}\right|} \frac{1}{|x|^{d-2}}, & \text { if } d \neq 2 \\ -\frac{1}{2 \pi} \ln |x|, & \text { if } d=2\end{cases}
$$

Let us restrict ourselves to the case $d \geqslant 3$.

$$
u(x)=c_{d} \int_{\mathbb{R}^{d}} \frac{f(y)}{|x-y|^{d-2}} \mathrm{~d} y
$$

is well-defined because

$$
\int_{\mathbb{R}^{d}} \frac{f(y)}{|x-y|^{d-2}} \mathrm{~d} y \leqslant\left(\int_{\mathbb{R}^{d}}|f|^{p}\right)^{1 / p}\left(\int_{\text {supp } f} \frac{\mathrm{~d} y}{|x-y|^{(d-2) q}}\right)^{1 / q} \leqslant C\|f\|_{p}
$$

with $C<\infty$ if

$$
(d-2) q<d \Longleftrightarrow \frac{p}{p-1}<\frac{d}{d-2} \Longleftrightarrow \frac{p-1}{p}>\frac{d-2}{d} \Longleftrightarrow \frac{1}{p}<\frac{2}{d} \Longleftrightarrow p>\frac{d}{2}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Step 2 We prove prove that $u(x)$ as defined above is continuous if $p>\frac{d}{2}$.

$$
u(x)-u\left(x^{\prime}\right)=c_{d} \int f(y)\left(\frac{1}{|x-y|^{d-2}}-\frac{1}{\left|x^{\prime}-y\right|^{d-2}}\right) \mathrm{d} y
$$

thus

$$
\left|u(x)-u\left(x^{\prime}\right)\right| \leqslant c_{d} \int|f(y)|\left|\frac{1}{|x-y|^{d-2}}-\frac{1}{\left|x^{\prime}-y\right|^{d-2}}\right| \mathrm{d} y
$$

Using the elementary inequality for $a, b \geqslant 0$ and $\alpha \geqslant 1$

$$
\begin{aligned}
\left|\frac{1}{a^{\alpha}}-\frac{1}{b^{\alpha}}\right| & =\frac{\left|a^{\alpha}-b^{\alpha}\right|}{a^{\alpha} b^{\alpha}} \leqslant C|a-b| \frac{a^{\alpha-1}+b^{\alpha-1}}{a^{\alpha} b^{\alpha}} \leqslant C|a-b|^{\varepsilon}|a+b|^{1-\varepsilon} \frac{\left(a^{\alpha-1}+b^{\alpha-1}\right)}{a^{\alpha} b^{\alpha}} \leqslant \\
& \leqslant C|a-b|^{\varepsilon} \frac{1}{a^{\alpha+\varepsilon}+\frac{1}{b^{a+\varepsilon}}}
\end{aligned}
$$

for $\varepsilon>0$ small. Thus

$$
\left|\frac{1}{|x-y|^{d-2}}-\frac{1}{\left|x^{\prime}-y\right|^{d-2}}\right| \leqslant C\left|x-x^{\prime}\right|\left|\frac{1}{|x-y|^{d-2+\varepsilon}}+\frac{1}{\left|x^{\prime}-y\right|^{d-2+\varepsilon}}\right|
$$

therefore

$$
\begin{aligned}
\left|u(x)-u\left(x^{\prime}\right)\right| & \leqslant C\left|x-x^{\prime}\right| \int|f(y)|\left(\frac{1}{|x-y|^{d-2+\varepsilon}}+\frac{1}{\left|x^{\prime}-y\right|^{d-2+\varepsilon}}\right) d y \leqslant \\
& \leqslant C\left|x-x^{\prime}\right|\left(\int|f|^{p}\right)^{1 / p}\left(\left(\int_{\operatorname{supp} f} \frac{1}{|x-y|^{(d-2+\varepsilon)^{q}}}\right)^{1 / q}+\left(\int_{\operatorname{supp} f} \frac{1}{\left|x^{\prime}-y\right|^{(d-2+\varepsilon)^{q}}}\right)^{1 / q}\right)
\end{aligned}
$$

Thus in total we have

$$
\left|u(x)-u\left(x^{\prime}\right)\right| \leqslant C\left|x-x^{\prime}\right|^{\varepsilon}\|f\|_{p}
$$

if

$$
(d-2+\varepsilon) q<d \Longleftrightarrow \varepsilon \frac{d}{q}-(d-2)=\frac{d(p-1)}{p}-(d-2)=2-\frac{d}{p}
$$

Step 3 We prove that if $p>d$ then $u(x)=c_{d} \int \frac{f(y)}{|x-y|^{d-2}} \mathrm{~d} y$ is \mathscr{C}^{1}.

$$
\partial_{x_{i}} u(x)=c_{d} \int f(y) \frac{x_{i}-y_{i}}{|x-y|^{d}} \mathrm{~d} y
$$

and therefore

$$
\left|\partial_{x_{i}} u(x)-\partial_{x_{i}} u\left(x^{\prime}\right)\right| \leqslant c_{d} \int|f(y)|\left|\frac{x_{i}-y_{i}}{|x-y|^{d}}-\frac{x_{i}^{\prime}-y_{i}^{\prime}}{\left|x^{\prime}-y^{\prime}\right|^{d}}\right| \mathrm{d} y
$$

Let $a=|x-y|, a_{i}=x_{i}-y_{i}, b=\left|x^{\prime}-y\right|$ and $b_{i}=x_{i}^{\prime}-y_{i}$. We have

$$
\begin{aligned}
\left|\frac{a_{i}}{a^{d}}-\frac{b_{i}}{b^{d}}\right| & \leqslant \frac{\left|a_{i}-b_{i}\right|}{a^{d}}+\left|b_{i}\right|\left|\frac{1}{a^{d}}-\frac{1}{b^{d}}\right| \leqslant\left|x-x^{\prime}\right| \frac{1}{a^{d}}+|b|\left|\frac{1}{a^{d}}-\frac{1}{b^{d}}\right| \leqslant \\
& \leqslant C\left|x-x^{\prime}\right|^{\varepsilon}\left(\frac{1}{|x-y|^{d-1+\varepsilon}}+\frac{1}{\left|x^{\prime}-y\right|^{d-1+\varepsilon}}\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
\left|\partial_{x_{i}} u(x)-\partial_{x_{i}} u\left(x^{\prime}\right)\right| & \leqslant C\left|x-x^{\prime}\right|^{\varepsilon} \int|f(y)|\left|\frac{1}{|x-y|^{d-1+\varepsilon}}+\frac{1}{\left|x^{\prime}-y\right|^{d-1+\varepsilon}}\right| \mathrm{d} y \leqslant \\
& \left.\leqslant\left|x-x^{\prime}\right|^{\varepsilon}\|f\|_{p}\left(\int_{\text {uupp } f}\left|\frac{\mathrm{~d} y}{|x-y|^{(d-1+\varepsilon) q}}\right|\right)^{1 / q}+\left(\int_{\text {supp } f} \left\lvert\, \frac{\mathrm{d} y}{\left.|x-y|^{(d-1+\varepsilon}\right) q}\right.\right)^{1 / q}\right) \leqslant \\
& \leqslant C\left|x-x^{\prime}\right|^{\varepsilon}\|f\|_{p}
\end{aligned}
$$

if

$$
(d-1+\varepsilon) q<d \Longleftrightarrow \varepsilon<\frac{d}{p}-(d-1)=\frac{d(p-1)}{p}-(d-1)=1-\frac{d}{p}
$$

Step 4 Now let $f \in L_{\mathrm{loc}}^{p}(\Omega),-\Delta u=f$ in $\mathscr{D}^{\prime}(\Omega)$. Take an open ball B such that $\bar{B} \subset \Omega$. Take function u_{1} such that $-\Delta u_{1}=\mathbf{1}_{B} f$ in $\mathscr{D}^{\prime}(\Omega)$, (i.e. $u_{1}=G *\left(\mathbf{1}_{B} f\right)$) From Step $1,2,3$ it follows that $u_{1} \in \mathscr{C}(B)$ if $p>\frac{d}{2}$ and $\mathscr{C}^{1}(B)$ if $p>d$.

Further we also have

$$
-\Delta\left(u-u_{1}\right)=f\left(1-\mathbf{1}_{B}\right), \quad \text { in } \mathscr{D}^{\prime}(\Omega)
$$

Thus

$$
-\Delta\left(u-u_{1}\right)=0, \quad \text { in } \mathscr{D}^{\prime}(B)
$$

Thus $u-u_{1}$ is a harmonic function in B. Therefore $u-u_{1} \in \mathscr{C}^{\infty}(B)$. If $u_{1} \in \mathscr{C}(B)$ it follows that $u \in \mathscr{C}(B)$ and analogously for \mathscr{C}^{1}. Since the ball B was arbitrary with $\bar{B} \subset \Omega$, we have

$$
\begin{array}{lr}
u \in \mathscr{C}(\Omega), \quad \text { if } p>\frac{d}{2} \\
u \in \mathscr{C}^{1}(\Omega), \quad \text { if } p>d
\end{array}
$$

An application of this theorem would be

Theorem 8.2. Assume that $u \in L^{2}\left(\mathbb{R}^{3}\right), V \in \mathscr{C}{ }^{\infty}\left(\mathbb{R}^{3}\right)$ and

$$
-\Delta u+V u=0, \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{\prime}\right)
$$

Then $u \in \mathscr{C}^{\infty}\left(\mathbb{R}^{3}\right)$.

Proof. $-\Delta u+V u=0$ implies that $-\Delta u=-V u$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{3}\right), u \in L^{2}, V \in \mathscr{C}^{\infty}$, hence $V u \in L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$.
By the above theorem, we have as $p=2, d=3, p>\frac{d}{2}$ thus $u \in \mathscr{C}\left(\mathbb{R}^{3}\right)$. Then as $u \in \mathscr{C}, V \in$ $\mathscr{C}{ }^{\infty}$ implies that $V u \in \mathscr{C}\left(\mathbb{R}^{3}\right) \subset L_{\text {loc }}^{\infty}\left(\mathbb{R}^{3}\right)$. By the same theorem as $p=\infty>d, u \in \mathscr{C}^{1}\left(\mathbb{R}^{3}\right)$. Since $V \in \mathscr{C}^{\infty}, u \in \mathscr{C}^{1}$ we have $V u \in \mathscr{C}^{1}$ and therefore

$$
-\Delta\left(\partial_{x_{i}} u\right)=\partial_{x_{i}}(-\Delta u)=\partial_{x_{i}}(-V u) \in \mathscr{C}\left(\mathbb{R}^{3}\right)
$$

Applying the same regularity theorem we find that $\partial_{x_{i}} u \in \mathscr{C}^{1}$ for all i and thus $u \in \mathscr{C}^{2}\left(\mathbb{R}^{3}\right)$. By induction

$$
(-\Delta)\left(D^{\alpha} u\right)=D^{\alpha}(-\Delta u)=D^{\alpha}(-V u) \in \mathscr{C}
$$

for all $|\alpha| \leqslant 2$, thus $D^{\alpha} u \in \mathscr{C}{ }^{1}$ and therefore $u \in \mathscr{C}^{3}$. q.e.d.

Chapter 9

Concentration Compactness Method

We call the functional

$$
\mathcal{E}(u)=\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{3}} \frac{Z}{|x|}|u|^{2} \mathrm{~d} x+\frac{1}{2} \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{|u(x)|^{2}|u(y)|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y
$$

the Hartree Function for atoms, where $Z>0$ is the nuclear charge, $|u(x)|^{2}$ is the density of electrons. Consider the variational problem

$$
E(\lambda):=\inf \left\{\mathcal{E}(u) \mid u \in H^{1}\left(\mathbb{R}^{3}\right),\|u\|_{2}^{2}=\lambda\right\} .
$$

$E(\lambda)$ is called the ground state energy of the atom. If u_{0} is a minimiser for $E(\lambda)$, then it satisfies the following PDE

$$
-\Delta u_{0}-\frac{Z}{|x|} u_{0}+\left(\left|u_{0}\right|^{2} *|\cdot|^{-1}\right) u_{0}=\mu u_{0}, \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{3}\right)
$$

with $\mu \leqslant 0$.

Lemma 9.1. The map $\lambda \mapsto E(\lambda)$ is non-increasing on $[0, \infty)$.

Proof. Let $0 \leqslant \lambda_{1}<\lambda_{2}$. We are going to prove that $E\left(\lambda_{1}\right) \geqslant E\left(\lambda_{2}\right)$. By a density argument we can find a $v_{1} \in D$ such that $\int\left|v_{1}\right|^{2} \mathrm{~d} x=\lambda_{1}$ and $\mathcal{E}\left(v_{1}\right) \leqslant E\left(\lambda_{1}\right)+\varepsilon$, for $\varepsilon>0$ small. Take another function $\varphi \in \mathscr{D}$ such that $\|\varphi\|_{2}^{2}=\lambda_{2}-\lambda_{1}>0$. Choose $v_{2}(x)=v_{1}(x)+\varphi\left(x-R x_{0}\right)$, where $x_{0} \in \mathbb{R}^{3} \backslash\{0\}, R>0$. For R sufficiently large v_{1} and $\varphi\left(\cdot-R x_{0}\right)$ have disjoint supports,
then $\left\|v_{2}\right\|_{2}^{2}=\left\|v_{1}\right\|_{2}^{2}+\|\varphi\|_{2}^{2}=\lambda_{2}$. Moreover,

$$
E\left(\lambda_{2}\right) \leqslant \mathcal{E}\left(v_{2}\right)=\mathcal{E}\left(v_{1}+\varphi\left(\cdot-R x_{0}\right)\right)=\mathcal{E}\left(v_{1}\right)+\mathcal{E}\left(\varphi\left(\cdot-R x_{0}\right)\right)+\int_{\operatorname{supp}\left(v_{1}\right) \times\left(\operatorname{supp} \varphi+x_{0} R\right)} \frac{\left|v_{1}(x)\right|^{2}\left|\varphi\left(y-x_{0} R\right)\right|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y
$$

taking $R \rightarrow \infty$, we get the inequality

$$
E\left(\lambda_{2}\right) \leqslant E\left(\lambda_{1}\right)+2 \varepsilon+\int|\nabla \varphi|^{2} \mathrm{~d} x
$$

for all $\varphi \in \mathscr{D},\|\varphi\|_{2}^{2}=\lambda_{2}-\lambda_{1}$. Rescaling φ, we can achieve $\|\nabla \varphi\|_{2}^{2}<\varepsilon$ and taking $\varepsilon \rightarrow 0$, we get $E\left(\lambda_{2}\right) \leqslant E\left(\lambda_{1}\right)$

Theorem 9.2. a) If $0 \leqslant \lambda \leqslant Z$, then there exists a minimiser for $E(\lambda)$.
b) If $\lambda>2 Z$, there does not exist a minimiser for $E(\lambda)$.

Proof. a) Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a minimising sequence for $E(\lambda)$. By the diamagnetic inequality $|\nabla u| \geqslant|\nabla| u| |$ we have $\mathcal{E}(u) \geqslant \mathcal{E}(|u|)$, thus w.l.o.g. we can assume $u_{n} \geqslant 0$ for all $n \in \mathbb{N}$. By the hydrogen atom theory

$$
\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{3}} \frac{a}{|x|}|u|^{2} \mathrm{~d} x \geqslant-\frac{a^{2}}{4} \int_{\mathbb{R}^{3}}|u|^{2} \mathrm{~d} x
$$

for all $a \geqslant 0$. Thus for $a=2 Z$

$$
\mathcal{E}(u) \geqslant \frac{1}{2} \int|\nabla u|^{2}+\frac{1}{2}\left(\int|\nabla u|^{2} \mathrm{~d} x-\int \frac{2 Z}{|x|}|u|^{2} \mathrm{~d} x\right) \geqslant \frac{1}{2} \int|\nabla u|^{2}-\frac{Z^{2} \lambda}{2} \geqslant-\frac{Z^{2} \lambda}{2} .
$$

for all $u \in H^{1}$ and $\|u\|_{2}^{2}=\lambda$. Moreover, as $\left(u_{n}\right)_{n}$ is a minimising sequence,

$$
\mathcal{E}(\lambda)=\lim _{n \rightarrow \infty} \mathcal{E}\left(u_{n}\right) \geqslant \frac{1}{2} \int\left|\nabla u_{n}\right|^{2}-\frac{Z^{2} \lambda}{2}
$$

thus $\left(u_{n}\right)_{n}$ is bounded in $H^{1}\left(\mathbb{R}^{3}\right)$. By going to a subsequence and renaming it to the original, we may assume that $u_{n} \rightharpoonup u_{0}$ in $H^{1}\left(\mathbb{R}^{3}\right)$ and a.e. in \mathbb{R}^{3}. We have $\nabla u_{n} \stackrel{\nabla}{\rightharpoonup} u_{0}$
in $L^{2}\left(\mathbb{R}^{3}\right)$ which implies that

$$
\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} \geqslant \int\left|\nabla u_{0}\right|^{2}
$$

Moreover,

$$
\frac{\left|u_{n}(x)\right|^{2}\left|u_{n}(y)\right|^{2}}{|x-y|} \xrightarrow{n \rightarrow \infty} \frac{\left|u_{0}(x)\right|^{2}\left|u_{0}(y)\right|^{2}}{|x-y|} \quad \text { a.e. } x, y \in \mathbb{R}^{3} \text {. }
$$

Thus by Fatou's lemma we have

$$
\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\left|u_{n}(x)\right|^{2}\left|u_{n}(y)\right|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y \geqslant \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\left|u_{0}(x)\right|^{2}\left|u_{0}(y)\right|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y
$$

On the other hand from $u_{n} \xrightarrow{H^{1}} u_{0}$ we have that the Coloumb interaction term converges as we saw from the weak-continuity of this potential energy above. Thus we have

$$
E(\lambda)=\lim _{n \rightarrow \infty} \mathcal{E}\left(u_{n}\right) \geqslant \mathcal{E}\left(u_{0}\right)
$$

To conclude that u_{0} is a minimiser, we need to prove that $\left\|u_{0}\right\|_{2}^{2}=\lambda$. By $u_{n} \xrightarrow{L^{2}} u_{0}$, and $\left\|u_{0}\right\|^{2} \leqslant \liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{2}^{2}=\lambda$. The reverse inequality is non-trivial and we shall prove it by using $\lambda \leqslant Z$. Now assume that $\left\|u_{0}\right\|_{2}^{2}<\lambda$. Then $\mathcal{E}\left(u_{0}\right) \leqslant \mathcal{E}(\lambda) \leqslant \mathcal{E}(v)$, for all $v \in H^{1}$ with $\|v\|_{2}^{2}=\lambda$.

Let $\varphi \in \mathscr{D}\left(\mathbb{R}^{3}\right), \varphi \geqslant 0$ by the above Lemma. For $\varepsilon \in \mathbb{R}$, with $|\varepsilon|$ small we have

$$
\int\left|u_{0}+\varepsilon \varphi\right|^{2} \leqslant \lambda \Longrightarrow \mathcal{E}\left(u_{0}\right) \leqslant\left.\mathcal{E}\left(u_{0}+\varepsilon \varphi\right) \Longrightarrow \frac{1}{2} \frac{d^{2}}{d \varepsilon^{2}} \mathcal{E}\left(u_{0}+\varepsilon \varphi\right)\right|_{\varepsilon=0} \geqslant 0
$$

and thus

$$
\begin{aligned}
0 & \leqslant\left.\frac{1}{2} \frac{d^{2}}{d \varepsilon^{2}} \cdots\right|_{\varepsilon=0}= \\
& =\frac{1}{2} \frac{d^{2}}{d \varepsilon^{2}}\left(\int_{\mathbb{R}^{3}}\left|\nabla\left(u_{0}+\varepsilon \varphi\right)\right|^{2} \mathrm{~d} x-\int \frac{Z}{|x|}\left|u_{0}+\varepsilon \varphi\right|^{2} \mathrm{~d} x+\frac{1}{2} \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\left|u_{0}(x)+\varepsilon \varphi(x)\right|^{2}\left|u_{0}(y)+\varepsilon \varphi(y)\right|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y\right) \\
& =\int|\nabla \varphi|^{2} \mathrm{~d} x-\int \frac{Z}{|x|}|\varphi|^{2} \mathrm{~d} x+\iint \frac{\left|u_{0}(y)\right||\varphi(x)|^{2}}{|x-y|}+2 \iint \frac{u_{0}(x) u_{0}(y) \varphi(x) \varphi(y)}{|x-y|} \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Choosing φ to be radial and letting $\varphi=0$ if $|x|<R$, where $\varphi \in \mathscr{D}, \varphi \geqslant 0$, we find by

Newton's theorem that

$$
\begin{aligned}
\iint \frac{\left|u_{0}(y)\right||\varphi(x)|^{2}}{|x-y|} & =\iint \frac{\left|u_{0}(y)\right||\varphi(x)|^{2}}{\max \{|x|,|y|\}} \mathrm{d} x \mathrm{~d} y \leqslant \int u_{0} \mathrm{~d} y \int \frac{\varphi^{2}(x)}{|x|} \mathrm{d} x \\
\iint \frac{u_{0}(x) u_{0}(y) \varphi(x) \varphi(y)}{|x-y|} \mathrm{d} x \mathrm{~d} y & \leqslant\left(\int_{|x|,|y| \geqslant R} \frac{\left|u_{0}(x)\right||\varphi(y)|^{2}}{|x-y|}\right)^{1 / 2}\left(\int_{|x|,|y|>R} \frac{\left|u_{0}(y)\right|^{2} \varphi(x)^{2}}{|x-y|}\right)^{1 / 2} \leqslant \\
& \leqslant\left(\int_{|y| \geqslant R} u_{0}(y)^{2} \mathrm{~d} y\right) \int \frac{\varphi(x)^{2}}{|x|} \mathrm{d} x
\end{aligned}
$$

Altogether

$$
0 \leqslant \int|\nabla \varphi|^{2}+\left(-Z+\left\|u_{0}\right\|_{2}^{2}+2 \int_{|y|>R}\left|u_{0}(y)\right|^{2} d y\right) \int \frac{\varphi(x)^{2}}{|x|} \mathrm{d} x
$$

Choose $\varphi(x):=\varphi_{0}\left(\frac{x}{R}\right), \varphi_{0} \in \mathscr{D}, \varphi_{0} \geqslant 0$ and $\varphi_{0}=0$ in $\overline{B_{1}(0)}, \varphi_{0} \not \equiv 0$ and φ_{0} radial. Then

$$
0 \leqslant\left(\frac{1}{R} \int\left|\nabla \varphi_{0}\right|^{2}+\left(-Z+\left\|u_{0}\right\|_{2}^{2}+2 \int_{|y|>R} u_{0}^{2}\right) R^{2} \int \frac{\varphi_{0}^{2}(x)}{|x|} \mathrm{d} x\right) R^{2}
$$

by passing $R \rightarrow \infty$ it follows that

$$
0 \leqslant-Z+\int u_{0}^{2} \Longrightarrow \lambda>\left\|u_{0}\right\|^{2} \geqslant Z
$$

which is a contradiction.
b) If $\lambda>2 Z$, then $E(\lambda)$ has no minimiser. Assume that u_{0} is a minimiser. By the diamagnetic inequality we can assume that $u_{0} \geqslant 0$. Then for all $f \in H^{1}\left(\mathbb{R}^{3}\right)$

$$
\begin{aligned}
0 & =\left.\frac{1}{2} \frac{d}{d \varepsilon} \mathcal{E}\left(\sqrt{\lambda} \frac{u_{0}+\varepsilon f}{\left\|u_{0}+\varepsilon f\right\|_{2}}\right)\right|_{\varepsilon=0}= \\
& =\int \nabla u_{0} \cdot \nabla f-\int \frac{Z}{|x|} u_{0} f+\iint \frac{u_{0}(x)^{2} u_{0}(y)}{f}(y)|x-y| \mathrm{d} x \mathrm{~d} y-\mu \int u_{0} f
\end{aligned}
$$

with $\mu \leqslant 0$. Now choose $f:=\varphi^{2} u_{0}$, with $\varphi \in \mathscr{D}, \varphi \geqslant 0, \varphi(x)=|x|$ if $|x| \leqslant R$ and $|\nabla \varphi| \leqslant 1$ if $|x| \geqslant R \geqslant 1$.

We have

$$
\begin{aligned}
0 & =\int \nabla u_{0} \cdot \nabla\left(\varphi^{2} u_{0}\right)-\int \frac{Z}{|x|} \varphi^{2} u_{0}^{2}+\iint \frac{\varphi(x)^{2} u_{0}(x)^{2} u_{0}(y)^{2}}{|x-y|}-\underbrace{\mu \int \varphi^{2} u_{0}^{2} \mathrm{~d} x}_{\geqslant 0} \geqslant \\
& \geqslant \int\left|\nabla\left(\varphi u_{0}\right)\right|^{2}-\int|\nabla \varphi|^{2}\left|u_{0}\right|^{2}-\int Z u_{0}^{2}+\iint_{|x| \leqslant R} \frac{\varphi(x)^{2} u_{0}(x)^{2} u_{0}(y)^{2}}{|x-y|}= \\
& =\int \frac{\varphi^{2} u_{0}^{2}}{4|x|^{2}}-\int|\nabla \varphi|^{2}\left|u_{0}\right|^{2}-Z \lambda+\frac{1}{2} \iint_{|x| \leqslant R}^{\frac{|x|+|y|}{|x-y|}} \underbrace{}_{0}(x)^{2} u_{0}(y)^{2} \geqslant \\
& \geqslant \int_{|x| \leqslant R} \underbrace{\left(\frac{\varphi^{2}}{4|x|^{2}}-|\nabla \varphi|^{2}\right)}_{=0} u_{0}^{2}-\int_{x>R}^{|\nabla \varphi|^{2}}\left|u_{0}\right|^{2}-Z \lambda+\frac{1}{2} \iint_{|x| \leqslant R} u_{0}(x)^{2} u_{0}(y)^{2} \geqslant \\
& \geqslant-\int_{x>R} u_{0}^{2}-Z \lambda+\frac{1}{2}\left(\int_{x \mid \leqslant R} u_{0}(x)^{2}\right)^{2}
\end{aligned}
$$

Thus

$$
0 \geqslant-\int_{|x| \geqslant R} u_{0}^{2}-Z \lambda+\frac{1}{2}\left(\int_{|x| \leqslant R} u_{0}^{2}\right)^{2}
$$

for all $R \geqslant 1$ and thus taking $R \rightarrow \infty$ we have

$$
0 \geqslant-Z \lambda+\frac{\lambda^{2}}{2} \Longrightarrow \lambda \leqslant 2 Z
$$

which is a contradiction.
q.e.d.

For all $u, v \geqslant 0$ we have

$$
\frac{\mathcal{E}(u)+\mathcal{E}(v)}{2} \geqslant \mathcal{E}\left(\sqrt{\frac{u^{2}+v^{2}}{2}}\right)
$$

with strict inequality if $u \neq v$. Consequently $\lambda \mapsto \mathcal{E}(\lambda)$ is convex. Thus there must exists a λ^{*} such that it minimises $E(\lambda)$. Numerically one finds that $\lambda * \approx 1.21 Z$.

Now we shall consider a general functional

$$
\mathcal{E}(u)=\int_{\mathbb{R}^{d}}|\nabla u|^{2}+\int_{\mathbb{R}^{d}} V|u|^{2}+\frac{1}{2} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|u(x)|^{2} w(x-y)|u(y)|^{2} \mathrm{~d} x \mathrm{~d} y
$$

where V is an external potential and w is an interaction potential.
Remark 9.3 (Assumptions). We shall assume that $|v|,|w| \in L^{p}+L^{q}$, for $p, q>$ $\max \left\{\frac{d}{2}, 1\right\}$ and $w(x)=w(-x)$.

Example 9.4. 1) Hartree $V=-\frac{Z}{|x|}, w=\frac{1}{|x|}$ (Coulomb potential).
2) Chequard-Pekar $w=\frac{1}{|x|}$ (Newton potential).

Definition 9.5.

$$
\begin{aligned}
E(\lambda) & =\inf \left\{\mathcal{E}(u) \mid u \in H^{1}\left(\mathbb{R}^{d}\right),\|u\|_{2}^{2}=\lambda\right\} \\
E^{0}(\lambda) & =\inf \left\{\left.\mathcal{E}^{0}(u)=\int|\nabla u|^{2}+\frac{1}{2} \int|u(x)|^{2} w(x-y)|u(y)|^{2} \right\rvert\, u \in H^{1}\left(\mathbb{R}^{d}\right),\|u\|_{2}^{2}=\lambda\right\}
\end{aligned}
$$

where the second minimiser is for problems at infinity.

Theorem 9.6 (Concentration-Compactness Prinicple). We always have

$$
E(\lambda) \leqslant E\left(\lambda-\lambda^{\prime}\right)+E^{0}\left(\lambda^{\prime}\right)
$$

for all $0 \leqslant \lambda^{\prime} \leqslant \lambda$. Moreover, if we have the strict binding inequality

$$
E(\lambda)<E\left(\lambda-\lambda^{\prime}\right)+E^{0}\left(\lambda^{\prime}\right)
$$

for all $0<\lambda^{\prime} \leqslant \lambda$ then $E(\lambda)$ has a minimiser.

For the Hartree functional $E^{0}\left(\lambda^{\prime}\right)=0$ (by scaling).
Lemma 9.7. If $|v|,|w| \in L^{p}+L^{q}$, with $p, q>\max \left\{\frac{d}{2}+1\right\}$, then

$$
\begin{aligned}
\int|V||u|^{2} \mathrm{~d} x & \leqslant C\left(\|V\|_{L^{p}+L^{q}}\right)\|u\|_{H^{1}}^{2} \\
\left\||w| *|u|^{2}\right\|_{\infty} & \leqslant C\left(\|w\|_{p}+\|w\|_{q}\right)\|u\|_{H^{1}}^{2}
\end{aligned}
$$

where we $\|V\|_{L^{p}+L^{q}}=\inf \left\{\left\|V_{1}\right\|_{p}+\left\|V_{2}\right\|_{q} \mid V_{1} \in L^{p}, V_{2} \in L^{q}, V_{1}+V_{2}=V\right\}$ Moreover, for
all $\varepsilon>0$

$$
\begin{aligned}
\int|V||u|^{2} \mathrm{~d} x & \leqslant \varepsilon \int|\nabla u|^{2}+C_{\varepsilon} \int|u|^{2} \\
\left\||w| *|u|^{2}\right\|_{\infty} & \leqslant \varepsilon \int|\nabla u|^{2}+C_{\varepsilon} \int|u|^{2}
\end{aligned}
$$

Proof. If $V=V_{1}+V_{2}$, with $V_{1} \in L^{p}, V_{2} \in L^{q}$, we have

$$
\int\left|V_{1}\right||u|^{2} \leqslant\left(\int\left|V_{1}\right|^{p}\right)^{1 / p}\left(\int|u|^{2 p^{\prime}}\right)^{1 / p^{\prime}} \leqslant C\left\|V_{1}\right\|_{p}\|u\|_{H^{1}}^{2}
$$

where we used the Sobolev inequality in the second inequality, which we were allowed to as $2 p^{\prime}<$ Sobolev power. We have the same inequality for V_{2}. Thus

$$
\int\left|V\left\|\left.u\right|^{2} \leqslant C\right\| V\left\|_{L^{p}+L^{q}}\right\| u \|_{H^{1}}^{2}\right.
$$

For the second inequality we have the same method

$$
|w| *|u|^{2}=\int|w(x-y) \| u(y)|^{2} \mathrm{~d} y
$$

We can write $w=w_{1}+w_{2}, w_{1} \in L^{p}, w_{2} \in L^{q}$ and thus
$\left|w_{1}\right| *|u|^{2}=\int\left|w_{1}(x-y)\left\|\left.u(y)\right|^{2} \mathrm{~d} y \leqslant\left(\int\left|w_{1}(x-y)\right|^{p} \mathrm{~d} y\right)^{1 / p}\left(\int|u(y)|^{2 p^{\prime}} \mathrm{d} y\right)^{1 / p^{\prime}} \leqslant C\right\| w_{1}\left\|_{p}\right\| u \|_{H^{1}}^{2}\right.$
By the same bound for w_{2}, we get the bound for W.
Now take $\varepsilon>0$. Since $V \in L^{p}+L^{q}$, we can decompose it into

$$
V=V_{\varepsilon}+V_{\infty}
$$

where $\left\|V_{\varepsilon}\right\|_{L^{p}+L^{q}} \leqslant \varepsilon$ and $V_{\infty} \in L^{\infty}$. Then

$$
\int|V\|\left.u\right|^{2} \leqslant \int|V_{\varepsilon}\|\left.u\right|^{2}+\int|V_{\infty}\|\left.u\right|^{2} \leqslant C \underbrace{\left\|V_{\varepsilon}\right\|_{L^{p}+L^{q}}}_{\leqslant \varepsilon}\| u\|_{H^{1}}+\underbrace{\left\|V_{\infty}\right\|_{\infty}}_{\leqslant C_{\varepsilon}}\| u \|_{2}^{2}
$$

For our general interaction energy have by this Lemma

$$
\mathcal{E}(u) \geqslant(1-\varepsilon) \int|\nabla u|^{2}-C_{\varepsilon} \int|u|^{2}
$$

for all $\varepsilon>0$ and thus

$$
\mathcal{E}(u) \geqslant \frac{1}{2} \int|\nabla u|^{2}-C
$$

Thus $E(\lambda)=\inf \left\{\mathcal{E}(u) \mid u \in H^{1},\|u\|_{2}^{2}=\lambda\right\} \geqslant-C \lambda>\infty$.
Now take a minimising sequence $u_{n} \in H^{1}, \int\left|u_{n}\right|^{2}=\lambda$ and $\mathcal{E}\left(u_{n}\right) \rightarrow E(\lambda)$. By the diamagnetic inequality we have $\left|\nabla u_{n}\right| \geqslant|\nabla| u_{n}| |$ (pointwise), $\mathcal{E}\left(u_{n}\right) \geqslant \mathcal{E}\left(\left|u_{n}\right|\right)$, so we can assume that $u_{n} \geqslant 0$.
Because $\frac{1}{2} \int\left|\nabla u_{n}\right|^{2}-C \leqslant \mathcal{E}\left(u_{n}\right) \rightarrow E(\lambda)$. We have u_{n} is bounded in H^{1}. By choosing a subsequence we can assume that $u_{n} \rightharpoonup u_{0}$ weakly in H^{1}.

Lemma 9.8. If $u_{n} \rightharpoonup u_{0}$ weakly in H^{1}, then

$$
\lim _{n \rightarrow \infty}\left(\mathcal{E}\left(u_{n}\right)-\mathcal{E}\left(u_{0}\right)-\mathcal{E}^{0}\left(u_{n}-u_{0}\right)\right)=0
$$

Proof. Let us denote $v_{n}=u_{n}-u_{0}$, the $v_{n} \rightharpoonup 0$ weakly in H^{1}.

$$
\int\left|\nabla u_{n}\right|^{2}-\int\left|\nabla u_{0}\right|^{2}-\int\left|\nabla v_{n}\right|^{2}=2 \int \nabla u_{0} \cdot \nabla v_{n} \longrightarrow 0
$$

by weak convergence.
Second we have for the external potential

$$
\int V\left|u_{n}\right|^{2}-\int V\left|u_{0}\right|^{2} \longrightarrow 0
$$

because $u_{n} \rightharpoonup u_{0}$ and $V \in L^{p}+L^{q}$, as we have already proven above.
For the interaction term we have

$$
\begin{aligned}
\iint\left|u_{n}(x)\right|^{2} w(x-y)\left|u_{n}(y)\right|^{2} \mathrm{~d} x \mathrm{~d} y & -\iint\left|u_{0}(x)\right|^{2} w(x-y)\left|u_{0}(y)\right|^{2} \mathrm{~d} x \mathrm{~d} y- \\
& -\iint\left|v_{n}(x)\right|^{2} w(x-y)\left|v_{n}(y)\right|^{2} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

$$
\begin{aligned}
\int\left|u_{n}(x)\right|^{2} w(x-y)\left|u_{n}(y)\right|^{2} \mathrm{~d} x \mathrm{~d} y & =\int\left(\left|u_{n}(x)\right|^{2}-\left|u_{0}(x)\right|^{2}-\left|v_{n}(x)\right|^{2}\right) w(x-y)\left|v_{n}(y)\right|^{2} \mathrm{~d} x \mathrm{~d} y+ \\
& +\int\left(\left|u_{0}(x)\right|^{2}+\left|v_{n}(x)\right|^{2}\right) w(x-y)\left(\left|u_{n}(y)\right|^{2}-\left|u_{0}(y)\right|^{2}-\left|v_{n}(y)\right|^{2}\right) \mathrm{d} x \mathrm{~d} y+ \\
& +\int\left(\left|u_{0}(x)\right|^{2}+\left|v_{n}(x)\right|^{2}\right) w(x-y)\left(\left|u_{0}(y)\right|^{2}+\left|v_{n}(y)\right|^{2}\right) \mathrm{d} x \mathrm{~d} y \\
= & \int\left(\left|u_{n}(x)\right|^{2}-\left|u_{0}(x)\right|^{2}-\left|v_{n}(x)\right|^{2}\right) w(x-y)\left|v_{n}(y)\right|^{2} \mathrm{~d} x \mathrm{~d} y+ \\
& +\int\left(\left|u_{0}(x)\right|^{2}+\left|v_{n}(x)\right|^{2}\right) w(x-y)\left(\left|u_{n}(y)\right|^{2}-\left|u_{0}(y)\right|^{2}-\left|v_{n}(y)\right|^{2}\right) \mathrm{d} x \mathrm{~d} y+ \\
& +\int\left|u_{0}(x)\right|^{2} w(x-y)\left|u_{0}(y)\right|^{2} \mathrm{~d} x \mathrm{~d} y+ \\
& +\int\left|v_{n}(x)\right|^{2} w(x-y)\left|v_{n}(y)\right|^{2} \mathrm{~d} x \mathrm{~d} y+ \\
& +2 \int\left|u_{0}(x)\right|^{2} w(x-y)\left|v_{n}(y)\right|^{2} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

We shall now estimate the first (I), second (II) and last term (III) and other terms cancel. For (III) we shall prove that

$$
\int\left|u_{0}(x)\right|^{2} w(x-y)\left|v_{n}(y)\right|^{2} \mathrm{~d} x \mathrm{~d} y \longrightarrow 0
$$

for this we split the integral into

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left|u_{0}(x)\right|^{2} w(x-y)\left|v_{n}(y)\right| \mathrm{d} x \mathrm{~d} y=\int_{|y| \leqslant R}+\int_{\substack{|y| \geqslant R \\|x-y| \leqslant \frac{R}{2}}}+\int_{\substack{|y| \geqslant R \\|x-y| \geqslant \frac{R}{2}}}=\mathrm{III}_{a}+\mathrm{III}_{b}+\mathrm{III}_{c}
$$

We have

$$
\mathrm{III}_{a}=\int_{|y| \leqslant R}\left|u_{0}(x)\right| w(x-y)\left|v_{n}(y)\right|^{2}=\int_{|y| \leqslant R}\left(|w| *\left|u_{0}\right|^{2}\right)\left|v_{n}(y)\right| \mathrm{d} y
$$

Since $\left\|w *\left|u_{0}\right|^{2}\right\|_{\infty} \leqslant C\|w\|_{L^{p}+L^{q}}\left\|u_{0}\right\|_{H^{1}}^{2}$ and thus

$$
\mathrm{III}_{a} \leqslant C \int_{|y| \leqslant R}\left|v_{n}(y)\right|_{2} \mathrm{~d} y \xrightarrow{n \rightarrow \infty} 0
$$

for all $R>0$, as $v_{n} \rightharpoonup 0$ weakly in H^{1} and Sobolev.

$$
\begin{aligned}
\mathrm{III}_{b} & =\int_{|y| \geqslant R|x-y| \leqslant \frac{R}{2}} \leqslant \int_{|x| \geqslant \frac{R}{2}}\left|u_{0}(x)\right|^{2}\left|w(x-y) \| v_{n}(y)\right|^{2}=\int_{|x| \geqslant \frac{R}{2}}\left|u_{0}(x)\right|\left(|w| *\left|v_{n}\right|^{2}\right) \mathrm{d} x \leqslant \\
& \leqslant C \underbrace{\left\|v_{n}\right\|_{H^{1}}^{2}}_{\substack{\text { bounded as }|x| \geqslant \frac{R}{2} \\
n \rightarrow \infty}} \int_{|x| \geqslant \frac{R}{2}}\left|u_{0}(x)\right|^{2} \leqslant C \int_{0}\left|u_{0}(x)\right|^{2} \xrightarrow{R \rightarrow \infty} 0
\end{aligned}
$$

and or the third term

$$
\begin{aligned}
\mathrm{III}_{c} & =\int_{\substack{|y| \geqslant R \\
|x-u|>\frac{R}{2}}} \leqslant \int\left|u_{0}(x)\right|^{2}\left(\mathbf{1}_{|x-y|>\frac{R}{2}} w(x-y)\right)\left|v_{n}(y)\right|^{2} \mathrm{~d} x \mathrm{~d} y \leqslant C\left\|\mathbf{1}_{B_{\frac{R}{2}}(0)^{C}} w\right\|_{L^{p}+L^{q}}\left\|u_{0}\right\|_{L^{2}}^{2}\left\|v_{n}\right\|_{H^{1}}^{2} \leqslant \\
& \leqslant C\left\|\mathbf{1}_{B_{\frac{R}{2}(0) C}} w\right\|_{L^{p}+L^{q}} \xrightarrow{R \rightarrow \infty} 0 .
\end{aligned}
$$

For I we have

$$
\begin{aligned}
\mathrm{I} & =2 \int\left|u_{0}(x)\left\|v_{n}(x)\right\| w(x-y) \| u_{0}(y)\right|^{2} \mathrm{~d} y \mathrm{~d} x \leqslant \\
& \leqslant \underbrace{\left(\int\left|u_{0}(x)\right|^{2}\left|w(x-y) \| v_{n}(y)\right|^{2}\right)^{1 / 2}}_{\leqslant C\|w\|_{L^{p}+L^{q}}\left\|u_{0}\right\|_{2}^{2}\left\|u_{n}\right\|_{H^{1}}^{2} \leqslant C} \underbrace{\left(\int\left|v_{n}(x)\right|^{2}\left|w(x-y) \| u_{n}(y)\right|^{2}\right)^{1 / 2}}_{\text {Simiilar to III } \xrightarrow{n \rightarrow \infty} 0}
\end{aligned}
$$

and the proof II goes similarly.
q.e.d.

Proof of Theorem 9.6. Recall that u_{n} is a minimising sequence, $u_{n} \rightharpoonup u_{0}, v_{n}=u_{n}-u_{0} \rightharpoonup 0$ weakly in H^{1}, then

$$
\mathcal{E}\left(u_{n}\right)-\mathcal{E}\left(u_{0}\right)-\mathcal{E}^{0}\left(v_{n}\right) \xrightarrow{n \rightarrow \infty} 0
$$

On the other hand we have

$$
\begin{aligned}
& \mathcal{E}\left(u_{n}\right) \longrightarrow E(\lambda) \\
& \mathcal{E}\left(u_{0}\right) \geqslant E\left(\lambda-\lambda^{\prime}\right), \quad \text { for } \lambda-\lambda^{\prime}=\int\left|u_{0}\right|^{2} \leqslant \lambda \\
& \mathcal{E}^{0}\left(v_{n}\right) \geqslant E^{0}\left(\int\left|v_{n}\right|^{2}\right) \longrightarrow E^{0}\left(\lambda^{\prime}\right)
\end{aligned}
$$

since

$$
\int\left|v_{n}\right|^{2}=\int\left|u_{n}-u_{0}\right|^{2}=\underbrace{\int\left|u_{n}\right|^{2}}_{=\lambda}+\underbrace{\int\left|u_{0}\right|^{2}}_{=\lambda-\lambda^{\prime}}-2 \underbrace{\int u_{n} u_{0}}_{\rightarrow \int\left|u_{0}\right|^{2}=\lambda-\lambda^{\prime}} \longrightarrow \lambda^{\prime}
$$

Thus $E(\lambda) \geqslant E\left(\lambda-\lambda^{\prime}\right)+E^{0}\left(\lambda^{\prime}\right)$. However, by the strict binding inequality we have

$$
E(\lambda)<E\left(\lambda-\lambda^{\prime}\right)+E^{0}\left(\lambda^{\prime}\right)
$$

for all $0<\lambda^{\prime} \leqslant \lambda$. Thus we have to conclude that $\lambda^{\prime}=0$, which means that $\int\left|u_{0}\right|^{2}=$ $\lambda-\lambda^{\prime}=\lambda$ and $\mathcal{E}\left(u_{n}\right)-\mathcal{E}\left(u_{0}\right) \rightarrow 0$ since $\mathcal{E}^{0}\left(v_{n}\right) \rightarrow 0$ as $\int\left|v_{n}\right|^{2} \rightarrow \lambda^{\prime}=0$. Thus $\mathcal{E}\left(u_{0}\right)=E(\lambda)$ and $\int\left|u_{0}\right|^{2}=\lambda$. So u_{0} is a minimiser.

Theorem 9.9.

Remark 9.10.

Translation Invariant Cases

$$
\begin{aligned}
& \mathcal{E}^{0}(u)=\int|\nabla u|^{2}+\frac{1}{2} \iint|u(x)|^{2} w(x-y)|u(y)|^{2} \mathrm{~d} x \mathrm{~d} y \\
& E^{0}(\lambda)=\inf \left\{\mathcal{E}^{0}(u) \mid u \in H^{1},\|u\|_{2}^{2}=\lambda\right\}
\end{aligned}
$$

Remark 9.11. $\mathcal{E}^{0}(u)=\mathcal{E}^{0}(u(\cdot+z))$ for all $z \in \mathbb{R}^{d}$.

- If u_{n} is a minimising sequence for $E^{0}(\lambda)$ then $\tilde{u}_{n}:=u_{n}\left(\cdot+x_{n}\right), x_{n} \in \mathbb{R}^{d}$ then \tilde{u}_{n} is also a minimising sequence. But if $u_{n} \rightarrow u$ strongly in H^{1} and $x_{n} \rightarrow \infty$, then $u_{n} \rightharpoonup 0$ weakly in H^{1}, i.e. we lack compactness or in other words one has compactness up to translation.

Definition 9.12 (Vanishing Sequence). Let $\left(u_{n}\right)_{n}$ be bounded in $H^{1}\left(\mathbb{R}^{d}\right)$. We call $\left(u_{n}\right)_{n}$
a vanishing sequence if for all $\left(x_{n}\right)_{n} \subset \mathbb{R}^{d}$ and all subsequences of $\left(u_{n}\right)_{n}, u_{n}\left(\cdot+x_{n}\right) \rightharpoonup 0$ weakly in $H^{1}\left(\mathbb{R}^{d}\right)$.

Theorem 9.13 (Characterisation of Vanishing Sequences). If $\left(u_{n}\right)_{n}$ is bounded in $H^{1}\left(\mathbb{R}^{d}\right)$ and $\left(u_{n}\right)_{n}$ is vanishing, then

- For all $R>0$

$$
\sup _{x \in \mathbb{R}^{n}} \int_{B_{R}(x)}\left|u_{n}(y)\right|^{2} \mathrm{~d} y \xrightarrow{n \rightarrow \infty} 0
$$

- $u_{n} \rightarrow 0$ strongly in $L^{p}\left(\mathbb{R}^{d}\right)$ for all $2<p<p^{*}$ with

$$
p^{*}= \begin{cases}\frac{2 d}{d-2}, & \text { if } d>2 \\ \infty, & \text { if } d=1,2\end{cases}
$$

Proof. Let us assume that there exists a $R>0, \varepsilon>0$ such that

$$
\sup _{x \in \mathbb{R}^{d}} \int_{B_{R}(x)}\left|u_{n}\right|^{2} \geqslant \varepsilon>0 .
$$

Then there exists a sequence $\left(x_{n}\right)_{n} \subset \mathbb{R}^{d}$ such that

$$
\int_{B_{R}(x)}\left|u_{n}(x)\right|^{2} \geqslant \frac{\varepsilon}{2}>0
$$

for all $n \in \mathbb{N}$. Define $v_{n}(x)=u_{n}\left(x+x_{n}\right)$. Then for all $n \in \mathbb{N}$

$$
\int_{B_{R}(0)}\left|v_{n}\right|^{2} \geqslant \frac{\varepsilon}{2}>0,
$$

hence $v_{n} \nrightarrow 0$ weakly in $H^{1}\left(\mathbb{R}^{d}\right)$ by Sobolev embedding, which is a contradiction. Thus for all $R>0$,

$$
\sup _{x \in \mathbb{R}^{d}} \int_{B_{R}(x)}\left|u_{n}\right|^{2} \xrightarrow{n \rightarrow \infty} 0
$$

We shall consider the case $d \geqslant 3$. Let $p=2+\frac{4}{d}$, then

$$
\int_{\mathbb{R}^{d}}\left|u_{n}\right|^{2+\frac{4}{d}} \leqslant\left(\int_{\mathbb{R}^{d}}\left|u_{n}\right|^{\frac{2 d}{d-2}}\right)^{\frac{d-2}{d}}\left(\int_{\mathbb{R}^{d}}\left|u_{n}\right|^{2}\right)^{\frac{2}{d}} \leqslant c\left(\int_{\mathbb{R}^{d}}\left|\nabla u_{n}\right|^{2}\right)\left(\int_{\mathbb{R}^{d}}\left|u_{n}\right|^{2}\right)^{\frac{2}{d}} \leqslant C
$$

Now we shall use a localisation argument. Take $Q:=\left[-\frac{1}{2}, \frac{1}{2}\right]^{d} \subset \mathbb{R}^{d}$. Take $\varphi \in \mathscr{C}_{c}^{\infty}$, $0 \leqslant \varphi \leqslant 1$ with $\left.\varphi\right|_{Q} \equiv 1$ and $\left.\varphi\right|_{(2 Q)^{C}} \equiv 0$. Take $z \in \mathbb{Z}^{d}$ and define $Q_{z}:=Q+z$, and $\varphi_{z}=\varphi(\cdot+z)$. We have

$$
1 \leqslant \sum_{z \in \mathbb{Z}} \varphi_{z}(x) \leqslant C, \quad \sum_{z \in \mathbb{Z}^{d}}\left|\nabla \varphi_{z}(x)\right|^{2} \leqslant C
$$

and thus

$$
\int_{\mathbb{R}^{d}}\left|u_{n}\right|^{2+\frac{4}{d}}=\sum_{z \in \mathbb{Z}^{d}} \int_{\mathbb{R}^{d}}\left|u_{n}\right|^{2+\frac{4}{d}} \leqslant \sum_{z \in \mathbb{Z}^{d}}\left(\int_{Q_{z}}\left|u_{n}\right|^{\frac{2 d}{d-2}}\right)^{\frac{d-2}{d}}\left(\int_{Q_{z}}\left|u_{n}\right|^{2}\right)^{\frac{2}{d}}
$$

Now note that
$\left\|\mathbf{1}_{Q_{z}} u_{n}\right\|_{\frac{2 d}{d-2}}^{2} \leqslant\left\|\varphi_{z} u_{n}\right\|_{\frac{2 d}{d-2}}^{2} \leqslant C\left\|\nabla\left(\varphi_{z} u_{n}\right)\right\|_{2}^{2} \leqslant 2 C \int\left(\left|\nabla \varphi_{z}(x)\right|^{2}\left|u_{n}(x)\right|^{2}+\left|\varphi_{z}(x)\right|^{2}\left|\nabla u_{n}(x)\right|^{2}\right) \mathrm{d} x$ and thus

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left|u_{n}\right|^{2+\frac{4}{d}} & \leqslant C \sum_{z \in \mathbb{Z}^{d}}\left(\int_{\mathbb{R}^{d}}\left(\left|\nabla \varphi_{z}(x)\right|^{2}\left|u_{n}(x)\right|^{2}+\left|\varphi_{z}(x)\right|^{2}\left|\nabla u_{n}(x)\right|^{2}\right) \mathrm{d} x\right)\left(\int_{Q_{z}}\left|u_{n}\right|^{2}\right)^{\frac{2}{d}} \leqslant \\
& \leqslant C \sup _{z^{\prime} \in \mathbb{Z}^{d}}\left(\int_{Q_{z}^{\prime}}\left|u_{n}\right|^{2}\right)^{\frac{2}{d}} \sum_{z \in \mathbb{Z}^{d}}\left(\int_{\mathbb{R}^{d}}\left(\left|\nabla \varphi_{z}(x)\right|^{2}\left|u_{n}(x)\right|^{2}+\left|\varphi_{z}(x)\right|^{2}\left|\nabla u_{n}(x)\right|^{2}\right) \mathrm{d} x\right) \leqslant \\
& \left.\leqslant C \sup _{z^{\prime} \in \mathbb{Z}^{d}}\left(\int_{Q_{z}^{\prime}}\left|u_{n}\right|^{2}\right)^{\frac{2}{d}}\left(\int_{\mathbb{R}^{d}}\left(\left|u_{n}(x)\right|^{2}+\left|\nabla u_{n}(x)\right|^{2}\right) \mathrm{d} x\right) \leqslant C \sup _{z \in \mathbb{Z}^{d}}\left(\int_{Q_{z}}\left|u_{n}\right|^{2}\right)\right)^{\frac{2}{d}} \longrightarrow 0
\end{aligned}
$$

by the convergence proven above as $\int_{Q_{z}}\left|u_{n}\right|^{2} \leqslant \int_{B_{2}\left(z^{\prime}\right)}\left|u_{n}\right|^{2}$. Thus

$$
\int_{\mathbb{R}^{d}}\left|u_{n}\right|^{2+\frac{4}{d}} \xrightarrow{n \rightarrow \infty} 0
$$

Now we prove $\int_{\mathbb{R}^{d}}\left|u_{n}\right|^{p} \rightarrow 0$ for all $2<p<p^{*}=\frac{2 d}{d-2}$. By interpolation, if $2<p<2+\frac{4}{d}=p_{1}$,

$$
\left\|u_{n}\right\|_{p} \leqslant \underbrace{\left\|u_{n}\right\|_{2}^{a}}_{\leqslant C} \underbrace{\left\|u_{n}\right\|_{p_{1}}^{1-a}}_{\rightarrow 0}
$$

for $a \in(0,1)$. Similarly $p_{1}<p<p^{*}$ as $\left\|u_{n}\right\|_{p^{*}} \leqslant\|\nabla u\|_{2} \leqslant C$.

We shall apply this to

$$
\mathcal{E}^{0}(u)=\int|\nabla u|^{2}+\frac{1}{2} \iint|u(x)|^{2} w(x-y)|u(y)| \mathrm{d} x \mathrm{~d} y
$$

for $w \in L^{p}+L^{q}$, with $\max \left\{1, \frac{d}{2}\right\}<p, q<\infty$ and

$$
E^{0}(\lambda)=\inf \left\{\mathcal{E}^{0}(u) \mid u \in H^{1}\left(\mathbb{R}^{d}\right),\|u\|_{2}^{2}=\lambda\right\}
$$

Theorem 9.14 (Concentration Compactness for the Translation Invariant Case). Assume that $w \in L^{p}+L^{q}$ and

$$
E^{0}(\lambda)<E^{0}\left(\lambda-\lambda^{\prime}\right)+E^{0}\left(\lambda^{\prime}\right)
$$

for all $0<\lambda^{\prime}<\lambda$ and $E^{0}\left(\lambda^{\prime}\right)<0$ for all $0<\lambda^{\prime} \leqslant \lambda$, then $E^{0}(\lambda)$ has a minimiser.

Proof. Take u_{n} to be a minimising sequence for $E^{0}(\lambda)$. Recall that for all $\varepsilon>0$

$$
E^{0}(\lambda) \longleftarrow \mathcal{E}^{0}\left(u_{n}\right) \geqslant(1-\varepsilon) \int\left|\nabla u_{n}\right|^{2}-C_{\varepsilon}
$$

thus u_{n} is bounded in $H^{1}\left(\mathbb{R}^{d}\right)$. We want to prove that u_{n} is non-vanishing. Assume by contradiction that u_{n} is vanishing,

$$
0>E^{0}(\lambda) \longleftarrow \mathcal{E}^{0}\left(u_{n}\right)=\int\left|\nabla u_{n}\right|^{2}+\frac{1}{2} \int\left|u_{n}(x)\right|^{2}\left(w *\left|u_{n}\right|^{2}\right)(x) \mathrm{d} x
$$

which implies that

$$
\int\left|u_{n}(x)\right|^{2}\left(w *\left|u_{n}\right|^{2}\right)(x) \mathrm{d} x<-\varepsilon<0
$$

or all n large enough for some $\varepsilon>0$.

However,

$$
-\varepsilon>\int\left|u_{n}(x)\right|^{2}\left(w *\left|u_{n}\right|^{2}\right)(x) \mathrm{d} x \geqslant \int_{\mathbb{R}^{d}}\left|u_{n}(x)\right|^{2} \mathrm{~d} x \inf _{z \in \mathbb{R}^{d}}\left(w *\left|u_{n}\right|^{2}\right)(z)
$$

which implies that

$$
\inf _{z \in \mathbb{R}^{d}}\left(w *\left|u_{n}\right|^{2}\right)(z)<-\frac{\varepsilon}{\lambda}
$$

for n large and therefore there exists a sequence $\left(z_{n}\right)_{n} \subset \mathbb{R}^{d}$ such that

$$
\left(w *\left|u_{n}\right|^{2}\right)\left(z_{n}\right)<-\frac{\varepsilon}{2 \lambda}
$$

for n large. Thus

$$
\int\left|u_{n}\left(x+z_{n}\right)\right|^{2} w(x) \mathrm{d} x<-\frac{\varepsilon}{2 \lambda}
$$

and therefore

$$
\int\left|u_{n}\left(x+z_{n}\right)\right|^{2} w(-x) \mathrm{d} x<-\frac{\varepsilon}{2 \lambda}
$$

It follows that $u_{n}\left(\cdot+z_{n}\right) \rightharpoonup 0$ weakly in $H^{1}\left(\mathbb{R}^{d}\right)$, then

$$
\int\left|u_{n}\left(x+z_{n}\right)\right|^{2} w(-x) \mathrm{d} x \xrightarrow{n \rightarrow \infty} 0
$$

because $w \in L^{p}+L^{q}$. Thus $u_{n}\left(\cdot+z_{n}\right) \nrightarrow 0$ weakly. We know that $u_{n}\left(\cdot+z_{n}\right) \nrightarrow 0$ weakly in $H^{1}\left(\mathbb{R}^{d}\right)$. Because $u_{n}\left(\cdot+z_{n}\right)$ is also a minimising sequence we can assume that $z_{n}=0$, $u_{n} \nrightarrow 0$ weakly in $H^{1}\left(\mathbb{R}^{d}\right)$ (otherwise we consider $\tilde{u}_{n}(x)=u_{n}\left(x+x_{n}\right)$). Since u_{n} is bounded in H^{1}, we can go to a subsequence such that $u_{n} \rightharpoonup u_{0} \not \equiv 0$ weakly in H^{1}. Assume that $\int\left|u_{n}\right|^{2}=\lambda$ and that for $\lambda^{\prime}>0, \int\left|u_{n}-u_{0}\right|^{2} \rightarrow \lambda^{\prime}$. We have already proven that

$$
\underbrace{\mathcal{E}^{0}\left(u_{n}\right)}_{\rightarrow E^{0}(\lambda)}-\underbrace{\mathcal{E}^{0}\left(u_{0}\right)-\mathcal{E}^{0}\left(u_{n}-u_{0}\right)}_{\geqslant E^{0}\left(\left\|u_{n}-u_{0}\right\|_{2}^{2}\right) \rightarrow E\left(\lambda^{\prime}\right)} \xrightarrow{n \rightarrow \infty} 0
$$

from which follows that

$$
\mathcal{E}^{0}\left(u_{0}\right) \leqslant E^{0}(\lambda)-E^{0}\left(\lambda^{\prime}\right) \leqslant E^{0}\left(\lambda-\lambda^{\prime}\right)
$$

Thus u_{0} is minimiser for $E^{0}\left(\lambda-\lambda^{\prime}\right)$ and $E^{0}(\lambda)+E^{0}\left(\lambda-\lambda^{\prime}\right)$. By the strict inequality $\lambda-\lambda^{\prime}=\lambda$ and thus $\left\|u_{n}\right\|_{2}^{2}=\lambda$ and u_{0} is a minimiser for $E(\lambda)$.
q.e.d.

Applications of the Concentration-Compactness Principle

Definition 9.15 (Choquard-Pekar Problem).

$$
\begin{gathered}
\mathcal{E}(u):=\int_{\mathbb{R}^{3}}|\nabla u|^{2}+\int_{\mathbb{R}^{3}} V(x)|u(x)|^{2} \mathrm{~d} x-\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}|u(y)|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y \\
E(\lambda):=\inf \left\{\mathcal{E}(u), \mid u \in H^{1}\left(\mathbb{R}^{3}\right),\|u\|_{2}^{2}=\lambda\right\}
\end{gathered}
$$

Theorem 9.16. If $V \in L^{p}+L^{q}\left(\mathbb{R}^{3}\right), p, q \in\left(\frac{3}{2}, \infty\right)$ and $V \leqslant 0$ then for all $\lambda>0, E(\lambda)$ has a minimiser. Moreover, the minimiser solves

$$
-\Delta u_{0}+V u_{0}-\left(\left|u_{0}\right|^{2} * \frac{1}{|x|}\right) u_{0}=\mu u_{0} \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{3}\right)
$$

Proof.
$V \equiv 0$

$$
\begin{aligned}
\mathcal{E}^{0}(u) & :=\int_{\mathbb{R}^{3}}|\nabla u|^{2}-\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}|u(y)|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y \\
E^{0}(\lambda) & :=\inf \left\{\mathcal{E}^{0}(u), \mid u \in H^{1}\left(\mathbb{R}^{3}\right),\|u\|_{2}^{2}=\lambda\right\}
\end{aligned}
$$

From the concentration compactness principle, we need to check
a) $E^{0}(\lambda)<0$
b) $E^{0}(\lambda)<E^{0}\left(\lambda-\lambda^{\prime}\right)+E^{0}\left(\lambda^{\prime}\right)$ for all $0<\lambda^{\prime}<\lambda$.

Proof. a) Take $\varphi \in H^{1}\left(\mathbb{R}^{3}\right), \varphi \not \equiv 0,\|\varphi\|_{2}^{2}=\lambda$. For $\ell>0$, let $\varphi_{\ell}(x)=\ell^{3 / 2} \varphi(\ell x)$, $\left\|\varphi_{\ell}\right\|_{2}^{2}=\|\varphi\|_{2}^{2}=\lambda$ and

$$
\mathcal{E}^{0}\left(\varphi_{\ell}\right)=\ell^{2} \int|\nabla \varphi|^{2}-\ell \frac{1}{2} \iint \frac{\varphi(x) \varphi(y)}{|x-y|} \mathrm{d} x \mathrm{~d} y=A \ell^{2}-B \ell<0
$$

if $\ell>0$ small enough, as $A>0, B>0$. Thus $E^{0}(\lambda) \leqslant \mathcal{E}^{0}\left(\varphi_{\ell}\right)<0$ if $\ell>0$ small enough.
b) It follows from the following lemma that for all $0<\lambda^{\prime}<\lambda$

$$
E^{0}(\lambda)=\frac{\lambda-\lambda^{\prime}}{\lambda} E^{0}(\lambda)+\frac{\lambda^{\prime}}{\lambda}<E\left(\lambda-\lambda^{\prime}\right)+E^{0}\left(\lambda^{\prime}\right)
$$

q.e.d.

We can thus conclude that $E^{0}(\lambda)$ has a minimiser. Then by using variational formulae

$$
\mathcal{E}^{0}\left(\frac{\left(u_{0}+\varepsilon \varphi\right) \sqrt{\lambda}}{\left\|u_{0}+\varepsilon \varphi\right\|_{2}}\right) \geqslant \mathcal{E}^{0}\left(u_{0}\right)
$$

for all $\varepsilon \in \mathbb{R}$ small and thus

$$
0=\left.\frac{d}{d \varepsilon}(\cdots)\right|_{\varepsilon=0} \Longrightarrow-\Delta u_{0}-\left(\left|u_{0}\right|^{2} * \frac{1}{|x|}\right) u_{0}=\mu u_{0}
$$

with $\mu \leqslant 0$, and $\lambda \mapsto E^{0}(\lambda)$ is decreasing.
$V \leqslant 0 . V \not \equiv 0$ We need to prove the binding inequality

$$
E(\lambda)<E\left(\lambda-\lambda^{\prime}\right)+E^{0}\left(\lambda^{\prime}\right)
$$

for all $0<\lambda^{\prime} \leqslant \lambda$. Using the second of the following lemmata we can conclude that

$$
E(\lambda)=\frac{\lambda-\lambda^{\prime}}{\lambda} E(\lambda)+\frac{\lambda^{\prime}}{\lambda} E(\lambda) \leqslant E\left(\lambda-\lambda^{\prime}\right)+E\left(\lambda^{\prime}\right)
$$

To conclude, we need to show that $E\left(\lambda^{\prime}\right)<E^{0}\left(\lambda^{\prime}\right)$ for all $0<\lambda^{\prime} \leqslant \lambda$. By the case $V \equiv 0$, we have $E^{0}\left(\lambda^{\prime}\right)$ has a minimiser, $u_{\lambda^{\prime}}$ and

$$
E\left(\lambda^{\prime}\right)-E^{0}\left(\lambda^{\prime}\right) \leqslant \mathcal{E}\left(u_{\lambda^{\prime}}\right)-\mathcal{E}^{0}\left(u_{\lambda^{\prime}}\right)=\int V(x)\left|u_{\lambda^{\prime}}(x)\right|^{2} \mathrm{~d} x
$$

Assume for the sake of contradiction that $E\left(\lambda^{\prime}\right)=E^{0}\left(\lambda^{\prime}\right)$ for which we would need

$$
\int V(x)\left|u_{\lambda^{\prime}}(x)\right|^{2} \mathrm{~d} x \geqslant 0
$$

and thus $V(x)\left|u_{\lambda^{\prime}}(x)\right|^{2}=0$ a.e. (since $V \leqslant 0$). Thus $V(x)=0$ for a.e. x such that
$u_{\lambda^{\prime}}(x) \neq 0$. Since $\mathcal{E}^{0}(u)$ is translation invariant, $u_{\lambda^{\prime}}$ is a minimiser for $E^{0}\left(\lambda^{\prime}\right)$. Thus $u_{\lambda^{\prime}}(\cdot+y)$ is also a minimiser for $E^{0}\left(\lambda^{\prime}\right)$ for all $y \in \mathbb{R}^{3}$.

By the above argument it follows that $V(x)=0$ for a.e. x such that $u_{\lambda^{\prime}}(x+y) \neq 0$ for all $y \in \mathbb{R}^{3}$.

Here $\int\left|u_{\lambda^{\prime}}\right|^{2}=\lambda^{\prime}>0$ and thus $u_{\lambda^{\prime}} \not \equiv 0$, hence there must exists a ball $B_{r}(z)$ such that $u_{\lambda^{\prime}} \neq 0$ for a.e. $x \in B_{r}(z)$. Hence $V(x)=0$ for a.e. $x \in \mathbb{R}^{3}$ which is a contradiction to the assumption $V \not \equiv 0$.

Thus $E\left(\lambda^{\prime}\right)<E^{0}\left(\lambda^{\prime}\right)$ for all $0<\lambda^{\prime}$ and $E(\lambda)<E\left(\lambda-\lambda^{\prime}\right)+E^{0}\left(\lambda^{\prime}\right)$ for all $0<\lambda^{\prime}<\lambda$.
Therefore, $E(\lambda)$ has a minimiser and the equation follows similarly to $E^{0}(\lambda)$.
q.e.d.

Lemma 9.17. For all $\lambda>0$, for all $0<\vartheta<1$

$$
\vartheta E^{0}(\lambda)<E^{0}(\vartheta \lambda)
$$

Proof. Take f_{n} a minimising sequence for $E^{0}(\vartheta \lambda)$, i.e. $\left\|f_{n}\right\|_{2}^{2}=\vartheta \lambda, \mathcal{E}^{0}\left(f_{n}\right) \rightarrow E^{0}(\vartheta \lambda)$. Define $g_{n}=\frac{f_{n}}{\sqrt{\vartheta}},\left\|g_{n}\right\|_{2}^{2}=\lambda$.
Thus

$$
\begin{aligned}
E^{0}(\lambda) & \leqslant \mathcal{E}^{0}\left(g_{n}\right)=\mathcal{E}^{0}\left(\frac{f_{n}}{\sqrt{\vartheta}}\right) \frac{1}{\vartheta} \int\left|\nabla f_{n}\right|^{2}-\frac{1}{\vartheta^{2}} \iint \frac{\left|f_{n}(x)\right|^{2}\left|f_{n}(y)\right|^{2}}{|x-y|}= \\
& =\frac{1}{\vartheta} \mathcal{E}^{0}\left(f_{n}\right)+\left(\frac{1}{\vartheta}-\frac{1}{\vartheta^{2}}\right) \frac{1}{2} \iint \frac{\left|f_{n}(x)\right|^{2}\left|f_{n}(y)\right|^{2}}{|x-y|}
\end{aligned}
$$

Using $\mathcal{E}^{0}\left(f_{n}\right) \rightarrow E^{0}(\vartheta \lambda)$ and

$$
\frac{1}{2} \iint \frac{\left.\left|f_{n}(x)\right|^{2}| | f_{n}(y)\right|^{2}}{|x-y|}=\int\left|\nabla f_{n}\right|^{2}-\mathcal{E}^{0}\left(f_{n}\right) \geqslant-\mathcal{E}^{0}\left(f_{n}\right) \longrightarrow-E(\vartheta \lambda)
$$

and thus

$$
E^{0}(\lambda) \leqslant \frac{1}{\vartheta} E^{0}(\vartheta \lambda)+\left(\frac{1}{\vartheta}-\frac{1}{\vartheta^{2}}\right)\left(-E^{0}(\vartheta \lambda)\right)=\frac{E^{0}(\vartheta \lambda)}{\vartheta^{2}}<\frac{E^{0}(\vartheta \lambda)}{\vartheta}
$$

since $0<\vartheta<1, E^{0}(\vartheta \lambda)<0$.

Lemma 9.18. Suppose that $V \leqslant 0, V \not \equiv 0$. For all $\lambda>0$, for all $0<\vartheta<1$

$$
\vartheta E(\lambda) \leqslant E(\vartheta \lambda)
$$

Proof. Similar to the previous lemma.
$q . e . d$.

Gagliardo-Nirenberg Interpolation Inequality

$$
\|\nabla u\|_{2}^{\alpha}\|u\|_{2}^{d-\alpha} \geqslant c\|u\|_{p}
$$

for all $2<p<p^{*}$ with $p^{*}=\frac{2 d}{d-2}$ if $d \geqslant 3$ and $p^{*}=\infty$ if $d=1,2$. By a scaling argument $\frac{1}{p}=\frac{d-2}{2 d} \alpha+\frac{1-\alpha}{2}, \alpha \in(0,1)$.

Remark 9.19. $u_{\ell}(x)=\ell^{\frac{d}{2}} u(\ell x),\left\|u_{\ell}\right\|_{2}=\|u\|_{2}$

$$
\frac{\left\|\nabla u_{\ell}\right\|_{2}^{\alpha}\left\|u_{\ell}\right\|_{2}^{1-\alpha}}{\left\|u_{\ell}\right\|_{p}}
$$

is independent of ℓ.

Theorem 9.20. For these p, α, then the variational problem

$$
E=\inf \left\{\left.\frac{\|\nabla u\|_{2}^{\alpha}\left\|u_{2}\right\|_{2}^{1-\alpha}}{\|u\|_{p}} \right\rvert\, u \in H^{1}\left(\mathbb{R}^{d}\right), u \not \equiv 0\right\}
$$

has a minimiser. The minimiser can be chosen such that $Q \geqslant 0$ and

$$
-\Delta Q+Q-Q^{p-1}=0, \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)
$$

Thomas Fermi Problem

$$
\begin{gathered}
\mathcal{E}(\rho)=\int_{\mathbb{R}^{3}} \rho^{5 / 3}-\int \frac{Z}{|x|} \rho(x) \mathrm{d} x+\frac{1}{2} \int_{\mathbb{R}^{3}} \frac{1}{2} \int_{\mathbb{R}^{3}} \frac{\rho(x) \rho(y)}{|x-y|} \mathrm{d} x \mathrm{~d} y \\
E(\lambda)=\left\{\inf \mathcal{E}(\rho) \mid \rho \geqslant 0, \rho \in L^{1} \cap L^{5 / 3}, \int \rho=\lambda\right\}
\end{gathered}
$$

Theorem 9.21. Let $Z>0$ constant. Then for all $\lambda \in(0, Z], E(\lambda)$ has a unique minimiser. Moreover the minimiser ρ_{0} satisfies

$$
\frac{5}{3} \rho_{0}^{2 / 3}(x)=\left[\frac{Z}{|x|}-\rho_{0} * \frac{1}{|x|}+\mu\right]_{+}
$$

for some constant $\mu \leqslant 0$. Moreover, $E(\lambda)$ has no minimiser if $\lambda>Z$.

Proof. Take a minimising sequence ρ_{n} for $E(\lambda)$. We want to prove ρ_{n} is bounded in $L^{5 / 3}$.

$$
\int \frac{Z}{|x|} \rho_{n}(x)=\int_{|x| \leqslant 1}+\int_{|x|>1} \leqslant Z\left(\int_{|x| \leqslant 1} \frac{1}{|x|^{5 / 2}}\right)^{2 / 5}\left(\int_{|x| \leqslant 1} \rho_{n}^{5 / 3}\right)^{3 / 5}+Z \int_{|x|>1} \rho_{n}(x) \mathrm{d} x \leqslant C Z\left(\int \rho_{n}^{5 / 3}\right)^{3 / 5}+Z \lambda
$$

This implies that

$$
E(\lambda) \longleftarrow \mathcal{E}\left(\rho_{n}\right)-\int \rho_{n}^{5 / 3}-C Z\left(\int \rho_{n}^{5 / 3}\right)^{3 / 5}-Z \lambda
$$

Thus $E(\lambda)>-\infty$ and ρ_{n} is bounded in $L^{5 / 3}$. By going to a subsequence we may assume that $\rho_{n} \rightharpoonup \rho_{0}$ weakly in $L^{5 / 3}$. We have to prove that

$$
\liminf \mathcal{E}\left(\rho_{n}\right) \geqslant \mathcal{E}\left(\rho_{0}\right)
$$

By weak convergence we have

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \int \rho_{n}^{5 / 3} & \geqslant \int \rho_{0}^{5 / 3} \\
\lim _{n \rightarrow \infty} \int \frac{Z \rho_{n}(x)}{|x-y|} & =\int \frac{Z \rho_{0}(x)}{|x-y|} \\
\liminf _{n \rightarrow \infty} \iint \frac{\rho_{n}(x) \rho_{n}(y)}{|x-y|} & \geqslant \iint \frac{\rho_{0}(x) \rho_{0}(y)}{|x-y|}
\end{aligned}
$$

where the last one is an exercise. Thus

$$
E(\lambda)=\lim \mathcal{E}\left(\rho_{n}\right) \geqslant \mathcal{E}\left(\rho_{0}\right) \geqslant E\left(\lambda_{0}\right)
$$

with $\lambda_{0}=\int \rho_{0}$.
To prove that ρ_{0} is a minimiser for $E(\lambda)$, need to prove that $\lambda_{0}=\lambda$. Assuming that $\lambda_{0}<\lambda$. Then $E(\lambda) \geqslant \mathcal{E}\left(\rho_{0}\right) \geqslant E\left(\lambda_{0}\right) \geqslant E(\lambda)$, hence

$$
\mathcal{E}\left(\rho_{0}\right)=E\left(\lambda_{0}\right)=E(\lambda)=E\left(\lambda^{\prime}\right)
$$

for all $\lambda^{\prime} \in\left[\lambda_{0}, \lambda\right]$.
Concerning the variational equation for ρ_{0} we have $\mathcal{E}\left(\rho_{0}+\varepsilon \varphi\right) \geqslant \mathcal{E}\left(\rho_{0}\right)$ for all $\varphi \in L^{1} \cap L^{5 / 3}$, $\varphi \geqslant 0$ and $\varepsilon \geqslant 0$ small enough. Thus

$$
\left.\frac{d}{d \varepsilon} \mathcal{E}\left(\rho_{0}+\varepsilon \varphi\right)\right|_{\varepsilon=0} \geqslant 0
$$

Thus

$$
\int \frac{5}{3} \rho^{2 / 3} \varphi-\int \frac{Z}{|x|} \rho_{0} \varphi+\int\left(\rho_{0} * \frac{1}{|x|}\right) \varphi \geqslant
$$

and therefore

$$
\int\left(\frac{5}{3} \rho_{0}^{2 / 3}-\frac{Z}{|x|}+\rho_{*} * \frac{1}{|x|}\right) \varphi \geqslant 0
$$

for all $\varphi \in L^{1} \cap L^{5 / 3}$, and $\varphi \geqslant 0$. Using he following lemma it follows that

$$
\frac{5}{3} \rho_{0}^{2 / 3}(x)-\frac{Z}{|x|}+\rho_{0} * \frac{1}{|x|} \geqslant 0
$$

Contradiction to $\int \rho_{0}=\lambda_{0}<\lambda \leqslant Z$. Using the convexity we find that ρ_{0} is a minimiser for $E\left(\lambda_{0}\right)$ implies that ρ_{0} is unique.
?????????????????????????????????

Assume that $E(\lambda)$ has a minimiser $\rho_{0}(\lambda$ not necessarily $\leqslant Z)$, then for all $\rho \in L^{1} \cap L^{5 / 3}$, $\int \rho=\lambda$

$$
\mathcal{E}\left(\rho_{0}\right) \leqslant \mathcal{E}(\rho)
$$

Choose $\rho_{\varepsilon}=\rho_{0}+\varepsilon \varphi$, for $\varphi \in L^{1} \cap L^{5 / 3}, \int \varphi=0$ and $\varphi(x) \geqslant-C \rho_{0}(x)$ for all x. Then

$$
\mathcal{E}\left(\rho_{0}\right) \leqslant \mathcal{E}\left(\rho_{\varepsilon}\right)
$$

for all $\varepsilon \geqslant 0$ small enough. This implies that

$$
\left.\frac{d}{d \varepsilon} \mathcal{E}\left(\rho_{\varepsilon}\right)\right|_{\varepsilon=0} \geqslant 0
$$

And therefore

$$
\int \underbrace{\left(\frac{5}{3} \rho^{2 / 3}-\frac{Z}{|x|}+\rho_{0} * \frac{1}{|x|}\right)}_{=: W} \varphi \geqslant 0
$$

Choose $\varphi=g-\frac{\int g}{\lambda} \rho_{0}, \int \varphi=\int g-\frac{\int g}{\lambda} \int \rho_{0}=0$ with $g \in L^{1} \cap L^{5 / 3}, g(x) \geqslant-C \rho_{0}(x)$. This implies that

$$
0 \leqslant \int W \varphi=\int W\left(g-\frac{\int \rho}{\lambda} \rho_{0}\right)=\int W g-\frac{\int W \rho_{0}}{\lambda} \int \rho=\int(W-\mu) \rho
$$

with $\mu:=\frac{\int W \rho_{0}}{\lambda} \in \mathbb{R}$. We deduce that

$$
\begin{cases}W(x)-\mu=0, & \text { if } \rho_{0}(x)>0 \\ W(x)-\mu \geqslant 0, & \text { for all } x \in \mathbb{R}^{3}\end{cases}
$$

and therefore

$$
\frac{5}{3} \rho_{0}^{2 / 3}-\frac{Z}{|x|}+\rho_{0} * \frac{1}{|x|}-\mu \begin{cases}=0, & \text { if } \rho_{0}(x)>0 \\ \geqslant 0, & \text { for all } x \in \mathbb{R}^{3}\end{cases}
$$

which in turn implies

$$
\frac{5}{3} \rho_{0}^{2 / 3} \begin{cases}=\frac{Z}{|x|}-\rho_{0} * \frac{1}{|x|}+\mu, & \text { if } \rho_{0}(x)>0 \\ \geqslant \frac{Z}{|x|}-\rho_{0} * \frac{1}{|x|}+\mu, & \text { for all } x \in \mathbb{R}^{3}\end{cases}
$$

and thus

$$
\frac{5}{3} \rho_{0}^{2 / 3}=\left[\frac{Z}{|x|}-\rho_{0} * * \frac{1}{|x|}+\mu\right]_{+}
$$

Now we shall show that $\mu \leqslant 0$. Assume that $\mu>0$. Then the Thomas Fermi equation reads

$$
\frac{5}{3} \rho^{2 / 3} \geqslant \mu-\left|\frac{Z}{|x|}-\rho_{0} * \frac{1}{|x|}\right|
$$

and

$$
\rho_{0} * \frac{1}{|x|}=\int \frac{\rho_{0}(y)}{|x-y|} \mathrm{d} y=\int \frac{\rho_{0}(y)}{\max \{|x|,|y|\}} \leqslant \frac{\int \rho_{0}}{|x|}=\frac{\lambda}{|x|}
$$

which implies that

$$
\mu \leqslant \frac{5}{3} \underbrace{\rho_{0}^{2 / 3}}_{\in L^{3 / 2}}+\frac{Z+\lambda}{|x|}
$$

and therefore $\mu \leqslant 0$.

$$
\frac{5}{3} \rho^{2 / 3} \geqslant \mu-\frac{Z+\lambda}{|x|} \stackrel{\mu>0}{\geqslant} \frac{\mu}{2}
$$

for $|x|$ large this implies

$$
\underbrace{\left(\frac{5}{3} \rho_{0}^{2 / 3}\right)^{\frac{3}{2}}}_{\in L^{1}} \geqslant\left(\frac{\mu}{2}\right)^{3 / 2}
$$

for $|x|$ large.

We remark here that $\mu<0$ if $\lambda=\int \rho<Z$ and that $\mu=0$ if $\lambda=Z$, the proof of which is left as an exercise.

We shall now prove the non-existence of a minimiser for $\lambda>Z$. The proof presented was first given by Simon-Lieb. We have the Thomas Fermi equation

$$
\frac{5}{3} \rho^{2 / 3}=\left[\frac{Z}{|x|}-\rho_{*} * \frac{1}{|x|}+\mu\right]_{+}, \quad \mu \leqslant 0
$$

Assume that $\int \rho_{0}>Z$, and define

$$
f(x):=\frac{Z}{|x|}-\rho_{*} * \frac{1}{|x|}+\mu
$$

- $f(x)<0$ if $|x|$ large. Since

$$
\begin{aligned}
f(x) & \leqslant \frac{Z}{|x|}-\rho_{*} * \frac{1}{|x|}=\frac{Z}{|x|}-\int \frac{\rho(y)}{\max \{|x|,|y|\}} \mathrm{d} y \leqslant \frac{Z}{|x|}-\int_{|y| \leqslant R} \frac{\rho_{0}(y)}{\max \{|x|,|y|\}} \mathrm{d} y= \\
& =\left(Z-\int_{|y| \leqslant R} \rho_{0}\right) \frac{1}{|x|}
\end{aligned}
$$

if $|x| \geqslant R$. Since

$$
\int_{|y| \leqslant R} \rho_{0} \xrightarrow{R \rightarrow \infty} \int_{\mathbb{R}^{3}} \rho_{0}=\lambda>Z \Longrightarrow Z-\int_{|y| \leqslant R} \rho_{0}<0
$$

if R large.

- $f(x)>0$ if $|x|$ is small enough

$$
f(x)=\frac{Z}{|x|}-\rho_{0} * \frac{1}{|x|}+\mu=\frac{Z}{|x|}-\int \frac{\rho_{0}(y)}{\max \{|x|,|y|\}} \mathrm{d} y+\mu \geqslant \frac{Z}{|x|}-\int \frac{\rho_{0}(y)}{|y|}+\mu>0
$$

if $|x|$ small.

- The Thomas Fermi equation reeds

$$
\frac{5}{3} \rho_{0}^{2 / 3}=[f(x)]_{+} \Longrightarrow \rho_{0}=0
$$

if $|x|$ large enough since $f(x)<0$. Define $\Omega=\left\{x \in \mathbb{R}^{3} \mid f(x)<0\right\}$. Ω is open, $\Omega \neq \emptyset$ and $0 \notin \Omega$.

On Ω, we have

$$
\Delta f(x)=\Delta\left(\frac{Z}{|x|}-\rho_{*} * \frac{1}{|x|}+\mu\right)=4 \pi \rho_{0} \stackrel{\mathrm{TF}}{=} 0
$$

as $-\Delta \frac{1}{|x|}=4 \pi$ delta $_{0}$. Thus f is harmonic on Ω.
By the maximum principle $\inf _{\Omega} f \geqslant \inf _{\partial \Omega} f=0$, which is a contradiction.

We shall now present a second proof. Using the Thomas-Fermi equation

$$
\frac{5}{3} \rho_{0}^{2 / 3}=\left[\frac{Z}{|x|}-\rho_{0} * \frac{1}{|x|}+\mu\right]_{+}
$$

which implies that

$$
\underbrace{\frac{5}{3} \rho_{0}^{5 / 3}}_{\geqslant 0}=\frac{Z}{|x|} \rho_{0}-\left(\rho_{*} * \frac{1}{|x|}\right) \rho_{*}+\underbrace{\mu \rho_{0}}_{\leqslant 0}
$$

and thus

$$
\frac{Z}{|x|} \rho_{0}(x) \geqslant\left(\rho_{0} * \frac{1}{|x|}\right) \rho_{0}(x)
$$

for all x. Integrating against $|x|^{k} \mathbf{1}_{|x| \leqslant R}$ we find that

$$
\int_{|x| \leqslant R} \frac{Z}{|x|}|x|^{k} \rho(x) \mathrm{d} x \geqslant \int_{|x| \leqslant R}\left(\rho_{0} * \frac{1}{|x|}\right)|x|^{k} \rho_{0}(x) \mathrm{d} x \leqslant \int_{|x| \leqslant R|y| \leqslant R} \int \frac{\rho_{0}(y)|x|^{k} \rho(y)}{\max \{|x|,|y|\}} \mathrm{d} x \mathrm{~d} y
$$

Using the elementary inequality

$$
\forall x, y \in \mathbb{R}^{3} \backslash\{0\}: \frac{|x|^{k}+|y|^{k}}{2 \max \{|x|,|y|\}} \geqslant \frac{|x|^{k-1}+|y|^{k-1}}{2}\left(1-\frac{1}{k}\right)
$$

Now

$$
\begin{aligned}
\int_{|x| \leqslant R} Z|x|^{k-1} \rho_{0}(x) \mathrm{d} x & \geqslant \int_{|x| \leqslant R|y| \leqslant R} \int_{0}(x) \rho_{0}(y)\left(1-\frac{1}{k}\right)\left(\frac{|x|^{k-1}+|y|^{k-1}}{2}\right) \mathrm{d} x \mathrm{~d} y= \\
& =\left(\int_{x \mid \leqslant R} \rho_{0}(x)|x|^{k-1} \mathrm{~d} x\right)\left(\int_{y \mid \leqslant R} \rho_{0}(y) \mathrm{d} y\right)\left(1-\frac{1}{k}\right)
\end{aligned}
$$

which implies that

$$
Z \geqslant\left(\int_{|y| \leqslant R} \rho_{0}(y) \mathrm{d} y\right)\left(1-\frac{1}{k}\right)
$$

for all $R>0$, for all $k \in \mathbb{N}$. Passing $R \rightarrow \infty$ and $k \rightarrow \infty$ we find that

$$
Z \geqslant \int \rho_{0}=\lambda
$$

To prove of the elementary inequality we need to prove that for $M \geqslant m>0$, then

$$
\begin{aligned}
\frac{M^{k}+m^{k}}{M} \geqslant\left(1-\frac{1}{k}\right)\left(M^{k-1}+m^{k-1}\right) & \Longleftrightarrow\left(M^{k-1}+\frac{m^{k}}{M}\right) k \geqslant(k-1)\left(M^{k-1}+m^{k-1}\right) \Longleftrightarrow \\
& \Longleftrightarrow M^{k-1}+k \frac{m^{k}}{M} \geqslant(k-1) m^{k-1}
\end{aligned}
$$

Using the Arithmetic Mean- Geometric Mean, in equality, i.e. that for all $a_{1}, \ldots, a_{k} \geqslant 0$

$$
\frac{a_{1}+a_{2}+\cdots+a_{k}}{k} \geqslant \sqrt[k]{a_{1} a_{2} \cdots a_{k}}
$$

consequently

$$
M^{k-1}+\underbrace{\frac{m^{k}}{M}+\frac{m^{k}}{M}+\cdots+\frac{m^{k}}{M}}_{\mathrm{k}-1} \geqslant k\left(M^{k-1}\left(\frac{m^{k}}{M}\right)^{k-1}\right)^{\frac{1}{k-1}}
$$

from which the inequality follows.
q.e.d.

Lemma 9.22. $\lambda \mapsto E(\lambda)$ is decreasing.

Lemma 9.23. If $\int f \varphi \geqslant 0$, for all $\varphi \in \mathscr{D}, \varphi \geqslant 0$, then $f \geqslant 0$ a.e.

Lemma 9.24. $\rho \mapsto \mathcal{E}(\rho)$ is a convex functional.

$$
\mathcal{E}\left(\rho_{1}\right)+\mathcal{E}\left(\rho_{2}\right)>2 \mathcal{E}\left(\frac{\rho_{1}+\rho_{2}}{2}\right)
$$

Chapter 10

Boundary Value Problem

Example 10.1. Let Ω be open, bounded in \mathbb{R}^{d}.

1) The Dirichlet problem

$$
\begin{aligned}
&-\Delta u+u=f \\
& \text { in } \Omega \\
& u=g \\
& \text { on } \partial \Omega
\end{aligned}
$$

2) The von Neumann problem

$$
\begin{aligned}
-\Delta u+u & =f & & \text { in } \Omega \\
\frac{\partial u}{\partial n} & =\eta & & \text { on } \partial \Omega
\end{aligned}
$$

where $\frac{\partial u}{\partial n}=\nabla u \cdot n$, where n is the unit normal vector field to the boundary surface, if it exists.

We need

- Sobolev spaces in Ω
- Value of H^{1} function on $\partial \Omega \leadsto$ trace theorem, as for $d \geqslant 2 H^{1}\left(\mathbb{R}^{d}\right) \not \subset \mathscr{C}\left(\mathbb{R}^{d}\right)$.

Definition 10.2.

$$
H^{m}(\Omega):=\left\{f \in L^{2}(\Omega)\left|D^{\alpha} f \in L^{2}(\Omega),|\alpha| \leqslant m\right\}\right.
$$

where $D^{\alpha} f=g$ in $\mathscr{D}^{\prime}(\Omega)$ iff

$$
(-1)^{|\alpha|} \int f\left(D^{\alpha} \varphi\right)=\int g \varphi
$$

for all $\varphi \in \mathscr{C}_{c}^{\infty}(\Omega)$.

Theorem 10.3. $H^{m}(\Omega)$ is a Hilbert space for every $m \in \mathbb{N}$, with norm

$$
\|u\|_{H^{m}}^{2}:=\sum_{|\alpha| \leqslant m}\left\|D^{\alpha} u\right\|_{2}^{2}
$$

We want given $u \in H^{1}(\Omega)$, find a $\tilde{u} \in H^{1}\left(\mathbb{R}^{d}\right)$ such that $\left.\tilde{u}\right|_{\Omega}=u$. For this we need some smoothness of $\partial \Omega$.

Example 10.4. Extension by reflection. Let $x \in \mathbb{R}^{d}$, with $x=\left(x^{\prime}, x_{d}\right), x^{\prime}=\left(x_{1}, \ldots, x_{d-1}\right)$ Let

$$
Q=\left\{x \in \mathbb{R}^{d}| | x^{\prime}\left|<1,\left|x_{d}\right|<1\right\}\right.
$$

which for example is a cylinder in $d=3$. Further let

$$
Q_{+}:=\left\{x \in Q \mid x_{d}>0\right\}, \quad Q_{0}:=\left\{x \in Q \mid x_{d}=0\right\}, \quad Q_{-}:=\left\{x \in Q \mid x_{d}<0\right\}
$$

Theorem 10.5. Given $u \in H^{1}\left(Q_{+}\right)$, define

$$
u^{*}\left(x^{\prime}, x_{d}\right):= \begin{cases}u\left(x^{\prime}, x_{d}\right), & \text { if }\left(x^{\prime}, x_{d}\right) \in Q_{+} \\ -u\left(x^{\prime},-x_{d}\right), & \text { if }\left(x^{\prime}, x_{d}\right) \in Q_{-}\end{cases}
$$

Then $u^{*} \in H^{1}(Q)$ and $\left\|u^{*}\right\|_{H^{1}(Q)} \leqslant 2\|u\|_{H^{1}\left(Q_{+}\right)}$and $\left\|u^{*}\right\|_{L^{2}(Q)} \leqslant 2\|u\|_{L^{2}\left(Q_{+}\right)}$

Proof. We have

$$
\partial_{x_{i}} u^{*}=\left(\partial_{x_{i}} u\right)^{*}
$$

if $i=1, \ldots, d-1$ and

$$
\partial_{x_{d}} u^{*}= \begin{cases}\partial u_{d}\left(x^{\prime}, x_{d}\right), & \text { if } x_{d}>0 \\ -\partial u_{d}\left(x^{\prime},-x_{d}\right), & \text { if } x_{d}<0\end{cases}
$$

in the distributional sense. If $u \in \mathscr{C}^{\infty}$ then this is trivial. In the general case $u \in H^{1}(\Omega)$ and let $\varphi \in \mathscr{C}_{c}^{\infty}(Q)$. We want to prove

$$
\int_{Q} u^{*}\left(x^{\prime}, x_{d}\right) \partial_{x_{d}} \varphi \mathrm{~d} x=-\left(\int_{Q_{+}} \partial_{x_{d}} u^{*}\left(x^{\prime}, x_{d}\right) \varphi \mathrm{d} x+\int_{Q_{-}}\left(\partial_{x_{d}} u^{*}\left(x^{\prime},-x_{d}\right)\right) \varphi \mathrm{d} x\right)
$$

Defining $\tilde{\varphi}\left(x^{\prime}, x_{d}\right)=\varphi\left(x^{\prime}, x_{d}\right)-\varphi\left(x^{\prime},-x_{d}\right)$ with $\left(x^{\prime}, x_{d}\right) \in Q_{+}$then this is equivalent to

$$
\int_{Q_{+}} u \partial_{x_{d}} \tilde{\varphi}=-\int_{Q_{+}} \partial_{x_{d}} u \tilde{\varphi}
$$

This is trivial if $\tilde{\varphi} \in \mathscr{C}_{c}^{\infty}\left(Q_{+}\right)$. More generally consider $\eta_{\varepsilon} \tilde{\varphi} \in \mathscr{C}_{c}^{\infty}\left(Q_{+}\right)$with $\eta_{\varepsilon}\left(x_{d}\right)=\eta\left(\frac{x_{d}}{\varepsilon}\right)$ with $\eta(t)=$ if $t \leqslant \frac{1}{2}, \eta(t)=1$ if $t \geqslant 1$ and $\eta \in \mathscr{C}^{\infty}$. Per definitionem of $\partial_{x_{d}} u$ in Q_{+}, we have

$$
\int_{Q_{+}} u\left(\partial_{x_{d}}\left(\eta_{\varepsilon} \tilde{\varphi}\right)\right)=\int_{Q_{+}} \partial_{d} u\left(\eta_{\varepsilon} \tilde{\varphi}\right)
$$

Taking $\varepsilon \rightarrow 0$ we find that

$$
\int_{Q_{+}} \partial_{x_{d}} u\left(\eta_{\varepsilon} \tilde{\varphi}\right) \longrightarrow \int \partial_{x_{d}} u \tilde{\varphi}
$$

by dominated convergence as $\eta_{\varepsilon}\left(x_{d}\right) \rightarrow 1$ and

$$
\left|\partial_{x_{d}} u\left(\eta_{\varepsilon} \tilde{\varphi}\right)\right| \leqslant C\left|\partial_{x_{d}} u \tilde{\varphi}\right| \in \mathrm{E}^{1}\left(Q_{+}\right)
$$

Moreover,

$$
\int_{Q_{+}} u\left(\partial_{x_{d}}\left(\eta_{\varepsilon} \tilde{\varphi}\right)\right)=\int_{Q_{+}} u\left(\partial_{x_{d}} \eta_{\varepsilon}\right) \tilde{\varphi}+\int_{Q_{+}} u \eta_{\varepsilon} \partial_{x_{d}} \tilde{\varphi}
$$

Here

$$
\int_{Q_{+}} u \eta_{\varepsilon} \partial_{x_{d}} \tilde{\varphi} \longrightarrow \int u \partial_{x_{d}} \tilde{\varphi}
$$

by dominated convergence. It remains to prove that $\int_{Q_{+}} u\left(\partial_{x_{d}} \eta_{\varepsilon}\right) \tilde{\varphi} \rightarrow 0$. Because $\eta_{\varepsilon}=\eta\left(\frac{x_{d}}{\varepsilon}\right)$ we have

$$
\left|\partial_{x_{d}} \eta_{\varepsilon}\right| \leqslant \frac{C}{\varepsilon} \mathbf{1}_{\left\{0<\left|x_{d}\right|<\varepsilon\right\}}
$$

And $\mathscr{C}^{1}(Q) \ni \tilde{\varphi}\left(x^{\prime}, x_{d}\right)=\varphi\left(x^{\prime}, x_{d}\right)-\varphi\left(x^{\prime},-x_{d}\right)$ and $\varphi\left(x^{\prime}, 0\right)=0$. Thus we have

$$
\left|\tilde{\varphi}\left(x^{\prime}, x_{d}\right)\right| \leqslant C\left|x_{d}\right| \leqslant C \varepsilon
$$

if $0<\left|x_{d}\right|<\varepsilon$. Thus

$$
\left|\int_{Q_{+}} u\left(\partial_{x_{d}} \eta_{\varepsilon}\right) \tilde{\varphi}\right| \leqslant \int_{Q_{+}} u \frac{C}{\varepsilon} \mathbf{1}_{\left\{0<\left|x_{d}\right|<\varepsilon\right\}} c \varepsilon=C c \int_{Q_{+} \cap\left\{0<\left|x_{d}\right|<\varepsilon\right\}} u \longrightarrow 0
$$

by dominated convergence. We conclude that needed equality is correct.
q.e.d.

Definition 10.6 (Extension Problem). If $u \in H^{1}(\Omega)$, when does there exist a $P u \in$ $H^{1}\left(\mathbb{R}^{d}\right)$ such that, $\left.P u\right|_{\Omega}=u,\|P u\|_{H^{1}} \leqslant C\|u\|_{H^{1}}$.

Example 10.7. Let $\Omega=[0,1]^{d} \subset \mathbb{R}^{d}$. Then extension is easy by reflection we can extend $u \in H^{1}(\Omega)$ by $\tilde{u} \in H^{1}\left(\Omega^{\prime}\right)$ with $\bar{\Omega} \subset \Omega^{\prime}$ such that $\eta=1$ on Ω. Define $\eta \tilde{u} \in H^{1}\left(\Omega^{\prime}\right)$ and as compact support. Extend $\eta \tilde{u}$ to $H^{1}\left(\mathbb{R}^{d}\right)$ setting it to 0 outside Ω^{\prime}. Thus the of $u \in H^{1}(\Omega)$

Theorem 10.8 (Urysohn's Lemma). If Ω, Ω^{\prime} are open with $\bar{\Omega} \subset \Omega^{\prime}$ then there exists $\eta \in \mathscr{C}_{c}^{\infty}\left(\Omega^{\prime}\right)$ such that $\eta=1$ on Ω.

Definition 10.9 (\mathscr{C}^{1} - boundary condition on $\left.\Omega\right)$. Let Ω be open, bounded set in \mathbb{R}^{d}. We say that $\partial \Omega$ is \mathscr{C}^{1} if for all $x \in \partial \Omega$, there exists an open neighbourhood such that there exists $h: U \rightarrow Q$ satisfying

- $h \in \mathscr{C}^{1}$ and $h^{-1} \in \mathscr{C}^{1}$,
- $h(U \cap \Omega)=Q_{+}$,
- $h(U \cap \partial \Omega)=Q_{0}$.

Theorem 10.10. Assume that Ω is open and bounded and has a \mathscr{C}^{1} boundary. Then for all $u \in H^{1}(\Omega)$ there exists a $P u \in H^{1}\left(\mathbb{R}^{d}\right)$ such that $\left.P u\right|_{\Omega}=u,\|P u\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leqslant$
$C\|u\|_{H^{1}(\Omega)},\|P u\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leqslant C\|u\|_{L^{2}(\Omega)}$ and Pu has compact support. Here the constant C depends only on Ω, but is independent of u.

Proof.
Step 1 (Local Map) By the definition of \mathscr{C}^{1} condition, for all $x \in \partial \Omega$ there exist open neighbourhood U_{x} satisfying the Q conditions. Thus $\partial \Omega \subset \bigcup_{x \in \partial \Omega} U_{x}$. Since $\partial \Omega$ is compact, there exists a finite subcover $\left\{U_{x_{1}}, \ldots U_{x_{n}}\right\}$ also covering $\partial \Omega$.

Step 2 (Partition of Unity) Let $U_{i}:=U_{x_{i}}$ if $i=1, \ldots, n$ and $U_{0}=\Omega$. Then there exist $\eta_{i} \in \mathscr{C}_{c}^{\infty}\left(U_{i}\right)$ for all $i=0, \ldots, n$ such that $\eta_{i} \geqslant 0$ and $\left.\sum_{i=0}^{N} \eta_{i}\right|_{\Omega}=1$, as follows from the existence of partitions of unity subordinate to the cover $\left\{\Omega, U_{1}, \ldots, U_{n}, \bar{\Omega}^{C}\right\}$.

Step 3 We write $u=\sum_{i=0}^{n} \eta_{i} u=\sum_{i=0}^{n} u_{i}$ where $u_{i}:=\eta_{i} u, i=0, \ldots, n$. We want to extend every u_{i} to a function $H^{1}\left(\mathbb{R}^{d}\right)$. For $i=0$ we can do this by defining

$$
\tilde{u}_{0}(x):= \begin{cases}u_{0}(x), & \text { if } x \in \Omega \\ 0, & \text { if } x \notin \Omega\end{cases}
$$

Then $\tilde{u}_{0} \in H^{1}\left(\mathbb{R}^{d}\right)$ and $\left.\tilde{u}_{0}\right|_{\Omega}=u_{0}$.
For $1 \leqslant i \leqslant n$. Per definitionem there exist $h_{i}: U_{i} \rightarrow Q$ satisfying all conditions in \mathscr{C}^{1} boundary condition. As $u_{i}=\eta_{i} u \in H^{1}\left(U_{i} \cap \Omega\right)$ it follows that $v_{i}:=u_{i} \circ h_{i}^{-1} \in H^{1}\left(Q_{+}\right)$, because $h^{-1} \in \mathscr{C}^{1}$.

We can extend v_{i} to $v_{i}^{*} \in H^{1}(Q)$ by reflection. Define $\tilde{u}_{i}:=v_{i}^{*} \circ h_{i} \in H^{1}\left(U_{i}\right)$ as $h_{i} \in \mathscr{C}^{1}$. Since $u_{i}=\eta_{i} u$ with $\eta_{i} \in \mathscr{C}_{c}^{\infty}\left(U_{i}\right)$ it follows that \tilde{u}_{i} has compact support in U_{i} and thus can be extended trivially to all \mathbb{R}^{d}

Conclusion Defining $\tilde{u}:=\sum_{i=0}^{n} \tilde{u}_{i}$ we have

- $\left.\tilde{u}\right|_{\Omega}=\left.\sum_{i=0}^{n} \tilde{u}_{i}\right|_{\Omega}=\sum_{i=0}^{n} u_{i}=u$
- \tilde{u} has compact support.
- $\|\tilde{u}\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leqslant C\|u\|_{H^{1}(\Omega)}$ and $\|\tilde{u}\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leqslant c\|u\|_{L^{2}(\Omega)}$ follows from the construction.
q.e.d.

Theorem 10.11 (Sobolev Inequality in Ω). Assume that Ω is open, bounded and has
\mathscr{C}^{1} boundary. Then $\|u\|_{H^{1}(\Omega)} \geqslant C\|u\|_{L^{p}(\Omega)}$ for all p with

$$
\begin{cases}p \leqslant \frac{2 d}{d-2}, & \text { if } d \geqslant 3 \\ p<\infty, & \text { if } d=2 \\ p \leqslant \infty, & \text { if } d=1\end{cases}
$$

Moreover, if $\left\{u_{n}\right\}$ is bounded in $H^{1}(\Omega)$, then there exists a subsequence such that $u_{n} \rightarrow u$ strongly in $L^{p}(\Omega)$ for all p with

$$
\begin{cases}p<\frac{2 d}{d-2}, & \text { if } d \geqslant 3 \\ p<\infty, & \text { if } d=2 \\ p \leqslant \infty, & \text { if } d=1\end{cases}
$$

In particular $H^{1}(\Omega) \subset \mathscr{C}(\bar{\Omega})$, if $\Omega \subset \mathbb{R}$.

Proof. If $u \in H^{1}(\Omega)$, then there exists $\tilde{u} \in H^{1}\left(\mathbb{R}^{d}\right)$ such that $\left.\tilde{u}\right|_{\Omega}=u$ and $\|\tilde{u}\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leqslant$ $C\|\tilde{u}\|_{H^{1}(\Omega)}$. By the Sobolev inequality in $H^{1}\left(\mathbb{R}^{d}\right)$ we have

$$
\|u\|_{L^{p}(\Omega)} \leqslant\|\tilde{u}\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leqslant C\|\tilde{u}\|_{H^{1}} \leqslant c\|u\|_{H^{1}}
$$

The remaining assertions are similarly to Sobolev compact embedding.

Remark 10.12. The constant C is independent of u.

Theorem 10.13 (Density). $\mathscr{C}^{\infty}(\bar{\Omega})$ is dense in $H^{1}(\Omega)$ but $\mathscr{C}_{c}^{\infty}(\Omega)$ is not dense in $H^{1}(\Omega)$.

Definition 10.14.

$$
H_{0}^{1}(\Omega):={\overline{\mathscr{C}_{c}^{\infty}(\Omega)}}^{H^{1}(\Omega)} \subsetneq H^{1}(\Omega)={\overline{\mathscr{C}_{c}^{\infty}(\Omega)}}^{H^{1}(\Omega)} .
$$

Example 10.15. In one dimension $H^{1}(\Omega) \subset \mathscr{C}(\bar{\Omega})$ for all $\Omega \subset \mathbb{R}$. If $u \in H^{1}(\Omega)$, then $u\left(x_{0}\right)$ is well-defined, i.e. there exists exactly one continuous representative of the equivalence class u which we may use define $u\left(x_{0}\right)$.
If $\Omega=(0,1)$, and $u \in H_{0}^{1}((0,1))$, then $u(0)=u(1)=0$.
Proof. $u \in H_{0}^{1}((0,1))$ implies that there exists a sequence $\left(u_{n}\right)_{n} \in \mathscr{C}_{c}^{\infty}((0,1))$ such that $u_{n} \xrightarrow{n \rightarrow \infty} u$ in H^{1}. Thus $u_{n}(x) \rightarrow u(x)$ for all $x \in(0,1)$ because $H^{1}((0,1)) \subset \mathscr{C}((0,1))$, and therefore $u(0)=u(1)=0$.
q.e.d.

Indeed we shall prove that

$$
H_{0}^{1}((0,1))=\left\{u \in H^{1}((0,1)) \mid u(0)=u(1)=0\right\} \subsetneq H^{1}(0,1) .
$$

10.1 Trace on $\mathbb{R}^{d}(d \geqslant 1)$

Consider the set

$$
\mathbb{R}_{+}^{d}=\left\{x=\left(x^{\prime}, x_{d}\right) \in \mathbb{R}^{d} \mid x_{d}>0\right\}
$$

If $u \in H^{1}\left(\mathbb{R}_{+}^{d}\right)$, the is $\left.u\right|_{\mathbb{R}_{0}^{d}}$ well-defined?

Theorem 10.16 (Trace Theorem in $\left.\mathbb{R}_{+}^{d}\right)$. If $u \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, then for $\Gamma=\mathbb{R}^{d-1} \times\{0\}$

$$
\|u\|_{L^{2}(\Gamma)} \leqslant C\|u\|_{H^{1}\left(\mathbb{R}_{+}^{d}\right)}
$$

where C is independent of u.

Proof.

$$
\begin{aligned}
\left|u\left(x^{\prime}, 0\right)\right|^{2} & \left.=\left.\left|-\int_{0}^{\infty} \frac{d}{d x_{d}}\right| u\left(x^{\prime}, x_{d}\right)\right|^{2} \mathrm{~d} x_{d}\left|\leqslant \int_{0}^{\infty} 2\right| u\left(x^{\prime}, x_{d}\right)| | \frac{d}{d x_{d}} u\left(x^{\prime}, x_{d}\right) \right\rvert\, \mathrm{d} x_{d} \leqslant \\
& \leqslant \int_{0}^{\infty}\left(\left|u\left(x^{\prime}, x_{d}\right)\right|^{2}+\left|\frac{d}{d x_{d}} u\left(x^{\prime}, x_{d}\right)\right|^{2}\right) \mathrm{d} x_{d}
\end{aligned}
$$

Integrating over $x^{\prime} \in \mathbb{R}^{d-1}$ one finds that

$$
\int_{\mathbb{R}^{n-1}}\left|u\left(x^{\prime}, 0\right)\right|^{2} \mathrm{~d} x^{\prime} \leqslant \int_{\mathbb{R}^{n-1}} \int_{0}^{\infty}\left(\left|u\left(x^{\prime}, x_{d}\right)\right|^{2}+\left|\frac{d}{d x_{d}} u\left(x^{\prime}, x_{d}\right)\right|^{2}\right) \mathrm{d} x_{d} \leqslant\|u\|_{H^{1}\left(\mathbb{R}_{+}^{d}\right)}^{2}
$$

q.e.d.

Thus we can define the trace operator

$$
\begin{aligned}
& \operatorname{tr}: \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}(\Gamma) \\
& \left.u \longmapsto u\right|_{\Gamma}
\end{aligned}
$$

This is a bounded linear function (i.e. continuous) on a dense subset of $H^{1}\left(\mathbb{R}_{+}^{d}\right)$ and therefore may be uniquely extended to the whole space.

Theorem 10.17 (Trace Theorem in Ω). Let $\Omega \subset \mathbb{R} 6 d$ be bounded, open, $\partial \Omega \in \mathscr{C}^{1}$. Then the there exists a trace operator

$$
\begin{aligned}
& \operatorname{tr}: H^{1}(\Omega) \\
& u L^{2}(\partial \Omega) \\
& u\left.\longmapsto u\right|_{\partial \Omega}
\end{aligned}
$$

satisfying

- if $u \in H^{1}(\Omega) \cap \mathscr{C}(\bar{\Omega})$, then $\left.u\right|_{\partial \Omega}=u$ restricted to $\partial \Omega$.
- $\|u\|_{L^{2}(\Omega)} \leqslant C\|u\|_{H^{1}(\Omega)}$ for all $u \in H^{1}(\Omega)$, with C independent of u.

Proof. As in the proof of Theorem 10.10 we have $\partial \Omega \subset \bigcup_{i=1}^{n} U_{i}$ with U_{i} open and for all i there exists a $h_{i}: U_{i} \rightarrow Q$, with $h_{i}, h_{i}^{-1} \in \mathscr{C}^{1}, h_{i}\left(U_{i}\right)=Q, h_{i}\left(U_{i} \cap \Omega\right)=Q_{+}$and $h_{i}\left(U_{i} \cap \partial \Omega\right)=Q_{0}$. Also there exists a smooth partition of unity $\left(\vartheta_{i}\right)_{i}$ subordinate to the cover $\left\{\Omega, U_{1}, \ldots, U_{n}, \bar{\Omega}^{C}\right\}$. Define $u_{i}=\vartheta_{i} u$.
For every $i=1, \ldots, n$, we have $w_{i}=u_{i} \circ h_{i}^{-1}$ and $w_{i} \in H^{1}\left(Q_{i}\right)$. Indeed, we can extend w_{i} to $H^{1}\left(\mathbb{R}_{+}^{d}\right)$ by setting $w_{i}(x)=0$, if $x \notin Q$. By the Trace theorem in \mathbb{R}_{+}^{d} we can define $\left.w_{i}\right|_{Q_{0}} \in L^{2}\left(Q_{0}\right)$, with $\left\|\left.w_{i}\right|_{Q_{0}}\right\|_{L^{2}\left(Q_{0}\right)} \leqslant\left\|w_{i}\right\|_{H^{1}\left(Q_{+}\right)}$. Define

$$
\left.u_{i}\right|_{\partial \Omega \cap U_{i}}:=\left.w_{i}\right|_{Q} \circ h_{i} \in L^{2}(\partial \Omega \cap \Omega)
$$

and define

$$
\left.u\right|_{\partial \Omega}:=\left.\sum_{i=1}^{n} u_{i}\right|_{\partial \Omega \cap \Omega} \in L^{2}(\partial \Omega)
$$

Moreover
$\|u\|_{L^{2}(\partial \Omega)} \leqslant C \sum_{i=1}^{n}\left\|u_{i}\right\|_{L^{2}\left(\partial \Omega \cap U_{i}\right)} \leqslant C \sum_{i=1}^{n}\left\|w_{i}\right\|_{L^{2}\left(Q_{+}\right)} \leqslant C \sum_{i=1}^{n}\left\|w_{i}\right\|_{H^{1}\left(Q_{+}\right)} \leqslant C \sum_{i=1}^{n}\left\|u_{i}\right\|_{H^{1}(\Omega)} \leqslant C\|u\|_{H^{1}(\Omega)}$
q.e.d.

Remark 10.18. The trace operator $\left.u \mapsto u\right|_{\partial \Omega}$ is bounded.

Theorem 10.19. The trace operator $\left.u \mapsto u\right|_{\partial \Omega}$ is bounded as an operator $H^{1}(\Omega) \rightarrow$ $H^{1 / 2}(\partial \Omega)$. Consequently, $\left.u \mapsto u\right|_{\partial \Omega}$ is a compact mapping $H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)$.

$$
H^{1}(\Omega) \stackrel{\text { cont. }}{\subset} H^{1 / 2}(\partial \Omega) \stackrel{\text { comp. }}{\subset \subset} L^{2}(\partial \Omega)
$$

Definition 10.20 (Fractional Sobolev Spaces).

$$
H^{1 / 2}\left(\mathbb{R}^{d}\right):=\left\{\left.u \in L^{2}\left(\mathbb{R}^{d}\right)\left|\int_{\mathbb{R}^{d}}(1+2 \pi|k|)\right| \hat{u}(k)\right|^{2} \mathrm{~d} k<\infty\right\}
$$

with the norm

$$
\|u\|_{H^{1 / 2}\left(\mathbb{R}^{d}\right)}^{2}=\int_{\mathbb{R}^{d}}(1+2 \pi|k|)|\hat{u}(k)|^{2} \mathrm{~d} k .
$$

Remark 10.21. This definition extend the notion of $n^{\text {th }}$ using the equivalent definition of the standard Sobolev

$$
H^{1}\left(\mathbb{R}^{d}\right):=\left\{\left.u \in L^{2}\left(\mathbb{R}^{d}\right)\left|\int_{\mathbb{R}^{d}}(1+2 \pi|k|)^{2}\right| \hat{u}(k)\right|^{2} \mathrm{~d} k<\infty\right\}
$$

Further we may define use this definition to define $\sqrt{-\Delta}$, via

$$
\langle u, \sqrt{-\Delta} u\rangle=\langle\hat{u},| k|\hat{u}\rangle=\int_{\mathbb{R}^{d}} 2 \pi|k \| \hat{u}(k)|^{2} \mathrm{~d} k
$$

Theorem 10.22 (Sobolev Inequality for $H^{1 / 2}\left(\mathbb{R}^{d}\right)$).

$$
\|u\|_{H^{1 / 2}\left(\mathbb{R}^{d}\right)} \geqslant C\|u\|_{L^{q}\left(\mathbb{R}^{d}\right)}
$$

for all $q \leqslant q^{*}$ with

$$
q^{*}= \begin{cases}\frac{2 d}{d-1}, & \text { if } d \geqslant 2 \\ \infty, & \text { if } d=1\end{cases}
$$

And if $\left\{u_{n}\right\}$ is bounded in $H^{1 / 2}\left(\mathbb{R}^{d}\right)$, then $u_{n} \rightharpoonup u$ in $H^{1 / 2}\left(\mathbb{R}^{d}\right)$ and $u_{n} \mathbf{1}_{B} \rightarrow u \mathbf{1}_{B}$ strongly in $L^{2}(B)$ for all B bounded.

Corollary 10.23. If Ω is bounded and $\partial \Omega \in \mathscr{C}^{1}$, then

$$
H_{0}^{1}(\Omega)=\left\{u \in H^{1}(\Omega),|u|_{\partial \Omega}=0\right\}
$$

Moreover

$$
\|u\|_{H_{0}^{1}}^{2}:=\int_{\Omega}|\nabla u|^{2} \geqslant C\|u\|_{H^{1}(\Omega)} .
$$

Proof. Since $H_{0}^{1}(\Omega)=\overline{\mathscr{C}}_{c}^{\infty}(\Omega) \quad{ }^{1}(\Omega)$, if $u \in H_{0}^{1}(\Omega)$ there exists $\left(u_{n}\right)_{n} \subset \mathscr{C}_{c}^{\infty}(\Omega)$ such that $u_{n} \xrightarrow{n \rightarrow \infty} u$ strongly in $H^{1}(\Omega)$. Then by continuity of the trace operator

$$
0=\left.\left.\left.u_{n}\right|_{\partial \Omega} \longrightarrow u\right|_{\partial \Omega} \Longrightarrow u\right|_{\partial \Omega}=0
$$

For the converse, let $u \in H^{1}(\Omega)$ and suppose that $\left.u\right|_{\partial \Omega}$, then $u \in H_{0}^{1}$ (which is left as an exercise).

To prove

$$
\int_{\Omega}|\nabla u|^{2} \geqslant C\|u\|_{H^{1}(\Omega)}^{2}=C \int_{\Omega}\left(|\nabla u|^{2}+|u|^{2}\right) \Longleftrightarrow \int_{\Omega}|\nabla u|^{2} \geqslant C\|u\|_{H^{1}(\Omega)}^{2}=C \int_{\Omega}|u|^{2}
$$

Assume by contradiction that the latter inequality fails. Then there exits a sequence $\left(u_{n}\right)_{n} \subset$ $H_{0}^{1}(\Omega)$ such that $\int_{\Omega}\left|u_{n}\right|^{2}=1$, but $\int_{\Omega}\left|\nabla u_{n}\right|^{2} \rightarrow 0$. Since u_{n} is bounded in $H^{1}(\Omega)$, we can descend to a subsequence and assume that $u_{n} \rightarrow u$ weakly in $H^{1}(\Omega)$ and thus strongly in $L^{2}(\Omega)$. We have

$$
\begin{gathered}
\int_{\Omega}|u|^{2}=\lim _{n \rightarrow \infty} \int_{\Omega}\left|u_{n}\right|^{2}=1 \\
\int_{\Omega}|\nabla u|^{2} \leqslant \liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2}=0
\end{gathered}
$$

i.e. $u=$ const on Ω, which means that $u=$ const $\neq 0$. But

$$
0=\left.\left.u_{n}\right|_{\partial \Omega} \longrightarrow u\right|_{\partial \Omega}
$$

strongly in $L^{2}(\partial \Omega)$ and thus $\left.u\right|_{\partial \Omega}=0$ which is a contradiction. z q.e.d.

Consider the Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u+u=f \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

Theorem 10.24. If $f \in L^{2}(\Omega)$, then there exits a unique $u \in H_{0}^{1}(\Omega)$ such that u is a solution of the Dirichlet problem in the distributional sense. Further

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi+\int_{\Omega} u \varphi=\int_{\Omega} f \varphi
$$

for all $\varphi \in H_{0}^{1}(\Omega)$, and u minimises

$$
E=\inf \left\{\left.\frac{1}{2}\|v\|_{H^{1}}-\int_{\Omega} f v \right\rvert\, v \in H_{0}^{1}\right\}
$$

Proof. Using that $T: \varphi \mapsto \int f \varphi$ is a continuous functional on $L^{2}(\Omega)$ it follows that T is continuous on $H_{0}^{1}(\Omega)$, then by the Riesz representation theorem if follows that there exists a unique $u \in H_{0}^{1}$ such that $\langle u, \cdot\rangle_{H^{1}}=\langle f, \cdot\rangle_{L^{2}}$ (where we used that $H_{0}^{1}(\Omega)$ is a Hilbert space with norm $\left.\|\cdot\|_{H^{1}(\Omega)}\right)$. Thus for all $\varphi \in H_{0}^{1}(\Omega)$

$$
\int f \varphi=\int \nabla u \cdot \nabla \varphi+\int u \varphi
$$

and for $\varphi \in \mathscr{C}_{c}^{\infty}(\Omega)$

$$
\int f \varphi=-\int u \Delta \varphi+\int u \varphi
$$

which implies that

$$
f=-\Delta u+u \quad \text { in } \mathscr{D}^{\prime}(\Omega)
$$

q.e.d.

Consider the von Neumann problem

$$
\begin{cases}-\Delta u+u=f & \text { in } \Omega \\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

Theorem 10.25. For all $f \in L^{2}(\Omega)$ there exists a unique $u \in H^{1}(\Omega)$ such that it solves the von Neumann problem in the distributional sense and

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi+\int_{\Omega} u \varphi=\int_{\Omega} f \varphi
$$

for all $\varphi \in H^{1}(\Omega)$. Moreover, u minimises

$$
E=\inf \left\{\|v\|_{H^{1}(\Omega)}^{2}-\int_{\Omega} f v \mid v \in H^{1}(\Omega)\right\}
$$

Remark 10.26. $\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}$ is well-defined if $u \in H^{2}(\Omega)$, since then

$$
\left.H^{1} \ni \nabla u \longmapsto \nabla u\right|_{\partial \Omega}
$$

makes sense by the trace theorem, therefore need some regularity.
To motivate this consider the case $u \in \mathscr{C}^{2}(\Omega),-\Delta u+u=f$ pointwise. Using

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi=\int_{\Omega}(-\Delta u) \varphi+\int_{\partial \Omega} \frac{\partial u}{\partial n} \varphi=\int f \varphi-\int u \varphi
$$

by the PDE. But

$$
\int(-\Delta) \varphi=\int f \varphi-\int u \varphi
$$

by equation $-\Delta u=f u$ and there

$$
\int_{\partial \Omega} \frac{\partial u}{\partial n} \varphi=0
$$

for all $\varphi \in \mathscr{C}^{2}\left(\mathbb{R}^{d}\right), \frac{\partial u}{\partial n}=0$ on $\partial \Omega$.

When is a weak solution in $H^{2}(\Omega)$? Does $f \in L^{2}(\Omega)$ imply that $\Delta u \in L^{2}(\Omega)$. If $\Omega=\mathbb{R}^{d}$, it is true that $u, \Delta u \in L^{2}$, then $u \in H^{2}$ (via the Fourier transform). If Ω is a bounded set one has to be more careful.

Definition 10.27. We say that $\partial \Omega \in \mathscr{C}^{2}$ if for all $x \in \partial \Omega$, there exists an open neighbourhood U of x, such that

- there exists $h: U \rightarrow Q$ such that $h \in \mathscr{C}^{2}(\bar{U}), h \in \mathscr{C}^{2}(h(\bar{U}))$.
- $h(U \cap \Omega)=Q_{+}$
- $h(U \cap \partial \Omega)=Q_{0}$.

Theorem 10.28 (Regularity). Assume that Ω has $\partial \Omega \in \mathscr{C}^{2}$ and $f \in L^{2}$.

1) If $u \in H_{0}^{1}(\Omega)$, for all $\varphi \in H_{0}^{1}(\Omega)$

$$
\int \nabla u \cdot \nabla \varphi+\int u \varphi=\int f \varphi
$$

then $u \in H^{2}(\Omega)$.
2) If $u \in H^{1}(\Omega)$, for all $\varphi \in H^{1}(\Omega)$

$$
\int \nabla u \cdot \nabla \varphi+\int u \varphi=\int f \varphi
$$

then $u \in H^{2}(\Omega)$ and

$$
\frac{\partial u}{\partial n}=\boldsymbol{n} \cdot \nabla u=0, \quad \text { on } \partial \Omega
$$

We shall prove this via the translation method by Nirenberg. But first we shall need a lemma.

Definition 10.29. For $h \in \mathbb{R}^{d}$ we define

$$
\left(D_{h} u\right)(x)=\frac{u(x+h)-u(x)}{|h|} .
$$

Lemma 10.30. Let $u \in L^{2}(\Omega)$, then the following are equivalent
(i) $u \in H^{1}(\Omega)$
(ii)

$$
\sup _{\substack{\varphi \in \mathscr{D}(\Omega) \\\|\varphi\|_{2} \leqslant 1}}\left|\int_{\Omega} u \partial_{x_{i}} \varphi\right|<\infty
$$

(iii) For all h small, and all $\Omega^{\prime} \subset \subset \Omega$

$$
\left\|D_{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)} \leqslant C
$$

Proof.
(i) \Rightarrow (ii) Obvious as for all $\varphi \in \mathscr{C}_{c}^{\infty}(\Omega)$

$$
\left|\int_{\Omega} u \partial_{x_{i}} \varphi\right|=\left|-\int_{\Omega} \partial_{x_{i}} u \varphi\right| \leqslant\|\nabla u\|_{L^{2}(\Omega)}\|\varphi\|_{L^{2}(\Omega)}
$$

(ii) \Rightarrow (i) Define for all $\varphi \in \mathscr{D}(\Omega)$

$$
T(\varphi)=\int_{\Omega} u \partial_{x_{i}} \varphi^{\iota}
$$

Then T is linear and bounded, as $|T(\varphi)| \leqslant C\|\varphi\|_{L^{2}(\Omega)}$.
Thus T can be extended to a linear, bounded mapping in $L^{2}(\Omega)$ by the Riesz theorem there exists $v \in L^{2}(\Omega)$ such that for all $\varphi \in L^{2}(\Omega)$

$$
T(\varphi)=\int_{\Omega} v \varphi
$$

In particular if $\varphi \in \mathscr{D}$. Thus

$$
\int_{\Omega} v \varphi=T(\varphi)=\int_{\Omega} u \partial_{x_{i}} \varphi .
$$

which implies that $\partial_{x_{i}}=-v \in L^{2}(\Omega)$.
(iii) \Rightarrow (ii) For all $\varphi \in \mathscr{D}(\Omega)$, and defining $y=x+h$

$$
\int_{\Omega}\left(D_{h} u\right) \varphi=\int_{\Omega} \frac{u(x+h)-u(x)}{|h|} \varphi(x) \mathrm{d} x=\int_{\Omega} \frac{u(y) \varphi(y-h)-u(y) \varphi(y)}{h} \mathrm{~d} x=\int_{\Omega} u\left(D_{-h} \varphi\right)
$$

Thus

$$
\left|\int_{\Omega} u\left(D_{-h} \varphi\right)\right|=\left|\int_{\Omega}\left(D_{h} u\right) \varphi\right| \leqslant\left\|D_{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}\|\varphi\|_{L^{2}}
$$

Choosing $h=\left(0, \ldots, h_{i}, \ldots, 0\right)$ and $h_{i} \rightarrow 0$ then

$$
\left|\int_{\Omega} u \partial_{x_{i}} h\right| \leqslant C\|\varphi\|_{L^{2}(\Omega)}
$$

for all $\varphi \in \mathscr{D}(\Omega)$.
(i) $\Rightarrow($ iii $)$ Let $u_{n} \in \mathscr{C}^{\infty}(\bar{\Omega})$ and $u_{n} \rightarrow u$ strongly in $H^{1}(\Omega)$. Then

$$
\begin{aligned}
& \left(D_{h} u_{n}\right)(x)=\frac{u_{n}(x+h)-u_{n}(x)}{|h|}=\frac{1}{|h|} \int_{0}^{1} h \cdot \nabla u_{n}(x+t h) \mathrm{d} t \\
& \left|\left(D_{h} u_{n}\right)(x)\right|^{2}=\left|\int_{0}^{1} \frac{h}{|h|} \cdot \nabla u_{n}(x+t h) \mathrm{d} t\right|^{2} \leqslant \int_{0}^{1}\left|\nabla u_{n}(x+t h)\right|^{2} \mathrm{~d} t \\
& \int_{\Omega^{\prime}}\left|D_{h} u_{n}\right|^{2} \leqslant \int_{\Omega^{\prime}} \int_{0}^{1}\left|\nabla u_{n}(x+t h)\right|^{2} \mathrm{~d} t \mathrm{~d} x=\int_{0}^{1} \underbrace{\int_{\Omega^{\prime}}\left|\nabla u_{n}(x+t h)\right|^{2} \mathrm{~d} x}_{\leqslant \int_{\Omega}\left|\nabla u_{n}\right|^{2}} \mathrm{~d} t=\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

where h has to be chosen small enough so that $\Omega^{\prime}+h \subset \Omega$.
Taking n to infinity $\left\|D_{h} u\right\|_{L^{2}(\Omega)}^{2}$ we find that

$$
\left\|D_{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}^{2} \leqslant\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}
$$

Thus (iii) holds with $C=\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}$ for all $u \in H^{1}(\Omega)$.
q.e.d.

Proof of Theorem 10.28. In the case $\Omega=\mathbb{R}^{d}$, it follows from the variational formula

$$
\int \nabla u \cdot \nabla \varphi+\int u \varphi=\int f \varphi
$$

for all $\varphi \in H^{1}\left(\mathbb{R}^{d}\right)$. We can choose $\varphi=D_{-h}\left(D_{h} u\right) \in H^{1}\left(\mathbb{R}^{d}\right)$ for all $h \neq 0$. Thus

$$
\begin{aligned}
\int u \varphi & =\int u D_{-h}\left(D_{h} u\right)=\int D_{h} u \cdot D_{h} u=\int\left|D_{h} u\right|^{2} \\
\int \nabla u \cdot \nabla \varphi & =\int \nabla u \cdot \nabla D_{-h}\left(D_{h}(u)\right)=\int \nabla u D_{-h}\left(D_{h}(\nabla u)\right) \int\left|D_{h}(\nabla u)\right|^{2}
\end{aligned}
$$

Thus

$$
\int\left|D_{h}(\nabla u)\right|^{2}+\int\left|D_{h} u\right|^{2}=\int f D_{-h}\left(D_{h} u\right) \leqslant\|f\|_{2}\left\|D_{-h}\left(D_{h} u\right)\right\|_{2} \leqslant\|f\|_{2}\left\|\nabla\left(D_{h} u\right)\right\|_{2}=\|f\|_{2}\left\|D_{h}(\nabla u)\right\|_{2}
$$ and thus

$$
\left\|D_{h}(\nabla u)\right\|_{2} \leqslant\|f\|_{2}, \quad\left\|D_{h}(\nabla u)\right\|_{2} \leqslant\|f\|_{2}
$$

from which follows that $\nabla u \in H^{1}\left(\mathbb{R}^{d}\right)$ by the lemma and therefore $u \in H^{2}\left(\mathbb{R}^{d}\right)$, i.e. $\partial_{x_{i}} \partial_{x_{j}} u \in$ L^{2} 。

Now we shall consider the case $\Omega=\mathbb{R}_{+}^{d}$.
Assume that $u \in H^{1}\left(\mathbb{R}_{+}^{d}\right)$ and

$$
\int \nabla u \cdot \nabla \varphi+\int u \varphi=\int f \varphi
$$

for all $\varphi \in H^{1}\left(\mathbb{R}_{+}^{d}\right)$ (for the von Neumann problem! For the Dirichlet problem we only need to change H^{1} to H_{0}^{1}). By the same argument we have

$$
\left\|D_{h}(\nabla u)\right\|_{2} \leqslant\|f\|_{2}
$$

for all h parallel to Γ. Choosing $h=\left(0, \ldots, h_{i}, \ldots, 0\right)$ for $i=1, \ldots, d-1$ and $h_{i} \rightarrow 0$, it follows from the lemma that $\partial_{x_{i}} \nabla u \in L^{2}$ for all $i=1, \ldots, d-1$ and thus $\partial_{x_{i}} \partial_{x_{j}} u \in L^{2}$ for $j=1, \ldots, d$ and $i=1, \ldots, d-1$.

Is $\partial_{x_{d}}^{2} u \in L^{2}$? Yes, because $-\sum_{i=1}^{d} \partial_{x_{i}}^{2} u=-\Delta u=f-u \in L^{2}(\Omega)$ and therefore

$$
\partial_{x_{d}}^{2} u=-\Delta+\sum_{i=1}^{d-1} \partial_{x_{i}}^{2} u \in L^{2}(\Omega)
$$

For the general case of Ω open, bounded and $\partial \Omega \in \mathscr{C}$.
We know that there exist a finite cover of $\Omega=: U_{0}$ via charts and a smooth partition of unity $\left\{\vartheta_{i}\right\}$ subordinate to that cover.

Defining $u_{i}=\vartheta_{i} u$ we only need to prove that $u_{i} \in H^{2}$.
For $i=0,-\Delta u+u=f$ in $\mathscr{D}^{\prime}(\Omega)$ because for all $\varphi \in \mathscr{C}_{c}^{\infty}$
$-\Delta\left(\vartheta_{0} u\right)=-\Delta \vartheta_{0} u-2 \Delta \nabla \vartheta_{0} \cdot \nabla u-\vartheta_{0} \Delta u=-\Delta \vartheta_{0} u-2 \Delta \nabla \vartheta_{0} \cdot \nabla u-\vartheta_{0}(f-u)+\vartheta_{0} u \equiv g \in L^{2}(\Omega)$

Since $\vartheta_{0} u \in H^{1}(\Omega)$ and $\vartheta_{0} u$ has compact support we return to the case $\Omega=\mathbb{R}^{d}$ and thus $\vartheta_{0} u \in H^{2}$.

For $i=1, \ldots, N, u_{i}=$ theta $_{i} u$ satisfies

$$
-\Delta\left(\vartheta_{i} u\right)+\vartheta_{i} u=g_{i} \in L^{2}\left(U_{i} \cap \Omega\right)
$$

Define $v_{i}=u_{i} \circ h_{i}^{-1}$. The function v_{i} satisfies a second order elliptical equation

$$
\sum_{k, l=1}^{d} \int_{Q_{+}} a_{k l} \partial_{x_{k}} v_{i} \partial_{x_{l}} \varphi++\vartheta_{0} u b v_{i} \varphi=+\vartheta_{0} u \tilde{g}_{i} \varphi
$$

for all $\varphi \in H^{1}\left(Q_{+}\right)$. By a similar argument in \mathbb{R}_{+}^{d}, we can show that $v_{i} \in H^{2}\left(Q_{+}\right)$. Since the matrix a is symmetric we can change variables to return to the standard $-\Delta$ case.

Because $v_{i} \in H^{2}\left(Q_{+}\right)$and $h, h^{-1} \in \mathscr{C}^{2}$, it follows that $u_{i} \in H^{2}$. Thus $u=\sum_{i} u_{i} \in H^{2}$.
To prove the von Neumann problem $\partial_{\boldsymbol{n}} u=0$ we shall need the Green Formulae, which proven below.

By regularity we have $u \in H^{2}(\Omega)$

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi+\int_{\Omega}=\int_{\Omega} f \varphi
$$

for all $\varphi \in H^{1}(\Omega)$. If we choose $\varphi \in \mathscr{D}$ then

$$
-\Delta u+u=f
$$

in $\mathscr{D}^{\prime}(\Omega)$, and $u \in H^{2}(\Omega)$ implies that the equality holds in the L^{2} sense. Integrating against $\varphi \in H^{1}(\Omega)$ and using the second Green formula we find that

$$
\int(-\Delta u) \varphi+\int u \varphi=\int f \varphi
$$

implies

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi+\int_{\partial \Omega} \frac{\partial u}{\partial n} \varphi+\int_{\Omega} u \varphi=\int_{\Omega} f \varphi
$$

for all $\varphi \in H^{1}(\Omega)$. It follows for all $\varphi \in H^{1}(\Omega)$

$$
\int_{\partial \Omega} \frac{\partial u}{\partial n} \varphi=0
$$

and therefore

$$
\frac{\partial u}{\partial n} \quad \text { on } \partial \Omega
$$

Theorem 10.31 (Green Formulae). For Ω open and bounded with $\partial \Omega \in \mathscr{C}{ }^{1}$. If $u, \varphi \in$ $H^{1}(\Omega)$, then

$$
\int_{\Omega} \partial_{x_{i}} u \varphi \mathrm{~d} x=-\int_{\Omega} u \partial_{x_{i}} \varphi \mathrm{~d} x+\left.\left.\int_{\partial \Omega} u\right|_{\partial \Omega} \varphi\right|_{\partial \Omega} n_{i} \mathrm{~d} S(x)
$$

where \boldsymbol{n} is the outward pointing unit normal vector to $\partial \Omega$.
Moreover, if $u \in H^{2}(\Omega)$

$$
\int_{\Omega}(\Delta u) \varphi=-\int_{\Omega} \nabla u \cdot \nabla \varphi+\int_{\partial \Omega} \frac{\partial u}{\partial n} \varphi \mathrm{~d} S(x) .
$$

Proof. These formulae follow from the continuous case as the trace operator is continuous. q.e.d.

Example 10.32 (Von Neumann Problem). Let $\Omega=(0,1)$ and consider the von Neumann problem for $f \in L^{2}((0,1))$

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \quad \text { in }(0,1) \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

We can prove that there exists a unique $u \in H^{1}((0,1))$ such that

$$
\int u^{\prime} \varphi^{\prime}+\int u \varphi=\int f \varphi
$$

for all $\varphi \in H^{1}((0,1))$. If we choose $\varphi \in \mathscr{D}$ it follows that

$$
-u^{\prime \prime}+u=f \quad \text { in } \mathscr{D}^{\prime}((0,1))
$$

But $u, f \in L^{2}$ and therefore $u^{\prime \prime}=u-f \in L^{2}$ which implies that $u \in H^{2}((0,1))$. And therefore

$$
0=\int_{0}^{1}\left(-u^{\prime \prime}+u-f\right) \varphi=\int u^{\prime} \varphi^{\prime}+\int u p h i \int f \varphi+\left.u^{\prime} \varphi\right|_{0} ^{1}
$$

for all $\varphi \in H^{2}((0,1))$. And thus we have

$$
u^{\prime}(1) \varphi(1)-u^{\prime}(0) \varphi(0)=0
$$

for all $\varphi \in H^{1}(0,1)$. Choosing $\varphi(x)=x$ implies that $u^{\prime}(1)=0$ and $\varphi(x)=1-x$ implies $u^{\prime}(0)=0$.

Example 10.33 (Periodic Problem). Consider the periodic problem, for $f \in L^{2}$

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \\
u(0)=u(1) \\
u^{\prime}(0)=u^{\prime}(1)
\end{array}\right.
$$

To solve this consider the set

$$
H=\left\{u \in H^{1}((0,1)) \mid u(0)=u(1)\right\}
$$

H is a Hilbert space, with H^{1} inner product. Thus there exists a unique u such that

$$
\int u^{\prime} \varphi^{\prime}+\int u \varphi=\int f \varphi
$$

for all $\varphi \in H$. From this we can deduce that $u \in H^{2}$, and $u^{\prime}(0)=u^{\prime}(1)$ which is left as an exercise.

Example 10.34 (Inhomogeneous Von Neumann Problem). Consider the Robin problem, for $f \in L^{2}$ real valued

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \\
u^{\prime}(0)=\alpha \\
u^{\prime}(1)=\beta
\end{array}\right.
$$

Theorem 10.35. For all $f \in L^{2}((0,1))$ there exists a unique solution $u \in H^{2}((0,1))$ to the inhomogeneous von Neumann problem.

Proof. What is the variational formula? Assume that $u \in H^{2}((0,1))$ is a solution then

$$
\int_{0}^{1}\left(-u^{\prime \prime}+u-f\right) \varphi=0
$$

for all $\varphi \in H^{1}((0,1))$. Integrating by parts

$$
\int_{0}^{1}-u^{\prime \prime} \varphi=\int_{0}^{1} u^{\prime} \varphi^{\prime}-u^{\prime}(1) \varphi(1)+u^{\prime}(0) \varphi(0)
$$

which yields

$$
\int_{0}^{1} u^{\prime} \varphi^{\prime}+\int_{0}^{1} u \varphi-\int_{0}^{1} f \varphi-u^{\prime}(1) \varphi(1)+u^{\prime}(0) \varphi(0)=0
$$

for all $\varphi \in H^{1}((0,1))$. If $u^{\prime}(0)=\alpha, u^{\prime}(1)=\beta$ this reduces to

$$
\int_{0}^{1} u^{\prime} \varphi^{\prime}+\int_{0}^{1} u \varphi=\int_{0}^{1} f \varphi+\beta \varphi(1)-\alpha \varphi(0)
$$

for all $\varphi \in H^{1}((0,1))$.
Thus define the linear functional

$$
\begin{aligned}
H^{1}((0,1)) & \longrightarrow \mathbb{R} \\
\mathscr{L}: & \varphi \longmapsto \int_{0}^{1} f \varphi+\beta \varphi(1)-\alpha \varphi(0)
\end{aligned}
$$

which is bounded as

$$
|\mathscr{L}(\varphi)| \leqslant\left|\int_{0}^{1} f \varphi+\beta \varphi(1)-\alpha \varphi(0)\right| \leqslant\|f\|_{2}\|\varphi\|_{2}+(|\beta|+|\alpha|)\|\varphi\|_{\infty} \leqslant C\|\varphi\|_{H^{1}}
$$

where the last inequality follows from the one dimensional Sobolev inequality.
Thus \mathscr{L} is a linear, bounded functional on H^{1} and therefore there exists a unique $u \in$ $H^{1}((0,1))$ such that

$$
\int_{0}^{1} u^{\prime} \varphi^{\prime}+\int_{0}^{1} u \varphi=\langle u, \varphi\rangle_{H^{1}}=\mathscr{L}(\varphi)
$$

for all $\varphi \in H^{1}((0,1))$. Hence we have found a unique H^{1} solution the problem integrated by parts. To finish the proof we need to show that $u \in H^{2}((0,1))$.

For this purpose we note that for all $\varphi \in \mathscr{D}((0,1))$

$$
\int_{0}^{1} u^{\prime} \varphi^{\prime}+\int_{0}^{1} u \varphi=\int_{0}^{1} f \varphi \Longrightarrow-u^{\prime \prime}+u=f \quad \text { in } \mathscr{D}^{\prime}((0,1)) \Longrightarrow u^{\prime \prime}=u-f \in L^{2}
$$

and thus $u \in H^{2}((0,1))$. Therefore if for all $\varphi \in H^{1}((0,1))$

$$
\int_{0}^{1}\left(-u^{\prime \prime}+u-f\right) \varphi=0
$$

then

$$
\int_{0}^{1} u^{\prime} \varphi^{\prime}+\int_{0}^{1} u \varphi-\int_{0}^{1} f \varphi-u^{\prime}(1) \varphi(1)+u^{\prime}(0) \varphi(0)=0
$$

but we already know that

$$
\int_{0}^{1} u^{\prime} \varphi^{\prime}+\int_{0}^{1} u \varphi-\int_{0}^{1} f \varphi-\beta \varphi(1)+\alpha \varphi(0)=0
$$

and therefore

$$
-u^{\prime}(1) \varphi(1)+u^{\prime}(0) \varphi(0)=-\beta \varphi(1)+\alpha \varphi(0)
$$

for all $\varphi \in H^{1}((0,1))$. Choosing $\varphi(x)$ and $\varphi(x)=1-x$ imply respectively $-u^{\prime}(1)=-\beta$ and $u^{\prime}(0)=\alpha$. q.e.d.

Example 10.36 (Robin Problem). Consider the Robin problem, for $f \in L^{2}$

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \\
u^{\prime}(0)=u(0) \\
u(1)=0
\end{array}\right.
$$

There exists a unique $H^{2}(0,1)$ for this problem.

Theorem 10.37. For all $f \in L^{2}((0,1))$ there exists a unique $u \in H^{2}((0,1))$ solving the Robin problem.

Proof. Assume that u is a solution. Then for all $\varphi \in H^{1}$

$$
0=\int_{0}^{1}\left(-u^{\prime \prime}+u-f\right) \varphi=\int_{0}^{1}\left(u^{\prime} \varphi^{\prime}+u \varphi-f \varphi\right)-u^{\prime}(1) \varphi(0)+\underbrace{u^{\prime}(0) \varphi(0)}_{=u(0) \varphi(0)}
$$

which is equivalent to

$$
\int_{0}^{1} u^{\prime} \varphi^{\prime}+\int_{0}^{1} u \varphi+u(0) \varphi(0)=\int_{0}^{1} f \varphi
$$

for all $\varphi \in H^{1}$.
Now define the linear functional

$$
\begin{aligned}
H^{1}((0,1)) & \longrightarrow \mathbb{R} \\
\varphi & \longmapsto \int_{0}^{1} f \varphi
\end{aligned}
$$

and define the new Hilbert space $\mathscr{H}=H^{1}$ with inner product

$$
\langle u, \varphi\rangle_{\mathscr{H}}=\int_{0}^{1} u^{\prime} \varphi^{\prime}+\int_{0}^{1} u \varphi+u(0) \varphi(0)
$$

We claim that \mathscr{H} is a Hilbert space and that

$$
\|u\|_{H^{1}} \leqslant\|u\|_{\mathscr{H}} \leqslant C\|u\|_{H^{1}}
$$

which follows from $|u(0)|^{2} \leqslant C\|u\|_{H^{1}}^{2}$.
Applying the Riesz theorem for \mathscr{H} we find that there exists a unique $u \in \mathscr{H}=H^{1}((0,1))$ such that

$$
\langle u, \varphi\rangle_{\mathscr{H}}=\mathscr{L}(\varphi)=\int_{0}^{1} u \varphi
$$

for all $\varphi \in \mathscr{H}=H^{1}((0,1))$. Thus there exists a unique H^{1} solution to

$$
\int_{0}^{1} u^{\prime} \varphi^{\prime}+\int_{0}^{1} u \varphi+u(0) \varphi(0)=\int_{0}^{1} f \varphi
$$

for all $\varphi \in H^{1}$.
To prove that $u \in H^{2}((0,1))$ note that for $\varphi \in \mathscr{D}$ we have

$$
-u^{\prime \prime}+u=f \in \mathscr{D}^{\prime} \Longrightarrow u^{\prime \prime} \in L^{2} \Longrightarrow u \in H^{2} \Longrightarrow-u^{\prime \prime}+u=f \in L^{2}
$$

and thus same as above we find that $u^{\prime}(1)=0$ and $u^{\prime}(0)=u(0)$.
q.e.d.

Chapter 11

Schrödinger Dynamics

$$
i \partial_{t} \psi=H \psi
$$

with some initial condition $\psi(t=0)=\psi_{0}$. Here ψ represents the wave function and $|\psi(x)|^{2}$ represents the probability density of a particle in configuration space and $|\hat{\psi}(p)|^{2}$ represents the probability density of a particle in momentum space.
H here is an (unbounded) operator on $L^{2}\left(\mathbb{R}^{d}\right)$ the Hamiltonian and

$$
\langle\psi, H \psi\rangle=\text { energy of } \psi
$$

Example 11.1. Consider fore example for some measurable function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ the operator

$$
H=-\Delta+V(x) \quad \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

For this problem to have a solution we need some conditions on H. Let \mathscr{H} be a Hilbert space. For an inner product $\langle\cdot, \cdot\rangle$ we require

$$
\forall \psi \in D(H):\langle\psi, H \psi\rangle \in \mathbb{R}
$$

where

$$
D(H)=\{\psi \mid H \psi \in \mathscr{H}\} .
$$

Lemma 11.2. Let H be a linear operator on \mathscr{H} with domain $D(H)$ (dense in \mathscr{H}).

Then

$$
\forall \psi \in D(H):\langle\psi, H \psi\rangle \in \mathbb{R} \Longleftrightarrow \forall u, v \in D(H):\langle u, H v\rangle=\langle H u, v\rangle
$$

We call H a symmetric operator in this case.

Definition 11.3 (Adjoint). Let H be an operator on a Hilbert space \mathscr{H} with dense domain $D(H)$. Then we define

$$
H^{*}: D\left(H^{*}\right) \longrightarrow \mathscr{H}
$$

which satisfies

$$
\forall u \in D\left(H^{*}\right) \forall v \in D(H):\langle u, H v\rangle=\left\langle H^{*} u, v\right\rangle
$$

where

$$
D\left(H^{*}\right)=\{u \in \mathscr{H} \mid\langle u, H \cdot\rangle \text { is a linear functional on } v\}
$$

The map is well-defined as $D(H)$ is dense in \mathscr{H}.

Proposition 11.4. If $u \in D\left(H^{*}\right)$, then there exists $f \in H$ such that for all $v \in D(H)$

$$
\langle u, H v\rangle=\langle f, v\rangle
$$

and thus we can define uniquely $H^{*} u:=f$

Proposition 11.5. If H is symmetric, then $H \subset H^{*}$, i.e. $D(H) \subset D\left(H^{*}\right)$ and $\left.H^{*}\right|_{D(H)}=H$.

Definition 11.6. H is called a self-adjoint operator iff $H^{*}=H$ (in particular $D\left(H^{*}\right)=$ $D(H))$.

Proposition 11.7. In finite dimensions, if $H=\left(H_{i j}\right)_{i j}$ is a matrix, then it self-adjoint w.r.t. to the standard inner product iff $H_{j i}=\overline{H_{i j}}$.

Example 11.8. $-\Delta$ is a self-adjoint operator on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $D(-\Delta)=$ $H^{2}\left(\mathbb{R}^{d}\right)$.

Example 11.9. $\mathscr{H}=L^{2}(\Omega, \mu)$ is a measure space, $f: \Omega \rightarrow \mathbb{R}$ measurable, then the multiplication operator

$$
T_{f}: \quad\left(T_{f} u\right)(x)=f(x) u(x)
$$

is a self-adjoint operator with domain

$$
D\left(T_{f}\right)=\left\{u \in L^{2}(\Omega, \mu) \mid f u \in L^{2}(\Omega, \mu)\right\} .
$$

Theorem 11.10 (Spectral Theorem). Assume that A is a self-adjoint operator on a Hilbert space \mathscr{H} with domain $D(A)$. Then there exists a unitary operator $U: \mathscr{H} \rightarrow$ $L^{2}(\Omega, \mu)$ and a measurable function $f: \Omega \rightarrow \mathbb{R}$ such that

$$
U A U^{-1}=T_{f}
$$

Definition 11.11. We call $A \geqslant 0$ iff for all $u \in D(A)\langle u, A u\rangle \geqslant 0$. Further $A \geqslant B$ iff $A-B \geqslant 0$.

Theorem 11.12 (Friedrichs Extension). If $A \geqslant-C$, where A is a symmetric operator and $C \in \mathbb{R}$, then there exists unique self-adjoint extension \tilde{A} of A and

$$
\inf _{\substack{u \in D(\tilde{A}) \\\|u\|=1}}\langle u, \tilde{A} u\rangle=\inf _{\substack{u \in D(A) \\\|u\|=1}}\langle u, A u\rangle .
$$

Theorem 11.13 (Kato-Rellich). If A is a self-adjoint operator and B symmetric with $D(B) \supset D(A)$, and

$$
\|B u\| \leqslant a\|A u\|+C\|u\|
$$

for all $u \in D(A)$ with $a<1$, then $A+B$ is self-adjoint with $D(A+B)=D(A)$.

Example 11.14. If $V \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$, then $-\Delta+V$ is self-adjoint on $H^{2}\left(\mathbb{R}^{3}\right)$.
Proof. Consider $A=-\Delta, B=V$. For every $\varepsilon>0$ we can write $V=V_{1}+V_{2}$, with $\left\|V_{1}\right\|_{2} \leqslant \varepsilon, V_{2} \in L^{\infty}$. Therefore

$$
\begin{aligned}
\|V u\|_{2} & \leqslant\left\|V_{1} u\right\|_{2}+\left\|V_{2} u\right\|_{2} \leqslant\left\|V_{1}\right\|_{2}\|u\|_{\infty}+\left\|V_{2}\right\|_{\infty}\|u\|_{2} \leqslant C \varepsilon\|u\|_{H^{1}}+C_{\varepsilon}\|u\|_{2} \leqslant \\
& \leqslant C \varepsilon\|\Delta u\|_{2}+C_{\varepsilon}\|u\|_{2}
\end{aligned}
$$

by the Sobolev embedding as $L^{\infty} \subset H^{2}$. Choosing $a=C \varepsilon<1$ we find the desired result. q.e.d.

Theorem 11.15. If A is self-adjoint, then the equation

$$
\left\{\begin{array}{l}
i \partial_{t} u=A u \\
u(t=0)=u_{0}
\end{array}\right.
$$

has a unique solution, if $u_{0} \in D(A)$ and

$$
u(t, \cdot) \in \mathscr{C}^{1}((0, \infty), \mathscr{H}) \cap \mathscr{C}([0, \infty), D(A))
$$

with $\|u\|_{D(A)}=\|u\|+\|A u\|$ for all $D(A)$.
"Symbolically" we can write

$$
u(t)=e^{-i t A} u_{0}
$$

ProofStep 1 Assume that A is bounded. Then $e^{-i t A}$ well-defined by

$$
e^{-i t A}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}(-i A)^{n}
$$

which is in the operator (norm) topology as

$$
\left\|e^{-i t A}\right\| \leqslant \sum_{n=0}^{\infty} \frac{t^{n}}{n!}\|A\|^{n}=e^{t\|A\|}<\infty
$$

Thus we can define $u(t)=e^{-i t A} u_{0}$ and check that it satisfies

$$
i \partial_{t}\left(e^{-i t A}\right)=A e^{-i t A}
$$

Step 2 Assume that $A \geqslant 0$. Then we can define $A_{n}=\frac{n A}{A+n^{2}}$ is a bounded operator.
By step 1 there exists a solution u_{n} to the corresponding problem with A_{n}.
If we can prove that $u_{n}(t) \xrightarrow{n \rightarrow \infty} u(t)$ (in L^{2}) then we have found a solution.
Noting that $e^{-i t A}$ is unitary it follows that $\frac{d}{d t}\left\|u_{n}(t)\right\|_{2}=0$ which implies that $\left\|u_{n}(t)\right\|=$ u_{0} and therefore we find that

$$
\begin{aligned}
\frac{d}{d t}\left\|u_{n}-u_{m}\right\|^{2} & =\frac{d}{d t}\left(\left\|u_{n}\right\|^{2}+\left\|u_{m}\right\|^{2}+2 \mathfrak{\Re}\left\langle u_{m}, U-n\right\rangle\right)=2 \mathfrak{\Re}\left(\left\langle-i A_{m} u_{n}, u_{m}\right\rangle+\left\langle u_{n}, i A_{n} u_{m}\right\rangle\right)= \\
& =4 \Im\left\langle u_{n},\left(A_{m}-A_{n}\right) u_{m}\right\rangle \xrightarrow{n, m \rightarrow \infty} 0
\end{aligned}
$$

as

$$
A_{m}-A_{n}=\frac{n A}{A+n}-\frac{m A}{A+m}=\frac{(m-n)}{(A+m)(A+n)} \sim \frac{m-n}{m n} \xrightarrow{m, n \rightarrow \infty} 0
$$

This implies that $u_{n}(t)$ converges to some $u(t)$ in \mathscr{H} which solves the equation.
q.e.d.

[^0]: ${ }^{1}$ Here we shall use the convention $\langle f, g\rangle=\int \bar{f}(x) g(x) \mathrm{d} x$

[^1]: ${ }^{1} 1-e^{-s} \leqslant \min \{1, s\}$

[^2]: ${ }^{1}$ Since \mathscr{C}_{c}^{∞} is dense in $H^{1}\left(\mathbb{R}^{3}\right)$ one only needs to consider a $g \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ and take $h \in \mathscr{C}_{c}^{\infty}$, with $0 \leqslant h \leqslant 1, h(x)=1$ if $|x| \leqslant 1$, and define $g_{n}(1-h(n x)) g(x) \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{3} \backslash\{0\}\right)$.

