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Chapter 1

LP-Spaces

Definition 1.1. Let 2 be a set, ¥ a collection of subsets of €2 which is a o-algebra and

let 1 : 3 — [0, 00] be a measure. We call (€2, 3, 1) a measure space. O

Example 1.2. Let Q C R be open, ¥ the Borel-o-algebra, i := A% the Borel-Lebesgue

measure, uniquely characterised by

N([ahbl] Koene X [ambn]) = H ‘bj - aj"

é Y
Definition 1.3. Given a measure space (2,%, ) and f: Q — R and f measurable.

Define Sf(t) := f~*((¢,00)) and note that Sf is monotone and non-increasing. Then
Ff:R—[0,00], Ff(t) = pu(Sf(t)), for t € R, is decreasing in t.
For f > 0 everywhere define

[e.9]

[ t@u@) = [ Fr

where the r.h.s. is a Riemann-integral.

If the integral is not infinite, we say that f is Lebesgue-integrable.

For f : 2 — C, f is measurable iff R f and S f are. For all x € R let 24 := max{+£z, 0}.
Then

f=@R = R)_+i(Sf) —i(SS)
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If (R f), and (If), are integrable, we say that f is integrable and

[ = f@ro - [ auri [ep,m—i [©n

Q Q Q

An alternative construction: First define the Lebesgue integral on simple function and

. then pass to f : 2 — [0,00) by approximation. O )

~
Corollary 1.4. For all f : Q — C measurable and integrable for all € > 0 there exists

ap. €8 such that
/u )du(z) <

\
Theorem 1.5 (Monotone Convergence). Let (f;),cy a non-decreasing sequence of non-

negative integrable functions on (2,3, p) (i.e. p-a.e. (fj(z)); for x € Q1 is increasing),
then

lim f;(x) = f()

]—)OO

1s measurable and

lm/ﬁ ) /hmM)<n

Theorem 1.6 (Dominated Convergence). Let (f;)._x be a sequence of integrable complex-

jEN
valued function on (Q, X, p) which converge to f pointwise p-a.e. If there exists a G > 0
integrable on (2, X, ) satisfying | f;(z)| < G(z) for all j € N p-a.e., then f is integrable
and

lim [ f( /} Jpu(

j—+o0
Q




4 N
Theorem 1.7 (Fatou’s Lemma). Let (fj)jeN be a non-negative, integrable on (2, %, 1).
Then f(x) :=liminf; , f;(x) is measurable and

hm 1nf / fi(x)dp(x / f(x)du(x
G U V.

é Y
Theorem 1.8 (Brezis-Lieb, refinement of Fatou’s Lemma). Let (f;);oy : € — C be

measurable and converging towards to f : Q — C p-a.e. and for p € (0,00) let there
exist a C' > 0 such that for all j € N f |fi(x)Pdu(z) < C. Then

tim [IH@P - 15@) - F)P - |f@)Pldua) =0

7
Corollary.

/ 5@ Pdu(z) / FPdu+ / f = £;Pdu + o(1)

Proof of [Theorem 1.8, By Fatou’s lemma [ |f[Pdu < C.
9)
We claim that for all p € (0,00) and all £ > 0 there exists ¢. > 0 such that for all a,b € C

lla +b” = [bIP] < e[b” + ccfal?

the proof of which is an exercise.

For all j € Nlet g; := f; — f, then lim;_, g;(x) = 0 p-a.e. Now fix € > 0.

0< [+ = las = I#Pldu <z [ losrau+ [ Goau
Q Q

Q
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with

Gie(x) = |If+ g =lglP =P —elgl"), <A +c)lfIP

7

TV
<If+g51P =g [PI+] fIP<elg; [P+ (14ce) | fIP

and thus by dominated convergence [ G;.du Emea 0, on the other hand

/ 0,7yt < / (Uf] + 1, du2r < 24c,

taking lim sup and letting ¢ — 0 and the claim follows. q.e.d.

For (21, X1, 1), (22, X9, pi2) o-finite measure spaces and define the product o-algebra, ¥;®3,
as the smallest g-algebra containing all rectangles {A1 X Ay ‘ AL e, A e 22}. Then there

exists a unique product measure p; ® o on Xy ® Yo that satisfies

VA; €3, =1,2 (111 ® p2) (A1 x Ag) = p (A1) pa(As)

[ Y
Theorem 1.9 (Fubini-Tonelli). If f : Q; x Q5 — C is 1 ® Xy measurable, then for
g e {(fﬁf)Jr, (Rf)_,(Sf),, (%f)_} the maps

1 |—>/g(x1,x2)dﬂ2(x2)
Qo

T r—)/g(ml,@)dﬂl(aﬁ)
(971

are respectively i and o measurable.

If f 20, i1 ® ps-a.e., then

/ fd(pn @ po) ://f(xlaxz)dm(ﬂfz)dﬂl(xl) ://f(f'flaxz)dﬂl(aﬁ)d#z(ffz)
Q1 Qo

Q1 xQ2 Qx

The same holds for f : 0y x Qs — C provided one the above integrals is finite for
£ O

. J

Let (€2,%, 1) be a measure space.



é Y

Definition 1.10 (LP-space). For p € [1,00), let

LP(Q, dp) = {f:Q-=C ‘ [ is measurable and | f|” is integrable}.
Introducing the equivalence relation
fr~gie= INeEX: u(N)=0AVz € N°: f(z) = g(z) < f =g p-ae.

We define LP(Q, dy) := LP(Q,du)/ ~. LP is a vector space over C with pointwise linear

operations on LP. This follows from |a + |7 < 2°~(|a? + |B[P) for all a, 8 € C.

We define the norm y

1= | [ 17@Pduta)
Q
on LP(Q,du), which is only a semi-norm on LP(€2, du).
Further
Lo(Q,dp) = {f: Q= C | f is measurable, K > 0: | f(z)| < K p-a.e.}
For f € L*>(Q,du) we define the norm
| flloo := inf{K| |f(z)] < K prae.}.

A L y
é Y

Theorem 1.11 (Holder’s Inequality). Let p,q € [1,00] be daul indices, i.e. % + % = 1.
For f € LP(Q,du),g € LY(Q,du) then fg € L'(Q,du) and

(a) ()
/ ]| € / Fllgldse < 191l
Q

Equality holds at (a) iff there exists a 9 € R such that f(x)g(z) = €| f(z)||g(x)| p-a.e.
For f # 0, equality holds at (b) iff there exists a X\ € R such that for p € (1,00),
lg(x)] = A f(x)[P~! p-a.e. Forp=1, |g(z)] < A p-a.e. and |g(x)| = X\ p — a.e. when

Lf(az:) #0. Forp=o0, |f(z)]| <A p-a.e. and |f(x)| =\ p— a.e. when g(z) # 0. DJ
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é Y
Theorem 1.12 (Minkowski). Let (2, %, u) and (I', =, v) be measure spaces with o-finite

measures. Then if p € [1,00) and f > 0 p ® v measurable

ﬂ%w®@)im f(z,y)Pdu(x %@@)
1/ //

holds. FEquality and finiteness for p € (1,00) imply the existence of a p-measurable
a: Q) — [0,00) and a v-measurable 5 : T' — [0,00) such that f(x,y) = a(x)B(y) for

U
L,u®1/ae y

4 Y
Corollary 1.13. For allp € [1,00] and all f,g € LP(Q, du)

I1f +glle < 1 fllp + llglls

. If f £0 and p € (1,00), equality holds iff there exists a A > 0 with g = A\f p-a.e. O )

4 Y
Theorem 1.14 (Completeness of LF). For p € [1,00] let (f;) ey C LP(2) be a Cauchy

sequence, i.e.

H min{j,k}—o00
—_—

1f5 — 0.

Then there ezists a f € LP(S2) such that f; j_)L—:o> converges (strongly) in LP. Moreover
there exists a subsequence (f;,), and F' >0 € LP(Q) such that for all k € N |f; | < F

p-a.e. and

Fin(@) 2225 f(2) p-a.e.

é Y
Definition 1.15 (Convolution). Let f, g be measurable on (]Rd, B, )\d). The convolu-

tion is defined as

(f+9)@ /fx— y)dy = (g% £)(z)
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For f € LP(RY), g € LY(RY) with p, ¢ dual g f is well-defined and bounded by Holder’s
inequatity for all x € R%. It is also measurable by Fubini’s theorem. O

[ Y

Theorem 1.16 (Young’s Inequality). For f € L'(R?), g € LP(R?) with p € [1, 0], then
f*ge€ LP(RY) and

1F* gllp < [1£11:llgll,

Proof.

(p = 00)
[(f*g) (@)oo < Nl9lloo / |f(@z—y)ldy = llglloc |l fll1-

(v € [1,))
/p P p
Jiea@ra) < | [ [lot- ol | a) T
/ av )
< [ [ 1ot =wraz) irwlas =gl ls1:
q.e.d.
,

~
Theorem 1.17. For all  C R? open, for all f € LP(Q,d)\d), p € [1,00) there exists

(fj)jeN C €>(0Y) such that
i =5 f

Lp

Theorem 1.18. For Q C R? and p € [1,00). LP(Q,d)\d) 1s separable, i.e. there exists
FCLp (Q, d)\d) countable and dense, i.e. for all f € LP(Q2) for all € > 0 there ezists
g € F, such that ||f — g|l, < . O
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Proof. Given f € LP(12) there exists h € €,°(Q) such that [|f — h|| < 5. Hence w.l.o.g. let
us assume that f € €. For all N € N we have

RY= ] ([0,27V)+277))

d\ - J
€7
J CjN

The set of step functions with support in C; x and C-rational values is a countable set.

Given N, j we can choose
1

%= Gy / ()

Since f € €° it is uniformly continuous, i.e. we can find for all § > 0 an N big enough such

that for all z € C;

o

|f(z) —enyl < 5

Further we can choose a ¢y ; in the rational complex numbers such that |cy; — én ;| < %,
therefore
h — Z 5N,jXCjYN<x> <9
jezd o
By construction the sum of step functions is compactly supported as f is therefore there

exists some compact set K such that

h — Z ENJXCJ',N (.73) < ||k — Z éN,jXCj,N (l’) N(K)
jezd » jEZ4 o

thus by choosing § < %’ we have found the approximating function. g.e.d.

é N
Definition 1.19. L : LP(Q),du) — C is a linear function iff for all fi, fo € LP, a € C

L(afi + f2) = aL(f1) + L(f2).

L is bounded iff there exists a K > 0 such that |L(f)| < K| f]|, for all f € L*.

L is (sequentially) continuous iff for all (f;);en C L with f;z7Z=>%f implies that
L(f;) == L(f).

In the case of linear functionals/maps the latter two properties are equivalent.

The space of bounded linear functionals on LP(2), denoted by (LP(2))" is a complete




vector space with norm

|Lf
Il = _sup |
feLr(Q)\{0} ||f||p

A sequence (f;) ey C LP(2) converges weakly to f € LP(Q) iff for all L € (LP(Q2))",
L = EmiaNy § f. This is written as
fi RN

By Hélder’s inequality L¥ (Q) — (LP(2))" (injectively) for all p € [1,00] via

g— Ly
with
L) = [ F@(e)du(z)
Q
| with Lg] < gl =)

13

7

must be o-finite). Let f € LP(Q) such that for all L € LP(Q)* L(f) = 0 holds then

f = 0. Consequently, if f; 2%k and f; IS, [, then k =1, weak limits are

unique. O

\
Theorem 1.20 (Linear Functionals Separate). Let p € [1,00] (for p = oo, (2,3, u)

.

Proof. For p € [1,00), take

and

Since, by Holder’s inequality

o> [If@pds = [ oo

it follows that g € L”(Q) and L, € LP(Q)*, where ]lj + [% = 1. For this functional we have

/ F@f @) 2 f (2)dpu( / FPdu(z) = IF1E.
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For p = oo, for € > 0 choose €2, with ©(€.) < oo such that |f(z)| > || f||e — € for all z € Q..
Choosing

N CIP o
g(x) = ]f(x)|XQ€( )€ L(Q) = Ly e L™(Q)

One finds that

Lﬁmsfuwg<mw>f/m>@w><wmmm>

and on other hand using the definition of €2,

Lﬂm>wmm—a/mm»=mmw—amm>

Qe
q.e.d.
4 N
Theorem 1.21 (Hanner’s Inequality). Let f,g € LP(Q2), p € [1,2]. Then
Al + gll)” + Al = lgllol” < ILf + gl + 1Lf = glly (1)
and
(f +gllp + 1f = gllp)” + 1f + gll, = 1f = gllol” < 2°(IF 115 + llgllp) (2)
For p € [2,00) the inequalities are reversed.
A U y

Remark. For ||f —g|l, <||f + gllp, p € [1,2], then the

LHS@) > 2[f + gllp + p(p = DI + gl IS — 9l

which follows from the inequality for a,b >
(a+b)P 4 |a — b|P = 2aP + p(p — 1)a?~2b?.

To prove it we may assume w.l.o.g. that a # 0 (since otherwise the inequality holds
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trivially) and devide by b to get the inequality
(1+z)P+|1 -z >2+p(p—1)2?

Noting that by assumption 1 > z hence |1 — x| = (1 — x) Since by differentiating twice

this expression
(p=D(L+2)? + (1 —2)"%) = 2(p - 1)

which indeed holds. Then by integration one finds the asserted inequality.

U
é )
Theorem 1.22 (Uniform Convexity). For all p € (1, 00)
p J—
vs>036>OVf,geLp(Q):|\f||p:||g||p=1,H¥ >1-§ = H% <e
p p
\ gy

rLemma. Let a(r) == (1+7r)P '+ (1 —r)P7t and B(r) == (1 + )Pt — (1 — )P~ t)rt-?
for r € 10,1] with 5(0) := 0 (B(0) := oo for p € [2,00)). Then for all A,B € C

a(r)|APP + B(r)|BIP < |A+ B’ + |A— B ()

forp € [1,2). Equality holds iff r = % € [0,1].

.

Proof. 1t is sufficient to assume A, B > 0. Otherwise a := |A|, b := |B| satisfy
|A+BJP+|A—BPP = (a® + b* + 2abcos(19))p/2+(a2 +b? — 2(1()(:08(19))10/2 > (a+b)P+(a—0b)"
Let R := %, and rewrite the asserted inequality as

a(r)+ RPB(r) < 14+ R’ + (1 — R)P
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differentiating both sides

i(a(r) +RB(r) =(p—1)A+r)" 2 =(p-1)A+r)P 2+ RPp—1)((1+7r)"2+ 1 —r)?)+

dr
FR =)+ 0214 = (= 21— ) =

—w-n(a+r-a-) (1= (£))

r

which vanishes only for » = R. Further since the derivative for R < 1 is positive for r < R

and negative for » > R, this is indeed the maximum. qg.e.d.

Proof of | Theorem 1.21 Noting that R < 1 can always be attained by exchanging f and g if

necessary one finds that for all r € [0, 1]

[f+ 9P+ 1f = gI” = aln)fI" + B(r)lgl’ = a(R)|FI" + B(R)|g]"

for R := ”?Hz . Integrating one finds that

1f+al5+1f =gy = aBFIE+AE)gIE = (If + gl + 1 = gll)"+f +glle = 1F = gllp)”

follows immediately from by substituting f — f+gand g —> f — g.
For p = 2 this is just the standard parallelogram identity. For p € [1,2), otherwise reverse
all the inequalities. g.e.d.

é N
Theorem 1.23 (Lower Semi-Continuity of Norms). For p € [1, 00| if

fi ==t = limint||f;ll, > [fll,
(For p = 0o, p needs to o-finite). If p € (1,00) and lim;_, || fill, = || fll, then
fi S0

. J

é N
Theorem 1.24 (Uniform Boundedness Principle). Let p € [1,00] (for p = oo, (2,3, u)

need be o-finite). Let (f;);cy C LP(Q) such that for all L € LP(Q)* there exists a Cp, > 0
such that |L(f;)| < Cp for all j € N. Then there exists a C > 0 such that ||f;|| < C for
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LalljeN. DJ

é Y
Theorem 1.25 (The Dual of LP(Q2)). For p € [1,00), LP(Q)* = L4(R2) for % + % =1,

i.e for all L € LP(Q2)* there exists a v € LI(QY) such that for all g € LP(Q)

L(g) = Lu(9) = / vgdp

with || L|| = {v]].

\ y

é Y
Theorem 1.26 (Banach-Alaoglu). For p € (1,00) let (f;);cy be bounded in LP(S2).

Then there exists a subsequence (fj,),cn and f € LP(Q2) such that

_)
fin — f

Lp
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Chapter 2

Distributions

Remark 2.1. (L?(RY))" = L¢(R?) for %—F %, 1<p< oo O

4 Y
Definition 2.2 (Test Functions). Let Q2 C R? be open. We define the set of test

functions to be () = €>° (Rd). We define a topology on this space by requiring that

a sequence @, — ¢ in Z(Q) converges iff

3 compact set K C 2 : suppp, C K

Va € N : sup|D%,, — D%| 2220
e

. DJ

4 Y
Definition 2.3 (Distributions). We define the space of distributions to be dual space

to the space of test functions, i.e. 2'(Q)
TeZ2'Q): < T:2(Q) — C, linear & continuous.

We define the weak-* topology on this space, i.e. a sequence T,, — T converges in

. 2'(Q) iff for all p € 2(Q), To(p) == T(p). O

.

19
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é Y
Example 2.4. If f € L] (), then

loc

2(Q) — C
Tf .
pr— [ f(x)p(r)de
Q
L is a distribution. D
N
Example 2.5 (Dirac delta function). The linear functional
5 2(R") — C
> p(0)
Informally one may one may say that 6(x) = 0 for all z # 0 and §(0) = oo such that
[6=1.
— J

One might now ask the question whether if for f,g € L .(Q) with Ty = T, does imply that
f=g

é Y
Theorem 2.6 (Fundamental Theorem of the Calculus of Variations). If f € L}, .(Q)
such that for all ¢ € €°(Q)

/waO
Q
. then f = 0. U )

Proof. Assume that f € L'(R?). Then
JECECEET
Rn

for all p € €>°(R?) implies that

0= /f(:v)so(y —z)dz = (f *¢)(y)

R4

for all y € R%.
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Recall now that if ¢ € €°(R?), with [ pd)\ = 1, and ¢,(z) = ndp(nz) then ¢, * f — f in
LY(RY), since for all y € R?
(f *@n)(y) =0

it follows that f =0 in L'(R?), i.e. f(z) =0 a.e.
Now let us consider the general case, let 2 C R? be open, and f € L () such that

/f(fv)w(y —z)dr =0
for all p € €°(Q). We need x € 2y, Qy CC Q such that y — 2 € supp ¢, then
y=x+(y—x) €+ suppyp.

We choose ¢ € €>°(R?) such that suppy C B(0,1). Define ¢,(z) = np(nz). Then
supp ¢, C B(0,1). Then we have

JECERE
for all y € Qy, with Qy CC Q. Then
r=y—(y—x) € Qy\ suppy, C QQ"‘B%(O) C Q3
when n is large enough. Thus we have

/ F(@)puly — v)dz = / Lo, f(2)nly — 2)dz = / Loy /(2)pu(y — 2z = (9 * Lo, (1)

Since 1q,f € L! (Rd), we have that ¢, * 1o, f — 1q,f. Thus f|QS = 0 which implies that
f(x) =0 ae. x € Q3 and thus also x € Q.
q.e.d.

é Y
Definition 2.7 (Derivative of Distributions). For a T € 2'(2) we define its a-derivative

to be the distribution D*T € 2'(f2) such that

(D°T)(p) = (=1)T(D*)
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Lforallgoe.@. DJ

Remark 2.8. This definition is motivated by the fact that for f € € (]Rd)

[ ne= v [ o).

O
In particular we have that if 7, — T in 2'(Q2), then D*T,, — D*T for any o € N".
Proof. For all p € 2(Q) we have
(DT3)(p) = (=) T, (D) "= (~1)T(D%p) = (DT ().
g.e.d.
)
Example 2.9. Let f(x) = |z|. Then its distributional derivative is
-1, y <0
f'(x) =
+1, y>0
and its second distributional derivative is
"= 26.
. / J

[ Y
Theorem 2.10 (Equivalence of Classical and Distributional Derivatives). 1) If f €
¢ (Q) C L},.(Q), then g; = 0., f € €(Q) and 0;(Ty) = Ty,.

loc

2) Let T € 2'(Q) and assume that Ty, = 0,,T and g; € €(2), for alli =1,...,n.
Then there exists a f € €' () such that T =Ty and Oy, f = g;.

. J

Proof. Let Q = R%.



1) If fe € (RY) and g; = 0;f € €(Q). Then for all p € Z'(Q)

OUT)9) = ~T5(00) = - [ Fa)op(a)ds = [ oif )

ie. 8ZTf = Tf?z‘f in @I(Rd)

2) Assume that T € 2'()

z)dr = Tp, ()

23

q.e.d.
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Chapter 3

Fourier Transform

é N
Definition 3.1. For f € L* (]Rd) one defines its Fourier transform to be

f = [ flajemeas

Remark (Motivation). 1) For nice enough functions one has

—

O, [ (k) = 2mik; f (k).

Formally we have

Rd

O, ] (k) = / (0s, ) (w)e ™2 = — / S ()0n, €72 dx = 2rik, [ (k).
R4
More generally one has
Do f(k) = (2mik)” f (k).

2) Further we have for nice enough functions that

—

fxglk) = f(k)g(k)

25
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because formally

//f T—y —27r2k a:d dr = //f T —y —27rik-(x—y)€—27rik~ydxdy _

_ / / f(x — y)e @D drg(y)e 2 Rudy = F(k)a(k)

é Y
Theorem 3.2 (Plancherl). If f € L'(R%) N L?*(R?), then

1£1l2 = 11 £1l2

Consequently, f — f can be extended into an isometry on L> (R?), as L' (RY) N L2 (R?)
is dense in L*(R?). Moreover for all f,g € L*(R?)

(f,9) = <f,§>

G U V.
4 ' R N
Theorem 3.3 (Inverse Formula). Define f(k) = [ f(z)e*™**dx = f(—k). Then for

all f € L2(RY)
f=f
G U V.

We know that f — f is a bounded map from L' (R?) — L>*(R?) as

)| = | [ et < [17@)ds = 17w

and L2 — L2 with || f]l2 = || f]l2.

Theorem 3.4 (Hausdorff-Young inequality). If f € L*(R?) N LP(R?) for 1 < p < 2,
then

11l < [1Lf 1]

'Here we shall use the convention (f,g) = [ f(z
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Consequently, f — f is a bounded mapping from LP — L = (LP)".
O
4 Y
Theorem 3.5 (Riesz-Thorin Interpolation inequality). Let 1 < po, p1, 0, 1 < 00. If
LI — L) with |2 ||po.q0 < 1
L [P — [T with ||ZL ||py.q <1
Then ||-Lullp, 4, for all s € (0,1) where
1 1—5 s 1 1—s s
_— = S _— = + _
Ds Po Y4 gs qo0 q1
A\ L y

The proof this theorem is based on Hadamard’s 3-line Theorem.

’
Theorem (Hadamard 3-lines theorem). Let C 3 z = x + iy, and let f be holomorphic
on Q) ={z=w+iy,0 <z < 1}. Define M(x) = sup,cg | f(x + iy)l, then

M(x) < M(0)="M(1)*

O

Z

G

Sketch of Proof. Assume that M(0) = 1 = M(1). We need to prove that |f(x + iy)| < 1

in Q. Define now F,(z) = f(z)eLn_1 for n € N. Then |F,(z)| < 1, for all z € 99, and

|F.(2)] — 0 as |z| = oo. Applying the maximum principle we find that |F,(z)| < 1 for all
q.e.d.

z € €.

Proof of [Theorem 3.5 To prove this, we neeed the duality

v = s | [(Zugl

lell, <1

£

Then define u, and ¢, in an appropriate way

/(-i”uz)soz

sup < lully

q.e.d.
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Proof of [Theorem 3.4 Define £u = 4. Then

L L — L™, with [|.Z]]100 <1
L L2 — L2, with ||$||2’2 =1

By Riesz-Thorin we have that ||

p. forall s € (0,1)

qs < HU

1_1—5 S 1_1—3 S

Ds 1 27 g 00 2

S

which implies that pis =1-35 and qis = £ and thus

2

This means that ¢ = (ps)’. q.e.d.

Theorem 3.6. If f € LP, g € L9, thenf*gELTfor%+%:1+% and || f * g, <
1£1lpllgllg- N

Proof. Take f € LP fixed and define

Lg=fxg

We know that

L7 gl < W[ fllollgll
1+ gllp < [ £llpllglh

By Riesz-Thorin,
I * g

g S Hf“p”g

Pps

for all s € (0,1). In particular
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4 Y

Corollary 3.7. If fe P, ge L1, 1 < q,p< 2 then fxge L", for%#—é :1+%, then

fxg(k) = f(R)g(k)

N U Y
Proof. Do it for f,g € &, and then approximate. qg.e.d.
é N

Theorem 3.8 (Fourier Transform of Gaussian).

=P (k) = eIkl
More generally
e~ (k) = AR %

for all A > 0. U
N Y
Proof. For A =1, and n = 1 we have

;TF(,IC) _ /e—ﬂz2€—27rik-xdx _ /6—7rk:26—7r(:7:-|—'£k)2da7 _ e—ﬂk2 /6_7””2d.r _ e—wkz
R R R

where the penultimate equality follows from the Cauchy formula. q.e.d.
é N

Theorem 3.9 (Heat Equation). Consider fort > 0

ou—Au=0
u(0,z) = f(z) € L*(R%)
The unique L? solution is given by
b o) 1 _le—yl? q
U(ax)—w e f(y)dy
Rn
N U Y

Proof. Via the Fourier transform we find the equivalent equation
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oy — (2r|k|)* 1
(0, k)

I
km

(k) € L*(R?)
which can be rewritten as

O (ue(%‘k‘) > =0

a(t, k)e® = f(k) € L*(R?)

t=0

which 1mphes that a(t, k)e®™*)*t = f(k) for all t > 0 and therefore a(t, k) = e~ @D* f(k) =
Gi(k)f(k) = Gy x f( ). Thus u(t,z) = (Gy * f)(x).

What is Gy(z). We need Gy(k) = e~@k)*t Using the formula for the Fourier transform of
a Gaussian

— “lk‘Q

e~ P (k) = A\ Ze”

Choosing (27|k|)?*t = ﬁ which implies that A = from wich the assertoin follows.

4 t)
qg.e.d.
Remark 3.10. If K is a linear operator L? — L? such that
= /K(:Lz y)u(y)dy
for all u € L?, then K (z,y) is called the kernel of K. In particular
1 lo—y|?
G t,x, = —e 4t
(t.z,9) (4mt)~2
is called the heat kernel. O
o3 2
Theorem 3.11 (Heat Kernel). Let G(t,z) = 7 tl)_% e~ . Then fort>0
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and
lim G(t,x) 7, 0y
t—0+

Proof. For all ¢ € 2(R?)

Q/@ﬁﬁﬂﬂ—AG@way—@¢V—&@%¢Xw—%AG*wﬂw—JMG*wﬂw—%MG*@@)—0

Because u = G * @ solves the heat equation. Thus 0,G — AG = 0.

Moreover, formally we find that
[ Glt.a)ela)ds = (61 £)(0) = ult,0) = u(0) = p(0) = 5()
limG(t,z) = 6(z) in Z'(R?)

10

The last step can be made rigorous by using the fact that
L2
u(t,z) =Gyx f — f

strongly, since from we have

Dom Conv
— 0.

lu(t, ) = flle> =

-l

2

q.e.d.

Now let us consider the Poisson equation
—Au=f, feL*R%

Formally we find that

(2n|k))*a(k) = f(k)

which implies that
a(k) = (2 |k)) 7 f(k) = G(k) f ()
Thenu(k:) :@(k‘) ie. u=Gx f.

. More generally what is the Fourier transform of 1

with G(k) = G

What is G? G(k) = AR |k|
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é N
Theorem 3.12. For 0 < s < d, then

1 1
“laf R

in the sense of distributions and c, = 71'_%1_‘(§>. This means that for all p € @(Rd),

then .
(csﬁgb) (k) = cq_s (# * sO) (k)

The latter formula serves as a definition of a convolution of distribution and a test

function and is well-defined since for 0 < s < n, ﬁgﬁ(m) e L! (Rd). d

\ y

Proof. Formally we have

o0

o o0
-} s_ — 5 S — 2 s_ — 2
Cs =T 2/)\2 e Adh =7 2/7r|:1:]2t )2 lemlel gy = ]x\“’/ﬂ Lemmlal™t g
0 0 0

[e.o]

which implies that 2 f t5te~mel*tqt and thus

Rigorously we have

(|CS|S¢> (k?)://|;8|5¢(p 27rzp:v 27rzkwd dIFubml///tQ_l —7r|z\2t )27rip~x€—27rik-a:dpdxdt:
Rd R4

Re R

- / £571 (e Prg) (k) dt = / télc(e =5 *@) (k)dt
0 0
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4 N
Corollary 3.13. If0 < 2s < d and f € LP, p = d+2 , then, since 1 < p < 2, f(k)
makes sense and .

Cas Cd—2s
e = (152« 7)o
Moreover )
f(@)f(y) |/ (k)]

_2s ST = ————dk >
Cd—2 // |z — y|d2s C2s k|25
Re Rd Rd
A U y

Proof. First formula, take ¢, € Z such that ¢, — f in LP. Using the formula for ¢, and

passing to n — oo we find that

||, <Cllew=f1=0.

The first formula combined with Plancherl’s theorem yields the second formula as

cdzs//’ ,Hsdxdy Cd2s/f (f*Hd23>() <ff ,‘id2;>=

r —2s r s 7 f k 2
~(hr ) = () o [
R4

q.e.d.

Returning to the Poisson equation we find that

11 1 cgn 1 et d=3
G = [ i o W)
" @ 423
for d > 3.
Remark 3.14.
1 1

@2 T d=3

G(z) = § =5 In(z), d=2

d=1

—’JJ|,

is called the Greens function of the Laplacian (—A) in R In particular G(z — y) is
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the kernel of the operator (—A)~! in L?(R?), i.e.

0

Theorem 3.15 (Poisson Equation). If f € L*(R?), then u = G = f € L}, (R?) and

loc

—Au=fin9 (Rd). Consequently, —AG = ¢ in &' (Rd). OJ

Proof. For n > 3 Take ¢, € 2, ¢, — f in L? (Rd). Then

—_—

~A(G *pn) = G (~Ap,) = G—Ap, = 27[E[?)@n(k) = n(k).

b
(27 [k?)

Thus —A(G*p,) = ¢n. Since Gxp,, — G f in 2 it follows that —A(G * ¢,) = —A(Gx f)
in 2'. We conclude that —A(G * f) = f in 2'(R%). Moreover

/G(—Aw):/@fﬂo:/@:@(f))

for all € 7, thus —AG =6 in Z'(RY). g.e.d.

We now turn to the Yukawa equation

‘uu—Au:f‘

for © > 0. By taking the Fourier transform we find that
(1 + @nlk])?)a = f

which implies that 4 = G f with

A 1
MR ERIE

which belong to L2 (Rd) for n > 3. Thus we find that the Green’s function of the Yukawa
equation is

1 o—pla| -
52€ , d=1

G(z) =

1 e*’””‘, d=3

47|z



Chapter 4

Sobolev Space H™(RY

é N
Definition 4.1. We define the Sobelev spaces to be
H'(RY) ={f € L*R")| 0., f € L*(RY),i=1,...,d}
H™(RY) ={f e L*(RY) | D*f € L*(R?), || < m}
L where the derivatives are taken in the distributional sense. 0 )
é N
Theorem 4.2. H™ (Rd) 1s a Hilbert space with inner product,
(f:9)m = Y (D*f, D),
|a|<m
A L y

Proof. For H' it is easy to see that (-,-), is a well-defined inner product. Concerning
completeness, if {¢,} is a Cauchy sequence in H', then both {f,} and {9, f,} are Cauchy
sequences in L?(R?). Hence there exist f,g; € L? such that f, Z, f and 0y, f, L, gi- We
need to prove that d,,f = ¢; for all i = 1,...,n from which follows that f € H'. Take any

test function ¢ € 2’ then per definitionem we have

[ontue == [ 5000 = = [ o= [ 010

thus 0., fn 27 g; from which follows that Oz, f = g; and therefore f € H! (]Rd). q.e.d.

35
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( Theorem 4.3. .@(Rd) is dense in H™ (Rd). O )

Proof. We shall only prove the case of H'. Take f € H'(R?). We need to find f. € 2, such
that f. — f in H'.

Step 1. Find a sequence g. € H!, such that g. has compact support such that g. — f in H'.
Choose h € Z such that h(x) = 1 for all |x| < 1 and choose g.(x) = f(x)h(ex) has
compact support and ge(z) = f(z), when |z] < . We have

lg. f|!2—/|1 h(ex)2Lf (@) Pdz — 0

by dominated convergence. Similarly

100, — D fI2 = / 0,/ (h(e) — 1) + f(2)0n, h(ex) Pz <
2 [ 10, f@)(hew) — 1P+ 2 [ |f0)Plon (o) Pds

Here [ [0,,f(x)(h(ex) —1)|*dz — 0 and since 9,,h = 0 in 2| < 1

J1s@P e e = [ | Pa.hnfd — 0

by dominated convergence.

Step 2. Consider g. € H' with compact support. Take ¢ € Z with [¢ = 1 and define
or(z) = k"p(kz). We know that ¢, * g € €>c and D*(p, * g.) — D%g. in L*(R")

for |o| < 1

We conclude by noting that

0
ok g — Flla < llon * ge — g2l + llge — Flla =% 0

(Theorem 4.4. € (R?) is dense in H™(R?). D)
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Remark 4.5. If Q is a bounded set of R?, then

H'(Q)={feL*(Q)|0.f e L*(Q),i=1,...,n}
J— |
Then €>°(Q) is not dense in H*(2). In fact H}(Q) = CKCOOH @ # H'(Q). We well come
back to this (boundary value problems). U

é Y
Theorem 4.6 (Chain Rule). If G € €*(C,C), |G| < C, G(0) = 0. Then for all

feH' (RY), G(f) € H'(R?) and
0 G(f) = G'(f)0x. f

n 2'(RY). O
| in (R%) )

Proof. Since f € H* (Rd), we can find a sequence {¢,} C € (Rd) such that ¢, — f in
H'(R?). We can also assume that

on(r) — f(x) ae.

|onl + > |0s,pnl < F € L?(RY).
i=1
We can do this by [Theorem 1.14 We have (by the usual chain rule)
and

G (on(2)) O ipn (1) — G'(f(2))0, f (), ace.
|G (0n(2)) 0z, ()] < |G l|0s,0n(2)] < CF () € L*(R?)

which implies that

0, G (pn(2)) = G'(9n(2)) s, pn(x) - G (f(2))2s, f (x)
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Moreover, we have G(p,(z)) — G(f(x)) a.e. since

[9(pa(@)) = G(f(@)] < (sup|G]|pn(x) = ()] < Clealw) = f(z)] =0

and thus G(¢,(z)) — G(f(z)) in L?. The result follows from a general fact. qg.e.d.

Lemma 4.7. If f, — [ in L*(RY) and 0y, fn — g; in L*(RY) for i = 1,...,d, then
feH' (RY) and 8, f = g; fori=1,...,n. O

Proof. Take ¢ € Z(R"™). Compute

/giw— /(%fn)w: —/fn(axiw) — —/f(&r,.sO)

and thus — [ f(0s,¢) = [ gip for all ¢ € 2(R?) and therefore 0,,f = g; in Z'(RY), ie.
fe Hl(Rd). qg.e.d.

é Y
Theorem 4.8 (Derivative of |f|). If f € H*(R?) then |f| € H'(R?) and

o) = | T @A
0 if f(x) = 0.

where f(x) = u(z)+iv(x), where u,v : R — R. Consequently we have the diamagnetic
inequality

IVI(@)] = [VIF@)] ae

. J

Proof. Let € > 0 and define G.(t) = \/e2 + [t|> — ¢
Then G € €', G.(0) = 0 and

L) = ‘ <1

-
VeE?+ [t
By the chain rule G.(f(z)) € H'(R?) and

(lf(l‘)|2)’ B flz) u(x)aju@)-i-v(x)@jv(x)a ) e
2y/et + [ f(x)? I 21/2 + [f ()] wf (@), ae.

a:rj G.(f(z)) =
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Passing to ¢ — 0 we obtain

G.(f) =2+ |f2—e—|f] in L*(RY)

ar]Gf:‘(f) — gj('r>

From

0, if f(z) =0.

0,,|f(x)] = {f<> if f(z) # 0

it follows that

[udju+vdjul _ IuP + [o\/0;ul2+10)jv*  |f110;f]
7 < = = 10;f]

/] /]
Thus [V|f|(2)] < [V f(z)].

O, | f ()] <

q.e.d.

4 N
Theorem 4.9 (Fourier Characterisation of H™(R?)). If f € L*(R?), then f € H™(R?)

if and only iof ,
/(1 + 27r|k\2)m‘f(k;)’ dk < oo.

\ y

Proof. For m = 1. Let f € H! (Rd), then

11 = B3 10 B = [ 7Pk Y [ omk F )Pk = [ (1 (2elbl)?) ) Pt

For m > 1

e = > IDfl3= > /I(27Tk>‘“f(k)|2dk'

la|<m lal<m
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’
Corollary 4.10. If f € L*(RY), then f € H™(R?) iff

G

(—A)? f e }(RY) /(27r|k])2m|f(l-c)|2dk < 00

N\

-y

Proof. For m = 2, let f € L? then f € H*(RY) iff Af € L*(RY) for all |o| < 2, eg.
02, On,f € L?, while Af € L? only iff (92 +0Z2,)f € L?. But this follow easily from the

Fourier characterisation. Indeed if Af € L? iff
[P < .

So if f,Af € L? then
2
dk < o

f(kj)

JIEREEER
hence by 1+ (27|k|)" > 3

/(1 k)1 F ()2 < oo

which implies that f € H? (]Rd) by the last theorem.

(14 [27&|?)? (which follows from A%+ B? > L(A+B)? for A, B > 0)

q.e.d.



Chapter 5
Sobolev Inequalities

These inqualities find great practical application in physics for example. Consider in the

context of quantum mechanics the energy functional of a wave function ¥

ew) = [ WP+ [Vl o
An important question concerns the stability of such a system, i.e. when does

inf £ > -C
lll2 Op)

for some C' > 0 hold. A particular example of this would be an atom with the Coloumb

ew) = [ Ivewpe - | Wf—l)'dx

To prove the stability of this system one can use an uncertainty principle,

potential

‘/IWI2 > G‘/V($)|¢(x)|2dx'

An example would be the Heisenberg uncertainty principle which states that

([1vve@e) ([ lePiorar) =%

foralln > 1 and all ¢ € H! (Rd). This can be proven using the commutation relation

Vx—2-V=n

41



42 CHAPTER 5. SOBOLEV INEQUALITIES

and the Cauchy Schwarz inequality. Note that for all f € H' there exists a ¢, € H! (Rd)
such that ¢, — f in H! and

[ lalento)dr - <,

i.e. the Heisenberg principle becomes “trivial” for ¢,. Hence we need a stronger inequality
Sobolev Inequality For all ¢ € H'(R?)

IVillz = Clll,

holds. Now what is p? Let us assume that the Sobolev inequality holds and let ¢ (x) = ¥ (lz)
for some 1) € H'. Then

e ()= (i)« () (o )

= 13| VY5

oy = ([ o pas) s (1 [ tlan) ",

Thus the Sobolev inequality ||Vi)||s = C||¢||2 implies that

[Vl = 7 ],

for all [ > 0. This can be possible iff 2%‘1 =4 je.

_5’

p=—5 (n=3).

Theorem 5.1. For alld > 3
IV £llz = Cllfll

for all f € H! (]Rd) and p = %. The constant C' > 0 is independent of f in particular

L this implies that if f € H' then f € LP. O )
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é R
Lemma. For ¢ € Z(R?), then

Vel = lloll o

. S

Proof. Let us focus on d = 3. Let © = (11, 22, 3) € R3. Then

z1
() = (a1, 2, 73) = / Dy (3, )l

—00

which implies that

Tl
o(2)] < / Oy ol 2, 03) |, < / 100y o, 2, 03|, < / IV, 0, 23)| e, = g1 (2, 73)
—00 R R

Similarly, one finds that

o(2)|"* < /g1 (w2, 23)V/ 9221, w3)V/ g3 (21, 22)

which implies that

[ let@ran < Vi [ Vv < w—\/ / gzdxl\/ [ e,

and thus
1 ot o [ oo o i [
J R J R R R R JR

and analogously

///|g0(aj)|3/2dx1dx2dl‘3 < \///gldxgdl’g\///g2dﬂ71dx3\///Qde1d$2 = ||V<P||i/2
2R R RJR RJR RJR

q.e.d.

Proof of [Theorem 5.1. Consider f € Z(R?) and n = 3. Choose ¢ = |f|* and applying the
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above lemma one finds that

o= ([1e07) "= (f151) "

1/2
Iveli < [ 471951 < 4( / |f|6) 1V 1l

(/ !f|6>2/4 </ |f|6>1/2||Vf||2

2(d—1)

and thus || f|l¢ < 4||Vf|l2. For n > 3 choose ¢ = |f| 42 and use

[wses [

[ Y
Theorem 5.2 (Sobolev Inequality in low dimensions).

Then from the lemma

d=2) Forall f € H'(R?) and 2 < p < o0
171, < CIV AL 11£l5

d=1) For all f € H'(R)
1£1% < 1 l1211£1l2

(General fact the Sobolev inequality becomes “weaker” in higher dimensions)

L O

Proof.

(d =2) From the above lemma it follows that for all ¢ € Z(R?), ||oll2 < [[Vel|li. Choose
o= ffor a>0, f € Z(R?) and f > 0. We have

( / f2“)1/2 < [arvil< a( / f2<a-1>)1/2uwu2-

Using Holder’s inequality we find

Jrere () )
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2q—°,“ + %, hence

2 2 2 2 2—-2 2—-2 2—-2
Aa—1)= g2 =TT 9 T s 92T im0l
q q q q q q q
Thus
1/q! 1/q
/&Mgc(/ﬂm”)wﬂggc(/ﬂﬂ </F)|Wﬂ@
hence

(/fh)l/q <C(/f2)l/ql\vf\|§ — /fm < C(/f2>|ywy|§<al> —

Va a1
= [ fllza < 1INV £

for all > 1. Thus we have || f||, < C’HfHQ/pHVfHQP for all p > 2. Thus the inequality
holds for all f € 2, f > 0, and therefore in can be extended to all f € H'(R?) by

density and the diamagnetic inequality [['heorem 4.8|

(d=1) For every f € 9,

/f )it = |f(z /|f )lat
/f Wit = [f(x {/V )t

hence 1
f@l < [ 1@
R

ie. [[fllso < 3lIf[li- Now we can replace f by f? to find that

9% <5 (101 [1A181 <1717

for all f € 2. Then by density we get the inequality for all f € H! (Rd)
q.e.d.
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Additional Proof of d = 2. Recall that we have the Hausdorff-Young inequality, that

LAl < £l

for all f € LP(R") and all 1 < p < 2 < p' < oo with Il;—l—z% = 1. This inequality is equivalent
to

1f 1l < 1F 1l

for all f € 2(R") with p>22>p', =+ = = 1. We have

1,1
p P

1l < (/\f(k)l”’)w = (/\f(k)lp'(l+2W!kl)p/(1++ﬂkl)p,dk> " <
(/|f 2(1 + 2n|k|)d )/ (/ mdk>la/pl

when pp’ > 2 we have

1
/—,dk <C < oo
(1+ 2n[k|)””

Thus || f|l, < C, || fll " for all p > 2 and all f € 2. This implies the Sobolev inequality

Il < CIVAIS “IIf13, by a scaling argument, i.e. use If1lp < Clifllmr, for f = filz) =
f(lx) for [ > 0 and optimise over [ > 0 q.e.d.

é Y
Theorem 5.3 (Sobolev Continuous Embedding).

2<p< 2L, ifd>3
H'(RY) c LP(RY)  forall {2 < p < oo, ifd=2
2<p< oo, ifd=1

and the inclusion is continuous, i.e.

1£1lp < Cllf Lz

Moreover, when d =1, H'(R) C €(R), i.e. for all f € H'(R), there exists exactly one
. fe % (R), such that f = f almost everywhere. O

.
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Proof.
(d > 3) We know that
[fl 22 < CIVfll2 < Clf

By Holder’s inequality for all 2 < p < dQ—fQ,

£l < Cllf .
(d=2)
£l < CIVEL" I1F13 < Clfllan
(d=1)
oo < AU NANS < 1 F N
[ fll2 < |If &

hence by Holder’s inequality for all 2 < p < oo, ||fll, < || fllm

We now have to prove that H' C € (R). Take f € H'. Then we can find a sequence
¢, such that ¢, € 2, ¢, — fin H' and p,(z) — f(z) a.e. x € R. We know that

Y

u(2) — oaly) = / (1)t

and thus for z <y

1/2

y Y V2 sy
on(2) — ouly)| < / A(t)dt| < /dt /\w’(t)\zdt IrErrAr

T x

for all z,y € R. Since ¢, — f in H' and ¢, (z) — f(z) for all z € R\ A with |A| = 0.
Then for all z,y € R\ A we have

7() = F@)l = Tim fpu(@) — galw)] < Vv — o] i 1ghlls = Ve~ glll7 ]l

Define f(z) = f(z) for all z € R\ A. Then we can extend f to be a continuous function
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on all of R such that |f(z) — f(y)| < v/]z — y[||f’||2 for all z,y € R.
q.e.d.

4 N
Theorem 5.4 (Sobolev Compact Embedding). Let B be a bounded set of H* (Rd) and

A a bounded set of RY. Then we have

14B CC LP(A), with 2 < p < 00, an:2

Remark. By 14 we denote the indicator/characteristic function of the set A.
1.8 CC LP(A)

means that if (f,,),, C 14B, i.e. f, = 1ag, with g, € B, then there exists a subsequence
fn, such that f,,, converges strongly in LP(A). O

Corollary. If f, is bounded in H* (Rd), there exists a subsequence such that f,(z) —
f(x) a.e. v € R O

Proof. A subsequence of 1g,0)fn(x) converges strongly in L? (Rd). Since LP convergence

implies that pointwise convergence of a subsequence we find that there exists a subsequence

fnkl () — f(x) a.e.

for € Bg(0). Renaming this subsequence f,, and taking R — oo using Cantor’s diagonal

argument one finds a subsequence of f,, such that it converges pointwise on almost all of
R? = Ugtoo Br(0). g.e.d.

Proof of [Thearer 5.
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(d > 3) Take a sequence (f,), C B, with (f,), bounded in H'(R?). By Banach-Alaoglu

[Theorem 1.26| we can find a subsequence

n—00
Jin —=F

Hl

We have to prove that 14f, — 14f strongly in LP(R™). By linearity, we can assume
that f = 0 (i.e. we consider f,, — f instead of f,,). Thus we need to prove that if f, — 0
in H'(R?), then 14f, — 0 strongly in L?(R?). Now we write

]-Afn - 1AetAfn +1a (fn - etAfn)‘

Recall that

—_

ERF (k) = e (1)

where ( tA f) = [ G(x — y)f(y)dy, where G is the heat kernel. We have

[Lafallz < Lae™full2 + [1La(fo — €2 f)ll2

By the Fourier transform and the Plancherl theorem we have

27.2 o 1/2E
L4l = €400l < U = el = Vo = 570 = ([ (1= ) |t ['ax) <

< ( / (t4m2k?)?

We have 14¢2 f, — 0 strongly since, for every x € R?

A Z
Fb[ar) = VA AL < Vie

¢S falr) = (G(z =), fu) = 0

as G(x —-) € L? and f, converges weakly and for all z € R?

12
(2 f) (@ / Gla — y)Pdy / APy <o
Rd

ie. 14ef, is dominated by C,14 and thus as e'®f, converges pointwise it also

converges strongly by the dominated convergence theorem.

11— e < min{l, s}
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Concluding we find that
11afallz < ||1acfo]l, + CVE

Taking n — oo we have
limsup ||1afnll2 < 04 CVt

n—o0

and taking t — 0 we find that

limsup |14 fnll2 <0

n—o0

i.e. 14f, — 0 converges strongly in L? (Rd).

Moreover, we know that

1Lafulle < [ fallg < Cllfallar
for all
d .
g< 2L, ifd=3
q < o0, ifd=2
q < 00, ifdn=1

Then by interpolation (Holder’s inequality) we find that 14f, — 0 converges strongly

in L? for

Asin n > 3 we can prove 1B CC LP(R"), 2 < p < 0.

Why can we include p = co? Let f, — 0 weakly in H'(R). We need to prove

sup| f ()| === 0
z€EA

Indeed, we can write

T+e xr+e

Ful@) = Jaly) + ful@) — fuly) = fule) = / Fulp)dy + o / ful@) — fuly))dy



By the triangle inequality and Sobolev inequality we have

T+e xT+€e T+e
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1 1 1
o)l < 5| [ 5as] + o [ V= sllfilady < o | [ ] < VELL:

Take n — oo, then

limsup | fn(2)] < Vel ]2

n—o0

since f,, — L?. Take ¢ — 0 to see that f,(z) — 0 or all z € R. Now we assume that

SUP,e | fn(x)| # 0, then there must exists a subsequence f,, and a sequence (z,), C A

such that
lim inf | f,,(x,)| > 0.
n—o0

Because A is bounded, there must exists a subsequence such that x,, — xo. Then

Fal@a) = fulwo) + fulaa) = f@wo) = |fal@a)| < |fal@o)l + V]wn — ol [ £l == 0

which is a contradiction. ¢

g.e.d.
Sobolev Spaces W"? (Rd)
r "
Definition 5.5.
WP (RY) = {f € L”|V|a| < m:D*f € L*}
\ =
r 1

G

Theorem 5.6. For allm € N, p € [1,00] W™P (Rd) 1s a Banach space with the norm

l/p
flwma = D IDSI

laf<m|

(In particular W™?2 = H™ is a Hilbert space).

Proof. Analogous to H™.

q.e.d.
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Theorem 5.7 (Weak Convergence). For m € N, 1 < p < oo, then f, — f weakly in

Wme iff D*f,, — D*f weakly in LP(R?). O
Proof. Analogous to H™ qg.e.d.
N
Theorem 5.8 (Sobolev Inequalities). Let m € N, 1 < p < co. Then have a continuous
embedding
P<q< dp o if d > mp
wmP(R?) c LY(RY) with {p < g < oo if d=mp
PSS g0 ifn < mp

In particular if n < mp, then W™P(R") C €(R™) and for m =1

p<q<iL, ifd>mp
WP (RY) c LYRY)  with { p< g < oo, ifd=rp

PSqs 00, ifd<p
\ gy
Proof.

(m = 1) We consider n > p. We want to prove that
dp
[fllwie = cllfllg. PSas g

Using the inequality HUH%I < |Vl for all w € 2(RY), d > 2 with u = f, f € 9,
f = 0. Then

. , i 11
p a—1 p'(a—1) - i
(/f ) a/f |Vﬂ<a</f ) IV £, PRl

We need a5 = p'(a — 1) which is equivalent to

dp—1) d—p
(d=1p (d—=1)p

1 1
« «
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ie.
oo d=1p
d—p
Hence,
N d (d-1)p d  dp
d—1 d—p d—1 d—p
Thus

171 < CIV S,

for all f € 2, f > 0 and thus this holds for all f € W'? by density and the diagmag-

netic inequality.

The case p = d is similar to H'. Let p > d. Why W C L*® (Rd) N %(Rd). Take
f e €>(R?). Write

Integrating over B, (y) we find that

1

[ @ - swia< [ [ 195041 - )l - yara 2

By (y) 0 Br(y)
1
|z| dz
_ 1122 4 <
[ | wrwealt
0 |z|<tr
1 1/p’ l/p
1
</t—d /dz /|Vf(y—l—z)|pdz it <
0 z|<tr z|<tr
[ (tr)?
tr)y
<cr [ER 19 -

0
1

—cr 7| [ | s,

0
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Here
1
4_q d p
At <oo = — —d>1 = d-1<==p—-1 < p>d
s p p
Thus
d(p—1)
| 1@ - swias <,
|le—y|<r
note that
d(p—1)

Thus for some s > 0
[ 1@ - 5wl < e v,

|lz—y|<r

Take z € R, we write

FW)=1) = fy)=fe)+f(@)=f(2) = [f)=fE] <) = F@)]+]f (@)= ()]

integrating over « we find that |z —y| < |y — 2| = 7.

m
Cly — U (y) — F(2)] < Q/ (@) — f(y)lde + / @) — F(2)lde <

lz—y|<[y—z] |z—2|<2]y—2|

<C'ly — 2| VEll, = |f@@) = I < Cly = 2LV,

for some s > 0. This implies that W!?(R") CcC % (R"). We still need to prove that
WEPR™) € L*(R"). Write f(y) = f(2) + f(y) — f(z) and thus [f(y)| < [f(2)| +
|f(y) — f(z)|. Integrating over |z —y| < 1

1/p/

cuwnssh/ ()| dz+ /°|ﬂm—funm~s /“cu 1 lo+C IV Fllp < Cl s

lz—y|<1 lz—y|<1 rz—yl<1
Thus sup,epn |f(y)| < C| fllwre.

For higher m, use that f € W™P(R?) implies that 9,,f € W™ 1*(R?). By induction
lg < ||fllwme. Thus f € LP and

and Sobolev inequality for W'? implies that [|0,, f



Oy, f € L1,

q.e.
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d.

’
Example 5.9. This proof yields that H'(R') C €(R'), but H'(R?) ¢ ¢ (R?), H'(R?) ¢

% (R3?). However,

H*(R?) C ¢ (R?), and H*(R?) C ¢(R?)

‘
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Chapter 6

Ground States for Schrodinger

Operators

7

Definition. A Schrodinger operator is operator of the form
—A4+V
for V : R — R some external potential. The corresponding Schrodinger equation is

(A + V) = Ey

. for some F € R (the energy of the system). 0

Remark (Physical Interpretation). Let 1) € L?(R?), ||¢||2 = 1 be the wave function of

a quantum particle, then the ground state energy is given

E=intd [1VoP+ [VIOR v e (R0l =1
Rd

Rd

57
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é Y
Theorem 6.1 (Minimisers are Solutions). If V € Lj, (R?) where

loc

p>4, ifd>3
p>1, ifd =2
p=1, ifd=1

and g 1s a minimiser for E, then

—Ago+ Vipo = Etpy  in Z'(RY)

L (in particular, Vipy € L} .) O

loc*

é )
Example. Let f € €'(R). Then f'(xg) = 0 if 2o is a minimiser of f, i.e. f(zo+1t) >

f(z0), hence for ¢ > 0

>0 = f'(x9) 20

fzo 1) = f(wo)
t

and for ¢t < 0
f(zo+1) — f(xo)

Li.e. f'(xg) =0.

Proof. Let E(u) = [ |Vul® + [ V|u|?, then per definitionem of 4y
E(u) = E(to)

for all w € H' with |lul]; = 1. Thus for all p € €> and |¢| small enough

( o+t

T +ts0||2) > £(w)

ile. t— & L% ) attains its minimum, when ¢ = 0. Hence
llvo+tell2

04 < Yo +ty >:15(¢o+w)
dt \||vo + to|l2 dt || + to||3



59

Noting that

d - _
8(7/10 +t90)|t:0 =EB

d __

%”% +toll5 = 2%/%90

1o +teoll3],_y = 1

one finds that

d E(1ho + tp) /— / - /—
=—— "L —92R | VuyVo+2R | V — 2R =
0t oo + 102 uVe b e

:2%(—/%A@+/V%¢—2E/u_oso)

By changing from ¢ to iy we find that the same must hold for the imaginary part and

0

therefore
0= /u_o(—Aso + Vo — Ep)

for all p € 7, i.e.
—A’LLD + VUQ = EUQ

loc loc

H' c L?(R?) by the Sobolev embedding. g.e.d.

in 2'(R?). Here the condition V € L (R?) ensures that Vuy € Lj; (R?) because ug €

Two different types of behaviour of external potentials
1) Trapping potential: V(x) = oo as |z| = oo, i.e. inf,>p V() = 00 as R — o0
2) Decaying potential: V(z) — 0 as |z| — o0, i.e. supp, >z |V (2)] = 0as R — oo

3) There are also other potentials such as periodic ones.

4 N
Theorem 6.2 (Existence of Minimisers for Trapping Potentials). Assume that 0 <V,

V(z) = oo as |x| — oo. Then

E = inf{/lwf T /VW | € B (RY), [, = 1
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k has at least one minimiser. O )

Proof. Assume that V' > 0, then E = inf(---) > 0, thus £ is finite. By definition of E, we
can find a sequence (u,), C H* (]Rd) such that

E(uy) :/|Vun|2+/V|un| ANy

Since &(u,) — E it follows that £(u,) is bounded (as n — oo) and thus [|Vu,|? and
[ V]u,|* are bounded. Thus (u,), is bounded in H', hence we may choose a subsequence

such that wu,, — ug weakly in H* (]Rd) and u,(z) — wuo(z) a.e. (by [Theorem 5.4). Since

Vu, — Vug weakly in L?
liminf/ Vu,|* > /|Vuo|2
n—oo

Since V|u,|*> = V]uo|? converges pointwise

mmm/&m%2>/vww
n—oo

By Fatou’s lemma. Thus
E =liminf &(u,) > E(up)

n—oo

Thus ug is a minimiser iff ||ug||2 = 1, which is an Exercise. qg.e.d.

Now we shall turn to vanishing potentials, i.e. V' 10 as |z| 1 0 and a singularity.

4 Y
Example. The Hydrogen atom potential —A — ﬁ on L*(R3).

Why is this potential bounded, i.e.
2
E:M‘/WWM—/E%KMuGHWWfﬂ
R3 R3 *

This is due to the Sobolev inequality |[Vul||e > Cllull¢. For r > 0 we have

JLC Iy T T T
|z |z] ol
R3 |z|<r lz|>r

2/3

1/3
1 2 1
<| fuer] | [om] « M dx<os(R/Vu2 P
3

z|<r z|<r || >r
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1.e.

E(u) =/yvuy2—/ |u|(;:|)|2dx>/|Vu|2(1—Csr)—%

for all » > 0. Choosing r > 0 small enough one finds that

E(u) > %/|Vu|2—C> oo

L1.e. E > —00. )

é N
Lemma 6.3. If V € L (Rd) + L*>® (Rd) where

p>4, ifd>3
p>1, ifd=2
p=1, ifd=1

then E > —oc0 and .
E(w) > 5/|W|2 _c

for alluw € H'(RY), [lulls = 1. O
&

Remark 6.4. o [P+ L™= {f +g | ferr ge LOO}, for example

1 1 1
Bl ml{m«} + ml{lwbl}

(-

-~

~
eL3—e¢ cL>

o IF p < ¢ < oo then LIY(R") C LP 4 L.

Proof.

(d 2 3) Let V € Ld/2 +LOO Write V = ‘/1 +‘/2, where ‘/1 = Vllv(l‘)|>é7 ‘/2 = V1|V(z)|<% Then

for € > 0 small, we have

Vae L%, [Valloo <

m | =

2/d
Vi e LY, Vil = (/ |V(x)|d/21|v(x)|>;d$> A0, 0
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by dominated convergence. We have

\ [vir

< / Vi uf? + / Vallul? < [Vallas ]y + IValocliulls <

1
< CslVill [ 1V + 2
]Rd

for all w € H', ||ul]j = 1. Then

11
g = [ [P CallVilly) - £ 5 [ I9uP - C

if we choose ¢ > 0 small enough.

q.e.d.

é Y
Definition 6.5 (Vanishing in the Weak Sense). We say that V : R? — R vanishes at

oo in the weak sense if for all e > 0

A{IV(@)] > €}) < o0

Example. V(z) — 0 as |z| — oo in the strong sense, i.e.

sup |V (x)| EimtNy

|z|>R

Remark 6.6. If V € L? (Rd), 1 < p < o0, the V vanishes at oo in the weak sense. [

[ R
Theorem 6.7. Assume that V € LP(R?) + L§°(R?), where

p=i, ifd>3
p>1, ifd=2
p =1, ifd=1

and LY is the set of L which vanish weakly at infinity. Assume that E < 0 then E
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has a minimiser ug € H* (Rd) and

—AUO ar VUO = EUO m @, (Rd)

Moreover, we can choose ug = 0. 0

Remark 6.8. Under certain conditions on V', then actually uy > 0 and it is unique.

But we will prove this much later. 0
~
Lemma 6.9. Assume that V € LP + L§°. Assume that w, — uy weakly in H'(R?).
Then
/V|un|2 2, /V|uo|2.
L 0
Proof.

Case 1 VELP,p:%Z,d>3. Then

V=Vi+Va+Vs=V1__ ym2y+ Vivae + Vipe)s

1
€

Then V; € L, A({Vi(z) # 0}) < oo and by the Sobolev embedding
[ Vilua =2 [ VijuoP
{0}

strongly in L?.

Vo € L™ and ||Va]|e < €, then for all n € N

'/Vzrun!?

Vs € LY ||Va]la, — 0 as € — 0 and therefore

‘/Vglunl2

<e¢

<e = ’/Vglu|2

< IWVallgallln ]| _o. < ClIVallas
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‘/vwnﬁ - [viu| < '/vnunP - [
and therefore
foer- |

Then
24 e+ C||V3||d/2

lim sup 1 <e+CO|Vallgy — 0

n—oo

Case 2 V € L, then
V=V+V= Vl{s<|v(z)\<§+V(w)1\v(z)|<s}

The rest of the proof works analogously to the above.

Proof of [Theorerm 6.1

,d > 3) By the lemma

1
5 [ 19l -

for all u € H'(R?Y), |lul| = 1. In particular E is finite and we can find a minimising

sequence (uy,), C H', ||u,|l2 = 1, such that E(u,) — E. Since
B Elu) > /|Vun|2
hence (u,),, is bounded in H'(R?). Thus by the Sobolev compact embedding theorem,

there exists a subsequence (un,),, U, — uo weakly in H 1 (Rd) and 14u, — 1aug

strongly in L*(R%) for any bounded set A. Because Vu, — Vu weakly in L?, and by

hmmf/|Vun|2 /|Vu0|2

and by the previous lemma, [ Vl]u,|> = [ V]ug|>. Thus

Fatou’s lemma

E =liminf &(u,) > E(up).

It is not obvious that wg is a minimiser as we do not whether ||ug|ls = 1, because

Uy 22Ny = luo|lo < liminf ||u,|2 =1



65

Now using the assumption £ < 0 we find that

0> B> €)= [ 1Vuf + [Viuol = ||U0||2< [+ | vm?) > luolZE = fuolls = 1,
——

<1

where v = ”;”OOHQ, thus ug is a minimiser.
q.e.d.
Remark 6.10. If £ > 0 then £ might have no minimiser. For example if V(z) = ﬁ
in R3, then
. 2 Ju(z)[*
E = inf /|Vu|dx—|—/ dz ) =0
u€H?! |I‘|
llull2=1
but it has no minimiser. O
é Y
Theorem 6.11 (Hydrogen Atom). Let
:1nf</|V|d:r /'“ )
[[ull2=1
then E = —1 and up(z) = ce‘l%l, c € R, is a minimiser. O
A v
é Y

Theorem 6.12 (Perron-Frobenius Principle). Take Q C R? open, f € €2(2). Assume
that V € L}, (R?), f >0 for all z € Q and

-Af+Vf=0
pointwise in Q. Then for all u € €}(Q), we have

/\Vu\de—l—/V\u]? >0

. J

Proof. Since u € €}(2) and f > 0 we can write u = fo with ¢ € €}(Q2) and

[ivut = [19008 = [1Vtorsvel = [[0iEwel+ [17P9eR429 [ (V117690
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Thus
/ 00, Sl = / £0u, ((0uf) ) / @ 1)l / F0u. 000l
hence
/ VFPlol? = — / FAflol? - / V2RV ).
Thus

/ Vul? = / FPIVeP + / F=ADIp
and therefore

Vul? + [ VIul> = [ [PVl + | fF(=AF+V)lel = [ [fPIVel* 20

Proof. Let @ =R3\ {0} and f(z) = ce~'3'. Then fee?Q), f>0inQ and

f

_Af_m

1
Zf=0
+ 4f
on 2. By the Perron-Frobenius principle

Jivuz = [HOE L2 o

for all u € €HR3\ {0}). As €}(R3\ {0}) is dense in H'(R?) (the proof of which is left as

an exercise)[[]

The for all u € H'(R?), we can find a u,, € €} (R*\ {0}) such that u, — u in H'(R?) and

un(x) = u(z) a.e. x € R3. Thus
/|Vun] dr 222 /\Vu\zdx

[z 2= [upas

2
lim inf de
n—00 ||

Since € is dense in H'(R*) one only needs to consider a g € 4°(R?) and take h € €2°, with
0< h <1, h(z)=1if |z| <1, and define g,(1 — h(nz))g(z) € € (R3\ {0}).
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where the last inequality follows from Fatou’s lemma and therefore we have

hmsup</|Vun|2 |“”|2 /| n|2> < </|Vu|2— |“|2 /| I2)

n—oo

q.e.d.
é )
Lemma 6.13. For all u € H'(R?) with ||u||s = 1 holds
Ju(@)*\’
[ 1vut > (/ =
q =y

Proof. Take u € H'(R3), ||lulls = 1. Let w(x) = [**u(lz) for which ||uls = |Julls = 1. We

have ) )
/|VU1|2 :l2/|vu|2 |ul| /|u|
R3

then we have by the above that for all [ > 0
1

l2/|Vu|2—l/%dx>——
] 4

d 1> 0iff 4AC > B?, we find that the

Noting that 124 — B+ C > 0 for some A, B,C > an

| |

for all u € H'(R3) and |[Jul|s = 1.

q.e.d.

Remark 6.14. For all u € H*(R?) and [Jul|; = 1 we have

([ 1) ([ 1ePiutoras) = ( “l”)( [l >
> ([uper) =
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Comparing this to the Heisenberg uncertainty principle

([19u2) ([ tettutorpar) >

we see that the Sobolev inequality is “stronger” that the Heisenberg-principle U

>~

é N
Theorem 6.15 (Hardy Inequality).

L[ |u(@)f
2 2 - 20 e
/]Vu| i PE

Lfor all w € HY(R3). O

Proof. Homework. q.e.d.

Remark 6.16. Hardy’s inequality implies

2o Juf? 1/%2
/’V‘ \2/4( \x|

if fJufl, = 1. O
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Harmonic Functions

7
Definition 7.1. Let f € L{ (), for Q C R? open. Then f is harmonic iff

loc

Af=0 in2(Q).

,
Theorem 7.2 (Equivalent Definition). f € L} (). The f is harmonic iff

loc

f(z) = A(ifm / f(y)dy == ]{Wﬂy)dy
B, (z)

Lfor all r > 0 such that B,(x) C .

Proof.

Step 1. Let f € €>° and assume that Af = 0. Then
0= / Af(y)dy = / Vf-vdS(y) =r?! / Vf(z+rw) - wdS(w)
B, (x) Sr(z) Sd-1
where S471 = §(0). Thus we have

O:/Vf(x+rw)-wd5(w):/d%f(xjtrw)dw:%/f(x%—rw)db’(w)

Sd-1

69
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Step 2.

CHAPTER 7. HARMONIC FUNCTIONS

ie. r— [ f(x+4rw)dS(w) is constant, i.e. for all r >0
Sd—1

fl@)A(S) = / flz+rw) - wdS(w)
Sd—l

and therefore

T

|&@W@—fﬁw®ﬁwmw—/W*/ﬂmWwamm—/f@@

0 Sd-1 Br(x)

from which f(z) = fBr(m) f(y)dy follows.

For the converse assume that f(z) = fBr(x) f(y)dy holds for all z € Q and r > 0. From

the assumption we have

A(ST) fz) = / [z +rw) - wdS(w)

Taking the derivative with respect to r we get

0:%/f(x+rw)d8(w):/Vf(x+7“w)-wd8(w): / Af(y)dy
Sd—l

Sd-1 Br(x)

Since this holds for all » > 0 one finds that Af = 0.

Consider f € L{.(€). Choosing h € €>(R?), with 0 < h < land [h=1, h(z) =0
if |#| > 1 and h is a radial function, i.e. h(z) = f(|z|). Letting

for n € N. We know that h,xf — fin L (Q), hyxf € € and D¥(h,xf) = (D%h,)* f.

loc

Let Af =0in 2'(Q2). Then
A(hy, *x f) =0, in 2'(Q),

since for all p € €>°(2), in particular also h,(- — z),

/Awwﬂwwza
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hence we have classically A(h, * f) = (Ah, * f) = 0 and therefore also weakly. By
step 1

B ~ 1p.0) B 15,0
(s 9)0) = f (s 0y = S G £)) = s (W . f) (2)

Taking the limit n — oo, the assertion follows.

For the converse assume that f(z) = ( 1?%%) * f> (x) then

_ 15,0 _ 1
hin % f(x) = hy * (m *f) () = W % (hp * f)(2)

and therefore by step 1., A(h, * f) = 0. Since h, * f — f in L]

e 1t does also converge
in 2'(Q) and therefore 0 = A(h, * f) — Af in 2'(Q).

g.e.d.

(Corollary 7.3. If f is harmonic, then f € €(Q) and f(x f/\ 5. () fy D)

Proof. The identity follows as in the case for smooth functions. For the smoothness we shall

prove that h, x f = f everywhere.

(hy * ) (2 / F) (@ — y)dy = 7 / P () (2 — ) dS (w)dr =

0 gd—1

:]Oh(rw)rd_l / flx —rw)dS(w) dr = / ha(y)dy | f(z) = f(z).

R4

J/

=f(x)A(s9-1)

Thus since h,, * f is smooth so must f. q.e.d.

é N
Theorem 7.4 (Harnack’s Inequality). If f is harmonic on B,(0) and f > 0 then for

all v € B (0), then
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Proof.

for z € B%(O). Thus we have

A(Bzg(z)) 1 2\ 2\
0) = 2 dy > (= dy=|{=
10 = S0 N, { S > (3)} s (3) 7@
The other inequality follows similarly using B 5 (0)Cc B 21 (x). q.e.d.

Corollary 7.5. If f is harmonic on RY and f is bounded from above f < c¢ for some

c € R (or bounded from below), then f is constant O

Proof. Assuming that f(z) > —C for all z € RY. We want to prove that f is constant. Let
E = inf cpa f(x) and define ¢ = f — E, then g > 0 and ¢ is harmonic, inf cga g(z) = 0.
We want to prove that g = 0. If not, then there must exist a xy. If not then there exists a

1o € R? such that g(x¢) > 0. By Harnack’s inequality we find that

g(o)
g(x) > 5 0
for all z € R%. Thus (20)
. 9{Zo
f > >0
mléle g(x) 2d
which is a contradiction. q.e.d.

7
Theorem 7.6 (Newton’s Theorem). Let u be a positive Borel measure on R"™ and let
w be radial, i.e. p(RA) = u(A) for all R € SO(3). Then for all x € R?

/ du(y) dp(y) [ du

e =yl J max{lz],lyl}  |a]
R3 R3
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Proof. Using A41| = d in 2'(R3), in particular A‘—}d =0 for all z € R?\ {0}, hence ﬁ is

harmonic on Q = R3\ {0}. Thus

f(z) = - )f(y)ds(y)

Step 1 We consider the case p is a uniform measure on a sphere. We want to prove that

/!-%—y! /maX{!fB\ R}

ly|=R ly|=R

If |x| > R the function y ﬁ =: f(y) is a harmonic function on B(0, |z|), because

A(l I) =0 for all z € R*\ {0}. By the mean value theorem then

_ L v

| p=soig= [ wg= | ot

ly|=R lyl=R ly|=R

and therefore

If |z < R

/ / 2/ dw Case |z|>R
|93—y| o= Rw| ||$|W—Ryo|

ly|=R
dw ]SR

/ maX{!x\ R}

ly|=R
If |z| = R then by the Dominated Convergence Theorem

dy dy .. [Sr,(0)] |Sr(0)
= lim = lim =
lt —y| RatR |l —y| RatR x| |x\ max{]x\ R}

ly|=R ly|=Rn lyl=

Thus we proved for all R > 0 and x € R?

/Iw—yl /maX{lﬂfl lyl}

[z—yl lyl=



74 CHAPTER 7. HARMONIC FUNCTIONS

Step 2 For general p, with p radial
/ / dp(rw) / / du(rw) du(y)
|~"€—y| |z — 1wl max{|z|,r} J max{fl, |y[}

q.e.d.

Definition 7.7. Let f € Li (). We say that f is super-harmonic if —Af > 0 in
2'(Q). f is called sub-harmonic if —Af < 0 in Z'(Q2). O

Remark 7.8. In one dimension super-harmonic is equivalent to —f” > 0 ie. f is a
concave function.

If Te 2'(), then we say that T > 0 if T(¢) = 0 for all ¢ € 2(), for ¢ > 0.
Actually by the Riesz-Markov representation theorem, 7' € 2'(Q), T > 0 iff there

exists a positive Borel measure y such that

T(p) = g{ p(y)du(y), Vo e 2(9)
pu(K) < oo, VK C Q compact

However, we shall not use this result in this course. One way to prove this is to define

p(K) = inf{T(p ‘9069 >0p=1on K}
1(0) =sup{T(¢) |¢ € 2,0< ¢ < L,suppyp C O}
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é Y
Theorem 7.9 (Mean-Value-Theorem). Let f € L} (). Then f is super-harmonic iff

for a.e. v € Q and R > 0 such that Br(x) C Q

ﬂm>ﬁ(ﬁ@m/

\ DJ

Proof. “Similar” to for harmonic functions. First let f € €, if —Af > 0,
then ]
0> / Af(y)dy = rd’ld— / flz+rw)dw
r
) Sd*l

By (z

which means that r — [ f(z + rw)dw is non-increasing and therefore
Sd—1

mw>ﬁ(ﬁ@mL

Then for f € L., replace f by h, x f € €. qg.e.d.

loc»

é N
Theorem 7.10 (Strong Minimum Principle). Let f € L] (Q), —Af > 0 in 2'(Q),
where £ C R™ is open and path-connected. Let E = essinfq f. Then either

1) f(x) > E, for a.e. x € )

2) f = const on .

Remark 7.11. The weak minimum principle tell us that essinfq f = essinfyq f. O

Proof. Assume that f(x) > fBR(I) f(y)dy holds for all R > 0, Br(z) C 2 holds for all z € €/,
ie. [Q\Y|=0.Ifz € and f(z) = E, then

E:ﬂ@>f' f(y)dy > E

Bpr(z)
>F

i.e. equality has to occur and therefore f(y) = F for a.e. y € Br(z) C Q. Now for every

z € (2 there exists a continuous curve connecting z and z. We can find » > 0 and finitely
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many points xi,...,zy such that ©1 = x and zx = z such that B,(x,,) C Q covering
the curve. Then f(X) = FE implies that a.e. y € B,(z) and by induction it follows that
f(z;) = E and thus also f(z) = E. g.e.d.
4 Y

Theorem 7.12 (Mean-Value Theorem for (—A+p?)). Let f € L}, (), —Af+p>f >0
in 2'(Q), p € R. Assume that S is open and path-connected.

1) Then for a.e. x € Q we have

for all R > 0 such that Br(x) C €2, where Cr > 0 depends only on R > 0.

2) If f 20 and f £ 0, then f(z) > 0 for a.e. x € Q. In fact for all K C Q) compact,

we have

fm>@/mm

for a.e. x € K, where Cx depends only on K.

Proof.

Step 1. We can find a function J : RY — R such that J >0, T € L, J(0) = 1 and J is radial

loc?

and
(A + p?)J(x) =0, pointwise.

For example in 3-dimension this is

_ sinh(glx])
plx|

J(x)

Step 2. Assume that f € € and —Af + p?f > 0 pointwise. Then

/X—Af+ﬁﬁJ>0

Br(0)



On the other hand
/ f(=AT+p*J) =0

B (0)

1.e.

0< / (“AFT = f(—AT)) =~ / (VFT — [VF)-wdo =
B/ (x) si-1

=t [ (G Arlir) = £(r0) 5T o =

r
Sd—

— et (di Q / f<m>> i)~ | f(rw)d%J(r)>

which implies that

d d d g
—g|J—g|+J | <0 = —= <0
(dr g) g (dr ) dr J
Thus 7 +— £ is non-increasing and therefore

g(R) 1

B _ 1 [ o
S0 > S = g [ AR

for all R > 0 such that Br(0) C €2 and thus also that
)= Cr [y

Br(0)

and

f(z) > Cp / f(y)dy.

Br(z)

7

Step 3 Now let f € Li_ and consider h,, * f € €, with h, x f — f in L} (). From Step 2

loc loc

we have

(hn * [)(x) = Cg / (hn* [)(y)dy = Crlpg) * (hn % f) = Crhan % (1,40) * f)

Br(z)
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Step 4

Step 5

CHAPTER 7. HARMONIC FUNCTIONS

Taking n — 0 we find that

for a.e. x.

If f>0and f# 0. Then the mean value inequality implies that

) > Cr / F(9)dy
Brgr(x)

implies that f(z) > 0. The proof argument is the same as for the strong maximum

principle.

K is compact, we can find zq,...,z,, r > 0 such that K C Ufil B.(x) =U

[rome [r<3 [ 5

And thus if we assume that B; N Biy1 # 0 and = € B(xy,7)

@) > e / F(y)dy > / BN By inf > / f(y)dy

B1NB;
B, (z) B(z1,r)NB(z2,r) B (z2)

if |B1 N B2| 7é 0 (01” Bz N BZ'_|_1 7£ @ for all l) Thu

a | fydy>=--->c | fly)dy
/ /

hence

= inf ¢;.

o™

qg.e.d.

Theorem 7.13 (Uniqueness of Minimiser). Assume that V € L;

e and E has a min-

loc

imiser. Assume that Vi € L3S (RY), Vi (z) = max{V (z),0}. Then there exists a unique
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ug > 0 manimiser for E. Moreover if u is another minimiser, then

U = Cug

for a constant c € C, |c| = 1. O
A v

Proof. By the diamagnetic inequality, £(u) > (|u]). We may thus assume that E has a
minimiser uy > 0 and we have to prove that uy > 0.

Since ug is a minimiser, it satisfies
—Auy + Vuy = Eug in ' (]Rd)

Thus
—AU() + VUQ = EUQ

in 2'(B) for all open balls in R?. Since V, € L*(B) implies that V < p? in B for some
constant p > 0. Thus
—Aug+ (W — E)ug =20 in 2'(B).

By the above theorem it follows that

up(z) > CK/UO(y)dy

for all compact subsets of B and a.e. € K. This means that for every y € R? r > 0, that

uo(x) = C, / up(2)dz
Br(y)
Because ug = 0, ug # 0 (as ||ug|l2 = 1), then
/ u(z)dz >0
Br(0)

for R big enough. Therefore ug(x) > 0 for a.e. x € Br(0) for all R large enough. Therefore
ug(z) > 0 for a.e. x € R%

Next assume that u is another minimiser. We can write u = f + ig, with f,g : R — R.

e = [ Vups [V = [(952 4 VIF)+ [ (992 +VIgP) =B = E [ IP+E [ 1oP
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But

[1vies [vises e [ s
[1vae+ [vige > £ [

By the definition of E. Thus —<4— and < are also minimisers for E.

1£1l2 llgll2
Then either u is real indeed, or we assume both f, g # 0. Let us consider when both f, g # 0.
Then %, % are also minimisers by the diamagnetic inequality. We can therefore assume

that f > 0 and g > 0.

Now we choose |u|, we know that

/ Vup = / V]2

because u is minimiser. Because f,g > 0

which implies that

2 2 |[fVf+ gVl
[ v vop = [

On the other hand

\Y V|2
/ }7;:992 9 < VP + Vgl pointwise.
Thus Py vl
+
f2 +i]2 I IVfI?+ |Vg]? a.e.

Hence f = constg. Consequently u = f + ig = (1 + iconst)g = constg, i.e. u is real valued
and v > 0 up to a phase.

Finally, since both u and ug are minimisers (and positive)

U+ tuyg

P T+ o2

is also a minimiser and thus by the same argument we have u = Cuyg.

q.e.d.
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é Y
Corollary 7.14. If there exists a A € R and v > 0 such that
—Av+Vv=) in 7'(R%)
Then A = E and v =ug > 0 (where ug is the unique minimiser of £ ). O )

Proof. The PDE implies

/Vv-Vgo—l—/vao:)\/vgo
/VU-VUO-I—/VUU():)\/UUO

(where we have omitted some conditions on V'). Moreover,

for all ¢ € Z2(R?) and thus

—AUQ + VU,() = E’LLQ

/Vu0~Vv+/Vuov:E/vuo

Thus A [vug = E [wvug. Since [vug > 0 (as v = 0, ug > 0) which implies that A = E,

hence v is a minimiser and thus v = uy. q.e.d.

thus
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Chapter 8
Smoothness of Weak Solutions

Consider the Poisson equation
—Au=f in ' (]Rd)

If fe (K(Rd), can we conclude u € € (]Rd). If d =1 yes otherwise no. But f € %(Rd)
implies that u € €* (Rd).

However, there exists the Elliptical optimal estimate that if f € €% then u € €*t* for
0 < a < 1, where €* are the Holder spaces.

é Y
Theorem 8.1 (Basic Regularity). Assume thatw € L}, (), f € L} (), Q C R? open.

loc loc
If
—Au=f in 2'(Q)

Then
o uc %) ifp>§l

e uc () ifp>d.

Proof.
Step1 felL? (]Rd) and f has compact support
—Au=f in2'(Q)

83
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84
Then a solution s u(z) = (G  f)(x) = [ G(z — y)f(y)dy where
R4
1 1 .
G(z) = @—2)S% 1] Jz[¢-2° if d #2
— 5 In |z, if d = 2.

Let us restrict ourselves to the case d >

_C/I y|“y

is well-defined because

1/17
fy) dy
|t | e —) <aun,
R4 d f

with C < oo if

1,1 _
Whereg+a—1.

Step 2 We prove prove that u(x) as defined above is continuous if p >

1
u(w) —u(z _Cd/f < y[—2 ~ |x/_y|d—2)dy
ula) =) < ca [ 17| 1

thus
dy

i

Using the elementary inequality for a,b > 0 and o > 1

1 1 |aa _ ba| alafl + bafl (aafl + bafl)
— | = < Ola b ———— < Cla—bfla+ b <
a® b a“b o = ¥ a“b @ = blla +b] a“b
1
<Cla—bf———
aa—i—a _|_ pate

for € > 0 small. Thus

1 1

1 1
o= g o =y

o=y =y

< Clx — 2|




Step 3
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therefore

, 1
|u( ) ( C|:L‘ - | / |f ( yld 24e + |$/ _ y|d—2+a) dy <

1/ l/q l/q
P 1 1
cor (i) ([ ) o[
|z — y|(d-2+o)7 |7 — y|@2re)
upp f upp f
Thus in total we have
lu(z) —u(@)] < Clz = 2'[7|| f]],
. d d d
—1
(d—=2+¢e)g<d <= e——(d—2)= v )—(d—2):2——.
q p p
We prove that if p > d then u(z) = ¢, [ oy dy s €.
)=ca | fly dy
d/ —md
and therefore
—Yi T — Y
Oy, Oy - “|d
oriute) = Onule!) < o [ 1 )l| 2t — 2y

Let a = |z —vy|, a; = x; — y;, b= |2’ — y| and b; = z}, — y;. We have

a; bz < ‘CLZ—b,L’ 1 < , 1 1 <
| ST | Slv =2+ !b\ p| S
1 1
le
gc”‘x’Qx—m*Hf+wuﬂm*%)
hence
1
orute) = O0(e!)| < Clo =1 [ V)| s + Ty | <
l/q
dy dy &
<z —2'f <
upp f upp f

< Clz =2 fllp
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if
=1 _y_py_q-2
P p

(d—1+4¢)g<d <= 5<g—(d—1):

Step 4 Now let f € LY (), —Au = f in 2'(Q). Take an open ball B such that B C . Take

function u; such that —Awuy = 15f in 2'(Q?), (i.e. vy = G* (1pf) ) From Step 1,2,3
it follows that u; € €(B) if p > ¢ and €'(B) if p > d.

Further we also have
—A(U — Ul) = f(l — 13), in @/(Q)

Thus
—A(u—up) =0, in 2'(B)

Thus u — u is a harmonic function in B. Therefore u — u; € €°°(B). If u; € €(B)
it follows that u € ¢ (B) and analogously for ©!. Since the ball B was arbitrary with
B C Q, we have

d

u € €(Q), ifp>d

g.e.d.
An application of this theorem would be
4 Y
Theorem 8.2. Assume that u € L*(R3), V € €= (R?) and
—Au+ Vu =0, in 9'(R)
Then u € €=(R?). O
A\ y

Proof. —Au + Vu = 0 implies that —Au = —Vu in 2'(R3), u € L? V € €, hence
Vue L (R?).

loc

By the above theorem, we have as p=2,d =3, p > (21 thus u € €(R3). Thenasu € ¢,V €
€ implies that Vu € €(R3) C L (R3). By the same theorem as p = 0o > d, u € €(R?).

loc

Since V € €, u € € we have Vu € €* and therefore

—A(Opu) = 0y (—Au) = 0,,(—Vu) € €(R?)

%
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Applying the same regularity theorem we find that 9,,u € € for all ¢ and thus u € €*(R?).
By induction
(—A)(D%) = DY(—Au) = D*(—=Vu) € ¢

for all |a| < 2, thus D®u € € and therefore u € €3. g.e.d.
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Chapter 9
Concentration Compactness Method

We call the functional

Z 1 2(u(y)|?
J kd 2 |z —y]

R3xR3

Rd

the Hartree Function for atoms, where Z > 0 is the nuclear charge, |u(x)|? is the density

of electrons. Consider the variational problem
E() == inf{€(u) |u € H'(R?),|Jul|3 = A}.

E(\) is called the ground state energy of the atom. If ug is a minimiser for E()\), then it
satisfies the following PDE

—Aug — EZ‘UO + (|u0|2 * | - |_1)u0 = ug, in @’(Rg)

with p < 0.

Lemma 9.1. The map A — E(\) is non-increasing on [0, 00). O

Proof. Let 0 < Ay < Ay. We are going to prove that E(A;) > FE()). By a density argument
we can find a v; € D such that [ |v1|?dz = Ay and E(v1) < E(M\1) + ¢, for € > 0 small. Take
another function ¢ € 2 such that [|¢||3 = A\ — A\; > 0. Choose vy(x) = vi(z) + p(x — Rxg),
where 2y € R*\ {0}, R > 0. For R sufficiently large v; and ¢(- — Rxq) have disjoint supports,

89
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then [[va[|3 = [|v1]13 + [lpll3 = A2 Moreover,

2 _ R 2
E(w) < () = E(urtp(—Rao)) = E(rEpl-ra)+ [ LB,
supp(v1) X (supp p+zoR)

taking R — oo, we get the inequality
E(X) < E(M\) +2e+ / IVlPdx

for all p € 2, ||pl|3 = A2 — A\1. Rescaling ¢, we can achieve |[Vil||3 < & and taking ¢ — 0,
we get E(X\) < E()\)
g.e.d.

Theorem 9.2. a) If0 < A< Z, then there exists a minimiser for E(X).

b) If X\ > 27, there does not exist a minimiser for E(\).

Proof.  a) Let (u,), .y be a minimising sequence for E()). By the diamagnetic inequality
|Vu| > |V|u|| we have E(u) > E(Ju|), thus w.l.o.g. we can assume u,, > 0 for all n € N.

By the hydrogen atom theory

/|Vu|2dx / [uf?d > ——/|u|d:z:

for all @ > 0. Thus for a = 27

| 72X 72
u)>§/1wy? (/|V]dx /|’\u|2dx) /\V\? 22

for all w € H' and ||Jul]3 = A. Moreover, as (u,), is a minimising sequence,

thus (u,), is bounded in H'(R*). By going to a subsequence and renaming it to the

original, we may assume that u, — ug in H'(R?) and a.e. in R?®. We have Vu, AN Ug
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in L?(R?®) which implies that
liminf/ (Vu,|* > /|Vu0|2
n—oo
R3

Moreover,
| () ()P nsoe, [u0(@)]?|uo(y) [

|z —y| " -y

a.e. x,y € R3.

Thus by Fatou’s lemma we have

2 2 9 9
lim inf / [n(@) W g g, > / [uo@)Plun (@) 4,4,

n—00 |z —y |z —y
R3xR3 R3xR3

1
On the other hand from wu,, AN ug we have that the Coloumb interaction term converges
as we saw from the weak-continuity of this potential energy above. Thus we have

E\) = lim E(uy,) = E(up).

n—oo
2

To conclude that ug is a minimiser, we need to prove that [|ugl|3 = A. By u, s,
and ||u||? < liminf, o ||un||3 = A\. The reverse inequality is non-trivial and we shall

prove it by using A < Z. Now assume that |[ugl|3 < A. Then £(ug) < E(N) < E(v), for
all v € H' with ||v]|3 = A

Let ¢ € 2(R?), » > 0 by the above Lemma. For € € R, with |¢| small we have

1 &
/|u0—|—590]2<)\ = E(up) < E(up+ep) = 5@(9(%4—59@) >0
e=0
and thus
2
bl |
2de? |,

2 2
_L1ae /rmow e [ Do zppias s} [ 1R o) ety 1§

2 de? |z —y|

R3 xR3

= [iwetan— [ Fiotar [ [RGIEEE o [ [roetifttlag,

Choosing ¢ to be radial and letting ¢ = 0 if |x| < R, where ¢ € Z, v > 0, we find by

dxdy
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Newton’s theorem that

Juo(y) () o)l (e
/ / 7 — ] ‘/ max{ 1], |y|}d'75d tody
1/2
@ un(0)ele)ow) o) | (9) 2 o) Poo()?
// |z — 9| w/}R |z —y ZLLR |z —y

(o) [ 25

Altogether

2
T
o< [1wel+ |-z +fulg+2 [ luttay | [E a

||
ly|>R

Choose p(z) = goO(ﬁR), 0o € 2, wo = 0 and @y = 0 in By(0), ¢y # 0 and ¢, radial.
Then

1 2
E/'WO|2+ —Z 4 ||ug|? + 2 / ul Rz/%—(x)dx R?

2]
ly|[>R

by passing R — oo it follows that
Oé—Z—i—/u% = A> ||luol)®* > Z

which is a contradiction.

If A > 27, then E()) has no minimiser. Assume that wu, is a minimiser. By the

diamagnetic inequality we can assume that ug > 0. Then for all f € H'(R3)
1d ug+ef )

o= Llle(yz motel

2 de ( [uo + € fll

/Vuo Vi /|—u0f+//u0 "0l () — yldudy — ,u/uof

with z < 0. Now choose f := p?ug, with ¢ € 2, ¢ > 0, p(z) = |z| if |[z] < R and
IVo| < 1if || >R > 1.
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We have

o= [ o Vletuo) [ et [ [T [ e >
2/!V(gouo /|w| luo|? — /Zuo / / |xi€y|Uo<y)2 _

|z|<R

2
YU 2 |:13| + |y\ 2

= \Y% —Z2+ - >
/4|$|2 /| [ |uol / / |x—y| ()?uo(y)

|M<R“—*v——’

2
2/(4]”;6'2— g0\2> /\wy g2 — ZA+ = //uo 200 (y)? >

|lz|<R ™ a>R <1 lz|<R
=0
2
2 1 2
> — uO—Z)\+§ up ()
>R z|<R
Thus
2

2 1 2

0=>— Uy — LA+ B Ug
lz|>R z|<R

for all R > 1 and thus taking R — oo we have
2

—Z)\+% — A< 27

which is a contradiction.

For all u,v > 0 we have

E(u) + E(v) >5< u2—|—1;2>
g 2

with strict inequality if u # v. Consequently A — E()) is convex. Thus there must exists a
A* such that it minimises £(\). Numerically one finds that Ax ~ 1.217.

Now we shall consider a general functional

= [1vup s [ViaP+ 5 [ ju)Pute - )Py

R xR4
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where V' is an external potential and w is an interaction potential.

Remark 9.3 (Assumptions). We shall assume that |v|,|w| € L? + L% for p,q >

max{%,1} and w(z) = w(—=z). O
4 Y
Example 9.4. 1) Hartree V = —%, w = % (Coulomb potential).
2) Chequard-Pekar w = ﬁ (Newton potential).
o y
é Y
Definition 9.5.
E(A) = inf{&(u) |u € H' (RY), |lull} = A}
1
B0 = int{2) = [ 9+ 5 [ @)Pute = lut)? | u € (R, Jul} = 3}
. where the second minimiser is for problems at infinity. 0J )
\
Theorem 9.6 (Concentration-Compactness Prinicple). We always have
EN) < EM=X)+ E°(X)
for all 0 < XN < \. Moreover, if we have the strict binding inequality
E\) < E(A=X)+ E°(\)
Lfor all 0 < N < X then E(X) has a minimiser. O )

For the Hartree functional E°(X) = 0 (by scaling).

é Y
Lemma 9.7. If |v],|w| € L? + L9, with p,q > max{4 + 1}, then

/WWW®<CWWWHMM%

[Tl * ul*||, < CClwlly + lwlig) lullz

where we ||V ||ppyra = inf{|| Vi, + [|Vallq | V1 € LP, V3 € L9, Vi + Vo = V'} Moreover, for
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alle >0

/ ViluPde < e / Vul’ + C. / uf?
H|w| * |u\2HOO < 5/ |Vul? + CE/ |ul|?

Proof. It V =V, +V;, with Vi € LP, V, € L9, we have

1/p l/p/
/ |v1||u|2<(/ |v1|p) (/ |u|2p) < CIVill lul

where we used the Sobolev inequality in the second inequality, which we were allowed to as

2p’ < Sobolev power. We have the same inequality for V5. Thus

/ Vlaf < CIV Lo sellule

For the second inequality we have the same method

] * Juf? = / (e — )| ju(y)|*dy

We can write w = wq + ws, wy € LP, wy € LY and thus

il it = [ e wlPa < ( e -vra)”([lera)” <o,

By the same bound for ws, we get the bound for W.

Now take ¢ > 0. Since V € LP 4+ L9, we can decompose it into
V=V.4+Vs

where ||V||zr4re < € and Vo € L. Then

/ Vluf? < / Vi luf? + / Viel ul® < C [ Vellpmsso leallzr + | Voolloo lll.
——— H<6_/

<e

q.e.d.
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For our general interaction energy have by this Lemma

E(u) > (1 —6)/|Vu|2—05/|u|2
for all € > 0 and thus .
E(u) > §/|Vu|2 -C
Thus E(\) = inf{€(u) |u € H', |[ul3 = A} > —CX > oo.
Now take a minimising sequence u, € H', [ |u,|* = X and €(u,) — E()\). By the diamag-

netic inequality we have |Vu,| > |V]u,|| (pointwise), £(u,) = E(|u,]), so we can assume
that u,, > 0.

Because £ [ |Vu,|*? — C < E(u,) — E(X). We have u, is bounded in H'. By choosing a

subsequence we can assume that wu, — ug weakly in H'.

Lemma 9.8. If u,, — ug weakly in H*, then

lim (&(un) — E(uo) — E%(un — ug)) = 0.

n—oo

Proof. Let us denote v,, = u,, — ug, the v, — 0 weakly in H*.

/]Vun\z—/]VuOIQ—/\VUnF:Q/Vuo-an—>0

by weak convergence.

Second we have for the external potential

/V|un|2 —/V|u0|2 —0

because u, — ug and V € LP + L4, as we have already proven above.

For the interaction term we have

// el =l = // Jug () [Pw (@ — y)|uo(y)|*dedy—
_//|Un($)|2w(ﬂf—y)\vn(y)Idedy
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[ i@t~ plunl)Pdedy = [ (fua@) = o) P = o) P~ lons) P+
[ Qo) + lone) Pt = ) (lua ) ~ o) = [on) )+
+ [ Qo + @) Pt = ) o) + e o)) oy
= [ (@) = ale)? = Fona) Pt = )l 4) Py
+ [ Qo + o) Pt = ) ) = Fao(9) o))+
+ [ o) Pt = )luo(y) P+
+ [ lon@)Puta = ploa(y) Psdy+

1 / o) Peo(a — ) |on(y) Prdy

We shall now estimate the first (I), second (II) and last term (III) and other terms cancel.

For (III) we shall prove that

/ o (2) o (& — ) () Py —> 0

for this we split the integral into

/!uo(:c)|2w(x—y)\vn(y)|dxdy:/+ / - / = 111, + 11T, + 111,

RdxR4 ly|<R ly|>R lyI>R
lz—yl<Z  |z—y>F

We have

I, — / @ o))l = / (1] * [t0l?) om(w)ldly

ly|<R

Since ||w * |ug|*||ec < C||w||Lpralto]/3: and thus

I, < C / v () |2dy =% 0

ly|<R
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for all R > 0, as v, — 0 weakly in H! and Sobolev.

11, = / < / [uo(z) *|w(@ = y)llva(y)]* = / [uo ()] (lw] * [va|*) dr <

[y|=R|z—y|< |z|>& |z|>&
R
<C [l | lo@P < /|qu—iﬁo
boundcd as|z|> % |z|>§

and or the third term

M= [ < [ funa) (1o oo = ) lon(w)Pdedy < CLy pewlznsss ol onlFye <

ly[>R
|x—u|>E

R
CH]-BR( )CwHLp_A,_Lq ﬂ 0.

For I we have

I= 2/ [wo (@) [va(@)][w (@ — y)|luo(y)[*dyde <

gﬂ/ﬁmmﬁm@—ym%@w)fﬂ/wawmw@—ym%@w)f

-~

TV
<Cllwllzpyralluoll3llun?,, <C Simiilar to III———%0

and the proof II goes similarly. q.e.d.

Proof of [Theorem 9.6 Recall that u, is a minimising sequence, u,, — ug, v, = U, — ug — 0
weakly in H', then
E(uy) — E(ug) — E%v,) =250

On the other hand we have

E(u,) — E(N)
E(ug) = EN =N, for A\ — X = / luol? < A

£9(v,) > B (/ |Un|2) B
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since

/\vn|2Z/lun—u0|2:/|un\2+/|ug|2 -2 /unUO — N
H_;\—/ —— —_——

=A—N = [ Juo|2=A=N

Thus F()\) > E(A — X) + E°(X). However, by the strict binding inequality we have
E\) < E(A=X)+ E°(\)

for all 0 < X < A. Thus we have to conclude that X' = 0, which means that [ |ug|? =
A=XN = Xand E(u,) — E(up) — 0 since E%(v,) — 0 as [|v,|? = N = 0. Thus E(ug) = E(N)

and [ |ug|* = A. So up is a minimiser. q.e.d.
( Theorem 9.9. OJ )
Remark 9.10. ]

Translation Invariant Cases

= [1vuP+ 5 [ [t - g)lut)Pody
E°(N\) =inf{&%u) |u e H, ||lull; = A}

Remark 9.11. £%u) = E%(u(- + 2)) for all z € R4

e If u, is a minimising sequence for E°(\) then i, := u,(- + z,), ¥, € R? then
iy, is also a minimising sequence. But if u, — u strongly in H! and z, — oo,
then u, — 0 weakly in H', i.e. we lack compactness or in other words one has

compactness up to translation.
O]

[ Definition 9.12 (Vanishing Sequence). Let (u,), be bounded in H' (R?). We call (u,), ]
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a vanishing sequence if for all (z,,), C R? and all subsequences of (u,,), , un(- + z,) = 0
weakly in H? (Rd). O

4 Y
Theorem 9.13 (Characterisation of Vanishing Sequences). If (u,), is bounded in

H'(RY) and (u,),, is vanishing, then

e Forall R >0
sup / Jun(y)*dy == 0

rER™
BRr(=)

e u, — 0 strongly in L? (]Rd) for all 2 < p < p* with

. 24 if d > 2
p =
00, ifd=1,2
§ DJ

Proof. Let us assume that there exists a R > 0, € > 0 such that

sup / lun|* > > 0.
TER?

Br(x)

Then there exists a sequence (z,,), C R? such that

/ (@) >
Br(z)

for all n € N. Define v,(x) = u,(z 4+ x,). Then for all n € N

/|%P>§>&

Bgr(0)

>0

Do M

hence v, 4 0 weakly in H* (]Rd) by Sobolev embedding, which is a contradiction. Thus for

all R > 0,
sup / | |? 22225 0
z€R J Br(z)
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We shall consider the case d > 3. Let p =2+ 3 1 then

4 _2d_
Jwpi < frua@ )| fl) <el [rvwe || fu?] <c
R d d d d

Now we shall use a localisation argument. Take @) := [—%,%]d C RY. Take p € €,
0 < ¢ < 1 with go‘Q = 1 and ¢|pgec = 0. Take z € 7% and define Q. = Q + z, and

v, = (- + 2). We have

1<) wa(e) <O Y V(o)

2€Z z€Z4
and thus
8 i
Sl = [lupd < S| fru# )| [P
R 2€Z%pq z€L4 \(), Q-

Now note that

110, unll’2e. < lozunll’2e < CIV(paua) 3 < 20/(IV%(SE)Izlun(:ﬁ)l2 + (@) ! Vun (2)[?) d

and thus

/|u Pi<cy /\wz Phin@) + () Vi o /|un|2 <

2€74

[SUIN

N

SCOswp / un* | > / (Ve (@) [un (@) + 2 () | Vtn () ) do

QL 2€Z4 Rd

[SYIN)

2/ €74 2€74

<Cswp | [l | | [(u@P+Vu@P)i | < s / | 0
Q’,

Rd
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by the convergence proven above as [ |u,|> < [ |u,|?. Thus
Qz BQ(Z’)

[ w50
Rd

Now we prove fd [up? — 0 for all 2 < p < p* = d%. By interpolation, if 2 < p < 2 —|—§ = py,
R

lnllp < [funlI3 lnl;
S~ ———

<C —0

for a € (0,1). Similarly p; < p < p* as ||uy||,» < ||Vull2 < C. q.e.d.

We shall apply this to
0 2 1 2
= [1vup+ 5 [ [ @t - gty
for w € LP + L9, with max{l, g} < p,q < oo and

E°(N\) = inf{&%(u) |u € H'(R?), [Jul]; = A}

\
Theorem 9.14 (Concentration Compactness for the Translation Invariant Case). As-

sume that w € LP? + L7 and

E°(\) < E°(A = X)) + E°(\)

Lfor all0 < XN < X and E°(N) <0 for all 0 < X <\, then E°(\) has a minimiser. O )

Proof. Take u, to be a minimising sequence for E°(\). Recall that for all € > 0
(N — E%u) > (1-9) [ [Vuf - C.

thus u, is bounded in H! (]Rd). We want to prove that wu, is non-vanishing. Assume by

contradiction that wu, is vanishing,

0> E°(\) «— E%u,) = / Vi, |* + % / |t ()] (w * 1 |?) (z)da
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which implies that
/|un($)|2(w # |y |*) (z)de < —e < 0

or all n large enough for some ¢ > 0.

However,

—€> /|un(x)\2(w # |un|?) (z)dz > /\un(x)\de Ziggd(w * Jun|*) (2)

which implies that

- P €
Zlean(w*|u *)(z) < 3

for n large and therefore there exists a sequence (z,), C R such that

(w * [un)?) (2,) < ~o%

for n large. Thus

/|un(x + 2,) Pw(x)dr < —%
and therefore
/]un(x + 2,) Pw(—z)dr < —%

It follows that w, (- + z,) — 0 weakly in H*(R?), then

/ |t (2 + 20)|Pw(—2)dz =220

because w € LP + L. Thus u,(- + z,) / 0 weakly. We know that u,(- + 2z,) /~ 0 weakly
in H'(R?). Because u, (- + z,) is also a minimising sequence we can assume that z, = 0,
u, /0 weakly in H'(R?) (otherwise we consider @, (z) = u,(x + z,)). Since w, is bounded
in H', we can go to a subsequence such that u, — ug #Z 0 weakly in H!. Assume that

[ Jun|? = X and that for X' > 0, [ |u, — ug|> — X. We have already proven that

Eo(un) — Eo(uo) - So(un — Up) 270
S—— ~~

—EO()) > B0 (||un—uol|3)—E(XN)

from which follows that

£°(up) < E°(\) — E°(V) < B\ — N)
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Thus ug is minimiser for E°(A—)’) and E°(A\)+ E°(A—)X). By the strict inequality A— )\ = X

and thus [|u,||3 = X and ug is a minimiser for F(\). q.e.d.

Applications of the Concentration-Compactness Principle
é Y
Definition 9.15 (Choquard-Pekar Problem).

om [t [Vioniat -} [ M

R3 R3

(B?), flull3 = A}

E(\) = 1nf{5 (u)

=)

,
Theorem 9.16. IfV € LP+ L1(R3), p,q € (%, oo) and V' < 0 then for all A > 0, E(X)

has a minimiser. Moreover, the minimiser solves

1
—Auy + Vug — <|u0|2 * ﬂ)uo = pug n @’(R3).
x

Proof.

<
Il
o

:/|Vu|2 //|u 2)[*lu(y) dxdy
J |z -yl

E°(\) = inf{£°(u) (R3), [[ul] = A}

From the concentration compactness principle, we need to check
a) E°(\) <0
b) E°(\) < ESA = X))+ E°(N) for all 0 < N < \.

Proof. a) Take ¢ € H'(R?), ¢ £ 0, |[¢]2 = A\ For £ > 0, let y(z) = (p(lx),
lell3 = [lell3 = A and

—éQ/wa // da:d =A* - Bl <0
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if £ > 0 small enough, as A > 0, B > 0. Thus E°(\) < E% ) < 0 if £ > 0 small

enough.

b) It follows from the following lemma that for all 0 < X < A

A= N N
E°(\) = 3 E°(\) + T < E\—=X)+ E°(\N)

g.e.d.

We can thus conclude that E°()\) has a minimiser. Then by using variational formulae

@CM+WNX

|uo + e¢pl]2

) > E%(up)

for all € € R small and thus

ozg(...)

e=0

with ¢ < 0, and A — E°()) is decreasing.

We need to prove the binding inequality
E\) < E(N=X)+ E°(\)

for all 0 < M < A. Using the second of the following lemmata we can conclude that

MM:A;XMM+§MM<EQ—M+EW)

To conclude, we need to show that F(\) < E°(X) for all 0 < X' < A. By the case

V =0, we have E°(\) has a minimiser, uy and
E(N) = E°(N) < E(ux) — E%(ux) = /V(flf)\ux(ﬂi)\zdx
Assume for the sake of contradiction that F()\) = E°()\) for which we would need
V@@ Par > o

and thus V(z)|uy(x)]* = 0 a.e. (since V < 0). Thus V(z) = 0 for a.e. x such that
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uy(z) # 0. Since £%(u) is translation invariant, uy is a minimiser for E°(\). Thus
uy (- +y) is also a minimiser for E°()\') for all y € R3.

By the above argument it follows that V' (z) = 0 for a.e. x such that uy (z+y) # 0 for
all y € R3.

Here [ |uy|? =N > 0 and thus uy # 0, hence there must exists a ball B,(z) such that
uy # 0 for a.e. x € B.(z). Hence V(z) =0 for a.e. z € R? which is a contradiction to
the assumption V' # 0.

Thus E(N) < E°(X) for all 0 < X and E(A\) < E(A—X) + E°(V) for all 0 < N < \.

Therefore, F()\) has a minimiser and the equation follows similarly to E°()).

q.e.d.

Lemma 9.17. For all A > 0, for all 0 <9 < 1
IE°(N\) < E°(0)).

O

Proof. Take f, a minimising sequence for E°(9N), i.e. || full3 = 9\, E°(f,) — E°(YN). Define

g =15, lgnll3 =

Thus
EO()\)<50(9n):50(£)1/|vf”|2 //lfn |x|—|f;| -
e+ (5-7)5 ) [ rx‘—vﬁr

Using £°(f,) — E°(Y\) and

//lfn len /|an|2 E%(fa) 2 —E°(fu) — —E(0N)

and thus
B0) € 350N + (5 - 5 ) (-Bow) = T < O

since 0 < ¥ < 1, E°(9\) < 0.
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[ )
Lemma 9.18. Suppose that V< 0,V Z 0. For all A > 0, for all 0 < ¥ < 1
VE(N) < E(UN).
- 2>
Proof. Similar to the previous lemma. g.e.d.

Gagliardo-Nirenberg Interpolation Inequality

IVullllully™ > cllull,

for all 2 < p < p* with p* = % if d > 3 and p* = o if d = 1,2. By a scaling argument

1 _ d-2 1—a
5_2_da/+T’ o€ (0,1)

Remark 9.19. u,(2) = (s u(lz), |Jucl|s = ||ull

Vel el ]

[[ell

is independent of /. O

Theorem 9.20. For these p, «, then the variational problem

£ | Vullsfeali—®
el

u € Hl(Rd),u;é 0}

has a minimiser. The minimiser can be chosen such that Q) > 0 and

“AQ+Q-QF =0, in PR
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Thomas Fermi Problem

&)= [ [ Epan s [5 [ Manay

E(\) = {infS(p)!p} 0,p€ L’ ﬂL5/3,/p: )\}

4 Y
Theorem 9.21. Let Z > 0 constant. Then for all X € (0,Z], E(\) has a unique

minimiser. Moreover the minimiser py satisfies
5 2/3 Z 1
2P0 (7) = m—Po*mJﬁu

3 +

for some constant p < 0. Moreover, E(X\) has no minimiser if X\ > Z. O

Proof. Take a minimising sequence p, for E(\). We want to prove p, is bounded in L2,

2/s5 3/5

Z 1 " g7
apor= [+ [<z| [gm] | [ o] 2 [mosca(for) =2

lz|<1  Jz|>1 z|<1 z|<1 |z|>1

This implies that

E(X) «— E(pn) —/073—02(/,02/3)3/5—%

Thus E()\) > —oo and p, is bounded in L”?. By going to a subsequence we may assume

that p, — po weakly in L”®. We have to prove that

liminf E(p,) = E(po)
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By weak convergence we have

lim inf / /
n—oo

1m
n—00 !x—y! Ix—yl

.. pn n pO
hmlnf// //
n—00 Il" - yl |z — yl

where the last one is an exercise. Thus

E\) =1lim&(pn) = E(po) = E(No)

with Ag = f 00-

To prove that pg is a minimiser for E()), need to prove that A\g = A\. Assuming that \g < A.
Then E(X) = E(po) = E(Xo) = E(N), hence

E(po) = E(Xo) = E(A) = E(X)

for all X' € [Ao, Al

Concerning the variational equation for py we have £(py + p) > E(po) for all ¢ € L' N L3,
¢ = 0 and £ > 0 small enough. Thus

>0
e=0

5 A 1
/—P2/390—/—P090+/ pok — | =
3 2 2
5 2 7 1
— =
/(3p° CRESMTT i

for all p € L' N L”?, and ¢ > 0. Using he following lemma it follows that

d
Z¢
= (po+ €p)

Thus

and therefore

5 2/3 Z 1
— - _ 2 0

3
Contradiction to [ pg = g < A < Z. Using the convexity we find that po is a minimiser for
E()\o) implies that pg is unique.

Vaadddddddddddddddddddddddddddads
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Assume that E()\) has a minimiser py (A not necessarily < Z), then for all p € L' N L%,

Jr=2A
E(po) < E(p)

Choose p. = po + e, for p € L' N L7, [ =0 and ¢(x) = —Cpy(z) for all z. Then

E(po) < E(p2)

for all € > 0 small enough. This implies that

d
—&(pe >0
7<) B
And therefore
5 7 1
2Pt pox— 920
G )
Choose ¢ = g — —po, Jo=[g- —fpo =0 with g € L' N L, g(z) > —Cpo(z). This

implies that

0</Wg0:/ (g__po) /W pro/ /

with p := @ € R. We deduce that

W(z) —pn=0, if po(z) >0
W(x)—p >0, for all x € R3
and therefore
5y, 2 1 =0, if po(xz) >0
3P0 — T tPoxT T M
|| ] >0, for all = € R3
which in turn implies
2P0
3 }%—p lx‘—|—,u, for all z € R?
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and thus
5 3 A 1
3P0 = m —poxx—+ U

3 ] T

Now we shall show that p < 0. Assume that p > 0. Then the Thomas Fermi equation reads

D Z 1
207 = - ‘——po*—'
3 |z] |z]
and
1 [ ply) , po(y) fro A
po* — = = < =T
|z] |z =y max{|z],[y[} = |z| |zl
which implies that
T3 g
eL?/?
and therefore p < 0.
5 2/3 Z + >\ u>0 ,LL
3 T 2
for |z| large this implies
3
5 2/3 2 u 3/2
3 )~ (2)
———
ert

for |z| large.

We remark here that p < 0if A = [ p < Z and that = 0 if A = Z, the proof of which is

left as an exercise.

We shall now prove the non-existence of a minimiser for A > Z. The proof presented was

first given by Simon-Lieb. We have the Thomas Fermi equation

D 4 Z 1
—pP == —pex—+pl . p<0
3 || || +
Assume that [ py > Z, and define
A 1

F@) = g = pon
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e f(x) <0 if |z| large. Since

f(x)gé_p**izz_/%dy\é_ %dy:
] [ || max{|z|, [y|} ] max{|z|, [y|}
ly|<R
1
=1 Z- / Po |
|z]
ly[<R
if |z| > R. Since
/pOPH—OO> p():)\>Z:>Z—/p0<0
lyl<R R? ly|<R
if R large.
e f(x) > 0if |z| is small enough
Z 1 Z Z
fl@)= s —pox —+p=r"- po—@dy+u>——/p0(y)+/~b>0
] |z] ] max{|z|, |y[} |z vl
if || small.

e The Thomas Fermi equation reeds

20 = [f@)], = po=0

3P0
if |z| large enough since f(z) < 0. Define Q = {z € R*| f(z) < 0}. Q is open, Q #
and 0 ¢ €.

On €2, we have
Z 1

Af(x) ZA(— —p**—+u) = 47py = 0
|z |z

as —Aﬁ = 4ndeltag. Thus f is harmonic on 2.

By the maximum principle infq f > infyq f = 0, which is a contradiction.

We shall now present a second proof. Using the Thomas-Fermi equation

59. [ 2 1

2P ok T
370 e 2l 1y
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which implies that
5 5/3 Z 1
3P0 = mpo — | P X 2] P« + ppo
~—~— >

<0
=0

and thus
7

L) > (oo o)

for all z. Integrating against |z|*1), <z we find that
[ etttz > [ (mr el mimr < J
|z I1fl&u><{|93| |y|}
|z|<R |z|<R |lz|<R |y|<R

Using the elementary inequality

k k k—1 k—1 1
Vx,y€R3\{0}: ’(ﬂ‘ _'_‘y’ > ’x| +|y| (1__)‘

2 max{|z], [y} = 2 k
Now
/ka ! / /Po ) po(y (1 k)(| | 2|y| )dxdy:
|z|[<R |z|<R |y|<R
| [ woreras || [ mwar] (1-7)
z|<R y|<R

which implies that

Z > /po(y)dy (1—%)

y|<R

for all R > 0, for all £ € N. Passing R — oo and k — oo we find that
Z > /Poz)\

To prove of the elementary inequality we need to prove that for M > m > 0, then

Mk k 1 k
# > (1 - E) (M* 4 mF ) = (M’“ + %)k > (k—1)(M" +mh ) —

= M4+ kmﬁ > (k—1)mF?
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Using the Arithmetic Mean- Geometric Mean, in equality, i.e. that for all a;,...,a; >0

a1+a2+---+ak

Z ajaz---ay

k
consequently
1
k k k kN k-1 =T
ety e
Fartar a2k 7
ko1
from which the inequality follows.
q.e.d.
( Lemma 9.22. A\ — E()) is decreasing. O )
(Lemma 9.23. If [ fo =0, forallo € D, ¢ 20, then f >0 a.e. I:l)
é N
Lemma 9.24. p — E(p) is a convex functional.
+
Elp) + (o) > 26 (252
N U J




Chapter 10

Boundary Value Problem

é R
Example 10.1. Let Q be open, bounded in R¢.
1) The Dirichlet problem
—Au+u=f in
U= on 0f2
2) The von Neumann problem
—Au+u=f in
0
G_Z =7 on 0f)
where % = Vu-n, where n is the unit normal vector field to the boundary surface,
L if it exists. y
We need

e Sobolev spaces in (2

e Value of H' function on 9 ~ trace theorem, as for d > 2 H' (Rd) ¢ € (]Rd).

Definition 10.2.

H™(Q) :={f € L*(Q) |D*f € L*(Q), |a| < m}

115
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where D*f = g in 2'(Q) iff

(- [ 7(0%) = [ g0

for all ¢ € €°(92). O
| for all € 6%(9) )
[ Y
Theorem 10.3. H™(Q2) is a Hilbert space for every m € N, with norm
lulfrm = I1D%ul3
|a|l<m
. U J

We want given u € H*(Q2), find a @ € H'(R?) such that &‘Q = u. For this we need some

smoothness of 9f2.
4

Example 10.4. Extension by reflection. Let z € R?, with x = (2/, z4), 2’ = (21, . .. ,xd_B
Let
Q={z e R||2| < 1,|zq4| < 1}

which for example is a cylinder in d = 3. Further let

Q+::{x€Q|xd>0}, QO::{xEQ|xd:O}, Q_::{a:EQ’xd<O}

\
Theorem 10.5. Given u € H(Q.), define
%/ 7 U(x,,l'd), Zf ($/,.Td) S Q+
u* (2, zq) =
—u(x', —xq), if (2, 24) € Q-
L Then u* € HY(Q) and ||u*||m ) < 2||ullmr(q,) and ||u*||2) < 2||ullz2g,) O )

Proof. We have
Oy, u* = (Op,u)”

ifi=1,...,d—1 and

Oug(', xq), if g >0

—Qug(z', —xy), if g <0
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in the distributional sense. If u € € then this is trivial. In the general case u € H'(Q)
and let p € €>°(Q). We want to prove

/ u* (2, 24) 0y, pdr = — </ O 0™ (2, 24) pda +/ (O u (2, —xd))godx)
Q@ Q+

Defining @(2/, z4) = p(a', x4) — w(2, —x4) with (2, z4) € Q4 then this is equivalent to
/u@xdgb = —/&Cdu@
Q+ Q+

This is trivial if ¢ € €2°(Q.). More generally consider 7.¢ € €2°(Q) with n.(zq) = n(*2)

with n(t) = if t < 3, n(t) =1if t > 1 and n € €. Per definitionem of 9,,u in Q.., we have

[ won ) = [ ouins)

Q+ Q+

Taking € — 0 we find that
[ ontne) — [
Q+

by dominated convergence as 7.(z4) — 1 and

0z,u(n:2)| < C10s,up| € LH(Q-)

Moreover,
[ 6002 = [w@nn)e+ [unone
Q+ Q+ Q+
Here
/ungaugé — /u@xd@
Q+

by dominated convergence. It remains to prove that [ Q. u(0z,me)p — 0. Because 1. = 17(”2_—"’)

we have

C
|aﬂﬂdn€| < g1{0<|a}d|<e}

And €1(Q) 3 o(2', 24) = p(2, 24) — p(a', —x4) and @(2',0) = 0. Thus we have

|o(z', zq)] < Clag| < Ce
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if 0 < |z4] < e. Thus

. C
/u(ﬁxdng)cp < /ug1{0<|zd|<5}ce =Cc / u— 0

+ Q+ Q+N{0<|zq|<e}

by dominated convergence. We conclude that needed equality is correct.

q.e.d.

Definition 10.6 (Extension Problem). If u € H'(Q), when does there exist a Pu €
H'(R?) such that, Pu|Q = u, ||Pullg < C||lu||g. O

é R
Example 10.7. Let Q = [0,1]¢ € R% Then extension is easy by reflection we can

extend u € HY(Q) by & € H' (') with Q C Q' such that n = 1 on Q. Define ni € H* (')
and as compact support. Extend na to H* (Rd) setting it to 0 outside €2’. Thus the of
u e HY(Q)

o

S

Theorem 10.8 (Urysohn’s Lemma). If Q,€ are open with Q C € then there ewists
n € €X() such thatn =1 on Q. O

é Y
Definition 10.9 (%~ boundary condition on Q). Let € be open, bounded set in R¢.

We say that 012 is € if for all x € 99, there exists an open neighbourhood such that
there exists h : U — @) satisfying

e he €' and h™! € ¢,
O h(UﬂQ) = Q-i—a

o H(UNON) = Q.

Theorem 10.10. Assume that ) is open and bounded and has a €* boundary. Then
for all w € H'(Q) there exists a Pu € H'(R?) such that Pu|, = u, ||Pul|mga <
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Cllullzr @y, |Pullr2ray < Cllullz2@) and Pu has compact support. Here the constant C
depends only on €1, but is independent of u. O

Proof.

Step 1 (Local Map) By the definition of ¢ condition, for all z € 9Q there exist open
neighbourhood U, satisfying the @ conditions. Thus 0Q C J,coq Us- Since 0Q is

compact, there exists a finite subcover {U,,,...U,, } also covering 0fQ.

Step 2 (Partition of Unity) Let U; := U,, if i = 1,...,n and Uy = . Then there exist
n; € €°(U;) for all i = 0,...,n such that n; > 0 and vazo 7],;|Q = 1, as follows from

the existence of partitions of unity subordinate to the cover < Q, Uy, ..., U,, ﬁc}.

Step 3 We write u = > nu = Y . ,u; where u; := n;u, i = 0,...,n. We want to extend
every u; to a function H'(R?). For i = 0 we can do this by defining

uo(x), if x e Q
0, if v ¢ Q

Then tp € H'(R?) and |, = uo.

For 1 < i < n. Per definitionem there exist h; : U; — Q satisfying all conditions in €!-
boundary condition. As u; = niu € H'(U; N Q) it follows that v; == u;0h;* € HY(Q,),
because h=! € €.

We can extend v; to v} € H'(Q) by reflection. Define 1; := vioh; € H'(U;) as h; € €.
Since u; = n;u with n; € €2°(U;) it follows that @; has compact support in U; and thus

can be extended trivially to all R¢
Conclusion Defining @ := )"  @; we have

° ilg = Z?:o ﬂZ‘Q = Z?:o U =1u
e 1 has compact support.
o ||d] g1 ray < Cllul|gr() and ||@|| 2@y < cfjul|p2(q) follows from the construction.

qg.e.d.

(Theorem 10.11 (Sobolev Inequality in Q). Assume that Q is open, bounded and has]
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€' boundary. Then |[ul|gi) = C|lullre) for all p with

pE 2 ifd>3
p < 00, ifd=2
p < o0, ifd=1

Moreover, if {u,} is bounded in H'(Q), then there exists a subsequence such that u, — u

strongly in LP(QY) for all p with

p< 5 ifd>3
p < 00, if d =2
p < 00, ifd=1
In particular H'(Q) C € (Q), if Q C R. O
A\ y

Proof. 1If u € H'(), then there exists @ € H'(R?) such that @|, = u and [|i/| g1 ey <
C||t|| gr1.()- By the Sobolev inequality in H'(R?) we have

ullzr) < ||l Loray < O] g < cf|ul| g

The remaining assertions are similarly to Sobolev compact embedding. q.e.d.

Remark 10.12. The constant C' is independent of w. 0

Theorem 10.13 (Density). € () is dense in H'(Q) but €>() is not dense in
H'(Q). O

’
Definition 10.14.

HY Q) =7=@)" @ cH@) =7=@" .

[
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é _ Y
Example 10.15. In one dimension H*(2) C €(Q) for all Q@ C R. If u € H'(Q),

then u(zg) is well-defined, i.e. there exists exactly one continuous representative of the

equivalence class u which we may use define u(x).
If Q= (0,1), and u € H}((0,1)), then u(0) = u(1) = 0.

Proof. w € Hj((0,1)) implies that there exists a sequence (u,), € €>((0,1)) such that
U, 2% win H'. Thus u,(z) — u(z) for all z € (0,1) because H'((0,1)) € €((0,1)),
and therefore u(0) = u(1) = 0. g.e.d.

Indeed we shall prove that

H((0,1)) = {u € H'((0,1)) | u(0) =u(1) =0} € H'(0,1).

10.1 Trace on R? (d > 1)

Consider the set
R = {z = (2/,24) € R?| x4 > 0}

If ue H'(R), the is u|]Rg well-defined?

4 N
Theorem 10.16 (Trace Theorem in RY). If u € €°(R?), then for I' = R*! x {0}

lull 2y < Cllull g gga)

. where C' is independent of u. O

Proof.
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Integrating over 2’ € R4"! one finds that

[e.9]

/ (e, 0)[2de’ < / / <|u(x',xd>|2+‘d%u<x',xd)

Rn—1 0

2
)dﬂ?d < HUHZl(Ri)

qg.e.d.

Thus we can define the trace operator

) ¢ (RY) — L*(T)
Ir:
U +— u|r

This is a bounded linear function (i.e. continuous) on a dense subset of H! (Ri) and therefore

may be uniquely extended to the whole space.

4 N
Theorem 10.17 (Trace Theorem in Q). Let Q C R6d be bounded, open, Q) € €*.

Then the there exists a trace operator

. HY(Q) — L*(09)
r:
u 3“‘39

satisfying
e ifuc H'(Q) NE(Q), then ul,, = u restricted to O
o |lullr2) < Cllullmr) for all u € HY(Q), with C' independent of u.

. DJ

Proof. As in the proof of [Theorem 10.10| we have 0Q C |J;, U; with U; open and for
all i there exists a h; : U; — Q, with hy, hy' € €, hi(U;) = Q, hiy(U;NQ) = Q4 and
hi(U; N 0Q) = Qo. Also there exists a smooth partition of unity (¢;), subordinate to the
cover {Q, Ui, ..., Un,ﬁc}. Define u; = v;u.

For every i = 1,...,n, we have w; = u; o h;' and w; € HY(Q;). Indeed, we can extend

w; to H'(RL) by setting w;(z) = 0, if ¢ Q. By the Trace theorem in R% we can define

wi}Qo € L*(Qy), with ||wi‘QO||L2(Qo) < ||w,~||H1(Q+). Define

ui‘aﬂmUi = wi‘Q oh; € L*(00NQ)
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and define

n

U] o = Z“i|amg € L*(09)

i=1

Moreover

lull 2200y < C Y lluillrzeonvy < C Y llwillrzgy < C Y llwillm@y) < C Y lluwillme < Cllullmio)
1=1 i=1 =1 i=1

q.e.d.

Remark 10.18. The trace operator u u‘ o 18 bounded. 0J
[ Y

Theorem 10.19. The trace operator u > u|89 is bounded as an operator H'(Q) —

H'?(09). Consequently, u u‘m is a compact mapping H' () — L*(99).

H'(Q) “C" H2(00) T 12(09)

\ U y
4 Y

Definition 10.20 (Fractional Sobolev Spaces).

H”2RY = {ue L*(RY) /(1 + 27 |k|)|e(k)[*dk < oo
Ra
with the norm
JulFy g = [ (1 2l
R2

. - y

Remark 10.21. This definition extend the notion of n'" using the equivalent definition

of the standard Sobolev

H'(RY) := { u e L*(RY) /(1 + 27| k) |a(k)|Pdk < oo

Rd
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Further we may define use this definition to define v —A, via

<u, —Au> — (4, | k| ) :/27r|k||a(kz)|2dk;.

Rd

4 Y
Theorem 10.22 (Sobolev Inequality for H'2(R?)).

HUHH1/2(Rd) > CHu”Lq(Rd)

for all ¢ < q* with

q:
00, ifd=1

And if {u,} is bounded in H'*(R?), then u, — u in H'/? (RY) and u,1p — ulp strongly
in L*(B) for all B bounded.

\ DJ

4 N
Corollary 10.23. If Q is bounded and 0) € €*, then
Hj(Q) = {u e H(Q),|u|,, =0}
Moreover
Julfyy = [ 194 > Cllulmo
Q
A\ U y

1
Proof. Since H}(Q) = %COO(Q)H (Q), if u € Hy(Q) there exists (u,), C €>(2) such that
Uy~ u strongly in H'(Q). Then by continuity of the trace operator

_>“‘aﬂ = u|aQ:0

OZU”‘@Q

For the converse, let u € H'(Q2) and suppose that u‘ ooy then u € Hy (which is left as an

exercise).
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To prove
/ VUl > Ol = C / (IVul? + [uf?) = / VU2 > CllulZn o = C / uf?
Q Q Q Q

Assume by contradiction that the latter inequality fails. Then there exits a sequence (u,), C
H§(Q) such that [, [un|* = 1, but [, |Vu,[> = 0. Since w, is bounded in H'(Q2), we can

descend to a subsequence and assume that u, — u weakly in H'(2) and thus strongly in

L*(Q2). We have
/|u|2: lim /|un|2 =1
n—oo
Q 0

/]Vu]z < liminf/ Vu,|[> =0
n—oo

Q Q

i.e. u = const on (), which means that u = const # 0. But

0= tn]p, — uly,
strongly in L*(09) and thus u|,, = 0 which is a contradiction. # g.e.d.
Consider the Dirichlet problem
—Au+u=f in
Uy =0
é N

Theorem 10.24. If f € L*(Q), then there exits a unique uw € H}(Q) such that u is a

solution of the Dirichlet problem in the distributional sense. Further

/Vu-Vgo—i—/ugo:Q/fgo

Q Q

for all o € H}(Q), and u minimises

1
E = inf §||v||H1—/fv v € Hy
Q
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L )
Proof. Using that T : ¢ — [ fy is a continuous functional on L*() it follows that T is
continuous on Hj (), then by the Riesz representation theorem if follows that there exists
a unique u € H} such that (u,-) ;1 = (f,);2 (where we used that Hj(Q) is a Hilbert space
with norm || - || g1(q)). Thus for all ¢ € Hj(Q)

[ o= [5u-vos [
[rom s fu

f=—-Au+u in2'(Q)

and for p € €°(2)

which implies that

g.e.d.
Consider the von Neumann problem
—Autu=Ff in
ou __
5. =0 on 02
é N

Theorem 10.25. For all f € L*(Q) there exists a unique u € H'(Q) such that it solves

the von Neumann problem in the distributional sense and

/Vu-Vgo—l—/ugo:Q/fgo

Q Q

for all o € H' (). Moreover, u minimises

E = inf ||v||fql(m—/fv ve H(Q)
Q
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Remark 10.26. 2¢| _ is well-defined if u € H?({2), since then

o0

1
H >Vur— Vu|8Q

makes sense by the trace theorem, therefore need some regularity.

To motivate this consider the case u € €*(2), —Au + u = f pointwise. Using

/Vu-ch—/(—Au)go—i-/% —/fso—/w
Q Q o0

by the PDE. But
/(—A)w—/fso—/wp

by equation —Awu = fu and there

for all ¢ € €*(R?), 3% =0 on 0. O

When is a weak solution in H?(2)? Does f € L?(Q2) imply that Au € L*(Q). If Q = R?, it
is true that u, Au € L? then u € H? (via the Fourier transform). If Q is a bounded set one

has to be more careful.

é N
Definition 10.27. We say that 9Q € €2 if for all x € 0f), there exists an open
neighbourhood U of z, such that

e there exists h : U — @ such that h € €2 (U), h € €2 (h(U))
e W(UNQ) =Qy

. y

(Theorem 10.28 (Regularity). Assume that Q has 0 € €% and f € L>. ]
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1) If u € HY(Q), for all p € Hy(2)

/VU-V(p—I—/ugpz/fgp

then u € H*(Q).

2) If u e HYQ), for all o € H*(Q)

/vu-w+/w:/f¢

then u € H*(Q) and

%:n-Vu:O, on 0f).
G U V.
We shall prove this via the translation method by Nirenberg. But first we shall need a
lemma.
4 N

Definition 10.29. For h € R? we define

u(x + h) — u(z)
Id

(Dnu)(z) =

Lemma 10.30. Let u € L*(Q), then the following are equivalent
(i) ue HY(Q)
(ii)

sup /u@wigp < 0
PED(Q)
lell2<1 1€

(#i) For all h small, and all ' CC Q

”Dhu“LQ(Q’) g C
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Proof.

(i)=(ii) Obvious as for all p € €>(Q2)

/ wdnp| = | / On | < [Vl ooy I 2y

Q Q

(ii)=-(i) Define for all ¢ € Z(Q)
T(p) = / udy, "
Q

Then T is linear and bounded, as |T'(¢)| < C||o|| L2

Thus T can be extended to a linear, bounded mapping in L?(Q2) by the Riesz theorem
there exists v € L?(Q) such that for all ¢ € L*(2)

Q
In particular if ¢ € . Thus
[ve=160)= [udne
Q Q
which implies that 9,, = —v € L*(Q).
(iii)=(ii) For all p € 2(Q), and defining y =z + h
h) —
/ (D)o = /u z+ o u(z o) — / u(y)w(y)dx _ /u(Dm
Q )

Thus

/ w(D-np)| = / (Du)| < | Dt 2 1l 22
Q

Q
Choosing h = (0,...,h;,...,0) and h; — 0 then

/uamh < Cliolz@

Q
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for all ¢ € Z(Q2).

(i)=>(iii) Let u, € €>(Q) and u, — u strongly in H'(Q2). Then

(Dyun)(z) = “"(“T})L’_ () _ ’—;'/h-Vun(a:thh)dt
|(Dpun)(2)|* = /|h| Vu,(x + th)dt /|Vun x +th)[Adt

/|Dhun|2 <//\Vun(x+th)\2dtd,r://\Vun(erth)\dedt: |Vtn 20
Q Q0 0

J

.
< Vun?
Q

where h has to be chosen small enough so that Q' + h C €.

Taking n to infinity || Dyul|72 g, we find that
HDhUH%%Q/) < HVUHH%Z(Q)

Thus (iii) holds with C' = [[Vu,||7zq, for all u € H'(9).
g.e.d.

Proof of [Theorem 10.28. In the case Q = R%, it follows from the variational formula

/Vu-Vgo—i—/ugp:/fga

for all ¢ € HY(RY). We can choose ¢ = D_,,(Dyu) € H*(R?) for all h # 0. Thus

/ugp = /uDh(Dhu) = /Dhu‘Dhu:/|Dhu]2

/ Vu- Vo = / Vu - VD_y(Dy(u)) = / VuD_p,(Dy(Vu)) / | Dy (Vu)|?

Thus

/ DA (V)2 + / Dyuf* = / FD_(D) < |l Don(D)l2 < 121V Dp)llz = 1ol Da(T0) 2

and thus
[ Dr(Vu)ll2 < | fll2, [ Dr(Vu)ll2 < [Ifl2
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from which follows that Vu € H'(R?) by the lemma and therefore u € H*(R?), i.e. 0,,0,,u €
L.

Now we shall consider the case 2 = Ri.

Assume that v € H! (Ri) and

/Vu-Vgo—i—/u(p:/fga

for all ¢ € H*(R%) (for the von Neumann problem! For the Dirichlet problem we only need

to change H' to H}). By the same argument we have

[1Dh(Vu)l2 < [1£1]2

for all h parallel to I'. Choosing h = (0,...,h;,...,0) for i = 1,...,d — 1 and h; — 0, it
follows from the lemma that d,,Vu € L? for all i = 1,...,d — 1 and thus 02, 0z,u € L? for
j=1,...,dandt=1,...,d— 1.
Is 02 u € L*? Yes, because — 3¢, 02 u = —Au = f —u € L*(Q) and therefore

d—1

Ru=-A+> djueL*(Q)

i=1

For the general case of Q open, bounded and 09 € €2

We know that there exist a finite cover of €2 =: Uj via charts and a smooth partition of unity
{¥;} subordinate to that cover.

Defining u; = 9¥;u we only need to prove that u; € H?.

Fori =0, —Au+u = f in 2'(Q) because for all p € €°
—~A(Wou) = —AVYgu—2AVYy-Vu—0gAu = —Adgu—2AV - Vu—o( f—u)+dou = g € L*(Q)

Since You € H'(Q) and YJou has compact support we return to the case Q = R? and thus
Q90U S H2.

Fori=1,..., N, u; = theta;u satisfies
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Define v; = u; o hi_l. The function v; satisfies a second order elliptical equation

d
Z /akzﬁmkvia@@ + +doubvip = +dougip

Ri=13,

for all ¢ € H'(Q4). By a similar argument in R?, we can show that v; € H*(Q4). Since
the matrix a is symmetric we can change variables to return to the standard —A case.
Because v; € H*(Q4) and h,h™! € €, it follows that u; € H?. Thus u =Y, u; € H?

To prove the von Neumann problem 0,u = 0 we shall need the Green Formulae, which
proven below.

By regularity we have u € H*(Q)

Q/Vu-Vgo—F/—/fgo

Q Q

for all p € H'(Q). If we choose ¢ € Z then
—Au+u=f

in 2'(Q), and u € H*(Q)implies that the equality holds in the L? sense. Integrating against
© € H'(Q) and using the second Green formula we find that

/(—AU)sOJr/w:/fso
/VU~V¢+/%¢+/U§0:/JCSO
Q o0 Q Q

for all ¢ € H*(Q). Tt follows for all ¢ € H'(Q)

implies

ou

—p=20
8ng0
80
and therefore 5
8_Z on 0N}
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4 N
Theorem 10.31 (Green Formulae). For Q open and bounded with 0Q € €. If u, ¢ €

HY(Q), then

/&Eiugodx = —/u@migodx—k/ubggo‘aﬂnidS(x)
Q

o0

where m is the outward pointing unit normal vector to OS).
Moreover, if u € H*(Q)

/ /Vu V90+/ —pdS(z
O

. J

Proof. These formulae follow from the continuous case as the trace operator is continuous.

g.e.d.

r
Example 10.32 (Von Neumann Problem). Let €2 = (0, 1) and consider the von Neu-
mann problem for f € L*((0,1))

' +u=f in (0,1)
W'(0)=4'(1)=0

We can prove that there exists a unique v € H*((0, 1)) such that

/U’¢’+/us0=/fs0
for all ¢ € H((0,1)). If we choose ¢ € Z it follows that
—u"+u=f in 2'((0,1))

But u, f € L? and therefore v” = u — f € L* which implies that u € H?((0,1)).
And therefore

1

0=/(—U”+u—f)so=/U’so’+/uphi/fso+U’sOIé
0
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for all ¢ € H?((0,1)). And thus we have
u'(1)ep(1) = u'(0)p(0) = 0
for all ¢ € H'(0,1). Choosing ¢(x) = z implies that «/(1) = 0 and ¢(z) = 1 —z implies
'(0) = 0.
O J
Example 10.33 (Periodic Problem). Consider the periodic problem, for f € L?
—u"+u=7f
u(0) = u(1)
u'(0) = /(1)
To solve this consider the set
H={ue H((0,1) |u(0) =u(1)}
H is a Hilbert space, with H! inner product. Thus there exists a unique u such that
/U’so’+/us0=/fso
for all ¢ € H. From this we can deduce that v € H?, and «/(0) = u/(1) which is left as
, an exercise. )
Example 10.34 (Inhomogeneous Von Neumann Problem). Consider the Robin prob-
lem, for f € L? real valued
—u"+u=f
w'(0) =«
u'(1) = f
\ y

Theorem 10.35. For all f € L?((0,1)) there exists a unique solution v € H*((0,1))

to the inhomogeneous von Neumann problem. 0
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Proof. What is the variational formula? Assume that u € H%((0,1)) is a solution then

1
/ —u"+u—flo=
0

for all o € H*((0,1)). Integrating by parts

which yields
1

/U’w’ + jwp - /1fso —u'(Dep(1) +u'(0)p(0) =0

0

for all ¢ € H'((0,1)). If «/(0) = o, /(1) = S this reduces to

1 1

/u'gp’+/U90: /1f90+590(1) — ap(0)

0 0
for all ¢ € H((0,1)).
Thus define the linear functional

H'((0,1)) — R
L

© — /f<p+690(1) —ap(0)

which is bounded as

2 (@) < /f90+6s0(1) — ap(0)| < [[fll2llellz + (81 + laDlelle < Clllla
0

where the last inequality follows from the one dimensional Sobolev inequality.

Thus . is a linear, bounded functional on H' and therefore there exists a unique u €
H'((0,1)) such that
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for all o € H'((0,1)). Hence we have found a unique H' solution the problem integrated by
parts. To finish the proof we need to show that u € H?((0,1)).
For this purpose we note that for all ¢ € 2((0,1))

1 1

1
/u'gp’—i—/ugo:/fgo = —u"+u=f in2((01) = v =u—feclL?
0

0 0

and thus u € H?((0,1)). Therefore if for all ¢ € H'((0,1))

/(—u”+u—f)<p=0
0

then
1

/U’¢’+/lus0—/lfso—w(1)so(1) +u'(0)p(0) =0

but we already know that
1 1 1
/u’90’+/us0— /f@—ﬁs@(l) +ap(0) =0
0 0 0

and therefore
—u'(1)p(1) +4'(0)p(0) = —Bp(1) + ap(0)

for all ¢ € H'((0,1)). Choosing ¢(z) and ¢(x) = 1 — x imply respectively —u/(1) = —f and
u'(0) = a. g.e.d.

[ )
Example 10.36 (Robin Problem). Consider the Robin problem, for f € L?

—u"+u=f
u'(0) = u(0)
u(l) =0

LThere exists a unique H?(0,1) for this problem.
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Theorem 10.37. For all f € L*((0,1)) there exists a unique u € H?((0,1)) solving the
Robin problem. O]

Proof. Assume that w is a solution. Then for all ¢ € H*

—
=u(0)(0)

0= / (" +u— f)p= / (W' + up — f) — o (1p(0) + o/ (0)(0)

which is equivalent to
1 1

/1 uif + [wpsu(p0) = [ fo

0 0

for all ¢ € H'.

Now define the linear functional

and define the new Hilbert space # = H' with inner product

(u, ) 5 = /1U’90’+/1U¢+U(0)90(0)

We claim that .77 is a Hilbert space and that
[ull g < [lullse < Cllullm

which follows from [u(0)[* < C|lul|;:.

Applying the Riesz theorem for ## we find that there exists a unique v € 2 = H*((0,1))
such that
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for all ¢ € # = H'((0,1)). Thus there exists a unique H' solution to

1

/1 g+ / wp+ u(0)p(0) = [ o

0

for all ¢ € H'.
To prove that u € H*((0,1)) note that for ¢ € Z we have

—v'fu=fe?9 —= W el? = ucH = —u'+u=fel?

and thus same as above we find that «/(1) = 0 and /(0) = u(0).
q.e.d.
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Schrodinger Dynamics

with some initial condition (¢ = 0) = 9. Here 1) represents the wave function and |i(x)
2

|2

represents the probability density of a particle in configuration space and |@/A)(p) represents
the probability density of a particle in momentum space.

H here is an (unbounded) operator on L?(R¢) the Hamiltonian and

(¢, Hip) = energy of ¢

Example 11.1. Consider fore example for some measurable function V : R — R the

operator
H=-A+V(z) inL*R%.

For this problem to have a solution we need some conditions on H. Let Z be a Hilbert

space. For an inner product (-,-) we require
Vi€ D(H) : (¢, H)) € R

where

D(H)={y|Hy € A}

rLemma 11.2. Let H be a linear operator on S with domain D(H) (dense in %”)1

139
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Then
Vi€ D(H): (¢, HY) € R <= VYu,v € D(H): (u, Hv) = (Hu,v)

We call H a symmetric operator in this case. 0 )

é Y
Definition 11.3 (Adjoint). Let H be an operator on a Hilbert space ¢ with dense

domain D(H). Then we define
H*: D(H*) — #

which satisfies
Yu € D(H*)VYv € D(H) : (u, Hv) = (H"u,v)

where
D(H*) = {u € 4| (u,H-) is a linear functional on v}

. The map is well-defined as D(H) is dense in 7. O

,
Proposition 11.4. If u € D(H"), then there exists f € H such that for all v € D(H)

(u, Ho) = (f,v)

. and thus we can define uniquely H*u := f O )

H*| iy = H.

Definition 11.6. H is called a self-adjoint operator iff H* = H (in particular D(H™)
D(H)).

Proposition 11.5. If H is symmetric, then H C H*, i.e. D(H) C D(HY) and]
Proposition 11.7. In finite dimensions, if H = (H;;);; is a matriz, then it self- adjomt]

w.r.t. to the standard inner product iff Hj; = H_w
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\ J
é Y
Example 11.8. —A is a self-adjoint operator on L*(R?) with domain D(—A) =
LH2(Rd). )

r

~
Example 11.9. J# = L*(Q, u) is a measure space, f : Q@ — R measurable, then the

multiplication operator
Ty (Tyu)(z) = fz)u(z)

is a self-adjoint operator with domain

D(Ty) = {ue L*(Qp) | fue L*(Q,u)}.

. v

4 Y
Theorem 11.10 (Spectral Theorem). Assume that A is a self-adjoint operator on a

Hilbert space s with domain D(A). Then there exists a unitary operator U : 7 —
L*(2, i) and a measurable function f:Q — R such that

UAU ' =Ty.

Definition 11.11. We call A > 0 iff for all v € D(A) (u, Au) > 0. Further A > B iff
A-B2>0. U

4 Y
Theorem 11.12 (Friedrichs Extension). If A > —C, where A is a symmetric operator

and C € R, then there exists unique self-adjoint extension A of A and

inf <u,f~lu> = inf (u, Au).
ueD(A) ulleﬁ(fi)
Jul=1 ull=




142 CHAPTER 11. SCHRODINGER DYNAMICS

4 N
Theorem 11.13 (Kato-Rellich). If A is a self-adjoint operator and B symmetric with

D(B) D D(A), and
IBul| < al| Aul| + Cllull

Lfor all u € D(A) with a < 1, then A+ B is self-adjoint with D(A + B) = D(A). O )

Example 11.14. If V € L*(R3) + L*>°(R?), then —A + V is self-adjoint on H?*(R?).

Proof. Consider A = —A, B = V. For every ¢ > 0 we can write V = Vj + V5, with
IVill2 < e, Vo € L. Therefore

Vaulls < [Viullz + [Vaullz < [Villollulloo + [[Valloollull: < Cellullm + Cellulla <
< Cel| Aullz + Cellull

by the Sobolev embedding as L> C H?. Choosing a = Ce < 1 we find the desired

It. .e.d.
resu ged. |
é N
Theorem 11.15. If A s self-adjoint, then the equation
10 = Au
u(t =0) = ug
has a unique solution, if ug € D(A) and
u(t, ) € €((0,00), ) N ([0, 00), D(A))
with ||ul|pay = ||ul| + ||Au|| for all D(A).
“Symbolically” we can write
u(t) = e~y
A L y

ProofStep 1 Assume that A is bounded. Then e~*4 well-defined by

oo

. n
e = —(—1A)"
!
n!
n=0
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which is in the operator (norm) topology as

. EadgP )
He—ztAH < Z m”AHn _ etHA” < 00

n=0

A

Thus we can define u(t) = e "*1uy and check that it satisfies

iat (e—itA) — Ae—itA

Assume that A > 0. Then we can define A,, = A’ﬁlz is a bounded operator.

By step 1 there exists a solution u,, to the corresponding problem with A,.

n—oo

If we can prove that u, (t) —— u(t) (in L?) then we have found a solution.

Noting that e "4 is unitary it follows that < ||u,(¢)||> = 0 which implies that ||u,(t)|| =

ug and therefore we find that

d
— lun — um”2 = d_(||un||2 + [t + 2R (un, U — n>) = 2R((—idmtin, ) + (Un, iAnUn)) =

,M—00

t
= 4S5 (tp, (A — Ap)tm) 0

as
nA mA (m — ’I'L) m-"n m,n—00

> 0.

T A+tn A+m (A—I—m)(A+n)N mn

A, — A,

This implies that w,(t) converges to some u(t) in # which solves the equation.

qg.e.d.
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