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Chapter 1

Lp-Spaces

Definition 1.1. Let Ω be a set, Σ a collection of subsets of Ω which is a σ-algebra and

let µ : Σ→ [0,∞] be a measure. We call (Ω,Σ, µ) a measure space. �

Example 1.2. Let Ω ⊂ Rd be open, Σ the Borel-σ-algebra, µ := λd the Borel-Lebesgue

measure, uniquely characterised by

µ([a1, b1]× · · · × [an, bn]) =
n∏
j=1

|bj − aj|.

Definition 1.3. Given a measure space (Ω,Σ, µ) and f : Ω→ R and f measurable.

Define Sf(t) := f−1
(
(t,∞)

)
and note that Sf is monotone and non-increasing. Then

Ff : R→ [0,∞], Ff(t) = µ(Sf(t)), for t ∈ R, is decreasing in t.

For f > 0 everywhere define

∫
Ω

f(x)dµ(x) :=

∞∫
0

Ff(t)dt

where the r.h.s. is a Riemann-integral.

If the integral is not infinite, we say that f is Lebesgue-integrable.

For f : Ω→ C, f is measurable iff R f and =f are. For all x ∈ R let x± := max{±x, 0}.
Then

f = (R f)+ − (R f)− + i(=f)+ − i(=f)−

5
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If (R f)± and (=f)± are integrable, we say that f is integrable and∫
Ω

fdµ :=

∫
Ω

(R f)+dµ−
∫
Ω

(R f)−dµ+ i

∫
Ω

(=f)+dµ− i
∫
Ω

(=f)−dµ

An alternative construction: First define the Lebesgue integral on simple function and

then pass to f : Ω→ [0,∞) by approximation. �

Corollary 1.4. For all f : Ω→ C measurable and integrable for all ε > 0 there exists

a ϕε ∈ S such that ∫
Ω

|f(x)− ϕε(x)|dµ(x) < ε

�

Theorem 1.5 (Monotone Convergence). Let (fj)j∈N a non-decreasing sequence of non-

negative integrable functions on (Ω,Σ, µ) (i.e. µ-a.e. (fj(x))j for x ∈ Ω is increasing),

then

lim
j→∞

fj(x) = f(x)

is measurable and

lim
j→∞

∫
Ω

fj(x)dµ(x) =

∫
Ω

lim
j→∞

fj(x)dµ(x).

�

Theorem 1.6 (Dominated Convergence). Let (fj)j∈N be a sequence of integrable complex-

valued function on (Ω,Σ, µ) which converge to f pointwise µ-a.e. If there exists a G > 0

integrable on (Ω,Σ, µ) satisfying |fj(x)| 6 G(x) for all j ∈ N µ-a.e., then f is integrable

and

lim
j→∞

∫
Ω

f(x)dµ(x) =

∫
Ω

f(x)dµ(x)

�
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Theorem 1.7 (Fatou’s Lemma). Let (fj)j∈N be a non-negative, integrable on (Ω,Σ, µ).

Then f(x) := lim infj→∞ fj(x) is measurable and

lim inf
j→∞

∫
Ω

fj(x)dµ(x) >
∫
Ω

f(x)dµ(x).

�

Theorem 1.8 (Brezis-Lieb, refinement of Fatou’s Lemma). Let (fj)j∈N : Ω → C be

measurable and converging towards to f : Ω → C µ-a.e. and for p ∈ (0,∞) let there

exist a C > 0 such that for all j ∈ N
∫
Ω

|fj(x)|pdµ(x) 6 C. Then

lim
j→∞

∫
Ω

||fj(x)|p − |fj(x)− f(x)|p − |f(x)|p|dµ(x) = 0

�

Corollary. ∫
Ω

|fj(x)|pdµ(x) =

∫
Ω

|f |pdµ+

∫
Ω

|f − fj|pdµ+ o(1)

�

Proof of Theorem 1.8. By Fatou’s lemma
∫
Ω

|f |pdµ 6 C.

We claim that for all p ∈ (0,∞) and all ε > 0 there exists cε > 0 such that for all a, b ∈ C

||a+ b|p − |b|p| 6 ε|b|p + cε|a|p

the proof of which is an exercise.

For all j ∈ N let gj := fj − f , then limj→∞ gj(x) = 0 µ-a.e. Now fix ε > 0.

0 6
∫
Ω

||f + gj|p − |gj|p − |f |p|dµ 6 ε

∫
Ω

|gj|pdµ+

∫
Ω

Gj,εdµ
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with

Gj,ε(x) :=
(

||f + gj|p − |gj|p − |f |p|︸ ︷︷ ︸
6||f+gj |p−|gj |p|+|f |p6ε|gj |p+(1+cε)|f |p

−ε|gj|p
)

+
6 (1 + cε)|f |p

and thus by dominated convergence
∫
Gj,εdµ

j→∞−−−→ 0, on the other hand∫
|gj|pdµ 6

∫
(|f |+ |fj|)pdµ2p 6 2p+1C,

taking lim sup and letting ε→ 0 and the claim follows. q.e.d.

For (Ω1,Σ1, µ1), (Ω2,Σ2, µ2) σ-finite measure spaces and define the product σ-algebra, Σ1⊗Σ2

as the smallest σ-algebra containing all rectangles
{
A1×A2

∣∣A1 ∈ Σ1, A2 ∈ Σ2

}
. Then there

exists a unique product measure µ1 ⊗ µ2 on Σ1 ⊗ Σ2 that satisfies

∀Aj ∈ Σj, j = 1, 2 (µ1 ⊗ µ2)(A1 × A2) = µ1(A1)µ2(A2)

Theorem 1.9 (Fubini-Tonelli). If f : Ω1 × Ω2 → C is Σ1 ⊗ Σ2 measurable, then for

g ∈
{

(R f)+, (R f)−, (=f)+, (=f)−
}

the maps

x1 7−→
∫
Ω2

g(x1, x2)dµ2(x2)

x2 7−→
∫
Ω1

g(x1, x2)dµ1(x1)

are respectively µ1 and µ2 measurable.

If f > 0, µ1 ⊗ µ2-a.e., then∫
Ω1×Ω2

fd(µ1 ⊗ µ2) =

∫
Ω1

∫
Ω2

f(x1, x2)dµ2(x2)dµ1(x1) =

∫
Ω2

∫
Ω1

f(x1, x2)dµ1(x1)dµ2(x2)

The same holds for f : Ω1 × Ω2 → C provided one the above integrals is finite for

|f |. �

Let (Ω,Σ, µ) be a measure space.
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Definition 1.10 (Lp-space). For p ∈ [1,∞), let

L̃p(Ω, dµ) :=
{
f : Ω→ C

∣∣ f is measurable and |f |p is integrable
}
.

Introducing the equivalence relation

f ∼ g :⇐⇒ ∃N ∈ Σ : µ(N) = 0 ∧ ∀x ∈ NC : f(x) = g(x) ⇐⇒ f = g µ-a.e.

We define Lp(Ω, dµ) := L̃p(Ω, dµ)/ ∼. Lp is a vector space over C with pointwise linear

operations on L̃p. This follows from |α + β|p 6 2p−1(|α|p + |β|p) for all α, β ∈ C.

We define the norm

‖f‖p :=

∫
Ω

|f(x)|pdµ(x)

1/p

on Lp(Ω, dµ), which is only a semi-norm on L̃p(Ω, dµ).

Further

L̃∞(Ω, dµ) :=
{
f : Ω→ C

∣∣ f is measurable, ∃K > 0 : |f(x)| 6 K µ-a.e.
}

For f ∈ L∞(Ω, dµ) we define the norm

‖f‖∞ := inf
{
K
∣∣ |f(x)| 6 K µ-a.e.

}
.

�

Theorem 1.11 (Hölder’s Inequality). Let p, q ∈ [1,∞] be daul indices, i.e. 1
p

+ 1
q

= 1.

For f ∈ Lp(Ω, dµ), g ∈ Lq(Ω, dµ) then fg ∈ L1(Ω, dµ) and∣∣∣∣∣∣
∫
Ω

fgdµ

∣∣∣∣∣∣ (a)

6
∫
|f ||g|dµ

(b)

6 ‖f‖‖g‖q.

Equality holds at (a) iff there exists a ϑ ∈ R such that f(x)g(x) = eiϑ|f(x)||g(x)| µ-a.e.

For f 6= 0, equality holds at (b) iff there exists a λ ∈ R such that for p ∈ (1,∞),

|g(x)| = λ|f(x)|p−1 µ-a.e. For p = 1, |g(x)| 6 λ µ-a.e. and |g(x)| = λ µ − a.e. when

f(x) 6= 0. For p =∞, |f(x)| 6 λ µ-a.e. and |f(x)| = λ µ− a.e. when g(x) 6= 0. �
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Theorem 1.12 (Minkowski). Let (Ω,Σ, µ) and (Γ,Ξ, ν) be measure spaces with σ-finite

measures. Then if p ∈ [1,∞) and f > 0 µ⊗ ν measurable

∫
Ω

∫
Γ

f(x, y)dν(y)

p

dµ(x)

1/p

6
∫
Γ

∫
Ω

f(x, y)pdµ(x)

1/p

dν(y)

holds. Equality and finiteness for p ∈ (1,∞) imply the existence of a µ-measurable

α : Ω → [0,∞) and a ν-measurable β : Γ → [0,∞) such that f(x, y) = α(x)β(y) for

µ⊗ ν-a.e. �

Corollary 1.13. For all p ∈ [1,∞] and all f, g ∈ Lp(Ω, dµ)

‖f + g‖p 6 ‖f‖p + ‖g‖p

If f 6= 0 and p ∈ (1,∞), equality holds iff there exists a λ > 0 with g = λf µ-a.e. �

Theorem 1.14 (Completeness of Lp). For p ∈ [1,∞] let (fj)j∈N ⊂ Lp(Ω) be a Cauchy

sequence, i.e.

‖fj − fk‖
min{j,k}→∞−−−−−−−→ 0.

Then there exists a f ∈ Lp(Ω) such that fj
j→∞−−−→
Lp

converges (strongly) in Lp. Moreover

there exists a subsequence (fjk)k and F > 0 ∈ Lp(Ω) such that for all k ∈ N |fjk | 6 F

µ-a.e. and

fjk(x)
k→∞−−−→ f(x) µ-a.e.

�

Definition 1.15 (Convolution). Let f, g be measurable on
(
Rd,Bd, λd

)
. The convolu-

tion is defined as

(f ∗ g)(x) :=

∫
Rn

f(x− y)g(y)dy = (g ∗ f)(x)
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For f ∈ Lp(Rd), g ∈ Lq(Rd) with p, q dual g ∗f is well-defined and bounded by Hölder’s

inequatity for all x ∈ Rdn. It is also measurable by Fubini’s theorem. �

Theorem 1.16 (Young’s Inequality). For f ∈ L1(Rd), g ∈ Lp(Rd) with p ∈ [1,∞], then

f ∗ g ∈ Lp(Rd) and

‖f ∗ g‖p 6 ‖f‖1‖g‖p

�

Proof.

(p =∞)

‖(f ∗ g)(x)‖∞ 6 ‖g‖∞
∫
Rn

|f(x− y)|dy = ‖g‖∞‖f‖1.

(p ∈ [1,∞))

∫
Rn

|(f ∗ g)(x)|pdx

1/p

6

∫
Rn

∫
Rn

|g(x− y)||f(y)|dy

p

dx

1/p

Theorem 1.12

6

6
∫
Rn

∫
Rn

|g(x− y)|pdx

1/p

|f(y)|dy = ‖g‖p‖f‖1

q.e.d.

Theorem 1.17. For all Ω ⊂ Rd open, for all f ∈ Lp
(
Ω, dλd

)
, p ∈ [1,∞) there exists

(fj)j∈N ⊂ C∞c (Ω) such that

fj
j→∞−−−→
Lp

f.

�

Theorem 1.18. For Ω ⊂ Rd and p ∈ [1,∞). Lp
(
Ω, dλd

)
is separable, i.e. there exists

F ⊂ Lp
(
Ω, dλd

)
countable and dense, i.e. for all f ∈ Lp(Ω) for all ε > 0 there exists

g ∈ F , such that ‖f − g‖p < ε. �
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Proof. Given f ∈ Lp(Ω) there exists h ∈ C∞c (Ω) such that ‖f − h‖ < ε
2
. Hence w.l.o.g. let

us assume that f ∈ C∞c . For all N ∈ N we have

Rd =
⋃
j∈Zd

(
[0, 2−N)d + 2−Nj

)︸ ︷︷ ︸
Cj,N

The set of step functions with support in Cj,N and C-rational values is a countable set.

Given N, j we can choose

cN,j :=
1

(2−N)n

∫
Cj,N

f(x)dx

Since f ∈ C∞c it is uniformly continuous, i.e. we can find for all δ > 0 an N big enough such

that for all x ∈ Cj,N
|f(x)− cN,j| <

δ

2
.

Further we can choose a c̃N,j in the rational complex numbers such that |cN,j − c̃N,j| < δ
2
,

therefore ∥∥∥∥∥∥h−
∑
j∈Zd

c̃N,jχCj,N (x)

∥∥∥∥∥∥
∞

< δ

By construction the sum of step functions is compactly supported as f is therefore there

exists some compact set K such that∥∥∥∥∥∥h−
∑
j∈Zd

c̃N,jχCj,N (x)

∥∥∥∥∥∥
p

6

∥∥∥∥∥∥h−
∑
j∈Zd

c̃N,jχCj,N (x)

∥∥∥∥∥∥
∞

µ(K)

thus by choosing δ < ε
2µ(K)

, we have found the approximating function. q.e.d.

Definition 1.19. L : Lp(Ω, dµ)→ C is a linear function iff for all f1, f2 ∈ Lp, α ∈ C

L(αf1 + f2) = αL(f1) + L(f2).

L is bounded iff there exists a K > 0 such that |L(f)| 6 K‖f‖p for all f ∈ Lp.
L is (sequentially) continuous iff for all (fj)j∈N ⊂ Lp with fjLp

j→∞−−−→f implies that

L(fj)
j→∞−−−→ L(f).

In the case of linear functionals/maps the latter two properties are equivalent.

The space of bounded linear functionals on Lp(Ω), denoted by (Lp(Ω))∗ is a complete
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vector space with norm

‖L‖ := sup
f∈Lp(Ω)\{0}

|Lf |
‖f‖p

A sequence (fj)j∈N ⊂ Lp(Ω) converges weakly to f ∈ Lp(Ω) iff for all L ∈ (Lp(Ω))∗,

Lfj
j→∞−−−→ Lf . This is written as

fj
j→∞−−−⇀ f

By Hölder’s inequality Lp
′
(Ω)→ (Lp(Ω))∗ (injectively) for all p ∈ [1,∞] via

g 7→ Lg

with

Lg(f) :=

∫
Ω

f(x)g(x)dµ(x)

with ‖Lg‖ 6 ‖g‖p′ . �

Theorem 1.20 (Linear Functionals Separate). Let p ∈ [1,∞] (for p = ∞, (Ω,Σ, µ)

must be σ-finite). Let f ∈ Lp(Ω) such that for all L ∈ Lp(Ω)∗ L(f) = 0 holds then

f = 0. Consequently, if fj
j→∞−−−⇀ k and fj

j→∞−−−⇀ l, then k = l, i.e. weak limits are

unique. �

Proof. For p ∈ [1,∞), take

g(x) :=

f(x)|f(x)|p−2, f(x) 6= 0

0, f(x) = 0

and

Lgh :=

∫
g(x)h(x)dµ(x).

Since, by Hölder’s inequality

∞ >

∫
|f(x)|pdx =

∫
|g(x)|p′dx

it follows that g ∈ Lp′(Ω) and Lg ∈ Lp(Ω)∗, where 1
p

+ 1
p′

= 1. For this functional we have

Lg(f) =

∫
Ω

f(x)|f(x)|p−2f(x)dµ(x) =

∫
Ω

|f |pdµ(x) = ‖f‖pp.
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For p =∞, for ε > 0 choose Ωε with µ(Ωε) <∞ such that |f(x)| > ‖f‖∞− ε for all x ∈ Ωε.

Choosing

g(x) :=
f(x)

|f(x)|
χΩε(x) ∈ L1(Ω) =⇒ Lg ∈ L∞(Ω)∗

One finds that

Lg(f) =

∫
Ωε

f(x)

|f(x)|
f(x)dµ(x) =

∫
Ωε

|f(x)|dµ(x) 6 ‖f‖∞µ(Ωε)

and on other hand using the definition of Ωε

Lg(f) > (‖f‖∞ − ε)
∫
Ωε

dµ(x) = (‖f‖∞ − ε)µ(Ωε)

q.e.d.

Theorem 1.21 (Hanner’s Inequality). Let f, g ∈ Lp(Ω), p ∈ [1, 2]. Then

(‖f‖p + ‖g‖p)p + |‖f‖p − ‖g‖p|p 6 ‖f + g‖pp + ‖f − g‖pp (1)

and

(‖f + g‖p + ‖f − g‖p)p + |‖f + g‖p − ‖f − g‖p|p 6 2p
(
‖f‖pp + ‖g‖pp

)
(2)

For p ∈ [2,∞) the inequalities are reversed.

�

Remark. For ‖f − g‖p 6 ‖f + g‖p, p ∈ [1, 2], then the

LHS(2) > 2‖f + g‖pp + p(p− 1)‖f + g‖p−2
p ‖‖f − g‖2

p

which follows from the inequality for a, b >

(a+ b)p + |a− b|p > 2ap + p(p− 1)ap−2b2.

To prove it we may assume w.l.o.g. that a 6= 0 (since otherwise the inequality holds
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trivially) and devide by b to get the inequality

(1 + x)p + |1− x|p > 2 + p(p− 1)x2

Noting that by assumption 1 > x hence |1− x| = (1− x) Since by differentiating twice

this expression

(p− 1)
(
(1 + x)p−2 + (1− x)p−2

)
> 2(p− 1)

which indeed holds. Then by integration one finds the asserted inequality.

�

Theorem 1.22 (Uniform Convexity). For all p ∈ (1,∞)

∀ε > 0 ∃δ > 0∀f, g ∈ Lp(Ω) : ‖f‖p = ‖g‖p = 1,

∥∥∥∥f + g

2

∥∥∥∥p
p

> 1− δ =⇒
∥∥∥∥f − g2

∥∥∥∥
p

< ε

�

Lemma. Let α(r) := (1 + r)p−1 + (1− r)p−1, and β(r) := ((1 + r)p−1 − (1− r)p−1)r1−p

for r ∈ [0, 1] with β(0) := 0 (β(0) :=∞ for p ∈ [2,∞)). Then for all A,B ∈ C

α(r)|A|p + β(r)|B|p 6 |A+B|p + |A−B|p (∗)

for p ∈ [1, 2). Equality holds iff r = |B|
|A| ∈ [0, 1].

�

Proof. It is sufficient to assume A,B > 0. Otherwise a := |A|, b := |B| satisfy

|A+B|p+|A−B|p =
(
a2 + b2 + 2ab cos(ϑ)

)p/2
+
(
a2 + b2 − 2ab cos(ϑ)

)p/2
> (a+ b)p+(a− b)p

Let R := B
A

, and rewrite the asserted inequality as

α(r) +Rpβ(r) 6 (1 +R)p + (1−R)p
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differentiating both sides

d

dr
(α(r) +Rpβ(r)) = (p− 1)(1 + r)p−2 − (p− 1)(1 + r)p−2 +Rp(p− 1)

(
(1 + r)p−2 + (1− r)p−2

)
+

+Rp(1− p)
(
(1 + r)p−2(1 + r)− (1− r)p−2(1− r)

)
r−p =

= (p− 1)
(
(1 + r)p−2 − (1− r)p−2

)(
1−

(
R

r

)p)
which vanishes only for r = R. Further since the derivative for R 6 1 is positive for r < R

and negative for r > R, this is indeed the maximum. q.e.d.

Proof of Theorem 1.21. Noting that R 6 1 can always be attained by exchanging f and g if

necessary one finds that for all r ∈ [0, 1]

|f + g|p + |f − g|p > α(r)|f |p + β(r)|g|p = α(R)|f |p + β(R)|g|p

for R := ‖g‖p
‖f‖p . Integrating one finds that

‖f+g‖pp+‖f−g‖pp > α(R)‖f‖pp+β(R)‖g‖pp = (‖f + g‖p + ‖f − g‖p)p+|‖f + g‖p − ‖f − g‖p|p

(2) follows immediately from (1) by substituting f → f + g and g → f − g.

For p = 2 this is just the standard parallelogram identity. For p ∈ [1, 2), otherwise reverse

all the inequalities. q.e.d.

Theorem 1.23 (Lower Semi-Continuity of Norms). For p ∈ [1,∞] if

fj
j→∞−−−⇀ f =⇒ lim inf

j→∞
‖fj‖p > ‖f‖p

(For p =∞, µ needs to σ-finite). If p ∈ (1,∞) and limj→∞ ‖fj‖p = ‖f‖p then

fj
j→∞−−−→
Lp

f.

�

Theorem 1.24 (Uniform Boundedness Principle). Let p ∈ [1,∞] (for p =∞, (Ω,Σ, µ)

need be σ-finite). Let (fj)j∈N ⊂ Lp(Ω) such that for all L ∈ Lp(Ω)∗ there exists a CL > 0

such that |L(fj)| 6 CL for all j ∈ N. Then there exists a C > 0 such that ‖fj‖ 6 C for
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all j ∈ N. �

Theorem 1.25 (The Dual of Lp(Ω)). For p ∈ [1,∞), Lp(Ω)∗ = Lq(Ω) for 1
p

+ 1
q

= 1,

i.e for all L ∈ Lp(Ω)∗ there exists a v ∈ Lq(Ω) such that for all g ∈ Lp(Ω)

L(g) = Lv(g) :=

∫
vgdµ

with ‖L‖ = ‖v‖.
�

Theorem 1.26 (Banach-Alaoglu). For p ∈ (1,∞) let (fj)j∈N be bounded in Lp(Ω).

Then there exists a subsequence (fjn)n∈N and f ∈ Lp(Ω) such that

fjn
n→∞−−−⇀
Lp

f

�
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Chapter 2

Distributions

Remark 2.1.
(
Lp
(
Rd
))∗

= Lq
(
Rd
)

for 1
p

+ 1
q
, 1 6 p <∞. �

Definition 2.2 (Test Functions). Let Ω ⊂ Rd be open. We define the set of test

functions to be D(Ω) = C∞c
(
Rd
)
. We define a topology on this space by requiring that

a sequence ϕn → ϕ in D(Ω) converges iff∃ compact set K ⊂ Ω : suppϕn ⊂ K

∀α ∈ Nn : sup
x∈Ω
|Dαϕn −Dαϕ| n→∞−−−→ 0

�

Definition 2.3 (Distributions). We define the space of distributions to be dual space

to the space of test functions, i.e. D ′(Ω)

T ∈ D ′(Ω) :⇐⇒ T : D(Ω)→ C, linear & continuous.

We define the weak-∗ topology on this space, i.e. a sequence Tn → T converges in

D ′(Ω) iff for all ϕ ∈ D(Ω), Tn(ϕ)
n→∞−−−→ T (ϕ). �

19
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Example 2.4. If f ∈ L1
loc(Ω), then

Tf :

D(Ω) −→ C

ϕ 7−→
∫
Ω

f(x)ϕ(x)dx

is a distribution.

Example 2.5 (Dirac delta function). The linear functional

δ :
D(Rn) −→ C

ϕ 7−→ ϕ(0)
.

Informally one may one may say that δ(x) = 0 for all x 6= 0 and δ(0) = ∞ such that∫
Rn
δ = 1.

One might now ask the question whether if for f, g ∈ L1
loc(Ω) with Tf = Tg does imply that

f = g.

Theorem 2.6 (Fundamental Theorem of the Calculus of Variations). If f ∈ L1
loc(Ω)

such that for all ϕ ∈ C∞c (Ω) ∫
Ω

fϕ = 0

then f = 0. �

Proof. Assume that f ∈ L1
(
Rd
)
. Then∫

Rn

f(x)ϕ(x)dx = 0

for all ϕ ∈ C∞c
(
Rd
)

implies that

0 =

∫
Rd

f(x)ϕ(y − x)dx = (f ∗ ϕ)(y)

for all y ∈ Rd.
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Recall now that if ϕ ∈ C∞c
(
Rd
)
, with

∫
ϕdλ = 1, and ϕn(x) = ndϕ(nx) then ϕn ∗ f → f in

L1(Rd), since for all y ∈ Rd

(f ∗ ϕn)(y) = 0

it follows that f = 0 in L1
(
Rd
)
, i.e. f(x) = 0 a.e.

Now let us consider the general case, let Ω ⊂ Rd be open, and f ∈ L1
loc(Ω) such that∫

f(x)ϕ(y − x)dx = 0

for all ϕ ∈ C∞c (Ω). We need x ∈ Ω2, Ω̄2 ⊂⊂ Ω such that y − x ∈ suppϕ, then

y = x+ (y − x) ∈ Ω2 + suppϕ.

We choose ϕ ∈ C∞c
(
Rd
)

such that suppϕ ⊂ B(0, 1). Define ϕn(x) = ndϕ(nx). Then

suppϕn ⊂ B
(
0, 1

n

)
. Then we have∫

f(x)ϕn(y − x)dx = 0

for all y ∈ Ω2, with Ω2 ⊂⊂ Ω. Then

x = y − (y − x) ∈ Ω2 \ suppϕn ⊂ Ω2 +B 1
n
(0) ⊂ Ω3

when n is large enough. Thus we have∫
Ω

f(x)ϕn(y − x)dx =

∫
Ω

1Ω3f(x)ϕn(y − x)dx =

∫
Rn

1Ω3f(x)ϕn(y − x)dx = (ϕn ∗ 1Ω3f)(y)

Since 1Ω3f ∈ L1
(
Rd
)
, we have that ϕn ∗ 1Ω3f → 1Ω3f . Thus f

∣∣
Ω3

= 0 which implies that

f(x) = 0 a.e. x ∈ Ω3 and thus also x ∈ Ω.

q.e.d.

Definition 2.7 (Derivative of Distributions). For a T ∈ D ′(Ω) we define its α-derivative

to be the distribution DαT ∈ D ′(Ω) such that

(DαT )(ϕ) = (−1)|α|T (Dαϕ)
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for all ϕ ∈ D . �

Remark 2.8. This definition is motivated by the fact that for f ∈ C∞
(
Rd
)

∫
(Dαf)ϕ = (−1)|α|

∫
f(Dαϕ).

�

In particular we have that if Tn → T in D ′(Ω), then DαTn → DαT for any α ∈ Nn.

Proof. For all ϕ ∈ D(Ω) we have

(DαTn)(ϕ) = (−1)|α|Tn(Dαϕ)
n→∞−−−→ (−1)|α|T (Dαϕ) = (DαT )(ϕ).

q.e.d.

Example 2.9. Let f(x) = |x|. Then its distributional derivative is

f ′(x) =

−1, y < 0

+1, y > 0

and its second distributional derivative is

f ′′ = 2δ.

Theorem 2.10 (Equivalence of Classical and Distributional Derivatives). 1) If f ∈
C 1(Ω) ⊂ L1

loc(Ω), then gi = ∂xif ∈ C (Ω) and ∂i(Tf ) = Tgi.

2) Let T ∈ D ′(Ω) and assume that Tgi = ∂xiT and gi ∈ C (Ω), for all i = 1, . . . , n.

Then there exists a f ∈ C 1(Ω) such that T = Tf and ∂xif = gi.

�

Proof. Let Ω = Rd.
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1) If f ∈ C 1(Rd) and gi = ∂if ∈ C (Ω). Then for all ϕ ∈ D ′(Ω)

(∂i(Tf ))(ϕ) = −Tf (∂iϕ) = −
∫
f(x)∂iϕ(x)dx =

∫
∂if(x)ϕ(x)dx = T∂if (ϕ)

i.e. ∂iTf = T∂if in D ′(Rd).

2) Assume that T ∈ D ′()

q.e.d.
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Chapter 3

Fourier Transform

Definition 3.1. For f ∈ L1
(
Rd
)

one defines its Fourier transform to be

f̂(k) =

∫
Rd

f(x)e−2πik·xdx

�

Remark (Motivation). 1) For nice enough functions one has

∂̂xif(k) = 2πikif̂(k).

Formally we have

∂̂xif(k) =

∫
Rd

(∂xif)(x)e−2πik·xdx = −
∫
Rd

f(x)∂xie
−2πik·xdx = 2πikif̂(k).

More generally one has

D̂αf(k) = (2πik)αf̂(k).

2) Further we have for nice enough functions that

f̂ ∗ g(k) = f̂(k)ĝ(k)

25
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because formally

f̂ ∗ g(k) =

∫ ∫
f(x− y)g(y)e−2πik·xdydx =

∫ ∫
f(x− y)g(y)e−2πik·(x−y)e−2πik·ydxdy =

=

∫ ∫
f(x− y)e−2πik·(x−y)dxg(y)e−2πik·ydy = f̂(k)ĝ(k)

�

Theorem 3.2 (Plancherl). If f ∈ L1
(
Rd
)
∩ L2

(
Rd
)
, then

‖f‖2 = ‖f̂‖2

Consequently, f 7→ f̂ can be extended into an isometry on L2
(
Rd
)
, as L1

(
Rd
)
∩L2

(
Rd
)

is dense in L2
(
Rd
)
. Moreover for all f, g ∈ L2

(
Rd
)

〈f, g〉 =
〈
f̂ , ĝ
〉

1.

�

Theorem 3.3 (Inverse Formula). Define f̌(k) =
∫
f(x)e2πik·xdx = f̂(−k). Then for

all f ∈ L2
(
Rd
)

ˇ̂
f = f.

�

We know that f 7→ f̂ is a bounded map from L1
(
Rd
)
→ L∞

(
Rd
)

as

∣∣∣f̂(k)
∣∣∣ =

∣∣∣∣∣∣
∫
Rn

f(x)e−2πik·xdx

∣∣∣∣∣∣ 6
∫
Rn

|f(x)|dx = ‖f‖L1

and L2 → L2 with ‖f̂‖2 = ‖f‖2.

Theorem 3.4 (Hausdorff-Young inequality). If f ∈ L1
(
Rd
)
∩ Lp

(
Rd
)

for 1 < p 6 2,

then

‖f̂‖p′ 6 ‖f‖p

1Here we shall use the convention 〈f, g〉 =
∫
f̄(x)g(x)dx
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Consequently, f 7→ f̂ is a bounded mapping from Lp → Lp
′
= (Lp)∗.

�

Theorem 3.5 (Riesz-Thorin Interpolation inequality). Let 1 6 p0, p1, q0, q1 6∞. If

L : Lp0 −→ Lq0 , with ‖L ‖p0,q0 6 1

L : Lp1 −→ Lq1 , with ‖L ‖p1,q1 6 1

Then ‖L u‖ps,qs for all s ∈ (0, 1) where

1

ps
=

1− s
p0

+
s

p1

,
1

qs
=

1− s
q0

+
s

q1

�

The proof this theorem is based on Hadamard’s 3-line Theorem.

Theorem (Hadamard 3-lines theorem). Let C 3 z = x+ iy, and let f be holomorphic

on Ω = {z = x+ iy, 0 < x < 1}. Define M(x) = supy∈R |f(x+ iy)|, then

M(x) 6M(0)1−xM(1)x

�

Sketch of Proof. Assume that M(0) = 1 = M(1). We need to prove that |f(x + iy)| 6 1

in Ω. Define now Fn(x) = f(z)e
z2−1
n for n ∈ N. Then |Fn(z)| 6 1, for all z ∈ ∂Ω, and

|Fn(z)| → 0 as |z| → ∞. Applying the maximum principle we find that |Fn(z)| 6 1 for all

z ∈ Ω. q.e.d.

Proof of Theorem 3.5. To prove this, we neeed the duality

‖L ‖qs = sup
‖ϕ‖q′s61

|
∫

(L u)ϕ|.

Then define uz and ϕz in an appropriate way

sup

∣∣∣∣∫ (L uz)ϕz

∣∣∣∣ 6 ‖u‖p′s
q.e.d.
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Proof of Theorem 3.4. Define L u = û. Then

L : L1 −→ L∞, with ‖L ‖1,∞ 6 1

L : L2 −→ L2, with ‖L ‖2,2 = 1

By Riesz-Thorin we have that ‖û‖qs 6 ‖u‖ps for all s ∈ (0, 1)

1

ps
=

1− s
1

+
s

2
,

1

qs
=

1− s
∞

+
s

2

which implies that 1
ps

= 1− s
2

and 1
qs

= s
2

and thus

1

ps
+

1

qs
, 1 6 ps 6 2 6 qs.

This means that qs = (ps)
′. q.e.d.

Theorem 3.6. If f ∈ Lp, g ∈ Lq, then f ∗ g ∈ Lr for 1
q

+ 1
p

= 1 + 1
r

and ‖f ∗ g‖r 6
‖f‖p‖g‖q. �

Proof. Take f ∈ Lp fixed and define

L g = f ∗ g

We know that

‖f ∗ g‖ 6 ‖f‖p‖g‖p′

‖f ∗ g‖p 6 ‖f‖p‖g‖1

By Riesz-Thorin,

‖f ∗ g‖qs 6 ‖f‖p‖g‖ps

for all s ∈ (0, 1). In particular

1

ps
=

1− s
p′

+
s

1
,

1

qs
=

1− s
∞

+
s

p

from which follows that for qs = r, 1
p

+ 1
q

= 1 + 1
r
. q.e.d.
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Corollary 3.7. If f ∈ Lp, g ∈ Lq, 1 6 q, p 6 2 then f ∗ g ∈ Lr, for 1
p

+ 1
q

= 1 + 1
r
, then

f̂ ∗ g(k) = f̂(k)ĝ(k)

�

Proof. Do it for f, g ∈ D , and then approximate. q.e.d.

Theorem 3.8 (Fourier Transform of Gaussian).

ê−π|·|2(k) = e−π|k|
2

More generally

ê−πλ|·|2(k) = λ−
n
2 e−

π|k|
λ

for all λ > 0. �

Proof. For λ = 1, and n = 1 we have

ê−π|·|2(k) =

∫
R

e−πx
2

e−2πik·xdx =

∫
R

e−πk
2

e−π(x+ik)2

dx = e−πk
2

∫
R

e−πx
2

dx = e−πk
2

where the penultimate equality follows from the Cauchy formula. q.e.d.

Theorem 3.9 (Heat Equation). Consider for t > 0

∂tu−∆u = 0

u(0, x) = f(x) ∈ L2
(
Rd
)

The unique L2 solution is given by

u(t, x) =
1

(4πt)d/2

∫
Rn

e−
|x−y|2

4t f(y)dy

�

Proof. Via the Fourier transform we find the equivalent equation
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∂tû− (2π|k|)2û = 0

û(0, k) = f̂(k) ∈ L2
(
Rd
)

which can be rewritten as

∂t

(
ûe(2π|k|)2t

)
= 0

û(t, k)e(2π|k|)2t
∣∣∣
t=0

= f̂(k) ∈ L2
(
Rd
)

which implies that û(t, k)e(2π|k|)2t = f̂(k) for all t > 0 and therefore û(t, k) = e−(2π|k|)2
f̂(k) =

Ĝt(k)f̂(k) = Ĝt ∗ f(k). Thus u(t, x) = (Gt ∗ f)(x).

What is Gt(x). We need Ĝt(k) = e−(2π|k|)2t. Using the formula for the Fourier transform of

a Gaussian

ê−πλ|·|2(k) = λ−
n
2 e−

π|k|2
λ

Choosing (2π|k|)2t = π|k|2
λ

which implies that λ = 1
4πt

, from wich the assertoin follows.

q.e.d.

Remark 3.10. If K is a linear operator L2 → L2 such that

(Ku)(x) =

∫
K(x, y)u(y)dy

for all u ∈ L2, then K(x, y) is called the kernel of K. In particular

G(t, x, y) =
1

(4πt)−
n
2

e−
|x−y|2

4t

is called the heat kernel. �

Theorem 3.11 (Heat Kernel). Let G(t, x) = 1

(4πt)−
n
2
e−
|x|2
4t . Then for t > 0

∂tG−∆G = 0
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and

lim
t→0+

G(t, x)
D ′(Rn)−−−−→ δx

�

Proof. For all ϕ ∈ D
(
Rd
)

∫
(∂tG(t, x)−∆G(t, x))ϕ(y − x)dx = ∂t(G ∗ ϕ)(y)− (∆G ∗ ϕ)(y) = ∂t(G ∗ ϕ)(y)−∆(G ∗ ϕ)(y) = 0.

Because u = G ∗ ϕ solves the heat equation. Thus ∂tG−∆G = 0.

Moreover, formally we find that∫
G(t, x)ϕ(x)dx = (Gt ∗ ϕ)(0) = u(t, 0)

t→0−−→ u(0) = ϕ(0) = δ(ϕ)

lim
t↓0

G(t, x) = δ(x) in D ′
(
Rd
)

The last step can be made rigorous by using the fact that

u(t, x) = Gt ∗ f
L2

−→ f

strongly, since from Theorem 3.9 we have

‖u(t, ·)− f‖L2 =
∥∥∥û(t, ·)− f̂

∥∥∥ =
∥∥∥(e−(2π|k|)2t − 1

)
f̂(k)

∥∥∥
2

Dom Conv−−−−−−→ 0.

q.e.d.

Now let us consider the Poisson equation

−∆u = f, f ∈ L2
(
Rd
)

Formally we find that

(2π|k|)2û(k) = f̂(k)

which implies that

û(k) = (2π|k|)−2f̂(k) = Ĝ(k)f̂(k)

with Ĝ(k) = 1
(2π|k|)2 . Then û(k) = Ĝ ∗ f(k), i.e. u = G ∗ f .

What is G? Ĝ(k) = 1
(2π|k|)2 . More generally what is the Fourier transform of 1

|x|s .
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Theorem 3.12. For 0 < s < d, then

cs
1̂

|x|s
= cd−s

1

|k|d−s

in the sense of distributions and cs = π−
s
2 Γ
(
s
2

)
. This means that for all ϕ ∈ D

(
Rd
)
,

then (
̂
cs

1

| · |s
ϕ̌

)
(k) = cd−s

(
1

|k|d−s
∗ ϕ
)

(k)

The latter formula serves as a definition of a convolution of distribution and a test

function and is well-defined since for 0 < s < n, 1
|x|s ϕ̌(x) ∈ L1

(
Rd
)
. �

Proof. Formally we have

cs = π−
s
2

∞∫
0

λ
s
2
−1e−λdλ = π−

s
2

∞∫
0

(π|x|2t)
s
2
−1e−π|x|

2tdt = |x|s
∞∫

0

t
s
2
−1e−π|x|

2tdt

which implies that cs
|x|s =

∞∫
0

t
s
2
−1e−π|x|

2tdt and thus

ĉs
| · |s

(k)“ = ”

∞∫
0

t
s
2
−1ê−π|·|2t(k)dt =

∞∫
0

t
s
2
−1t−

d
2 e−

π|k|2
t dt =

∞∫
0

(
π|k|2

λ

) s
2
− d

2
−1

e−λπ|k|2 dλ

λ2
=

= |k|s−dπ−
d−2

2

∞∫
0

λ
d−s

2
−1e−λdλ =

cd−s
|k|d−s

Rigorously we have

̂( cs
| · |s

ϕ̌

)
(k) =

∫
Rd

∫
Rd

cs
|x|s

ϕ(p)e2πip·xe−2πik·xdpdx
Fubini
===

∞∫
0

∫
Rd

∫
Rd

t
s
2
−1e−π|x|

2tϕ(p)e2πip·xe−2πik·xdpdxdt =

=

∞∫
0

t
s
2
−1 ̂(e−π|·|2tϕ̌)(k)dt =

∞∫
0

t
s
2
−1c

(
e−

π|·|2
t
∗ϕ
)

(k)dt

q.e.d.
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Corollary 3.13. If 0 < 2s < d and f ∈ Lp, p = 2d
d+2s

, then, since 1 6 p 6 2, f̂(k)

makes sense and
c2s

|k|2s
f̂(k) =

(
̂cd−2s

| · |d−2s
∗ f
)

(k).

Moreover

cd−2s

∫
Rd

∫
Rd

f(x)f(y)

|x− y|d−2s
= c2s

∫
Rd

|f̂(k)|2

|k|2s
dk > 0.

�

Proof. First formula, take ϕn ∈ D such that ϕn → f in Lp. Using the formula for ϕn and

passing to n→∞ we find that∥∥∥ϕ̂n − f̂∥∥∥
p′
6 C‖ϕn − f‖ → 0.

The first formula combined with Plancherl’s theorem yields the second formula as

cd−2s

∫
Rd

∫
Rd

f(x)f(y)

|x− y|d−2s
dxdy = cd−2s

∫
Rd

f(x)

(
f ∗ 1

|x|d−2s

)
(x)dx =

〈
f, f ∗ cd−2s

| · |d−2s

〉
=

=

〈
f̂ ,

̂
f ∗ cd−2s

|x|d−2s

〉
=

〈
f̂ ,

c2s

| · |2s
f̂

〉
= c2s

∫
Rd

|f̂(k)|2

|k|2s
dk

q.e.d.

Returning to the Poisson equation we find that

G(x) =
1

4π2

1̌

| · |2
=

1

4π2

cd−2

cn

1

|x|d−2
=

 1
4π|x| , d = 3

1
(d−2)|Sd−1|

1
|x|d−2 , d > 3

for d > 3.

Remark 3.14.

G(x) =


1

(d−2)|Sn−2|
1

|x|n−2 , d > 3

− 1
2π

ln(x), d = 2

−|x|, d = 1

is called the Greens function of the Laplacian (−∆) in Rd. In particular G(x − y) is



34 CHAPTER 3. FOURIER TRANSFORM

the kernel of the operator (−∆)−1 in L2
(
Rd
)
, i.e.

(−∆)−1f(x) =

∫
Rd

G(x− y)f(y)dy

�

Theorem 3.15 (Poisson Equation). If f ∈ L2
(
Rd
)
, then u = G ∗ f ∈ L1

loc

(
Rd
)

and

−∆u = f in D ′
(
Rd
)
. Consequently, −∆G = δ in D ′

(
Rd
)
. �

Proof. For n > 3 Take ϕn ∈ D , ϕn → f in L2
(
Rd
)
. Then

̂−∆(G ∗ ϕn) = ̂G ∗ (−∆ϕn) = Ĝ−̂∆ϕn =
1

(2π|k|2)
(2π|k|2)ϕ̂n(k) = ϕ̂n(k).

Thus −∆(G∗ϕn) = ϕn. Since G∗ϕn → G∗f in D ′ it follows that −∆(G ∗ ϕn)→ −∆(G∗f)

in D ′. We conclude that −∆(G ∗ f) = f in D ′(Rd). Moreover∫
G(−∆ϕ) =

∫
Ĝ−̂∆ϕ =

∫
ϕ̂ = ϕ(0)

for all ϕ ∈ D , thus −∆G = δ in D ′
(
Rd
)
. q.e.d.

We now turn to the Yukawa equation

µu−∆u = f

for µ > 0. By taking the Fourier transform we find that

(
µ+ (2π|k|)2

)
û = f̂

which implies that û = Ĝf̂ with

Ĝ(k) =
1

µ+ (2π|k|)2

which belong to L2
(
Rd
)

for n > 3. Thus we find that the Green’s function of the Yukawa

equation is

G(x) =

 1
2µ
e−µ|x|, d = 1

1
4π|x|e

−µ|x|, d = 3



Chapter 4

Sobolev Space Hm
(
Rd
)

Definition 4.1. We define the Sobelev spaces to be

H1
(
Rd
)

=
{
f ∈ L2(Rn)

∣∣ ∂xif ∈ L2
(
Rd
)
, i = 1, . . . , d

}
Hm
(
Rd
)

=
{
f ∈ L2

(
Rd
) ∣∣Dαf ∈ L2

(
Rd
)
, |α| 6 m

}
where the derivatives are taken in the distributional sense. �

Theorem 4.2. Hm
(
Rd
)

is a Hilbert space with inner product,

〈f, g〉Hm =
∑
|α|6m

〈Dαf,Dαg〉2

�

Proof. For H1 it is easy to see that 〈·, ·〉H1
is a well-defined inner product. Concerning

completeness, if {ϕn} is a Cauchy sequence in H1, then both {fn} and {∂xifn} are Cauchy

sequences in L2
(
Rd
)
. Hence there exist f, gi ∈ L2 such that fn

L2

−→ f and ∂xifn
L2

−→ gi. We

need to prove that ∂xif = gi for all i = 1, . . . , n from which follows that f ∈ H1. Take any

test function ϕ ∈ D ′, then per definitionem we have∫
∂xifnϕ = −

∫
fn∂xiϕ

n→∞−−−→ −
∫
f∂xiϕ =

∫
∂xifϕ

thus ∂xifn
n→∞−−−⇀ gi from which follows that ∂xif = gi and therefore f ∈ H1

(
Rd
)
. q.e.d.
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Theorem 4.3. D
(
Rd
)

is dense in Hm
(
Rd
)
. �

Proof. We shall only prove the case of H1. Take f ∈ H1
(
Rd
)
. We need to find fε ∈ D , such

that fε → f in H1.

Step 1. Find a sequence gε ∈ H1, such that gε has compact support such that gε → f in H1.

Choose h ∈ D such that h(x) = 1 for all |x| 6 1 and choose gε(x) = f(x)h(εx) has

compact support and gε(x) = f(x), when |x| 6 1
ε
. We have

‖gε − f‖2
2 =

∫
|1− h(εx)|2|f(x)|2dx −→ 0

by dominated convergence. Similarly

‖∂xigε − ∂xif‖2
2 =

∫
|∂xif(h(εx)− 1) + f(x)∂xih(εx)|2dx 6

6 2

∫
|∂xif(x)(h(εx)− 1)|2dx+ 2

∫
|f(x)|2|∂xih(εx)|2dx

Here
∫
|∂xif(x)(h(εx)− 1)|2dx→ 0 and since ∂xih = 0 in |x| 6 1

ε∫
|f(x)|2|∂xih(εx)|2dx =

∫
B 1
ε

(x)C

|f(x)|2|∂xih(εx)|2dx −→ 0

by dominated convergence.

Step 2. Consider gε ∈ H1 with compact support. Take ϕ ∈ D with
∫
ϕ = 1 and define

ϕk(x) = knϕ(kx). We know that ϕn ∗ gε ∈ C∞c and Dα(ϕn ∗ gε) → Dαgε in L2(Rn)

for |α| 6 1

We conclude by noting that

‖ϕk ∗ gε − f‖H1 6 ‖ϕn ∗ gε − gε‖H1 + ‖gε − f‖H1
ε→0−−→
k→∞

0

q.e.d.

Theorem 4.4. C∞c
(
Rd
)

is dense in Hm
(
Rd
)
. �
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Remark 4.5. If Ω is a bounded set of Rd, then

H1(Ω) =
{
f ∈ L2(Ω)

∣∣ ∂xif ∈ L2(Ω), i = 1, . . . , n
}

Then C∞c (Ω) is not dense in H1(Ω). In fact H1
0 (Ω) = C∞c

H1(Ω) 6= H1(Ω). We well come

back to this (boundary value problems). �

Theorem 4.6 (Chain Rule). If G ∈ C 1(C,C), |G′| 6 C, G(0) = 0. Then for all

f ∈ H1
(
Rd
)
, G(f) ∈ H1

(
Rd
)

and

∂xiG(f) = G′(f)∂xif

in D ′
(
Rd
)
. �

Proof. Since f ∈ H1
(
Rd
)
, we can find a sequence {ϕn} ⊂ C∞c

(
Rd
)

such that ϕn → f in

H1
(
Rd
)
. We can also assume that

ϕn(x) −→ f(x) a.e.

∂xiϕn(x) −→ ∂xif(x) a.e.

|ϕn|+
n∑
i=1

|∂xiϕn| 6 F ∈ L2
(
Rd
)
.

We can do this by Theorem 1.14. We have (by the usual chain rule)

∂xiG(ϕn(x)) = G′(ϕn(x))∂xiϕn(x)

and

G′(ϕn(x))∂xiϕn(x) −→ G′(f(x))∂xif(x), a.e.

|G′(ϕn(x))∂xiϕn(x)| 6 |G′||∂xiϕn(x)| 6 CF (x) ∈ L2
(
Rd
)

which implies that

∂xiG(ϕn(x)) = G′(ϕn(x))∂xiϕn(x)
L2

−→ G′(f(x))∂xif(x)
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Moreover, we have G(ϕn(x))→ G(f(x)) a.e. since

|g(ϕn(x))−G(f(x))| 6 (sup |G′|)|ϕn(x)− f(x)| 6 C|ϕn(x)− f(x)| n→0−−→ 0

and thus G(ϕn(x))→ G(f(x)) in L2. The result follows from a general fact. q.e.d.

Lemma 4.7. If fn → f in L2
(
Rd
)

and ∂xifn → gi in L2
(
Rd
)

for i = 1, . . . , d, then

f ∈ H1
(
Rd
)

and ∂xif = gi for i = 1, . . . , n. �

Proof. Take ϕ ∈ D(Rn). Compute∫
giϕ←−

∫
(∂xifn)ϕ = −

∫
fn(∂xiϕ) −→ −

∫
f(∂xiϕ)

and thus −
∫
f(∂xiϕ) =

∫
giϕ for all ϕ ∈ D

(
Rd
)

and therefore ∂xif = gi in D ′
(
Rd
)
, i.e.

f ∈ H1
(
Rd
)
. q.e.d.

Theorem 4.8 (Derivative of |f |). If f ∈ H1
(
Rd
)

then |f | ∈ H1
(
Rd
)

and

∂xj |f(x)| =


u∂ju+v∂jv

|f(x)| , if f(x) 6= 0

0, if f(x) = 0.

where f(x) = u(x)+ iv(x), where u, v : Rd → R. Consequently we have the diamagnetic

inequality

|∇f(x)| > |∇|f |(x)| a.e.

�

Proof. Let ε > 0 and define Gε(t) =
√
ε2 + |t|2 − ε

Then G ∈ C 1, Gε(0) = 0 and

|G′ε(t)| =

∣∣∣∣∣ t√
ε2 + |t|2

∣∣∣∣∣ 6 1

By the chain rule Gε(f(x)) ∈ H1
(
Rd
)

and

∂xjGε(f(x)) =
(|f(x)|2)

′

2
√
ε2 + |f(x)|2

∂xif(x) =
u(x)∂ju(x) + v(x)∂jv(x)

2
√
ε2 + |f(x)|2

∂xif(x), a.e.
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Passing to ε→ 0 we obtain

Gε(f) =
√
ε2 + |f |2 − ε −→ |f | in L2

(
Rd
)

∂xjGε(f) −→ gj(x)

From

∂xj |f(x)| =


u∂ju+v∂jv

|f(x)| , if f(x) 6= 0

0, if f(x) = 0.

it follows that

∂xj |f(x)| 6 |u∂ju+ v∂jv|
|f |

6

√
|u|2 + |v|2

√
|∂ju|2 + |∂)jv|2
|f |

=
|f ||∂jf |
|f |

= |∂jf |

Thus |∇|f |(x)| 6 |∇f(x)|.
q.e.d.

Theorem 4.9 (Fourier Characterisation of Hm
(
Rd
)
). If f ∈ L2

(
Rd
)
, then f ∈ Hm

(
Rd
)

if and only if ∫
(1 + 2π|k|2)m

∣∣∣f̂(k)
∣∣∣2dk <∞.

�

Proof. For m = 1. Let f ∈ H1
(
Rd
)
, then

‖f‖2
H1 = ‖f‖2

2+
n∑
i=1

‖∂xif‖2
2 =

∫
|f̂(k)|2dk+

n∑
i=1

∫
(2πki)

2|f̂(k)|2dk =

∫ (
1 + (2π|k|)2)|f̂(k)|2dk.

For m > 1

‖f‖2
Hm =

∑
|α|6m

‖Dαf‖2
2 =

∑
|α|6m

∫
|(2πk)αf̂(k)|2dk.

q.e.d.
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Corollary 4.10. If f ∈ L2
(
Rd
)
, then f ∈ Hm

(
Rd
)

iff

(−∆)
m
2 f ∈ L2

(
Rd
)
⇐⇒

∫
(2π|k|)2m|f̂(k)|2dk <∞

�

Proof. For m = 2, let f ∈ L2, then f ∈ H2
(
Rd
)

iff ∆f ∈ L2
(
Rd
)

for all |α| 6 2, e.g.

∂x1∂x2f ∈ L2, while ∆f ∈ L2 only iff
(
∂2
x1

+ ∂2
x2

)
f ∈ L2. But this follow easily from the

Fourier characterisation. Indeed if ∆f ∈ L2 iff∫
(2π|k|)4|f̂(k)|2dk <∞.

So if f,∆f ∈ L2 then ∫ (
1 + (2π|k|)4)∣∣∣f̂(kj)

∣∣∣2dk <∞

hence by 1+(2π|k|)4 > 1
2
(1 + |2πk|2)

2
(which follows from A2+B2 > 1

2
(A+B)2 for A,B > 0)∫ (

1 + |2πk|2
)2|f̂(k)|2 <∞

which implies that f ∈ H2
(
Rd
)

by the last theorem. q.e.d.



Chapter 5

Sobolev Inequalities

These inqualities find great practical application in physics for example. Consider in the

context of quantum mechanics the energy functional of a wave function ψ

E(ψ) :=

∫
|∇ψ(x)|2dx+

∫
V (x)|ψ(x)|2dx.

An important question concerns the stability of such a system, i.e. when does

inf
‖ψ‖2
E(ψ) > −C

for some C > 0 hold. A particular example of this would be an atom with the Coloumb

potential

E(ψ) =

∫
|∇ψ(x)|2dx−

∫
|ψ(x)|2

|x|
dx.

To prove the stability of this system one can use an uncertainty principle,

‘

∫
|∇ψ|2 > G

∣∣∣∣∫ V (x)|ψ(x)|2dx

∣∣∣∣
An example would be the Heisenberg uncertainty principle which states that(∫

|∇ψ(x)|2
)(∫

|x|2|ψ(x)|2dx

)
>
n2

4

for all n > 1 and all ψ ∈ H1
(
Rd
)
. This can be proven using the commutation relation

∇ · x− x · ∇ = n

41
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and the Cauchy Schwarz inequality. Note that for all f ∈ H1 there exists a ϕn ∈ H1
(
Rd
)

such that ϕn → f in H1 and ∫
|x|2|ϕn(x)|2dx→∞,

i.e. the Heisenberg principle becomes “trivial” for ϕn. Hence we need a stronger inequality

Sobolev Inequality For all ψ ∈ H1
(
Rd
)

‖∇ψ‖2 > C‖ψ‖p

holds. Now what is p? Let us assume that the Sobolev inequality holds and let ψl(x) = ψ(lx)

for some ψ ∈ H1. Then

‖∇ψl‖1 =

(∫
‖∇ψl‖2

)1/2

=

(∫
|l∇ψ(lx)|2

)1/2

=

(∫
l2|∇ψ(lx)|2

)1/2

=

(
l2−d

∫
|∇ψ(y)|dy

)1/2

=

= l
2−d

2 ‖∇ψ‖2

‖ψl‖p =

(∫
|ψ(lx)|pdx

)1/p

=

(
l−d
∫
|ψ(y)|dy

)1/p

= l−
d
p‖ψ‖p

Thus the Sobolev inequality ‖∇ψl‖2 > C‖ψl‖2 implies that

l
2−n

2 ‖∇ψ‖2 > l−
n
p ‖ψ‖p

for all l > 0. This can be possible iff 2−d
2

= −d
p
, i.e.

p =
2d

d− 2
, (n > 3).

Theorem 5.1. For all d > 3

‖∇f‖2 > C‖f‖p

for all f ∈ H1
(
Rd
)

and p = 2d
d−2

. The constant C > 0 is independent of f in particular

this implies that if f ∈ H1 then f ∈ Lp. �



43

Lemma. For ϕ ∈ D
(
Rd
)
, then

‖∇ϕ‖1 > ‖ϕ‖ d
d−1
.

�

Proof. Let us focus on d = 3. Let x = (x1, x2, x3) ∈ R3. Then

ϕ(x) = ϕ(x1, x2, x3) =

x1∫
−∞

∂x1ϕ(x′1, x2, x3)dx′1

which implies that

|ϕ(x)| 6
x1∫
−∞

|∂x1ϕ(x′1, x2, x3)|dx′1 6
∫
R

|∂x1ϕ(x′1, x2, x3)|dx′1 6
∫
R

|∇ϕ(x′1, x2, x3)|dx′1 =: g1(x2, x3)

Similarly, one finds that

|ϕ(x)|3/2 6
√
g1(x2, x3)

√
g2(x1, x3)

√
g3(x1, x2)

which implies that

∫
R

|ϕ(x)|3/2dx1 6
√
g1

∫
R

√
g2
√
g3dx1 6

√
g1

√∫
R
g2dx1

√∫
R
g3dx1

and thus

∫
R

∫
R

|ϕ(x)|3/2dx1dx2 6

√∫
R
g2dx1

∫
R

(
√
g1

√∫
R
g3dx1

)
dx2 6

√∫
R
g2dx1

√∫
R
g1dx2

√∫
R

∫
R
g3dx1dx2

and analogously

∫
R

∫
R

∫
R

|ϕ(x)|3/2dx1dx2dx3 6

√∫
R

∫
R
g1dx2dx3

√∫
R

∫
R
g2dx1dx3

√∫
R

∫
R
g3dx1dx2 = ‖∇ϕ‖3/2

1

q.e.d.

Proof of Theorem 5.1. Consider f ∈ D(R3) and n = 3. Choose ϕ = |f |4 and applying the
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above lemma one finds that

‖ϕ‖3/2 =

(∫
|ϕ|3/2

)2/3

=

(∫
|f |6
)2/3

‖∇ϕ‖1 6
∫

4f 3|∇f | 6 4

(∫
|f |6
)1/2

‖∇f‖2

Then from the lemma (∫
|f |6
)2/4

6 4

(∫
|f |6
)1/2

‖∇f‖2

and thus ‖f‖6 6 4‖∇f‖2. For n > 3 choose ϕ = |f |
2(d−1)
d−2 and use∫

|∇f |2 >
∫
|∇|f ||2.

q.e.d.

Theorem 5.2 (Sobolev Inequality in low dimensions).

(d = 2) For all f ∈ H1(R2) and 2 6 p <∞

‖f‖p 6 C‖∇f‖
p−2
p

2 ‖f‖
2
p

2

(d = 1) For all f ∈ H1(R)

‖f‖2
∞ 6 ‖f ′‖2‖f‖2

(General fact the Sobolev inequality becomes “weaker” in higher dimensions)

�

Proof.

(d = 2) From the above lemma it follows that for all ϕ ∈ D(R2), ‖ϕ‖2 6 ‖∇ϕ‖1. Choose

ϕ = fα for α > 0, f ∈ D(R2) and f > 0. We have

(∫
f 2α

)1/2

6
∫
αfα−1|∇f | 6 α

(∫
f 2(α−1)

)1/2

‖∇f‖2.

Using Hölder’s inequality we find

∫
f 2(α−1) 6

(∫
f 2α

)1/q′ ∫ (∫
f 2

)1/q
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with 1
q′

+ 1
q

= 1, 2(α− 1) = 2α
q′

+ 2
q
, hence

2((α−1) =
2α

q′
+

2

q
=

2α

q′
+

2α

q
+

2− 2α

q
= 2α+

2− 2α

q
=⇒ −2 =

2− 2α

q
=⇒ q = α−1

Thus ∫
f 2α 6 C

(∫
f 2(α−1)

)
‖∇f‖2

2 6 C

(∫
f 2α

)1/q′(∫
f 2

)1/q

‖∇f‖2
2

hence(∫
f 2α

)1/q

6 C

(∫
f 2

)1/q

‖∇f‖2
2 =⇒

∫
f 2α 6 C

(∫
f 2

)
‖∇f‖2(α−1)

2 =⇒

=⇒ ‖f‖2α 6 ‖f‖
1/α
2 ‖∇f‖

α−1
α

2

for all α > 1. Thus we have ‖f‖p 6 C‖f‖2/p
2 ‖∇f‖

p−2
p

2 for all p > 2. Thus the inequality

holds for all f ∈ D , f > 0, and therefore in can be extended to all f ∈ H1(R2) by

density and the diamagnetic inequality Theorem 4.8.

(d = 1) For every f ∈ D ,

f(x) =

x∫
−∞

f ′(t)dt =⇒ |f(x)| 6
x∫

−∞

|f ′(t)|dt

f(x) = −
∞∫
x

f ′(t)dt =⇒ |f(x)| 6
∞∫
x

|f ′(t)|dt

hence

|f(x)| 6 1

2

∫
R

|f ′(t)|dt

i.e. ‖f‖∞ 6 1
2
‖f ′‖1. Now we can replace f by f 2 to find that

‖f‖2
∞ 6

1

2

∫
|(f 2)′| 6

∫
|f ||f ′| 6 ‖f‖2‖f ′‖2

for all f ∈ D . Then by density we get the inequality for all f ∈ H1
(
Rd
)
.

q.e.d.
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Additional Proof of d = 2. Recall that we have the Hausdorff-Young inequality, that

‖f̂‖p′ 6 ‖f‖p

for all f ∈ Lp(Rn) and all 1 6 p 6 2 6 p′ 6∞ with 1
p

+ 1
p′

= 1. This inequality is equivalent

to

‖f‖p 6 ‖f̂‖p′

for all f ∈ D(Rn) with p > 2 > p′, 1
p

+ 1
p′

= 1. We have

‖f‖p 6
(∫
|f̂(k)|p′

)1/p′

=

(∫
|f̂(k)|p′(1 + 2π|k|)p

′ 1

(1 + 2π|k|)p′
dk

)1/p′

6

6

(∫
|f̂(k)|2(1 + 2π|k|)2dk

)α/p′
(∫

1

(1 + 2π|k|)pp′
dk

)1−α/p′

when pp′ > 2 we have ∫
1

(1 + 2π|k|)pp′
dk 6 C <∞

Thus ‖f‖p 6 Cp‖f‖H1 for all p > 2 and all f ∈ D . This implies the Sobolev inequality

‖f‖p 6 C‖∇f‖
p−2
p ‖f‖

2
p

2 , by a scaling argument, i.e. use ‖f‖p 6 C‖f‖H1 , for f 7→ fl(x) =

f(lx) for l > 0 and optimise over l > 0 q.e.d.

Theorem 5.3 (Sobolev Continuous Embedding).

H1
(
Rd
)
⊂ Lp

(
Rd
)

for all


2 6 p 6 2d

d−2
, if d > 3

2 6 p <∞, if d = 2

2 6 p 6∞, if d = 1

and the inclusion is continuous, i.e.

‖f‖p 6 C‖f‖H1 .

Moreover, when d = 1, H1(R) ⊂ C (R), i.e. for all f ∈ H1(R), there exists exactly one

f̃ ∈ C (R), such that f = f̃ almost everywhere. �
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Proof.

(d > 3) We know that

‖f‖ 2d
d−2
6 C‖∇f‖2 6 C‖f‖H1

By Hölder’s inequality for all 2 6 p 6 2d
d−2

,

‖f‖p 6 C‖f‖H1 .

(d = 2)

‖f‖p 6 C‖∇f‖
p−2
p

2 ‖f‖
2
p

2 6 C‖f‖H1 .

(d = 1)

‖f‖∞ 6 ‖f ′‖
1/2
2 ‖f‖

1/2
2 6 ‖f‖H1

‖f‖2 6 ‖f‖H1

hence by Hölder’s inequality for all 2 6 p 6∞, ‖f‖p 6 ‖f‖H1

We now have to prove that H1 ⊂ C (R). Take f ∈ H1. Then we can find a sequence

ϕn such that ϕn ∈ D , ϕn → f in H1 and ϕn(x)→ f(x) a.e. x ∈ R. We know that

ϕn(x)− ϕn(y) =

y∫
x

ϕ′(t)dt

and thus for x 6 y

|ϕn(x)− ϕn(y)| 6

∣∣∣∣∣∣
y∫
x

ϕ′n(t)dt

∣∣∣∣∣∣ 6
 y∫

x

dt

1/2 y∫
x

|ϕ′(t)|2dt

1/2

6
√
|y − x|‖ϕ′n‖2

for all x, y ∈ R. Since ϕn → f in H1 and ϕn(x)→ f(x) for all x ∈ R \A with |A| = 0.

Then for all x, y ∈ R \ A we have

|f(x)− f(y)| = lim
n→∞

|ϕn(x)− ϕn(y)| 6
√
|y − x| lim

n→∞
‖ϕ′n‖2 =

√
|x− y|‖f ′‖2

Define f̃(x) = f(x) for all x ∈ R\A. Then we can extend f̃ to be a continuous function
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on all of R such that |f̃(x)− f̃(y)| 6
√
|x− y|‖f ′‖2 for all x, y ∈ R.

q.e.d.

Theorem 5.4 (Sobolev Compact Embedding). Let B be a bounded set of H1
(
Rd
)
and

A a bounded set of Rd. Then we have

1AB ⊂⊂ Lp(A), with


2 6 p < 2n

n−2
, if n > 3

2 6 p <∞, if n = 2

2 6 p 6∞, if n = 1

�

Remark. By 1A we denote the indicator/characteristic function of the set A.

1AB ⊂⊂ Lp(A)

means that if (fn)n ⊂ 1AB, i.e. fn = 1Agn with gn ∈ B, then there exists a subsequence

fnk such that fnk converges strongly in Lp(A). �

Corollary. If fn is bounded in H1
(
Rd
)
, there exists a subsequence such that fn(x) →

f(x) a.e. x ∈ Rd. �

Proof. A subsequence of 1BR(0)fn(x) converges strongly in Lp
(
Rd
)
. Since Lp convergence

implies that pointwise convergence of a subsequence we find that there exists a subsequence

fnkl (x) −→ f(x) a.e.

for x ∈ BR(0). Renaming this subsequence fn and taking R → ∞ using Cantor’s diagonal

argument one finds a subsequence of fn such that it converges pointwise on almost all of

Rd =
⋃
R↑∞BR(0). q.e.d.

Proof of Theorem 5.4.
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(d > 3) Take a sequence (fn)n ⊂ B, with (fn)n bounded in H1
(
Rd
)
. By Banach-Alaoglu

Theorem 1.26, we can find a subsequence

fjn
n→∞−−−⇀
H1

f

We have to prove that 1Afn → 1Af strongly in Lp(Rn). By linearity, we can assume

that f = 0 (i.e. we consider fn−f instead of fn). Thus we need to prove that if fn −⇀ 0

in H1
(
Rd
)
, then 1Afn → 0 strongly in Lp

(
Rd
)
. Now we write

1Afn = 1Ae
t∆fn + 1A

(
fn − et∆fn

)
.

Recall that

êt∆f(k) = e−t4π
2k2

f̂(k)

where
(
et∆f

)
(x) =

∫
G(x− y)f(y)dy, where G is the heat kernel. We have

‖1Afn‖2 6 ‖1Aet∆fn‖2 + ‖1A(fn − et∆fn)‖2

By the Fourier transform and the Plancherl theorem we have

‖1A(fn − et∆fn)‖2 6 ‖fn − et∆fn‖2 = ‖f̂n − êt∆fn‖2 =

(∫ (
1− e−t4π2k2

)2∣∣∣f̂n(k)
∣∣∣2dk

)1/2 1

6

6

(∫
(t4π2k2)2

∣∣∣f̂n(k)
∣∣∣2dk

)1/2

=
√
t‖∇fn‖2 6

√
tC

We have 1Ae
t∆fn → 0 strongly since, for every x ∈ Rd

et∆fn(x) = 〈G(x− ·), fn〉 → 0

as G(x− ·) ∈ L2 and fn converges weakly and for all x ∈ Rd

∣∣(et∆fn)(x)
∣∣ 6

∫
Rd

|G(x− y)|2dy

1/2∫
Rd

|fn(y)|2dy

1/2

6 Ct,

i.e. 1Ae
t∆fn is dominated by Ct1A and thus as et∆fn converges pointwise it also

converges strongly by the dominated convergence theorem.

11− e−s 6 min{1, s}
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Concluding we find that

‖1Afn‖2 6
∥∥1Aet∆fn∥∥2

+ C
√
t.

Taking n→∞ we have

lim sup
n→∞

‖1Afn‖2 6 0 + C
√
t

and taking t→ 0 we find that

lim sup
n→∞

‖1Afn‖2 6 0

i.e. 1Afn → 0 converges strongly in L2
(
Rd
)
.

Moreover, we know that

‖1Afn‖q 6 ‖fn‖q 6 C‖fn‖H1

for all 
q 6 2d

d−2
, if d > 3

q <∞, if d = 2

q 6∞, if dn = 1

Then by interpolation (Hölder’s inequality) we find that 1Afn → 0 converges strongly

in Lp for 2 6 p < 2d
d−2

, if d > 3

2 6 p <∞, if d 6 2

(d = 1) As in n > 3 we can prove 1AB ⊂⊂ Lp(Rn), 2 6 p 6∞.

Why can we include p =∞? Let fn ⇀ 0 weakly in H1(R). We need to prove

sup
x∈A
|fn(x)| n→∞−−−→ 0

Indeed, we can write

fn(x) = fn(y) + fn(x)− fn(y) =⇒ fn(x) =
1

2ε

x+ε∫
x−ε

fn(y)dy +
1

2ε

x+ε∫
x−ε

(fn(x)− fn(y))dy
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By the triangle inequality and Sobolev inequality we have

|fn(x)| 6 1

2ε

∣∣∣∣∣∣
x+ε∫
x−ε

fn(y)dy

∣∣∣∣∣∣+
1

2ε

x+ε∫
x−ε

√
|x− y|‖f ′n‖2dy 6

1

2ε

∣∣∣∣∣∣
x+ε∫
x−ε

fn(y)dy

∣∣∣∣∣∣+
√
ε‖f ′n‖2

Take n→∞, then

lim sup
n→∞

|fn(x)| 6
√
ε‖f ′‖2

since fn ⇀ L2. Take ε → 0 to see that fn(x) → 0 or all x ∈ R. Now we assume that

supx∈A |fn(x)| 6→ 0, then there must exists a subsequence fn, and a sequence (xn)n ⊂ A

such that

lim inf
n→∞

|fn(xn)| > 0.

Because A is bounded, there must exists a subsequence such that xn → x0. Then

fn(xn) = fn(x0) + fn(xn)− f(x0) =⇒ |fn(xn)| 6 |fn(x0)|+
√
|xn − x0|‖f ′n‖2

n→∞−−−→ 0

which is a contradiction. E

q.e.d.

Sobolev Spaces Wm,p
(
Rd
)

Definition 5.5.

Wm,p
(
Rd
)

:=
{
f ∈ Lp

∣∣∀|α| 6 m : Dαf ∈ Lp
}

�

Theorem 5.6. For all m ∈ N, p ∈ [1,∞] Wm,p
(
Rd
)

is a Banach space with the norm

‖f‖Wm,p =

 ∑
|α|6m|

‖Dαf‖pp

1/p

(In particular Wm,2 = Hm is a Hilbert space). �

Proof. Analogous to Hm. q.e.d.
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Theorem 5.7 (Weak Convergence). For m ∈ N, 1 < p < ∞, then fn ⇀ f weakly in

Wm,p iff Dαfn ⇀ Dαf weakly in Lp
(
Rd
)
. �

Proof. Analogous to Hm q.e.d.

Theorem 5.8 (Sobolev Inequalities). Let m ∈ N, 1 < p <∞. Then have a continuous

embedding

Wm,p
(
Rd
)
⊂ Lq

(
Rd
)

with


p 6 q 6 dp

d−mp , if d > mp

p 6 q <∞, if d = mp

p 6 q 6∞, if n < mp

In particular if n < mp, then Wm,p(Rn) ⊂ C (Rn) and for m = 1

W 1,p
(
Rd
)
⊂ Lq

(
Rd
)

with


p 6 q 6 dp

d−p , if d > mp

p 6 q <∞, if d = p

p 6 q 6∞, if d < p

�

Proof.

(m = 1) We consider n > p. We want to prove that

‖f‖W 1,p > c‖f‖q, p 6 q 6
dp

d− p

Using the inequality ‖u‖ d
d−1
6 ‖∇u‖1, for all u ∈ D

(
Rd
)
, d > 2 with u = fα, f ∈ D ,

f > 0. Then

(∫
fα

d
d−1

)n−1
n

6 α

∫
fα−1|∇f | 6 α

(∫
fp
′(α−1)

)1/p′

‖∇f‖p,
1

p
+

1

p′
= 1

We need α n
n−1

= p′(α− 1) which is equivalent to

d

(d− 1)p′
=
α− 1

α
= 1− 1

α
=⇒ 1

α
= 1− d(p− 1)

(d− 1)p
=

d− p
(d− 1)p
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i.e.

α =
(d− 1)p

d− p

Hence,

α
d

d− 1
=

(d− 1)p

d− p
d

d− 1
=

dp

d− p
Thus

‖f‖ dp
d−p
6 C‖∇f‖p

for all f ∈ D , f > 0 and thus this holds for all f ∈ W 1,p by density and the diagmag-

netic inequality.

The case p = d is similar to H1. Let p > d. Why W 1,p ⊂ L∞
(
Rd
)
∩ C

(
Rd
)
. Take

f ∈ C∞c
(
Rd
)
. Write

f(x)− f(y) =

1∫
0

∇f(y + t(x− y)) · (x− y)dt.

Integrating over Br(y) we find that

∫
Br(y)

|f(x)− f(y)|dx 6
1∫

0

∫
Br(y)

|∇f(y + t(x− y))||x− y|dxdt
z=t(x−y)
===

=

1∫
0

∫
|z|<tr

|∇f(y + z)| |z|
t

dz

td
dt 6

6

1∫
0

1

td

 ∫
|z|<tr

dz


1/p′ ∫

|z|<tr

|∇f(y + z)|pdz


1/p

dt 6

6 Cr

1∫
0

(tr)
d
p′

td
‖∇f‖dt =

= Cr
1+ d

p′

 1∫
0

t
d
p′−ddt

‖∇f‖p
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Here

1∫
0

t
d
p′−ddt <∞ ⇐⇒ d

p′
− d > 1 ⇐⇒ d− 1 <

p

p′
= p− 1 ⇐⇒ p > d.

Thus ∫
|x−y|<r

|f(x)− f(y)|dx 6 Cr1+
d(p−1)
p ‖∇f‖p.

note that

1 +
d(p− 1)

p
> d ⇐⇒ d(p− 1) > (d− 1)p ⇐⇒ p > d

Thus for some s > 0 ∫
|x−y|<r

|f(x)− f(y)|dx 6 Crd+s‖∇f‖p

Take z ∈ Rd, we write

f(y)−f(z) = f(y)−f(x)+f(x)−f(z) =⇒ |f(y)−f(z)| 6 |f(y)−f(x)|+|f(x)−f(z)|

integrating over x we find that |x− y| 6 |y − z| = r.

C|y − z|d|f(y)− f(z)|
2

6
∫

|x−y|6|y−z|

|f(x)− f(y)|dx+

∫
|x−z|62|y−z|

|f(x)− f(z)|dx 6

6 C ′|y − z|d+s‖∇f‖p =⇒ |f(x)− f(y)| 6 C|y − z|s‖∇f‖p

for some s > 0. This implies that W 1,p(Rn) ⊂⊂ C (Rn). We still need to prove that

W 1,p(Rn) ⊂ L∞(Rn). Write f(y) = f(x) + f(y) − f(x) and thus |f(y)| 6 |f(x)| +
|f(y)− f(x)|. Integrating over |x− y| < 1

C|f(y)| 6
∫

|x−y|<1

|f(x)|dx+

∫
|x−y|<1

|f(y)−f(x)|dx 6

 ∫
|x−y|<1

dx


1/p′

‖f‖p+C ′‖∇f‖p 6 C ′‖f‖W 1,p

Thus supy∈Rn |f(y)| 6 C‖f‖W 1,p .

For higher m, use that f ∈ Wm,p
(
Rd
)

implies that ∂xif ∈ Wm−1,p
(
Rd
)
. By induction

and Sobolev inequality for W 1,p implies that ‖∂xif‖q 6 ‖f‖Wm,p . Thus f ∈ Lp and
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∂xif ∈ Lq.
q.e.d.

Example 5.9. This proof yields thatH1(R1) ⊂ C (R1), butH1(R2) 6⊂ C (R2), H1(R3) 6⊂
C (R3). However,

H2
(
R2
)
⊂ C

(
R2
)
, and H2

(
R3
)
⊂ C

(
R3
)
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Chapter 6

Ground States for Schrödinger

Operators

Definition. A Schrödinger operator is operator of the form

−∆ + V

for V : Rd → R some external potential. The corresponding Schrödinger equation is

(−∆ + V )ψ = Eψ

for some E ∈ R (the energy of the system). �

Remark (Physical Interpretation). Let ψ ∈ L2
(
Rd
)
, ‖ψ‖2 = 1 be the wave function of

a quantum particle, then the ground state energy is given

E = inf


∫
Rd

|∇ψ|2 +

∫
Rd

V |ψ|2
∣∣∣∣∣∣ψ ∈ H1

(
Rd
)
, ‖ψ‖2 = 1


�

57
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Theorem 6.1 (Minimisers are Solutions). If V ∈ Lploc
(
Rd
)

where
p > d

2
, if d > 3

p > 1, if d = 2

p = 1, if d = 1

and ψ0 is a minimiser for E, then

−∆ψ0 + V ψ0 = Eψ0 in D ′
(
Rd
)

(in particular, V ψ0 ∈ L1
loc.) �

Example. Let f ∈ C 1(R). Then f ′(x0) = 0 if x0 is a minimiser of f , i.e. f(x0 + t) >

f(x0), hence for t > 0

f(x0 + t)− f(x0)

t
> 0 =⇒ f ′(x0) > 0

and for t < 0
f(x0 + t)− f(x0)

t
6 0 =⇒ f ′(x0) 6 0

i.e. f ′(x0) = 0.

Proof. Let E(u) =
∫
|∇u|2 +

∫
V |u|2, then per definitionem of ψ0

E(u) > E(ψ0)

for all u ∈ H1 with ‖u‖2 = 1. Thus for all ϕ ∈ C∞c and |t| small enough

E
(

ψ0 + tϕ

‖ψ0 + tϕ‖2

)
> E(ψ0)

i.e. t 7→ E
(

ψ0+tϕ
‖ψ0+tϕ‖2

)
attains its minimum, when t = 0. Hence

0 =
d

dt
E
(

ψ0 + tϕ

‖ψ0 + tϕ‖2

)
=

d

dt

E(ψ0 + tϕ)

‖ψ0 + tϕ‖2
2

.
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Noting that

d

dt
E(ψ0 + tϕ) = 2R

∫
∇u0∇ϕ+ 2R

∫
V ψ0ϕ

E(ψ0 + tϕ)
∣∣
t=0

= E

d

dt
‖ψ0 + tϕ‖2

2 = 2R

∫
u0ϕ

‖ψ0 + tϕ‖2
2

∣∣
t=0

= 1

one finds that

0 =
d

dt

E(ψ0 + tϕ)

‖ψ0 + tϕ‖2
2

= 2R

∫
∇u0∇ϕ+ 2R

∫
V ψ0ϕ− 2ER

∫
u0ϕ =

= 2R

(
−
∫
u0∆ϕ+

∫
V ψ0ϕ− 2E

∫
u0ϕ

)
By changing from ϕ to iϕ we find that the same must hold for the imaginary part and

therefore

0 =

∫
u0(−∆ϕ+ V ϕ− Eϕ)

for all ϕ ∈ D , i.e.

−∆u0 + V u0 = Eu0

in D ′
(
Rd
)
. Here the condition V ∈ Lploc

(
Rd
)

ensures that V u0 ∈ L1
loc

(
Rd
)

because u0 ∈
H1 ⊂ Lq

(
Rd
)

by the Sobolev embedding. q.e.d.

Two different types of behaviour of external potentials

1) Trapping potential: V (x)→∞ as |x| → ∞, i.e. inf |x|>R V (x)→∞ as R→∞

2) Decaying potential: V (x)→ 0 as |x| → ∞, i.e. sup|x|>R |V (x)| → 0 as R→∞

3) There are also other potentials such as periodic ones.

Theorem 6.2 (Existence of Minimisers for Trapping Potentials). Assume that 0 6 V ,

V (x)→∞ as |x| → ∞. Then

E = inf{
∫
|∇ψ|2 +

∫
V |ψ|2

∣∣ψ ∈ H1
(
Rd
)
, ‖ψ‖2 = 1



60 CHAPTER 6. GROUND STATES FOR SCHRÖDINGER OPERATORS

has at least one minimiser. �

Proof. Assume that V > 0, then E = inf(· · · ) > 0, thus E is finite. By definition of E, we

can find a sequence (un)n ⊂ H1
(
Rd
)

such that

E(un) =

∫
|∇un|2 +

∫
V |un|

n→∞−−−→ E

Since E(un) → E it follows that E(un) is bounded (as n → ∞) and thus
∫
|∇un|2 and∫

V |un|2 are bounded. Thus (un)n is bounded in H1, hence we may choose a subsequence

such that unk ⇀ u0 weakly in H1
(
Rd
)

and un(x) → u0(x) a.e. (by Theorem 5.4). Since

∇un ⇀ ∇u0 weakly in L2

lim inf
n→∞

∫
|∇un|2 >

∫
|∇u0|2

Since V |un|2 → V |u0|2 converges pointwise

lim inf
n→∞

∫
V |un|2 >

∫
V |u0|2

By Fatou’s lemma. Thus

E = lim inf
n→∞

E(un) > E(u0)

Thus u0 is a minimiser iff ‖u0‖2 = 1, which is an Exercise. q.e.d.

Now we shall turn to vanishing potentials, i.e. V ↑ 0 as |x| ↑ 0 and a singularity.

Example. The Hydrogen atom potential −∆− 1
|x| on L2(R3).

Why is this potential bounded, i.e.

E = inf


∫
R3

|∇u|2dx−
∫
R3

|u(x)|2

|x|
dx

∣∣∣∣∣∣u ∈ H1, ‖u‖2 = 1


This is due to the Sobolev inequality ‖∇u‖2 > C‖u‖6. For r > 0 we have∫
R3

|u(x)|2

|x|
dx =

∫
|x|6r

|u(x)|2

|x|
dx+

∫
|x|>r

|u(x)|2

|x|
dx 6

6

 ∫
|x|6r

|u(x)|6


1/3 ∫

|x|6r

1

|x|3/2


2/3

+

∫
|x|>r

|u(x)|2

r
dx 6 Cs

∫
R3

|∇u|2
r +

1

r
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i.e.

E(u) =

∫
|∇u|2 −

∫
|u(x)|2

|x|
dx >

∫
|∇u|2(1− Csr)−

1

r

for all r > 0. Choosing r > 0 small enough one finds that

E(u) >
1

2

∫
|∇u|2 − C > −∞

i.e. E > −∞.

Lemma 6.3. If V ∈ Lp
(
Rd
)

+ L∞
(
Rd
)

where
p > d

2
, if d > 3

p > 1, if d = 2

p > 1, if d = 1

then E > −∞ and

E(u) >
1

2

∫
|∇u|2 − C

for all u ∈ H1
(
Rd
)
, ‖u‖2 = 1. �

Remark 6.4. • Lp + L∞ =
{
f + g

∣∣ f ∈ Lp, g ∈ L∞}, for example

1

|x|
=

1

|x|
1{|x|61}︸ ︷︷ ︸
∈L3−ε

+
1

|x|
1{|x|>1}︸ ︷︷ ︸
∈L∞

• IF p < q <∞ then Lq(Rn) ⊂ Lp + L∞.

�

Proof.

(d > 3) Let V ∈ Ld/2 +L∞. Write V = V1 +V2, where V1 = V 1|V (x)|> 1
ε
, V2 = V 1|V (x)|6 1

ε
. Then

for ε > 0 small, we have

V2 ∈ L∞, ‖V2‖∞ 6
1

ε

V1 ∈ Ld/2, ‖V1‖d/2 =

(∫
|V (x)|d/21|V (x)|> 1

ε
dx

)2/d
ε↘0−−→ 0
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by dominated convergence. We have∣∣∣∣∫ V |u|2
∣∣∣∣ 6 ∫ |V1||u|2 +

∫
|V2||u|2 6 ‖V1‖d/2

∥∥u∥∥
d/d−2

+ ‖V2‖∞‖u‖2 6

6 CS‖V1‖d/2
∫
Rd

|∇u|2 +
1

ε

for all u ∈ H1, ‖u‖2 = 1. Then

E(u) =

∫
|∇u|2

(
1− CS‖V1‖d/2

)
− 1

ε
>

1

2

∫
|∇u|2 − C

if we choose ε > 0 small enough.

q.e.d.

Definition 6.5 (Vanishing in the Weak Sense). We say that V : Rd → R vanishes at

∞ in the weak sense if for all ε > 0

λ({|V (x)| > ε}) <∞

�

Example. V (x)→ 0 as |x| → ∞ in the strong sense, i.e.

sup
|x|>R

|V (x)| R→∞−−−→ 0

Remark 6.6. If V ∈ Lp
(
Rd
)
, 1 6 p <∞, the V vanishes at ∞ in the weak sense. �

Theorem 6.7. Assume that V ∈ Lp
(
Rd
)

+ L∞0
(
Rd
)
, where

p > d
2
, if d > 3

p > 1, if d = 2

p > 1, if d = 1

and L∞0 is the set of L∞ which vanish weakly at infinity. Assume that E < 0 then E
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has a minimiser u0 ∈ H1
(
Rd
)

and

−∆u0 + V u0 = Eu0 in D ′
(
Rd
)

Moreover, we can choose u0 > 0. �

Remark 6.8. Under certain conditions on V , then actually u0 > 0 and it is unique.

But we will prove this much later. �

Lemma 6.9. Assume that V ∈ Lp + L∞0 . Assume that un ⇀ u0 weakly in H1
(
Rd
)
.

Then ∫
V |un|2

n→∞−−−→
∫
V |u0|2.

�

Proof.

Case 1 V ∈ Lp, p = d
2
, d > 3. Then

V = V1 + V2 + V3 = V 1{ε<|V (x)|< 1
ε
} + V 1|V (x)|6ε + V 1|V (x)|> 1

ε

Then V1 ∈ L∞, λ({V1(x) 6= 0}) <∞ and by the Sobolev embedding∫
{V1 6=0}

V1|un|2
n→∞−−−→

∫
V1|u0|2

strongly in L2.

V2 ∈ L∞ and ‖V2‖∞ 6 ε, then for all n ∈ N∣∣∣∣∫ V2|un|2
∣∣∣∣ 6 ε =⇒

∣∣∣∣∫ V2|u|2
∣∣∣∣ 6 ε

V3 ∈ Ld/2, ‖V3‖d/2 → 0 as ε→ 0 and therefore∣∣∣∣∫ V3|un|2
∣∣∣∣ 6 ‖V3‖d/2

∥∥|un|2∥∥ d
d−2

6 C‖V3‖d/2
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Then ∣∣∣∣∫ V |un|2 −
∫
V |u0|2

∣∣∣∣ 6 ∣∣∣∣∫ V1|un|2 −
∫
V1|u0|2

∣∣∣∣+ ε+ C‖V3‖d/2

and therefore

lim sup
n→∞

∣∣∣∣∫ V |un|2 −
∫
V |u0|2

∣∣∣∣ 6 ε+ C‖V3‖d/2 −→ 0

Case 2 V ∈ L∞0 , then

V = V1 + V2 = V 1{ε<|V (x)|< 1
ε

+V (x)1|V (x)|6ε}

The rest of the proof works analogously to the above.

q.e.d.

Proof of Theorem 6.7.

(p = d
2
, d > 3) By the lemma

E(u) >
1

2

∫
|∇u|2 − C

for all u ∈ H1
(
Rd
)
, ‖u‖2 = 1. In particular E is finite and we can find a minimising

sequence (un)n ⊂ H1, ‖un‖2 = 1, such that E(un)→ E. Since

E ←− E(un) >
1

2

∫
|∇un|2 − C

hence (un)n is bounded in H1
(
Rd
)
. Thus by the Sobolev compact embedding theorem,

there exists a subsequence (unk)k, un ⇀ u0 weakly in H1
(
Rd
)

and 1Aun → 1Au0

strongly in L2
(
Rd
)

for any bounded set A. Because ∇un ⇀ ∇u weakly in L2, and by

Fatou’s lemma

lim inf
n→∞

∫
|∇un|2 >

∫
|∇u0|2

and by the previous lemma,
∫
V |un|2 →

∫
V |u0|2. Thus

E = lim inf E(un) > E(u0).

It is not obvious that u0 is a minimiser as we do not whether ‖u0‖2 = 1, because

un
n→∞−−−⇀ u0 =⇒ ‖u0‖2 6 lim inf ‖un‖2 = 1
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Now using the assumption E < 0 we find that

0 > E > E(u0) =

∫
|∇u0|2 +

∫
V |u0|2 = ‖u0‖2

2

(∫
|∇v|2 +

∫
V |v|2

)
> ‖u0‖2

2︸ ︷︷ ︸
61

E =⇒ ‖u0‖2 = 1,

where v = u0

‖u0‖2 , thus u0 is a minimiser.

q.e.d.

Remark 6.10. If E > 0 then E might have no minimiser. For example if V (x) = 1
|x|

in R3, then

E = inf
u∈H1

‖u‖2=1

(∫
|∇u|2dx+

∫
|u(x)|2

|x|
dx

)
= 0

but it has no minimiser. �

Theorem 6.11 (Hydrogen Atom). Let

E = inf
u∈H1

‖u‖2=1

(∫
|∇u|2dx−

∫
|u(x)|2

|x|
dx

)

then E = −1
4

and u0(x) = ce−
|x|
2 , c ∈ R, is a minimiser. �

Theorem 6.12 (Perron-Frobenius Principle). Take Ω ⊂ Rd open, f ∈ C 2(Ω). Assume

that V ∈ L1
loc

(
Rd
)
, f > 0 for all x ∈ Ω and

−∆f + V f = 0

pointwise in Ω. Then for all u ∈ C 1
c (Ω), we have∫
|∇u|2dx+

∫
V |u|2 > 0.

�

Proof. Since u ∈ C 1
c (Ω) and f > 0 we can write u = fϕ with ϕ ∈ C 1

c (Ω) and∫
|∇u|2 =

∫
|∇(fϕ)|2 =

∫
|∇fϕ+f∇ϕ|2 =

∫
|∇f |2|∇ϕ|2+

∫
|f |2|∇ϕ|2+2R

∫
(∇f)fϕ̄∇ϕ.
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Thus ∫
|∂xif |2|ϕ|2 = −

∫
f∂xi

(
(∂xif)|ϕ|2

)
= −

∫
f
(
∂2
xi
f
)
|ϕ|2 −

∫
f∂xif∂xi |ϕ|2

hence ∫
|∇f |2|ϕ|2 = −

∫
f∆f |ϕ|2 −

∫
f∇f2R(ϕ̄∇ϕ).

Thus ∫
|∇u|2 =

∫
|f |2|∇ϕ|2 +

∫
f(−∆f)|ϕ|2

and therefore∫
|∇u|2 +

∫
V |u|2 =

∫
|f |2|∇ϕ|2 +

∫
f (−∆f + V f)︸ ︷︷ ︸

=0

|ϕ|2 =

∫
|f |2|∇ϕ|2 > 0.

q.e.d.

Proof. Let Ω = R3 \ {0} and f(x) = ce−
|x|
2 . Then f ∈ C 2(Ω), f > 0 in Ω and

−∆f − f

|x|
+

1

4
f = 0

on Ω. By the Perron-Frobenius principle∫
|∇u|2 −

∫
|u(x)|2

|x|
+

1

4

∫
|u(x)|2 > 0

for all u ∈ C 1
c (R3 \ {0}). As C 1

c (R3 \ {0}) is dense in H1(R3) (the proof of which is left as

an exercise)1.

The for all u ∈ H1(R3), we can find a un ∈ C 1
c (R3 \ {0}) such that un → u in H1(R3) and

un(x)→ u(x) a.e. x ∈ R3. Thus ∫
|∇un|2dx

n→∞−−−→
∫
|∇u|2dx∫

|un|2dx
n→∞−−−→

∫
|u|2dx

lim inf
n→∞

∫
|un|2

|x|
dx

1Since C∞c is dense in H1
(
R3
)

one only needs to consider a g ∈ C∞c
(
R3
)

and take h ∈ C∞c , with

0 6 h 6 1, h(x) = 1 if |x| 6 1, and define gn(1− h(nx))g(x) ∈ C∞c
(
R3 \ {0}

)
.
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where the last inequality follows from Fatou’s lemma and therefore we have

0 6 lim sup
n→∞

(∫
|∇un|2 −

∫
|un|2

|x|
+

1

4

∫
|un|2

)
6

(∫
|∇u|2 −

∫
|u|2

|x|
+

1

4

∫
|u|2
)
.

q.e.d.

Lemma 6.13. For all u ∈ H1(R3) with ‖u‖2 = 1 holds

∫
|∇u|2 >

(∫
|u(x)|2

|x|

)2

�

Proof. Take u ∈ H1(R3), ‖u‖2 = 1. Let ul(x) = l3/2u(lx) for which ‖ul‖2 = ‖u‖2 = 1. We

have ∫
R3

|∇ul|2 = l2
∫
|∇u|2,

∫
|ul|2

|x|
dx = l

∫
|u|2

|x|
dx,

then we have by the above that for all l > 0

l2
∫
|∇u|2 − l

∫
|u|2

|x|
dx > −1

4

Noting that l2A− lB +C > 0 for some A,B,C > and l > 0 iff 4AC > B2, we find that the

inequality implies ∫
|∇u|2 >

(∫
|u|2

|x|

)2

for all u ∈ H1(R3) and ‖u‖2 = 1. q.e.d.

Remark 6.14. For all u ∈ H1(R3) and ‖u‖2 = 1 we have(∫
|∇u|2

)(∫
|x|2|u(x)|2dx

)
>

(∫
|u(x)|2

|x|

)2(∫
|x|2|u(x)|2dx

)
>

>

(∫
|u(x)|2dx

)3

= 1
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Comparing this to the Heisenberg uncertainty principle(∫
|∇u|2

)(∫
|x|2|u(x)|2dx

)
>
g

4

we see that the Sobolev inequality is “stronger” that the Heisenberg-principle �

Theorem 6.15 (Hardy Inequality).∫
|∇u|2 > 1

4

∫
|u(x)|2

|x|2
dx

for all u ∈ H1(R3). �

Proof. Homework. q.e.d.

Remark 6.16. Hardy’s inequality implies∫
|∇u|2 > 1

4

∫
|u|2

|x|2
>

1

4

(∫
|u|2

|x|

)2

if ‖u‖2 = 1. �



Chapter 7

Harmonic Functions

Definition 7.1. Let f ∈ L1
loc(Ω), for Ω ⊂ Rd open. Then f is harmonic iff

∆f = 0 in D ′(Ω).

�

Theorem 7.2 (Equivalent Definition). f ∈ L1
loc(Ω). The f is harmonic iff

f(x) =
1

λ(Br)

∫
Br(x)

f(y)dy := −
∫
Br(x)

f(y)dy a.e.

for all r > 0 such that Br(x) ⊂ Ω. �

Proof.

Step 1. Let f ∈ C∞c and assume that ∆f = 0. Then

0 =

∫
Br(x)

∆f(y)dy =

∫
Sr(x)

∇f · νdS(y) = rd−1

∫
Sd−1

∇f(x+ rw) · wdS(w)

where Sd−1 = S1(0). Thus we have

0 =

∫
Sd−1

∇f(x+ rω) · ωdS(ω) =

∫
Sd−1

d

dr
f(x+ rω)dω =

d

dr

∫
Sd−1

f(x+ rω)dS(ω)

69
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i.e. r 7→
∫

Sd−1

f(x+ rω)dS(ω) is constant, i.e. for all r > 0

f(x)λ
(
Sd−1

)
=

∫
Sd−1

f(x+ rω) · wdS(ω)

and therefore

|Br(0)|f(x) =

R∫
0

rd−1λ
(
Sd−1

)
f(x)dr =

r∫
0

rd−1

∫
Sd−1

f(x+ rω) · ωdS(ω)dr =

∫
Br(x)

f(y)dy

from which f(x) = −
∫
Br(x)

f(y)dy follows.

For the converse assume that f(x) = −
∫
Br(x)

f(y)dy holds for all x ∈ Ω and r > 0. From

the assumption we have

λ
(
Sd−1

)
f(x) =

∫
Sd−1

f(x+ rω) · ωdS(ω)

Taking the derivative with respect to r we get

0 =
d

dr

∫
Sd−1

f(x+ rω)dS(ω) =

∫
Sd−1

∇f(x+ rω) · ωdS(ω) =

∫
Br(x)

∆f(y)dy

Since this holds for all r > 0 one finds that ∆f = 0.

Step 2. Consider f ∈ L1
loc(Ω). Choosing h ∈ C∞c

(
Rd
)
, with 0 6 h 6 1 and

∫
h = 1, h(x) = 0

if |x| > 1 and h is a radial function, i.e. h(x) = f(|x|). Letting

hn(x) = ndh(nx)

for n ∈ N. We know that hn∗f → f in L1
loc(Ω), hn∗f ∈ C∞ andDα(hn∗f) = (Dαhn)∗f .

Let ∆f = 0 in D ′(Ω). Then

∆(hn ∗ f) = 0, in D ′(Ω),

since for all ϕ ∈ C∞c (Ω), in particular also hn(· − x),∫
∆ϕ(y)f(y)dy = 0,
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hence we have classically ∆(hn ∗ f) = (∆hn ∗ f) = 0 and therefore also weakly. By

step 1

(hn ∗ f)(x) = −
∫
Br(x)

(hn ∗ f)(y)dy =
1Br(0)

λ(Br(0))
∗ (hn ∗ f)(x) = hn ∗

(
1Br(0)

λ(Br(0))
∗ f
)

(x)

Taking the limit n→∞, the assertion follows.

For the converse assume that f(x) =
(

1Br(0)

λ(Br(0))
∗ f
)

(x) then

hn ∗ f(x) = hn ∗
(

1Br(0)

λ(Br(0))
∗ f
)

(x) =
1Br(0)

λ(Br(0))
∗ (hn ∗ f)(x)

and therefore by step 1., ∆(hn ∗ f) = 0. Since hn ∗ f → f in L1
loc it does also converge

in D ′(Ω) and therefore 0 = ∆(hn ∗ f)→ ∆f in D ′(Ω).

q.e.d.

Corollary 7.3. If f is harmonic, then f ∈ C∞(Ω) and f(x) = −
∫
λ(Sr(0))

f(y)dy. �

Proof. The identity follows as in the case for smooth functions. For the smoothness we shall

prove that hn ∗ f = f everywhere.

(hn ∗ f)(x) =

∫
f(y)f(x− y)dy =

∞∫
0

∫
Sd−1

rd−1hn(rω)f(x− rω)dS(ω)dr =

=

∞∫
0

h(rω)rd−1

∫
Sd−1

f(x− rω)dS(ω)

︸ ︷︷ ︸
=f(x)λ(Sd−1)

dr =

∫
Rd

hn(y)dy

f(x) = f(x).

Thus since hn ∗ f is smooth so must f . q.e.d.

Theorem 7.4 (Harnack’s Inequality). If f is harmonic on Br(0) and f > 0 then for

all x ∈ BR
3
(0), then (

3

2

)d
f(0) > f(x) >

f(0)

2d

�
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Proof.

f(0) = −
∫
BR(0)

f(y)dy

f(x) = −
∫
B 2

3R
(x)

f(y)dy

for x ∈ BR
3
(0). Thus we have

f(0) =
λ(B 2

3
R(x))

λ(BR(0))

1

λ(B 2
3
R(x))

∫
BR(0)

f(y)dy >

(
2

3

)d
−
∫
B 2

3R
(x)

f(y)dy =

(
2

3

)d
f(x)

The other inequality follows similarly using BR
3
(0) ⊂ B 2R

3
(x). q.e.d.

Corollary 7.5. If f is harmonic on Rd and f is bounded from above f 6 c for some

c ∈ R (or bounded from below), then f is constant �

Proof. Assuming that f(x) > −C for all x ∈ Rd. We want to prove that f is constant. Let

E = infx∈Rd f(x) and define g = f − E, then g > 0 and g is harmonic, infx∈Rd g(x) = 0.

We want to prove that g ≡ 0. If not, then there must exist a x0. If not then there exists a

x0 ∈ Rd such that g(x0) > 0. By Harnack’s inequality we find that

g(x) >
g(x0)

2d
> 0

for all x ∈ Rd. Thus

inf
x∈Rd

g(x) >
g(x0)

2d
> 0

which is a contradiction. q.e.d.

Theorem 7.6 (Newton’s Theorem). Let µ be a positive Borel measure on Rn and let

µ be radial, i.e. µ(RA) = µ(A) for all R ∈ SO(3). Then for all x ∈ R3

∫
R3

dµ(y)

|x− y|
=

∫
R3

dµ(y)

max{|x|, |y|}
=

∫
dµ

|x|

�
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Proof. Using −∆ 1
4π|x| = δ in D ′(R3), in particular ∆ 1

|x| = 0 for all x ∈ R3 \ {0}, hence 1
|x| is

harmonic on Ω = R3 \ {0}. Thus

f(x) = −
∫
Sr(x)

f(y)dS(y)

Step 1 We consider the case µ is a uniform measure on a sphere. We want to prove that∫
|y|=R

dy

|x− y|
=

∫
|y|=R

dy

max{|x|, R}
.

If |x| > R the function y 7→ 1
|x−y| =: f(y) is a harmonic function on B(0, |x|), because

∆
(

1
|x|

)
= 0 for all x ∈ R3 \ {0}. By the mean value theorem then

f(0) = −
∫
|y|=R

f(y)dy =⇒ 1

|x|
= −
∫
|y|=R

dy

|x− y|

and therefore ∫
|y|=R

dy

|x− y|
= |SR(0)| 1

|x|
=

∫
|y|=R

dy
1

|x|
=

∫
|y|=R

dy

max{|x|, R}
.

If |x| < R ∫
|y|=R

dy

|x− y|
= R2

∫
S2

dω

|x−Rω|
= R2

∫
S2

dω∣∣|x|ω −Ry0

∣∣ Case |x|>R
===

= R2

∫
S2

dω

R
=
|SR(0)|
R

=

∫
|y|=R

dy

max{|x|, R}

If |x| = R then by the Dominated Convergence Theorem∫
|y|=R

dy

|x− y|
= lim

Rn↑R

∫
|y|=Rn

dy

|x− y|
= lim

Rn↑R

|SRn(0)|
|x|

=
|SR(0)|
|x|

=

∫
|y|=R

dy

max{|x|, R}
.

Thus we proved for all R > 0 and x ∈ R3

∫
|x−y|

dy

|x− y|
=

∫
|y|=R

dy

max{|x|, |y|}
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Step 2 For general µ, with µ radial

∫
R3

dµ(y)

|x− y|
=

∞∫
0

r2

∫
S2

dµ(rω)

|x− rω|
=

∞∫
0

r2

∫
S2

dµ(rω)

max{|x|, r}
=

∫
R3

dµ(y)

max{|x|, |y|}

q.e.d.

Definition 7.7. Let f ∈ L1
loc(Ω). We say that f is super-harmonic if −∆f > 0 in

D ′(Ω). f is called sub-harmonic if −∆f 6 0 in D ′(Ω). �

Remark 7.8. In one dimension super-harmonic is equivalent to −f ′′ > 0 i.e. f is a

concave function.

If T ∈ D ′(Ω), then we say that T > 0 if T (ϕ) > 0 for all ϕ ∈ D(Ω), for ϕ > 0.

Actually by the Riesz-Markov representation theorem, T ∈ D ′(Ω), T > 0 iff there

exists a positive Borel measure µ such that
T (ϕ) =

∫
Ω

ϕ(y)dµ(y), ∀ϕ ∈ D(Ω)

µ(K) <∞, ∀K ⊂ Ω compact

However, we shall not use this result in this course. One way to prove this is to define

µ(K) = inf
{
T (ϕ)

∣∣ϕ ∈ D , ϕ > 0ϕ = 1 on K
}

µ(O) = sup
{
T (ϕ)

∣∣ϕ ∈ D , 0 6 ϕ 6 1, suppϕ ⊂ O
}

�
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Theorem 7.9 (Mean-Value-Theorem). Let f ∈ L1
loc(Ω). Then f is super-harmonic iff

for a.e. x ∈ Ω and R > 0 such that BR(x) ⊂ Ω

f(x) > −
∫
BR(x)

f(y)dy

�

Proof. “Similar” to Theorem 7.2 for harmonic functions. First let f ∈ C∞, if −∆f > 0,

then

0 >
∫

Br(x)

∆f(y)dy = rd−1 d

dr

∫
Sd−1

f(x+ rω)dω

which means that r 7→
∫

Sd−1

f(x+ rω)dω is non-increasing and therefore

f(x) > −
∫
BR(x)

f(y)dy.

Then for f ∈ L1
loc, replace f by hn ∗ f ∈ C∞. q.e.d.

Theorem 7.10 (Strong Minimum Principle). Let f ∈ L1
loc(Ω), −∆f > 0 in D ′(Ω),

where Ω ⊂ Rn is open and path-connected. Let E = ess infΩ f . Then either

1) f(x) > E, for a.e. x ∈ Ω

2) f = const on Ω.

�

Remark 7.11. The weak minimum principle tell us that ess infΩ f = ess inf∂Ω f . �

Proof. Assume that f(x) > −
∫
BR(x)

f(y)dy holds for all R > 0, BR(x) ⊂ Ω holds for all x ∈ Ω′,

i.e. |Ω \ Ω′| = 0. If x ∈ Ω′ and f(x) = E, then

E = f(x) > −
∫
BR(x)

f(y)︸︷︷︸
>E

dy > E

i.e. equality has to occur and therefore f(y) = E for a.e. y ∈ BR(x) ⊂ Ω. Now for every

z ∈ Ω there exists a continuous curve connecting x and z. We can find r > 0 and finitely
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many points x1, . . . , xN such that x1 = x and xN = z such that Br(xm) ⊂ Ω covering

the curve. Then f(X) = E implies that a.e. y ∈ Br(x) and by induction it follows that

f(xm) = E and thus also f(z) = E. q.e.d.

Theorem 7.12 (Mean-Value Theorem for (−∆+µ2)). Let f ∈ L1
loc(Ω), −∆f+µ2f > 0

in D ′(Ω), µ ∈ R. Assume that Ω is open and path-connected.

1) Then for a.e. x ∈ Ω we have

f(x) > CR

∫
BR(x)

f(y)dy

for all R > 0 such that BR(x) ⊂ Ω, where CR > 0 depends only on R > 0.

2) If f > 0 and f 6≡ 0, then f(x) > 0 for a.e. x ∈ Ω. In fact for all K ⊂ Ω compact,

we have

f(x) > CK

∫
K

f(y)dy

for a.e. x ∈ K, where CK depends only on K.

�

Proof.

Step 1. We can find a function J : Rd → R such that J > 0, T ∈ L∞loc, J(0) = 1 and J is radial

and

(−∆ + µ2)J(x) = 0, pointwise.

For example in 3-dimension this is

J(x) =
sinh(µ|x|)
µ|x|

.

Step 2. Assume that f ∈ C∞ and −∆f + µ2f > 0 pointwise. Then∫
Br(0)

(−∆f + µ2f)J > 0.
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On the other hand ∫
Br(0)

f(−∆J + µ2J) = 0

i.e.

0 6
∫

Br(x)

((−∆f)J − f(−∆J)) = −rn−1

∫
Sd−1

(∇fJ − f∇f) · ωdω =

= −rd−1

∫
Sd−1

(
d

dr
f(rω)j(rω)− f(rω)

d

dr
J(rω)

)
dω =

= −rd−1

 d

dr

 ∫
Sd−1

f(rω)

J(r)−
∫

Sd−1

f(rω)
d

dr
J(r)


which implies that (

d

dr
g

)
J − g

(
d

dr
J

)
6 0 =⇒ d

dr

g

J
6 0

Thus r 7→ g
J

is non-increasing and therefore

|Sd−1|f(0) >
g(R)

J(R)
=

1

J(R)

∫
BR(0)

f(Rω)dω

for all R > 0 such that BR(0) ⊂ Ω and thus also that

f(0) > CR

∫
BR(0)

f(y)dy

and

f(x) > CR

∫
BR(x)

f(y)dy.

Step 3 Now let f ∈ L1
loc and consider hn ∗ f ∈ C∞, with hn ∗ f → f in L1

loc(Ω). From Step 2

we have

(hn ∗ f)(x) > CR

∫
BR(x)

(hn ∗ f)(y)dy = CR1BR(0) ∗ (hn ∗ f) = CRhn ∗
(
1BR(0) ∗ f

)
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Taking n→ 0 we find that

f(x) > CR
(
1BR(0) ∗ f

)
(x) = CR

∫
BR(x)

f(y)dy

for a.e. x.

Step 4 If f > 0 and f 6≡ 0. Then the mean value inequality implies that

f(x) > CR

∫
BR(x)

f(y)dy

implies that f(x) > 0. The proof argument is the same as for the strong maximum

principle.

Step 5 K is compact, we can find x1, . . . , xn, r > 0 such that K ⊂
⋃N
i=1Br(x) =: U

∫
K

f(y)dy 6
∫
U

f 6
N∑
i=1

∫
Br(x)

f.

And thus if we assume that Bi ∩Bi+1 6= 0 and x ∈ B(x1, r)

f(x) > c

∫
Br(x)

f(y)dy >
∫

B(x1,r)∩B(x2,r)

> c′|B1 ∩B2| inf
B1∩B2

> c′
∫

Br(x2)

f(y)dy

if |B1 ∩B2| 6= 0 (or Bi ∩Bi+1 6= ∅ for all i). Thu

f(x) > c1

∫
B1

f(y)dy > · · · > cn

∫
BN

f(y)dy

hence

f(x) > c̃

∫
K

f(y)dy

c̃ = inf ci.

q.e.d.

Theorem 7.13 (Uniqueness of Minimiser). Assume that V ∈ L1
loc and E has a min-

imiser. Assume that V+ ∈ L∞loc
(
Rd
)
, V+(x) = max{V (x), 0}. Then there exists a unique
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u0 > 0 minimiser for E. Moreover if u is another minimiser, then

u = cu0

for a constant c ∈ C, |c| = 1. �

Proof. By the diamagnetic inequality, E(u) > (|u|). We may thus assume that E has a

minimiser u0 > 0 and we have to prove that u0 > 0.

Since u0 is a minimiser, it satisfies

−∆u0 + V u0 = Eu0 in D ′
(
Rd
)

Thus

−∆u0 + V u0 = Eu0

in D ′(B) for all open balls in Rd. Since V+ ∈ L∞(B) implies that V 6 µ2 in B for some

constant µ > 0. Thus

−∆u0 +
(
µ2 − E

)
u0 > 0 in D ′(B).

By the above theorem it follows that

u0(x) > CK

∫
K

u0(y)dy

for all compact subsets of B and a.e. x ∈ K. This means that for every y ∈ Rd, r > 0, that

u0(x) > Cr

∫
Br(y)

u0(z)dz

Because u0 > 0, u0 6≡ 0 (as ‖u0‖2 = 1), then∫
BR(0)

u(z)dz > 0

for R big enough. Therefore u0(x) > 0 for a.e. x ∈ BR(0) for all R large enough. Therefore

u0(x) > 0 for a.e. x ∈ Rd.

Next assume that u is another minimiser. We can write u = f + ig, with f, g : Rd → R.

E(u) =

∫
|∇u|2+

∫
V |u|2 =

∫ (
|∇f |2 + V |f |2

)
+

∫ (
|∇g|2 + V |g|2

)
= E = E

∫
|f |2+E

∫
|g|2
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But ∫
|∇f |2 +

∫
V |f |2 > E

∫
|f |2∫

|∇g|2 +

∫
V |g|2 > E

∫
|g|2

By the definition of E. Thus f
‖f‖2 and g

‖g‖2 are also minimisers for E.

Then either u is real indeed, or we assume both f, g 6≡ 0. Let us consider when both f, g 6= 0.

Then |f |
‖f‖2 ,

|g|
‖g‖2 are also minimisers by the diamagnetic inequality. We can therefore assume

that f > 0 and g > 0.

Now we choose |u|, we know that ∫
|∇u|2 =

∫
|∇|u||2

because u is minimiser. Because f, g > 0

∇|u| = f∇f + g∇g√
f 2 + g2

which implies that ∫
|∇f |2 + |∇g|2 =

∫
|f∇f + g∇g|2

f 2 + g2

On the other hand

|f∇f + g∇g|2

f 2 + g2
6 |∇f |2 + |∇g|2 pointwise.

Thus
|f∇f + g∇g|2

f 2 + g2
= |∇f |2 + |∇g|2 a.e.

Hence f = constg. Consequently u = f + ig = (1 + iconst)g = constg, i.e. u is real valued

and u > 0 up to a phase.

Finally, since both u and u0 are minimisers (and positive)

ϕ =
u+ iu0

‖u+ iu0‖2

is also a minimiser and thus by the same argument we have u = Cu0.

q.e.d.
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Corollary 7.14. If there exists a λ ∈ R and v > 0 such that

−∆v + V v = λv in D ′
(
Rd
)

Then λ = E and v = u0 > 0 (where u0 is the unique minimiser of E). �

Proof. The PDE implies ∫
∇v · ∇ϕ+

∫
V vϕ = λ

∫
vϕ

for all ϕ ∈ D
(
Rd
)

and thus ∫
∇v · ∇u0 +

∫
V vu0 = λ

∫
vu0

(where we have omitted some conditions on V ). Moreover,

−∆u0 + V u0 = Eu0

thus ∫
∇u0 · ∇v +

∫
V u0v = E

∫
vu0

Thus λ
∫
vu0 = E

∫
vu0. Since

∫
vu0 > 0 (as v > 0, u0 > 0) which implies that λ = E,

hence v is a minimiser and thus v = u0. q.e.d.
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Chapter 8

Smoothness of Weak Solutions

Consider the Poisson equation

−∆u = f in D ′
(
Rd
)

If f ∈ C
(
Rd
)
, can we conclude u ∈ C 2

(
Rd
)
. If d = 1 yes otherwise no. But f ∈ C

(
Rd
)

implies that u ∈ C 1
(
Rd
)
.

However, there exists the Elliptical optimal estimate that if f ∈ C α then u ∈ C 2+α for

0 < α < 1, where C α are the Hölder spaces.

Theorem 8.1 (Basic Regularity). Assume that u ∈ L1
loc(Ω), f ∈ Lploc(Ω), Ω ⊂ Rd open.

If

−∆u = f in D ′(Ω)

Then

• u ∈ C (Ω) if p > d
2

• u ∈ C 1(Ω) if p > d.

�

Proof.

Step 1 f ∈ Lp
(
Rd
)

and f has compact support

−∆u = f in D ′(Ω)

83
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Then a solution is u(x) = (G ∗ f)(x) =
∫
Rd
G(x− y)f(y)dy where

G(x) =

 1
(d−2)|Sd−1|

1
|x|d−2 , if d 6= 2

− 1
2π

ln |x|, if d = 2.

Let us restrict ourselves to the case d > 3.

u(x) = cd

∫
Rd

f(y)

|x− y|d−2
dy

is well-defined because

∫
Rd

f(y)

|x− y|d−2
dy 6

∫
Rd

|f |p
1/p ∫

supp f

dy

|x− y|(d−2)q

1/q

6 C‖f‖p

with C <∞ if

(d− 2)q < d ⇐⇒ p

p− 1
<

d

d− 2
⇐⇒ p− 1

p
>
d− 2

d
⇐⇒ 1

p
<

2

d
⇐⇒ p >

d

2

where 1
p

+ 1
q

= 1.

Step 2 We prove prove that u(x) as defined above is continuous if p > d
2
.

u(x)− u(x′) = cd

∫
f(y)

(
1

|x− y|d−2
− 1

|x′ − y|d−2

)
dy

thus

|u(x)− u(x′)| 6 cd

∫
|f(y)|

∣∣∣∣ 1

|x− y|d−2
− 1

|x′ − y|d−2

∣∣∣∣dy
Using the elementary inequality for a, b > 0 and α > 1∣∣∣∣ 1

aα
− 1

bα

∣∣∣∣ =
|aα − bα|
aαbα

6 C|a− b|a
α−1 + bα−1

aαbα
6 C|a− b|ε|a+ b|1−ε (aα−1 + bα−1)

aαbα
6

6 C|a− b|ε 1

aα+ε + 1
ba+ε

for ε > 0 small. Thus∣∣∣∣ 1

|x− y|d−2
− 1

|x′ − y|d−2

∣∣∣∣ 6 C|x− x′|
∣∣∣∣ 1

|x− y|d−2+ε
+

1

|x′ − y|d−2+ε

∣∣∣∣
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therefore

|u(x)− u(x′)| 6 C|x− x′|
∫
|f(y)|

(
1

|x− y|d−2+ε
+

1

|x′ − y|d−2+ε

)
dy 6

6 C|x− x′|
(∫
|f |p
)1/p


 ∫

supp f

1

|x− y|(d−2+ε)q

1/q

+

 ∫
supp f

1

|x′ − y|(d−2+ε)q

1/q


Thus in total we have

|u(x)− u(x′)| 6 C|x− x′|ε‖f‖p

if

(d− 2 + ε)q < d ⇐⇒ ε
d

q
− (d− 2) =

d(p− 1)

p
− (d− 2) = 2− d

p
.

Step 3 We prove that if p > d then u(x) = cd
∫ f(y)
|x−y|d−2 dy is C 1.

∂xiu(x) = cd

∫
f(y)

xi − yi
|x− y|d

dy

and therefore

|∂xiu(x)− ∂xiu(x′)| 6 cd

∫
|f(y)|

∣∣∣∣ xi − yi|x− y|d
− x′i − y′i
|x′ − y′|d

∣∣∣∣dy
Let a = |x− y|, ai = xi − yi, b = |x′ − y| and bi = x′i − yi. We have∣∣∣∣ aiad − bi

bd

∣∣∣∣ 6 |ai − bi|ad
+ |bi|

∣∣∣∣ 1

ad
− 1

bd

∣∣∣∣ 6 |x− x′| 1

ad
+ |b|

∣∣∣∣ 1

ad
− 1

bd

∣∣∣∣ 6
6 C|x− x′|ε

(
1

|x− y|d−1+ε
+

1

|x′ − y|d−1+ε

)
hence

|∂xiu(x)− ∂xiu(x′)| 6 C|x− x′|ε
∫
|f(y)|

∣∣∣∣ 1

|x− y|d−1+ε
+

1

|x′ − y|d−1+ε

∣∣∣∣dy 6
6 |x− x′|ε‖f‖p

 ∫
supp f

∣∣∣∣ dy

|x− y|(d−1+ε)q

∣∣∣∣
1/q

+

 ∫
supp f

∣∣∣∣ dy

|x− y|(d−1+ε)q

)1/q
 6

6 C|x− x′|ε‖f‖p
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if

(d− 1 + ε)q < d ⇐⇒ ε <
d

p
− (d− 1) =

d(p− 1)

p
− (d− 1) = 1− d

p
.

Step 4 Now let f ∈ Lploc(Ω),−∆u = f in D ′(Ω). Take an open ball B such that B ⊂ Ω. Take

function u1 such that −∆u1 = 1Bf in D ′(Ω), (i.e. u1 = G ∗ (1Bf) ) From Step 1,2,3

it follows that u1 ∈ C (B) if p > d
2

and C 1(B) if p > d.

Further we also have

−∆(u− u1) = f(1− 1B), in D ′(Ω)

Thus

−∆(u− u1) = 0, in D ′(B)

Thus u − u1 is a harmonic function in B. Therefore u − u1 ∈ C∞(B). If u1 ∈ C (B)

it follows that u ∈ C (B) and analogously for C 1. Since the ball B was arbitrary with

B ⊂ Ω, we have

u ∈ C (Ω), if p >
d

2

u ∈ C 1(Ω), if p > d

q.e.d.

An application of this theorem would be

Theorem 8.2. Assume that u ∈ L2(R3), V ∈ C∞(R3) and

−∆u+ V u = 0, in D ′(R)

Then u ∈ C∞(R3). �

Proof. −∆u + V u = 0 implies that −∆u = −V u in D ′(R3), u ∈ L2, V ∈ C∞, hence

V u ∈ L2
loc(R3).

By the above theorem, we have as p = 2, d = 3, p > d
2

thus u ∈ C (R3). Then as u ∈ C , V ∈
C∞ implies that V u ∈ C (R3) ⊂ L∞loc(R3). By the same theorem as p =∞ > d, u ∈ C 1(R3).

Since V ∈ C∞, u ∈ C 1 we have V u ∈ C 1 and therefore

−∆(∂xiu) = ∂xi(−∆u) = ∂xi(−V u) ∈ C
(
R3
)
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Applying the same regularity theorem we find that ∂xiu ∈ C 1 for all i and thus u ∈ C 2(R3).

By induction

(−∆)(Dαu) = Dα(−∆u) = Dα(−V u) ∈ C

for all |α| 6 2, thus Dαu ∈ C 1 and therefore u ∈ C 3. q.e.d.
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Chapter 9

Concentration Compactness Method

We call the functional

E(u) =

∫
R3

|∇u|2dx−
∫
R3

Z

|x|
|u|2dx+

1

2

∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy

the Hartree Function for atoms, where Z > 0 is the nuclear charge, |u(x)|2 is the density

of electrons. Consider the variational problem

E(λ) := inf
{
E(u)

∣∣u ∈ H1
(
R3
)
, ‖u‖2

2 = λ
}
.

E(λ) is called the ground state energy of the atom. If u0 is a minimiser for E(λ), then it

satisfies the following PDE

−∆u0 −
Z

|x|
u0 +

(
|u0|2 ∗ | · |−1

)
u0 = µu0, in D ′

(
R3
)

with µ 6 0.

Lemma 9.1. The map λ 7→ E(λ) is non-increasing on [0,∞). �

Proof. Let 0 6 λ1 < λ2. We are going to prove that E(λ1) > E(λ2). By a density argument

we can find a v1 ∈ D such that
∫
|v1|2dx = λ1 and E(v1) 6 E(λ1) + ε, for ε > 0 small. Take

another function ϕ ∈ D such that ‖ϕ‖2
2 = λ2 − λ1 > 0. Choose v2(x) = v1(x) + ϕ(x−Rx0),

where x0 ∈ R3\{0}, R > 0. For R sufficiently large v1 and ϕ(· −Rx0) have disjoint supports,

89
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then ‖v2‖2
2 = ‖v1‖2

2 + ‖ϕ‖2
2 = λ2. Moreover,

E(λ2) 6 E(v2) = E(v1+ϕ(·−Rx0)) = E(v1)+E(ϕ(·−Rx0))+

∫
supp(v1)×(suppϕ+x0R)

|v1(x)|2|ϕ(y − x0R)|2

|x− y|
dxdy

taking R→∞, we get the inequality

E(λ2) 6 E(λ1) + 2ε+

∫
|∇ϕ|2dx

for all ϕ ∈ D , ‖ϕ‖2
2 = λ2 − λ1. Rescaling ϕ, we can achieve ‖∇ϕ‖2

2 < ε and taking ε → 0,

we get E(λ2) 6 E(λ1)

q.e.d.

Theorem 9.2. a) If 0 6 λ 6 Z, then there exists a minimiser for E(λ).

b) If λ > 2Z, there does not exist a minimiser for E(λ).

�

Proof. a) Let (un)n∈N be a minimising sequence for E(λ). By the diamagnetic inequality

|∇u| > |∇|u|| we have E(u) > E(|u|), thus w.l.o.g. we can assume un > 0 for all n ∈ N.

By the hydrogen atom theory∫
R3

|∇u|2dx−
∫
R3

a

|x|
|u|2dx > −a

2

4

∫
R3

|u|2dx

for all a > 0. Thus for a = 2Z

E(u) >
1

2

∫
|∇u|2 +

1

2

(∫
|∇u|2dx−

∫
2Z

|x|
|u|2dx

)
>

1

2

∫
|∇u|2 − Z2λ

2
> −Z

2λ

2
.

for all u ∈ H1 and ‖u‖2
2 = λ. Moreover, as (un)n is a minimising sequence,

E(λ) = lim
n→∞

E(un) >
1

2

∫
|∇un|2 −

Z2λ

2

thus (un)n is bounded in H1(R3). By going to a subsequence and renaming it to the

original, we may assume that un −⇀ u0 in H1(R3) and a.e. in R3. We have ∇un
∇−⇀ u0
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in L2(R3) which implies that

lim inf
n→∞

∫
R3

|∇un|2 >
∫
|∇u0|2

Moreover,
|un(x)|2|un(y)|2

|x− y|
n→∞−−−→ |u0(x)|2|u0(y)|2

|x− y|
a.e. x, y ∈ R3.

Thus by Fatou’s lemma we have

lim inf
n→∞

∫
R3×R3

|un(x)|2|un(y)|2

|x− y|
dxdy >

∫
R3×R3

|u0(x)|2|u0(y)|2

|x− y|
dxdy

On the other hand from un
H1

−⇀ u0 we have that the Coloumb interaction term converges

as we saw from the weak-continuity of this potential energy above. Thus we have

E(λ) = lim
n→∞

E(un) > E(u0).

To conclude that u0 is a minimiser, we need to prove that ‖u0‖2
2 = λ. By un

L2

−⇀ u0,

and ‖u0‖2 6 lim infn→∞ ‖un‖2
2 = λ. The reverse inequality is non-trivial and we shall

prove it by using λ 6 Z. Now assume that ‖u0‖2
2 < λ. Then E(u0) 6 E(λ) 6 E(v), for

all v ∈ H1 with ‖v‖2
2 = λ.

Let ϕ ∈ D(R3), ϕ > 0 by the above Lemma. For ε ∈ R, with |ε| small we have∫
|u0 + εϕ|2 6 λ =⇒ E(u0) 6 E(u0 + εϕ) =⇒ 1

2

d2

dε2
E(u0 + εϕ)

∣∣∣∣
ε=0

> 0

and thus

0 6
1

2

d2

dε2
· · ·
∣∣∣∣
ε=0

=

=
1

2

d2

dε2

∫
R3

|∇(u0 + εϕ)|2dx−
∫

Z

|x|
|u0 + εϕ|2dx+

1

2

∫
R3×R3

|u0(x) + εϕ(x)|2|u0(y) + εϕ(y)|2

|x− y|
dxdy


=

∫
|∇ϕ|2dx−

∫
Z

|x|
|ϕ|2dx+

∫ ∫
|u0(y)||ϕ(x)|2

|x− y|
+ 2

∫ ∫
u0(x)u0(y)ϕ(x)ϕ(y)

|x− y|
dxdy

Choosing ϕ to be radial and letting ϕ = 0 if |x| < R, where ϕ ∈ D , ϕ > 0, we find by
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Newton’s theorem that∫ ∫
|u0(y)||ϕ(x)|2

|x− y|
=

∫ ∫
|u0(y)||ϕ(x)|2

max{|x|, |y|}
dxdy 6

∫
u0dy

∫
ϕ2(x)

|x|
dx

∫ ∫
u0(x)u0(y)ϕ(x)ϕ(y)

|x− y|
dxdy 6

 ∫
|x|,|y|>R

|u0(x)||ϕ(y)|2

|x− y|


1/2 ∫

|x|,|y|>R

|u0(y)|2ϕ(x)2

|x− y|


1/2

6

6

(∫
|y|>R

u0(y)2dy

)∫
ϕ(x)2

|x|
dx

Altogether

0 6
∫
|∇ϕ|2 +

−Z + ‖u0‖2
2 + 2

∫
|y|>R

|u0(y)|2dy

∫ ϕ(x)2

|x|
dx

Choose ϕ(x) := ϕ0

(
x
R

)
, ϕ0 ∈ D , ϕ0 > 0 and ϕ0 = 0 in B1(0), ϕ0 6≡ 0 and ϕ0 radial.

Then

0 6

 1

R

∫
|∇ϕ0|2 +

−Z + ‖u0‖2
2 + 2

∫
|y|>R

u2
0

R2

∫
ϕ2

0(x)

|x|
dx

R2

by passing R→∞ it follows that

0 6 −Z +

∫
u2

0 =⇒ λ > ‖u0‖2 > Z

which is a contradiction.

b) If λ > 2Z, then E(λ) has no minimiser. Assume that u0 is a minimiser. By the

diamagnetic inequality we can assume that u0 > 0. Then for all f ∈ H1(R3)

0 =
1

2

d

dε
E
(√

λ
u0 + εf

‖u0 + εf‖2

)∣∣∣∣
ε=0

=

=

∫
∇u0 · ∇f −

∫
Z

|x|
u0f +

∫ ∫
u0(x)2u0(y)

f
(y)|x− y|dxdy − µ

∫
u0f

with µ 6 0. Now choose f := ϕ2u0, with ϕ ∈ D , ϕ > 0, ϕ(x) = |x| if |x| 6 R and

|∇ϕ| 6 1 if |x| > R > 1.
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We have

0 =

∫
∇u0 · ∇

(
ϕ2u0

)
−
∫

Z

|x|
ϕ2u2

0 +

∫ ∫
ϕ(x)2u0(x)2u0(y)2

|x− y|
− µ

∫
ϕ2u2

0dx︸ ︷︷ ︸
>0

>

>
∫
|∇(ϕu0)|2 −

∫
|∇ϕ|2|u0|2 −

∫
Zu2

0 +

∫ ∫
|x|6R

ϕ(x)2u0(x)2u0(y)2

|x− y|
=

=

∫
ϕ2u2

0

4|x|2
−
∫
|∇ϕ|2|u0|2 − Zλ+

1

2

∫ ∫
|x|6R

|x|+ |y|
|x− y|︸ ︷︷ ︸
>1

u0(x)2u0(y)2 >

>
∫
|x|6R

(
ϕ2

4|x|2
− |∇ϕ|2

)
︸ ︷︷ ︸

=0

u2
0 −

∫
x>R

|∇ϕ|2︸ ︷︷ ︸
61

|u0|2 − Zλ+
1

2

∫ ∫
|x|6R

u0(x)2u0(y)2 >

> −
∫

x>R

u2
0 − Zλ+

1

2

 ∫
|x|6R

u0(x)2


2

Thus

0 > −
∫
|x|>R

u2
0 − Zλ+

1

2

 ∫
|x|6R

u2
0


2

for all R > 1 and thus taking R→∞ we have

0 > −Zλ+
λ2

2
=⇒ λ 6 2Z

which is a contradiction.

q.e.d.

For all u, v > 0 we have

E(u) + E(v)

2
> E

(√
u2 + v2

2

)
with strict inequality if u 6= v. Consequently λ 7→ E(λ) is convex. Thus there must exists a

λ∗ such that it minimises E(λ). Numerically one finds that λ∗ ≈ 1.21Z.

Now we shall consider a general functional

E(u) =

∫
Rd

|∇u|2 +

∫
Rd

V |u|2 +
1

2

∫
Rd×Rd

|u(x)|2w(x− y)|u(y)|2dxdy
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where V is an external potential and w is an interaction potential.

Remark 9.3 (Assumptions). We shall assume that |v|, |w| ∈ Lp + Lq, for p, q >

max{d
2
, 1} and w(x) = w(−x). �

Example 9.4. 1) Hartree V = − Z
|x| , w = 1

|x| (Coulomb potential).

2) Chequard-Pekar w = 1
|x| (Newton potential).

Definition 9.5.

E(λ) = inf
{
E(u)

∣∣u ∈ H1
(
Rd
)
, ‖u‖2

2 = λ
}

E0(λ) = inf

{
E0(u) =

∫
|∇u|2 +

1

2

∫
|u(x)|2w(x− y)|u(y)|2

∣∣∣∣u ∈ H1
(
Rd
)
, ‖u‖2

2 = λ

}
where the second minimiser is for problems at infinity. �

Theorem 9.6 (Concentration-Compactness Prinicple). We always have

E(λ) 6 E(λ− λ′) + E0(λ′)

for all 0 6 λ′ 6 λ. Moreover, if we have the strict binding inequality

E(λ) < E(λ− λ′) + E0(λ′)

for all 0 < λ′ 6 λ then E(λ) has a minimiser. �

For the Hartree functional E0(λ′) = 0 (by scaling).

Lemma 9.7. If |v|, |w| ∈ Lp + Lq, with p, q > max{d
2

+ 1}, then∫
|V ||u|2dx 6 C(‖V ‖Lp+Lq)‖u‖2

H1∥∥|w| ∗ |u|2∥∥∞ 6 C(‖w‖p + ‖w‖q)‖u‖2
H1

where we ‖V ‖Lp+Lq = inf{‖V1‖p + ‖V2‖q |V1 ∈ Lp, V2 ∈ Lq, V1 + V2 = V } Moreover, for
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all ε > 0 ∫
|V ||u|2dx 6 ε

∫
|∇u|2 + Cε

∫
|u|2∥∥|w| ∗ |u|2∥∥∞ 6 ε

∫
|∇u|2 + Cε

∫
|u|2

�

Proof. If V = V1 + V2, with V1 ∈ Lp, V2 ∈ Lq, we have

∫
|V1||u|2 6

(∫
|V1|p

)1/p(∫
|u|2p′

)1/p′

6 C‖V1‖p‖u‖2
H1

where we used the Sobolev inequality in the second inequality, which we were allowed to as

2p′ < Sobolev power. We have the same inequality for V2. Thus∫
|V ||u|2 6 C‖V ‖Lp+Lq‖u‖2

H1

For the second inequality we have the same method

|w| ∗ |u|2 =

∫
|w(x− y)||u(y)|2dy

We can write w = w1 + w2, w1 ∈ Lp, w2 ∈ Lq and thus

|w1| ∗ |u|2 =

∫
|w1(x− y)||u(y)|2dy 6

(∫
|w1(x− y)|pdy

)1/p(∫
|u(y)|2p′dy

)1/p′

6 C‖w1‖p‖u‖2
H1

By the same bound for w2, we get the bound for W .

Now take ε > 0. Since V ∈ Lp + Lq, we can decompose it into

V = Vε + V∞

where ‖Vε‖Lp+Lq 6 ε and V∞ ∈ L∞. Then∫
|V ||u|2 6

∫
|Vε||u|2 +

∫
|V∞||u|2 6 C ‖Vε‖Lp+Lq︸ ︷︷ ︸

6ε

‖u‖H1 + ‖V∞‖∞︸ ︷︷ ︸
6Cε

‖u‖2
2.

q.e.d.
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For our general interaction energy have by this Lemma

E(u) > (1− ε)
∫
|∇u|2 − Cε

∫
|u|2

for all ε > 0 and thus

E(u) >
1

2

∫
|∇u|2 − C

Thus E(λ) = inf
{
E(u)

∣∣u ∈ H1, ‖u‖2
2 = λ

}
> −Cλ >∞.

Now take a minimising sequence un ∈ H1,
∫
|un|2 = λ and E(un) → E(λ). By the diamag-

netic inequality we have |∇un| > |∇|un|| (pointwise), E(un) > E(|un|), so we can assume

that un > 0.

Because 1
2

∫
|∇un|2 − C 6 E(un) → E(λ). We have un is bounded in H1. By choosing a

subsequence we can assume that un ⇀ u0 weakly in H1.

Lemma 9.8. If un ⇀ u0 weakly in H1, then

lim
n→∞

(
E(un)− E(u0)− E0(un − u0)

)
= 0.

�

Proof. Let us denote vn = un − u0, the vn −⇀ 0 weakly in H1.∫
|∇un|2 −

∫
|∇u0|2 −

∫
|∇vn|2 = 2

∫
∇u0 · ∇vn −→ 0

by weak convergence.

Second we have for the external potential∫
V |un|2 −

∫
V |u0|2 −→ 0

because un ⇀ u0 and V ∈ Lp + Lq, as we have already proven above.

For the interaction term we have∫ ∫
|un(x)|2w(x− y)|un(y)|2dxdy −

∫ ∫
|u0(x)|2w(x− y)|u0(y)|2dxdy−

−
∫ ∫

|vn(x)|2w(x− y)|vn(y)|2dxdy
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|un(x)|2w(x− y)|un(y)|2dxdy =

∫ (
|un(x)|2 − |u0(x)|2 − |vn(x)|2

)
w(x− y)|vn(y)|2dxdy+

+

∫ (
|u0(x)|2 + |vn(x)|2

)
w(x− y)

(
|un(y)|2 − |u0(y)|2 − |vn(y)|2

)
dxdy+

+

∫ (
|u0(x)|2 + |vn(x)|2

)
w(x− y)

(
|u0(y)|2 + |vn(y)|2

)
dxdy

=

∫ (
|un(x)|2 − |u0(x)|2 − |vn(x)|2

)
w(x− y)|vn(y)|2dxdy+

+

∫ (
|u0(x)|2 + |vn(x)|2

)
w(x− y)

(
|un(y)|2 − |u0(y)|2 − |vn(y)|2

)
dxdy+

+

∫
|u0(x)|2w(x− y)|u0(y)|2dxdy+

+

∫
|vn(x)|2w(x− y)|vn(y)|2dxdy+

+ 2

∫
|u0(x)|2w(x− y)|vn(y)|2dxdy

We shall now estimate the first (I), second (II) and last term (III) and other terms cancel.

For (III) we shall prove that∫
|u0(x)|2w(x− y)|vn(y)|2dxdy −→ 0

for this we split the integral into∫
Rd×Rd

|u0(x)|2w(x− y)|vn(y)|dxdy =

∫
|y|6R

+

∫
|y|>R
|x−y|6R

2

+

∫
|y|>R
|x−y|>R

2

= IIIa + IIIb + IIIc

We have

IIIa =

∫
|y|6R

|u0(x)|w(x− y)|vn(y)|2 =

∫
|y|6R

(
|w| ∗ |u0|2

)
|vn(y)|dy

Since ‖w ∗ |u0|2‖∞ 6 C‖w‖Lp+Lq‖u0‖2
H1 and thus

IIIa 6 C

∫
|y|6R

|vn(y)|2dy
n→∞−−−→ 0
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for all R > 0, as vn ⇀ 0 weakly in H1 and Sobolev.

IIIb =

∫
|y|>R|x−y|6R

2

6
∫

|x|>R
2

|u0(x)|2|w(x− y)||vn(y)|2 =

∫
|x|>R

2

|u0(x)|
(
|w| ∗ |vn|2

)
dx 6

6 C ‖vn‖2
H1︸ ︷︷ ︸

bounded as
n→∞

∫
|x|>R

2

|u0(x)|2 6 C

∫
|x|>R

2

|u0(x)|2 R→∞−−−→ 0

and or the third term

IIIc =

∫
|y|>R
|x−u|>R

2

6
∫
|u0(x)|2

(
1|x−y|>R

2
w(x− y)

)
|vn(y)|2dxdy 6 C‖1BR

2
(0)Cw‖Lp+Lq‖u0‖2

L2‖vn‖2
H1 6

6 C‖1BR
2 (0)C

w‖Lp+Lq
R→∞−−−→ 0.

For I we have

I = 2

∫
|u0(x)||vn(x)||w(x− y)||u0(y)|2dydx 6

6

(∫
|u0(x)|2|w(x− y)||vn(y)|2

)1/2

︸ ︷︷ ︸
6C‖w‖Lp+Lq‖u0‖22‖un‖2H16C

(∫
|vn(x)|2|w(x− y)||un(y)|2

)1/2

︸ ︷︷ ︸
Simiilar to III

n→∞−−−→0

and the proof II goes similarly. q.e.d.

Proof of Theorem 9.6. Recall that un is a minimising sequence, un ⇀ u0, vn = un − u0 ⇀ 0

weakly in H1, then

E(un)− E(u0)− E0(vn)
n→∞−−−→ 0

On the other hand we have

E(un) −→ E(λ)

E(u0) > E(λ− λ′), for λ− λ′ =
∫
|u0|2 6 λ

E0(vn) > E0

(∫
|vn|2

)
−→ E0(λ′)
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since ∫
|vn|2 =

∫
|un − u0|2 =

∫
|un|2︸ ︷︷ ︸
=λ

+

∫
|u0|2︸ ︷︷ ︸

=λ−λ′

−2

∫
unu0︸ ︷︷ ︸

→
∫
|u0|2=λ−λ′

−→ λ′

Thus E(λ) > E(λ− λ′) + E0(λ′). However, by the strict binding inequality we have

E(λ) < E(λ− λ′) + E0(λ′)

for all 0 < λ′ 6 λ. Thus we have to conclude that λ′ = 0, which means that
∫
|u0|2 =

λ−λ′ = λ and E(un)−E(u0)→ 0 since E0(vn)→ 0 as
∫
|vn|2 → λ′ = 0. Thus E(u0) = E(λ)

and
∫
|u0|2 = λ. So u0 is a minimiser. q.e.d.

Theorem 9.9. �

Remark 9.10. �

——————————————————

Translation Invariant Cases

E0(u) =

∫
|∇u|2 +

1

2

∫ ∫
|u(x)|2w(x− y)|u(y)|2dxdy

E0(λ) = inf
{
E0(u)

∣∣u ∈ H1, ‖u‖2
2 = λ

}

Remark 9.11. E0(u) = E0(u(·+ z)) for all z ∈ Rd.

• If un is a minimising sequence for E0(λ) then ũn := un(·+ xn), xn ∈ Rd then

ũn is also a minimising sequence. But if un → u strongly in H1 and xn → ∞,

then un ⇀ 0 weakly in H1, i.e. we lack compactness or in other words one has

compactness up to translation.

�

Definition 9.12 (Vanishing Sequence). Let (un)n be bounded in H1
(
Rd
)
. We call (un)n
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a vanishing sequence if for all (xn)n ⊂ Rd and all subsequences of (un)n, un(·+ xn) ⇀ 0

weakly in H1
(
Rd
)
. �

Theorem 9.13 (Characterisation of Vanishing Sequences). If (un)n is bounded in

H1
(
Rd
)

and (un)n is vanishing, then

• For all R > 0

sup
x∈Rn

∫
BR(x)

|un(y)|2dy
n→∞−−−→ 0

• un → 0 strongly in Lp
(
Rd
)

for all 2 < p < p∗ with

p∗ =

 2d
d−2

, if d > 2

∞, if d = 1, 2

�

Proof. Let us assume that there exists a R > 0, ε > 0 such that

sup
x∈Rd

∫
BR(x)

|un|2 > ε > 0.

Then there exists a sequence (xn)n ⊂ Rd such that∫
BR(x)

|un(x)|2 > ε

2
> 0

for all n ∈ N. Define vn(x) = un(x+ xn). Then for all n ∈ N∫
BR(0)

|vn|2 >
ε

2
> 0,

hence vn 6⇀ 0 weakly in H1
(
Rd
)

by Sobolev embedding, which is a contradiction. Thus for

all R > 0,

sup
x∈Rd

∫
BR(x)

|un|2
n→∞−−−→ 0
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We shall consider the case d > 3. Let p = 2 + 4
d
, then

∫
Rd

|un|2+ 4
d 6

∫
Rd

|un|
2d
d−2

 d−2
d
∫

Rd

|un|2
 2

d

6 c

∫
Rd

|∇un|2
∫

Rd

|un|2
 2

d

6 C

Now we shall use a localisation argument. Take Q :=
[
−1

2
, 1

2

]d ⊂ Rd. Take ϕ ∈ C∞c ,

0 6 ϕ 6 1 with ϕ
∣∣
Q
≡ 1 and ϕ|(2Q)C ≡ 0. Take z ∈ Zd and define Qz := Q + z, and

ϕz = ϕ(·+ z). We have

1 6
∑
z∈Z

ϕz(x) 6 C,
∑
z∈Zd
|∇ϕz(x)|2 6 C

and thus

∫
Rd

|un|2+ 4
d =

∑
z∈Zd

∫
Rd

|un|2+ 4
d 6

∑
z∈Zd

∫
Qz

|un|
2d
d−2

 d−2
d
∫
Qz

|un|2
 2

d

Now note that

‖1Qzun‖
2
2d
d−2
6 ‖ϕzun‖2

2d
d−2
6 C‖∇(ϕzun)‖2

2 6 2C

∫ (
|∇ϕz(x)|2|un(x)|2 + |ϕz(x)|2|∇un(x)|2

)
dx

and thus

∫
Rd

|un|2+ 4
d 6 C

∑
z∈Zd

∫
Rd

(
|∇ϕz(x)|2|un(x)|2 + |ϕz(x)|2|∇un(x)|2

)
dx

∫
Qz

|un|2
 2

d

6

6 C sup
z′∈Zd

∫
Q′z

|un|2


2
d ∑
z∈Zd

∫
Rd

(
|∇ϕz(x)|2|un(x)|2 + |ϕz(x)|2|∇un(x)|2

)
dx

 6

6 C sup
z′∈Zd

∫
Q′z

|un|2


2
d∫

Rd

(
|un(x)|2 + |∇un(x)|2

)
dx

 6 C sup
z∈Zd

∫
Qz

|un|2
 2

d

−→ 0
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by the convergence proven above as
∫
Qz

|un|2 6
∫

B2(z′)

|un|2. Thus

∫
Rd

|un|2+ 4
d

n→∞−−−→ 0

Now we prove
∫
Rd
|un|p → 0 for all 2 < p < p∗ = 2d

d−2
. By interpolation, if 2 < p < 2 + 4

d
= p1,

‖un‖p 6 ‖un‖a2︸ ︷︷ ︸
6C

‖un‖1−a
p1︸ ︷︷ ︸

→0

for a ∈ (0, 1). Similarly p1 < p < p∗ as ‖un‖p∗ 6 ‖∇u‖2 6 C. q.e.d.

We shall apply this to

E0(u) =

∫
|∇u|2 +

1

2

∫ ∫
|u(x)|2w(x− y)|u(y)|dxdy

for w ∈ Lp + Lq, with max
{

1, d
2

}
< p, q <∞ and

E0(λ) = inf
{
E0(u)

∣∣u ∈ H1
(
Rd
)
, ‖u‖2

2 = λ
}

Theorem 9.14 (Concentration Compactness for the Translation Invariant Case). As-

sume that w ∈ Lp + Lq and

E0(λ) < E0(λ− λ′) + E0(λ′)

for all 0 < λ′ < λ and E0(λ′) < 0 for all 0 < λ′ 6 λ, then E0(λ) has a minimiser. �

Proof. Take un to be a minimising sequence for E0(λ). Recall that for all ε > 0

E0(λ)←− E0(un) > (1− ε)
∫
|∇un|2 − Cε

thus un is bounded in H1
(
Rd
)
. We want to prove that un is non-vanishing. Assume by

contradiction that un is vanishing,

0 > E0(λ)←− E0(un) =

∫
|∇un|2 +

1

2

∫
|un(x)|2(w ∗ |un|2)(x)dx
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which implies that ∫
|un(x)|2

(
w ∗ |un|2

)
(x)dx < −ε < 0

or all n large enough for some ε > 0.

However,

−ε >
∫
|un(x)|2

(
w ∗ |un|2

)
(x)dx >

∫
Rd

|un(x)|2dx inf
z∈Rd

(
w ∗ |un|2

)
(z)

which implies that

inf
z∈Rd

(
w ∗ |un|2

)
(z) < − ε

λ

for n large and therefore there exists a sequence (zn)n ⊂ Rd such that

(
w ∗ |un|2

)
(zn) < − ε

2λ

for n large. Thus ∫
|un(x+ zn)|2w(x)dx < − ε

2λ

and therefore ∫
|un(x+ zn)|2w(−x)dx < − ε

2λ

It follows that un(·+ zn) ⇀ 0 weakly in H1
(
Rd
)
, then∫

|un(x+ zn)|2w(−x)dx
n→∞−−−→ 0

because w ∈ Lp + Lq. Thus un(· + zn) 6⇀ 0 weakly. We know that un(· + zn) 6⇀ 0 weakly

in H1(Rd). Because un(·+ zn) is also a minimising sequence we can assume that zn = 0,

un 6⇀ 0 weakly in H1
(
Rd
)

(otherwise we consider ũn(x) = un(x+ xn)). Since un is bounded

in H1, we can go to a subsequence such that un ⇀ u0 6≡ 0 weakly in H1. Assume that∫
|un|2 = λ and that for λ′ > 0,

∫
|un − u0|2 → λ′. We have already proven that

E0(un)︸ ︷︷ ︸
→E0(λ)

−E0(u0)− E0(un − u0)︸ ︷︷ ︸
>E0(‖un−u0‖22)→E(λ′)

n→∞−−−→ 0

from which follows that

E0(u0) 6 E0(λ)− E0(λ′) 6 E0(λ− λ′)
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Thus u0 is minimiser for E0(λ−λ′) and E0(λ)+E0(λ−λ′). By the strict inequality λ−λ′ = λ

and thus ‖un‖2
2 = λ and u0 is a minimiser for E(λ). q.e.d.

——————————————————–

Applications of the Concentration-Compactness Principle

Definition 9.15 (Choquard-Pekar Problem).

E(u) :=

∫
R3

|∇u|2 +

∫
R3

V (x)|u(x)|2dx− 1

2

∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dxdy

E(λ) := inf
{
E(u),

∣∣u ∈ H1
(
R3
)
, ‖u‖2

2 = λ
}

�

Theorem 9.16. If V ∈ Lp +Lq(R3), p, q ∈
(

3
2
,∞
)

and V 6 0 then for all λ > 0, E(λ)

has a minimiser. Moreover, the minimiser solves

−∆u0 + V u0 −
(
|u0|2 ∗

1

|x|

)
u0 = µu0 in D ′

(
R3
)
.

�

Proof.

V ≡ 0

E0(u) :=

∫
R3

|∇u|2 − 1

2

∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dxdy

E0(λ) := inf
{
E0(u),

∣∣u ∈ H1
(
R3
)
, ‖u‖2

2 = λ
}

From the concentration compactness principle, we need to check

a) E0(λ) < 0

b) E0(λ) < E0(λ− λ′) + E0(λ′) for all 0 < λ′ < λ.

Proof. a) Take ϕ ∈ H1(R3), ϕ 6≡ 0, ‖ϕ‖2
2 = λ. For ` > 0, let ϕ`(x) = `3/2ϕ(`x),

‖ϕ`‖2
2 = ‖ϕ‖2

2 = λ and

E0(ϕ`) = `2

∫
|∇ϕ|2 − `1

2

∫ ∫
ϕ(x)ϕ(y)

|x− y|
dxdy = A`2 −B` < 0
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if ` > 0 small enough, as A > 0, B > 0. Thus E0(λ) 6 E0(ϕ`) < 0 if ` > 0 small

enough.

b) It follows from the following lemma that for all 0 < λ′ < λ

E0(λ) =
λ− λ′

λ
E0(λ) +

λ′

λ
< E(λ− λ′) + E0(λ′)

q.e.d.

We can thus conclude that E0(λ) has a minimiser. Then by using variational formulae

E0

(
(u0 + εϕ)

√
λ

‖u0 + εϕ‖2

)
> E0(u0)

for all ε ∈ R small and thus

0 =
d

dε
(· · ·)

∣∣∣∣
ε=0

=⇒ −∆u0 −
(
|u0|2 ∗

1

|x|

)
u0 = µu0

with µ 6 0, and λ 7→ E0(λ) is decreasing.

V 6 0.V 6≡ 0 We need to prove the binding inequality

E(λ) < E(λ− λ′) + E0(λ′)

for all 0 < λ′ 6 λ. Using the second of the following lemmata we can conclude that

E(λ) =
λ− λ′

λ
E(λ) +

λ′

λ
E(λ) 6 E(λ− λ′) + E(λ′)

To conclude, we need to show that E(λ′) < E0(λ′) for all 0 < λ′ 6 λ. By the case

V ≡ 0, we have E0(λ′) has a minimiser, uλ′ and

E(λ′)− E0(λ′) 6 E(uλ′)− E0(uλ′) =

∫
V (x)|uλ′(x)|2dx

Assume for the sake of contradiction that E(λ′) = E0(λ′) for which we would need∫
V (x)|uλ′(x)|2dx > 0

and thus V (x)|uλ′(x)|2 = 0 a.e. (since V 6 0). Thus V (x) = 0 for a.e. x such that
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uλ′(x) 6= 0. Since E0(u) is translation invariant, uλ′ is a minimiser for E0(λ′). Thus

uλ′(·+ y) is also a minimiser for E0(λ′) for all y ∈ R3.

By the above argument it follows that V (x) = 0 for a.e. x such that uλ′(x+ y) 6= 0 for

all y ∈ R3.

Here
∫
|uλ′ |2 = λ′ > 0 and thus uλ′ 6≡ 0, hence there must exists a ball Br(z) such that

uλ′ 6= 0 for a.e. x ∈ Br(z). Hence V (x) = 0 for a.e. x ∈ R3 which is a contradiction to

the assumption V 6≡ 0.

Thus E(λ′) < E0(λ′) for all 0 < λ′ and E(λ) < E(λ− λ′) + E0(λ′) for all 0 < λ′ < λ.

Therefore, E(λ) has a minimiser and the equation follows similarly to E0(λ).

q.e.d.

Lemma 9.17. For all λ > 0, for all 0 < ϑ < 1

ϑE0(λ) < E0(ϑλ).

�

Proof. Take fn a minimising sequence for E0(ϑλ), i.e. ‖fn‖2
2 = ϑλ, E0(fn)→ E0(ϑλ). Define

gn = fn√
ϑ
, ‖gn‖2

2 = λ.

Thus

E0(λ) 6 E0(gn) = E0

(
fn√
ϑ

)
1

ϑ

∫
|∇fn|2 −

1

ϑ2

∫ ∫
|fn(x)|2|fn(y)|2

|x− y|
=

=
1

ϑ
E0(fn) +

(
1

ϑ
− 1

ϑ2

)
1

2

∫ ∫
|fn(x)|2|fn(y)|2

|x− y|

Using E0(fn)→ E0(ϑλ) and

1

2

∫ ∫
|fn(x)|2||fn(y)|2

|x− y|
=

∫
|∇fn|2 − E0(fn) > −E0(fn) −→ −E(ϑλ)

and thus

E0(λ) 6
1

ϑ
E0(ϑλ) +

(
1

ϑ
− 1

ϑ2

)(
−E0(ϑλ)

)
=
E0(ϑλ)

ϑ2
<
E0(ϑλ)

ϑ

since 0 < ϑ < 1, E0(ϑλ) < 0.

q.e.d.
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Lemma 9.18. Suppose that V 6 0, V 6≡ 0. For all λ > 0, for all 0 < ϑ < 1

ϑE(λ) 6 E(ϑλ).

�

Proof. Similar to the previous lemma. q.e.d.

Gagliardo-Nirenberg Interpolation Inequality

‖∇u‖α2‖u‖d−α2 > c‖u‖p

for all 2 < p < p∗ with p∗ = 2d
d−2

if d > 3 and p∗ = ∞ if d = 1, 2. By a scaling argument
1
p

= d−2
2d
α + 1−α

2
, α ∈ (0, 1).

Remark 9.19. u`(x) = `
d
2u(`x), ‖u`‖2 = ‖u‖2

‖∇u`‖α2‖u`‖1−α
2

‖u`‖p

is independent of `. �

Theorem 9.20. For these p, α, then the variational problem

E = inf

{
‖∇u‖α2‖u2‖1−α

2

‖u‖p

∣∣∣∣u ∈ H1
(
Rd
)
, u 6≡ 0

}
has a minimiser. The minimiser can be chosen such that Q > 0 and

−∆Q+Q−Qp−1 = 0, in D ′(Rn).

�
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Thomas Fermi Problem

E(ρ) =

∫
R3

ρ
5/3 −

∫
Z

|x|
ρ(x)dx+

1

2

∫
R3

1

2

∫
R3

ρ(x)ρ(y)

|x− y|
dxdy

E(λ) =

{
inf E(ρ)

∣∣ ρ > 0, ρ ∈ L1 ∩ L5/3,

∫
ρ = λ

}

Theorem 9.21. Let Z > 0 constant. Then for all λ ∈ (0, Z], E(λ) has a unique

minimiser. Moreover the minimiser ρ0 satisfies

5

3
ρ

2/3
0 (x) =

[
Z

|x|
− ρ0 ∗

1

|x|
+ µ

]
+

for some constant µ 6 0. Moreover, E(λ) has no minimiser if λ > Z. �

Proof. Take a minimising sequence ρn for E(λ). We want to prove ρn is bounded in L5/3.

∫
Z

|x|
ρn(x) =

∫
|x|61

+

∫
|x|>1

6 Z

 ∫
|x|61

1

|x|5/2


2/5 ∫

|x|61

ρ
5/3
n


3/5

+ Z

∫
|x|>1

ρn(x)dx 6 CZ

(∫
ρ

5/3
n

)3/5

+ Zλ

This implies that

E(λ)←− E(ρn)−
∫
ρ

5/3
n − CZ

(∫
ρ

5/3
n

)3/5

− Zλ

Thus E(λ) > −∞ and ρn is bounded in L5/3. By going to a subsequence we may assume

that ρn ⇀ ρ0 weakly in L5/3. We have to prove that

lim inf E(ρn) > E(ρ0)
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By weak convergence we have

lim inf
n→∞

∫
ρ

5/3
n >

∫
ρ

5/3
0

lim
n→∞

∫
Zρn(x)

|x− y|
=

∫
Zρ0(x)

|x− y|

lim inf
n→∞

∫ ∫
ρn(x)ρn(y)

|x− y|
>
∫ ∫

ρ0(x)ρ0(y)

|x− y|

where the last one is an exercise. Thus

E(λ) = lim E(ρn) > E(ρ0) > E(λ0)

with λ0 =
∫
ρ0.

To prove that ρ0 is a minimiser for E(λ), need to prove that λ0 = λ. Assuming that λ0 < λ.

Then E(λ) > E(ρ0) > E(λ0) > E(λ), hence

E(ρ0) = E(λ0) = E(λ) = E(λ′)

for all λ′ ∈ [λ0, λ].

Concerning the variational equation for ρ0 we have E(ρ0 + εϕ) > E(ρ0) for all ϕ ∈ L1 ∩L5/3,

ϕ > 0 and ε > 0 small enough. Thus

d

dε
E(ρ0 + εϕ)

∣∣∣∣
ε=0

> 0

Thus ∫
5

3
ρ

2/3ϕ−
∫

Z

|x|
ρ0ϕ+

∫ (
ρ0 ∗

1

|x|

)
ϕ >

and therefore ∫ (
5

3
ρ

2/3
0 −

Z

|x|
+ ρ∗ ∗

1

|x|

)
ϕ > 0

for all ϕ ∈ L1 ∩ L5/3, and ϕ > 0. Using he following lemma it follows that

5

3
ρ

2/3
0 (x)− Z

|x|
+ ρ0 ∗

1

|x|
> 0

Contradiction to
∫
ρ0 = λ0 < λ 6 Z. Using the convexity we find that ρ0 is a minimiser for

E(λ0) implies that ρ0 is unique.

?????????????????????????????????
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Assume that E(λ) has a minimiser ρ0 (λ not necessarily 6 Z), then for all ρ ∈ L1 ∩ L5/3,∫
ρ = λ

E(ρ0) 6 E(ρ)

Choose ρε = ρ0 + εϕ, for ϕ ∈ L1 ∩ L5/3,
∫
ϕ = 0 and ϕ(x) > −Cρ0(x) for all x. Then

E(ρ0) 6 E(ρε)

for all ε > 0 small enough. This implies that

d

dε
E(ρε)

∣∣∣∣
ε=0

> 0

And therefore ∫ (
5

3
ρ

2/3 − Z

|x|
+ ρ0 ∗

1

|x|

)
︸ ︷︷ ︸

=:W

ϕ > 0

Choose ϕ = g −
∫
g

λ
ρ0,
∫
ϕ =

∫
g −

∫
g

λ

∫
ρ0 = 0 with g ∈ L1 ∩ L5/3, g(x) > −Cρ0(x). This

implies that

0 6
∫
Wϕ =

∫
W

(
g −

∫
ρ

λ
ρ0

)
=

∫
Wg −

∫
Wρ0

λ

∫
ρ =

∫
(W − µ)ρ

with µ :=
∫
Wρ0

λ
∈ R. We deduce thatW (x)− µ = 0, if ρ0(x) > 0

W (x)− µ > 0, for all x ∈ R3

and therefore

5

3
ρ

2/3
0 −

Z

|x|
+ ρ0 ∗

1

|x|
− µ

= 0, if ρ0(x) > 0

> 0, for all x ∈ R3

which in turn implies

5

3
ρ

2/3
0

= Z
|x| − ρ0 ∗ 1

|x| + µ, if ρ0(x) > 0

> Z
|x| − ρ0 ∗ 1

|x| + µ, for all x ∈ R3
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and thus
5

3
ρ

2/3
0 =

[
Z

|x|
− ρ0 ∗ ∗

1

|x|
+ µ

]
+

Now we shall show that µ 6 0. Assume that µ > 0. Then the Thomas Fermi equation reads

5

3
ρ

2/3 > µ−
∣∣∣∣ Z|x| − ρ0 ∗

1

|x|

∣∣∣∣
and

ρ0 ∗
1

|x|
=

∫
ρ0(y)

|x− y|
dy =

∫
ρ0(y)

max{|x|, |y|}
6

∫
ρ0

|x|
=

λ

|x|

which implies that

µ 6
5

3
ρ

2/3
0︸︷︷︸

∈L3/2

+
Z + λ

|x|

and therefore µ 6 0.
5

3
ρ

2/3 > µ− Z + λ

|x|
µ>0

>
µ

2

for |x| large this implies (
5

3
ρ

2/3
0

) 3
2

︸ ︷︷ ︸
∈L1

>
(µ

2

)3/2

for |x| large.

We remark here that µ < 0 if λ =
∫
ρ < Z and that µ = 0 if λ = Z, the proof of which is

left as an exercise.

We shall now prove the non-existence of a minimiser for λ > Z. The proof presented was

first given by Simon-Lieb. We have the Thomas Fermi equation

5

3
ρ

2/3 =

[
Z

|x|
− ρ∗ ∗

1

|x|
+ µ

]
+

, µ 6 0

Assume that
∫
ρ0 > Z, and define

f(x) :=
Z

|x|
− ρ∗ ∗

1

|x|
+ µ
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• f(x) < 0 if |x| large. Since

f(x) 6
Z

|x|
− ρ∗ ∗

1

|x|
=

Z

|x|
−
∫

ρ(y)

max{|x|, |y|}
dy 6

Z

|x|
−
∫
|y|6R

ρ0(y)

max{|x|, |y|}
dy =

=

Z − ∫
|y|6R

ρ0

 1

|x|

if |x| > R. Since ∫
|y|6R

ρ0
R→∞−−−→

∫
R3

ρ0 = λ > Z =⇒ Z −
∫
|y|6R

ρ0 < 0

if R large.

• f(x) > 0 if |x| is small enough

f(x) =
Z

|x|
− ρ0 ∗

1

|x|
+ µ =

Z

|x|
−
∫

ρ0(y)

max{|x|, |y|}
dy + µ >

Z

|x|
−
∫
ρ0(y)

|y|
+ µ > 0

if |x| small.

• The Thomas Fermi equation reeds

5

3
ρ

2/3
0 = [f(x)]+ =⇒ ρ0 = 0

if |x| large enough since f(x) < 0. Define Ω =
{
x ∈ R3

∣∣ f(x) < 0
}

. Ω is open, Ω 6= ∅
and 0 /∈ Ω.

On Ω, we have

∆f(x) = ∆

(
Z

|x|
− ρ∗ ∗

1

|x|
+ µ

)
= 4πρ0

TF
= 0

as −∆ 1
|x| = 4πdelta0. Thus f is harmonic on Ω.

By the maximum principle infΩ f > inf∂Ω f = 0, which is a contradiction.

We shall now present a second proof. Using the Thomas-Fermi equation

5

3
ρ

2/3
0 =

[
Z

|x|
− ρ0 ∗

1

|x|
+ µ

]
+
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which implies that
5

3
ρ

5/3
0︸ ︷︷ ︸
>0

=
Z

|x|
ρ0 −

(
ρ∗ ∗

1

|x|

)
ρ∗ + µρ0︸︷︷︸

60

and thus
Z

|x|
ρ0(x) >

(
ρ0 ∗

1

|x|

)
ρ0(x)

for all x. Integrating against |x|k1|x|6R we find that∫
|x|6R

Z

|x|
|x|kρ(x)dx >

∫
|x|6R

(
ρ0 ∗

1

|x|

)
|x|kρ0(x)dx 6

∫
|x|6R

∫
|y|6R

ρ0(y)|x|kρ(y)

max{|x|, |y|}
dxdy

Using the elementary inequality

∀x, y ∈ R3 \ {0} :
|x|k + |y|k

2 max{|x|, |y|}
>
|x|k−1 + |y|k−1

2

(
1− 1

k

)
.

Now ∫
|x|6R

Z|x|k−1ρ0(x)dx >
∫
|x|6R

∫
|y|6R

ρ0(x)ρ0(y)

(
1− 1

k

)(
|x|k−1 + |y|k−1

2

)
dxdy =

=

 ∫
|x|6R

ρ0(x)|x|k−1dx


 ∫
|y|6R

ρ0(y)dy

(1− 1

k

)

which implies that

Z >

 ∫
|y|6R

ρ0(y)dy

(1− 1

k

)

for all R > 0, for all k ∈ N. Passing R→∞ and k →∞ we find that

Z >
∫
ρ0 = λ

To prove of the elementary inequality we need to prove that for M > m > 0, then

Mk +mk

M
>

(
1− 1

k

)(
Mk−1 +mk−1

)
⇐⇒

(
Mk−1 +

mk

M

)
k > (k − 1)

(
Mk−1 +mk−1

)
⇐⇒

⇐⇒ Mk−1 + k
mk

M
> (k − 1)mk−1
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Using the Arithmetic Mean- Geometric Mean, in equality, i.e. that for all a1, . . . , ak > 0

a1 + a2 + · · ·+ ak
k

> k
√
a1a2 · · · ak

consequently

Mk−1 +
mk

M
+
mk

M
+ · · ·+ mk

M︸ ︷︷ ︸
k -1

> k

(
Mk−1

(
mk

M

)k−1
) 1

k−1

from which the inequality follows.

q.e.d.

Lemma 9.22. λ 7→ E(λ) is decreasing. �

Lemma 9.23. If
∫
fϕ > 0, for all ϕ ∈ D , ϕ > 0, then f > 0 a.e. �

Lemma 9.24. ρ 7→ E(ρ) is a convex functional.

E(ρ1) + E(ρ2) > 2E
(
ρ1 + ρ2

2

)
�



Chapter 10

Boundary Value Problem

Example 10.1. Let Ω be open, bounded in Rd.

1) The Dirichlet problem

−∆u+ u = f in Ω

u = g on ∂Ω

2) The von Neumann problem

−∆u+ u = f in Ω

∂u

∂n
= η on ∂Ω

where ∂u
∂n

= ∇u·n, where n is the unit normal vector field to the boundary surface,

if it exists.

We need

• Sobolev spaces in Ω

• Value of H1 function on ∂Ω ; trace theorem, as for d > 2 H1
(
Rd
)
6⊂ C

(
Rd
)
.

Definition 10.2.

Hm(Ω) :=
{
f ∈ L2(Ω)

∣∣Dαf ∈ L2(Ω), |α| 6 m
}

115
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where Dαf = g in D ′(Ω) iff

(−1)|α|
∫
f(Dαϕ) =

∫
gϕ

for all ϕ ∈ C∞c (Ω). �

Theorem 10.3. Hm(Ω) is a Hilbert space for every m ∈ N, with norm

‖u‖2
Hm :=

∑
|α|6m

‖Dαu‖2
2

�

We want given u ∈ H1(Ω), find a ũ ∈ H1
(
Rd
)

such that ũ
∣∣
Ω

= u. For this we need some

smoothness of ∂Ω.

Example 10.4. Extension by reflection. Let x ∈ Rd, with x = (x′, xd), x
′ = (x1, . . . , xd−1).

Let

Q =
{
x ∈ Rd

∣∣ |x′| < 1, |xd| < 1
}

which for example is a cylinder in d = 3. Further let

Q+ :=
{
x ∈ Q

∣∣xd > 0
}
, Q0 :=

{
x ∈ Q

∣∣xd = 0
}
, Q− :=

{
x ∈ Q

∣∣xd < 0
}

Theorem 10.5. Given u ∈ H1(Q+), define

u∗(x′, xd) :=

u(x′, xd), if (x′, xd) ∈ Q+

−u(x′,−xd), if (x′, xd) ∈ Q−

Then u∗ ∈ H1(Q) and ‖u∗‖H1(Q) 6 2‖u‖H1(Q+) and ‖u∗‖L2(Q) 6 2‖u‖L2(Q+) �

Proof. We have

∂xiu
∗ = (∂xiu)∗

if i = 1, . . . , d− 1 and

∂xdu
∗ =

∂ud(x′, xd), if xd > 0

−∂ud(x′,−xd), if xd < 0
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in the distributional sense. If u ∈ C∞ then this is trivial. In the general case u ∈ H1(Ω)

and let ϕ ∈ C∞c (Q). We want to prove∫
Q

u∗(x′, xd)∂xdϕdx = −
(∫

Q+

∂xdu
∗(x′, xd)ϕdx+

∫
Q−

(∂xdu
∗(x′,−xd))ϕdx

)
Defining ϕ̃(x′, xd) = ϕ(x′, xd)− ϕ(x′,−xd) with (x′, xd) ∈ Q+ then this is equivalent to∫

Q+

u∂xdϕ̃ = −
∫
Q+

∂xduϕ̃

This is trivial if ϕ̃ ∈ C∞c (Q+). More generally consider ηεϕ̃ ∈ C∞c (Q+) with ηε(xd) = η
(
xd
ε

)
with η(t) = if t 6 1

2
, η(t) = 1 if t > 1 and η ∈ C∞. Per definitionem of ∂xdu in Q+, we have∫

Q+

u(∂xd(ηεϕ̃)) =

∫
Q+

∂du(ηεϕ̃).

Taking ε→ 0 we find that ∫
Q+

∂xdu(ηεϕ̃) −→
∫
∂xduϕ̃

by dominated convergence as ηε(xd)→ 1 and

|∂xdu(ηεϕ̃)| 6 C|∂xduϕ̃| ∈  L1(Q+)

Moreover, ∫
Q+

u(∂xd(ηεϕ̃)) =

∫
Q+

u(∂xdηε)ϕ̃+

∫
Q+

uηε∂xdϕ̃

Here ∫
Q+

uηε∂xdϕ̃ −→
∫
u∂xdϕ̃

by dominated convergence. It remains to prove that
∫
Q+

u(∂xdηε)ϕ̃→ 0. Because ηε = η
(
xd
ε

)
we have

|∂xdηε| 6
C

ε
1{0<|xd|<ε}

And C 1(Q) 3 ϕ̃(x′, xd) = ϕ(x′, xd)− ϕ(x′,−xd) and ϕ(x′, 0) = 0. Thus we have

|ϕ̃(x′, xd)| 6 C|xd| 6 Cε
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if 0 < |xd| < ε. Thus∣∣∣∣∣∣
∫
Q+

u(∂xdηε)ϕ̃

∣∣∣∣∣∣ 6
∫
Q+

u
C

ε
1{0<|xd|<ε}cε = Cc

∫
Q+∩{0<|xd|<ε}

u −→ 0

by dominated convergence. We conclude that needed equality is correct.

q.e.d.

Definition 10.6 (Extension Problem). If u ∈ H1(Ω), when does there exist a Pu ∈
H1
(
Rd
)

such that, Pu
∣∣
Ω

= u, ‖Pu‖H1 6 C‖u‖H1 . �

Example 10.7. Let Ω = [0, 1]d ⊂ Rd. Then extension is easy by reflection we can

extend u ∈ H1(Ω) by ũ ∈ H1(Ω′) with Ω ⊂ Ω′ such that η = 1 on Ω. Define ηũ ∈ H1(Ω′)

and as compact support. Extend ηũ to H1
(
Rd
)

setting it to 0 outside Ω′. Thus the of

u ∈ H1(Ω)

Theorem 10.8 (Urysohn’s Lemma). If Ω,Ω′ are open with Ω ⊂ Ω′ then there exists

η ∈ C∞c (Ω′) such that η = 1 on Ω. �

Definition 10.9 (C 1- boundary condition on Ω). Let Ω be open, bounded set in Rd.

We say that ∂Ω is C 1 if for all x ∈ ∂Ω, there exists an open neighbourhood such that

there exists h : U → Q satisfying

• h ∈ C 1 and h−1 ∈ C 1,

• h(U ∩ Ω) = Q+,

• h(U ∩ ∂Ω) = Q0.

�

Theorem 10.10. Assume that Ω is open and bounded and has a C 1 boundary. Then

for all u ∈ H1(Ω) there exists a Pu ∈ H1
(
Rd
)

such that Pu
∣∣
Ω

= u, ‖Pu‖H1(Rd) 6
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C‖u‖H1(Ω), ‖Pu‖L2(Rd) 6 C‖u‖L2(Ω) and Pu has compact support. Here the constant C

depends only on Ω, but is independent of u. �

Proof.

Step 1 (Local Map) By the definition of C 1 condition, for all x ∈ ∂Ω there exist open

neighbourhood Ux satisfying the Q conditions. Thus ∂Ω ⊂
⋃
x∈∂Ω Ux. Since ∂Ω is

compact, there exists a finite subcover {Ux1 , . . . Uxn} also covering ∂Ω.

Step 2 (Partition of Unity) Let Ui := Uxi if i = 1, . . . , n and U0 = Ω. Then there exist

ηi ∈ C∞c (Ui) for all i = 0, . . . , n such that ηi > 0 and
∑N

i=0 ηi
∣∣
Ω

= 1, as follows from

the existence of partitions of unity subordinate to the cover
{

Ω, U1, . . . , Un,Ω
C
}

.

Step 3 We write u =
∑n

i=0 ηiu =
∑n

i=0 ui where ui := ηiu, i = 0, . . . , n. We want to extend

every ui to a function H1(Rd). For i = 0 we can do this by defining

ũ0(x) :=

u0(x), if x ∈ Ω

0, if x /∈ Ω

Then ũ0 ∈ H1
(
Rd
)

and ũ0

∣∣
Ω

= u0.

For 1 6 i 6 n. Per definitionem there exist hi : Ui → Q satisfying all conditions in C 1-

boundary condition. As ui = ηiu ∈ H1(Ui ∩ Ω) it follows that vi := ui ◦h−1
i ∈ H1(Q+),

because h−1 ∈ C 1.

We can extend vi to v∗i ∈ H1(Q) by reflection. Define ũi := v∗i ◦hi ∈ H1(Ui) as hi ∈ C 1.

Since ui = ηiu with ηi ∈ C∞c (Ui) it follows that ũi has compact support in Ui and thus

can be extended trivially to all Rd

Conclusion Defining ũ :=
∑n

i=0 ũi we have

• ũ|Ω =
∑n

i=0 ũi
∣∣
Ω

=
∑n

i=0 ui = u

• ũ has compact support.

• ‖ũ‖H1(Rd) 6 C‖u‖H1(Ω) and ‖ũ‖L2(Rd) 6 c‖u‖L2(Ω) follows from the construction.

q.e.d.

Theorem 10.11 (Sobolev Inequality in Ω). Assume that Ω is open, bounded and has
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C 1 boundary. Then ‖u‖H1(Ω) > C‖u‖Lp(Ω) for all p with
p 6 2d

d−2
, if d > 3

p <∞, if d = 2

p 6∞, if d = 1

Moreover, if {un} is bounded in H1(Ω), then there exists a subsequence such that un → u

strongly in Lp(Ω) for all p with
p < 2d

d−2
, if d > 3

p <∞, if d = 2

p 6∞, if d = 1

In particular H1(Ω) ⊂ C
(
Ω
)
, if Ω ⊂ R. �

Proof. If u ∈ H1(Ω), then there exists ũ ∈ H1
(
Rd
)

such that ũ
∣∣
Ω

= u and ‖ũ‖H1(Rd) 6

C‖ũ‖H1(Ω). By the Sobolev inequality in H1
(
Rd
)

we have

‖u‖Lp(Ω) 6 ‖ũ‖Lp(Rd) 6 C‖ũ‖H1 6 c‖u‖H1 .

The remaining assertions are similarly to Sobolev compact embedding. q.e.d.

Remark 10.12. The constant C is independent of u. �

Theorem 10.13 (Density). C∞
(
Ω
)

is dense in H1(Ω) but C∞c (Ω) is not dense in

H1(Ω). �

Definition 10.14.

H1
0 (Ω) := C∞c (Ω)

H1(Ω)
( H1(Ω) = C∞c (Ω)

H1(Ω)
.

�
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Example 10.15. In one dimension H1(Ω) ⊂ C
(
Ω
)

for all Ω ⊂ R. If u ∈ H1(Ω),

then u(x0) is well-defined, i.e. there exists exactly one continuous representative of the

equivalence class u which we may use define u(x0).

If Ω = (0, 1), and u ∈ H1
0 ((0, 1)), then u(0) = u(1) = 0.

Proof. u ∈ H1
0 ((0, 1)) implies that there exists a sequence (un)n ∈ C∞c ((0, 1)) such that

un
n→∞−−−→ u in H1. Thus un(x)→ u(x) for all x ∈ (0, 1) because H1((0, 1)) ⊂ C ((0, 1)),

and therefore u(0) = u(1) = 0. q.e.d.

Indeed we shall prove that

H1
0 ((0, 1)) =

{
u ∈ H1((0, 1))

∣∣u(0) = u(1) = 0
}
( H1(0, 1).

10.1 Trace on Rd (d > 1)

Consider the set

Rd
+ =

{
x = (x′, xd) ∈ Rd

∣∣xd > 0
}

If u ∈ H1
(
Rd

+

)
, the is u

∣∣
Rd0

well-defined?

Theorem 10.16 (Trace Theorem in Rd
+). If u ∈ C∞c

(
Rd
)
, then for Γ = Rd−1 × {0}

‖u‖L2(Γ) 6 C‖u‖H1(Rd+)

where C is independent of u. �

Proof.

|u(x′, 0)|2 =

∣∣∣∣∣∣−
∞∫

0

d

dxd
|u(x′, xd)|2dxd

∣∣∣∣∣∣ 6
∞∫

0

2|u(x′, xd)|
∣∣∣∣ ddxdu(x′, xd)

∣∣∣∣dxd 6
6

∞∫
0

(
|u(x′, xd)|2 +

∣∣∣∣ ddxdu(x′, xd)

∣∣∣∣2
)

dxd
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Integrating over x′ ∈ Rd−1 one finds that

∫
Rn−1

|u(x′, 0)|2dx′ 6
∫

Rn−1

∞∫
0

(
|u(x′, xd)|2 +

∣∣∣∣ ddxdu(x′, xd)

∣∣∣∣2
)

dxd 6 ‖u‖2
H1(Rd+)

q.e.d.

Thus we can define the trace operator

tr :
C∞c

(
Rd
)
−→ L2(Γ)

u 7−→ u
∣∣
Γ

This is a bounded linear function (i.e. continuous) on a dense subset of H1
(
Rd

+

)
and therefore

may be uniquely extended to the whole space.

Theorem 10.17 (Trace Theorem in Ω). Let Ω ⊂ R6d be bounded, open, ∂Ω ∈ C 1.

Then the there exists a trace operator

tr :
H1(Ω) −→ L2(∂Ω)

u 7−→ u
∣∣
∂Ω

satisfying

• if u ∈ H1(Ω) ∩ C
(
Ω
)
, then u

∣∣
∂Ω

= u restricted to ∂Ω.

• ‖u‖L2(Ω) 6 C‖u‖H1(Ω) for all u ∈ H1(Ω), with C independent of u.

�

Proof. As in the proof of Theorem 10.10 we have ∂Ω ⊂
⋃n
i=1 Ui with Ui open and for

all i there exists a hi : Ui → Q, with hi, h
−1
i ∈ C 1, hi(Ui) = Q, hi(Ui ∩ Ω) = Q+ and

hi(Ui ∩ ∂Ω) = Q0. Also there exists a smooth partition of unity (ϑi)i subordinate to the

cover
{

Ω, U1, . . . , Un,Ω
C
}

. Define ui = ϑiu.

For every i = 1, . . . , n, we have wi = ui ◦ h−1
i and wi ∈ H1(Qi). Indeed, we can extend

wi to H1
(
Rd

+

)
by setting wi(x) = 0, if x /∈ Q. By the Trace theorem in Rd

+ we can define

wi
∣∣
Q0
∈ L2(Q0), with ‖wi

∣∣
Q0
‖L2(Q0) 6 ‖wi‖H1(Q+). Define

ui
∣∣
∂Ω∩Ui

:= wi
∣∣
Q
◦ hi ∈ L2(∂Ω ∩ Ω)



10.1. TRACE ON RD (D > 1) 123

and define

u
∣∣
∂Ω

:=
n∑
i=1

ui
∣∣
∂Ω∩Ω

∈ L2(∂Ω)

Moreover

‖u‖L2(∂Ω) 6 C
n∑
i=1

‖ui‖L2(∂Ω∩Ui) 6 C

n∑
i=1

‖wi‖L2(Q+) 6 C

n∑
i=1

‖wi‖H1(Q+) 6 C

n∑
i=1

‖ui‖H1(Ω) 6 C‖u‖H1(Ω)

q.e.d.

Remark 10.18. The trace operator u 7→ u
∣∣
∂Ω

is bounded. �

Theorem 10.19. The trace operator u 7→ u
∣∣
∂Ω

is bounded as an operator H1(Ω) →
H1/2(∂Ω). Consequently, u 7→ u

∣∣
∂Ω

is a compact mapping H1(Ω)→ L2(∂Ω).

H1(Ω)
cont.
⊂ H

1/2(∂Ω)
comp.
⊂⊂ L2(∂Ω)

�

Definition 10.20 (Fractional Sobolev Spaces).

H
1/2(Rd) :=

u ∈ L2
(
Rd
) ∣∣∣∣∣∣
∫
Rd

(1 + 2π|k|)|û(k)|2dk <∞


with the norm

‖u‖2
H1/2(Rd)

=

∫
Rd

(1 + 2π|k|)|û(k)|2dk.

�

Remark 10.21. This definition extend the notion of nth using the equivalent definition

of the standard Sobolev

H1(Rd) :=

u ∈ L2
(
Rd
) ∣∣∣∣∣∣
∫
Rd

(1 + 2π|k|)2|û(k)|2dk <∞


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Further we may define use this definition to define
√
−∆, via〈

u,
√
−∆u

〉
= 〈û, | k | û〉 =

∫
Rd

2π|k||û(k)|2dk.

�

Theorem 10.22 (Sobolev Inequality for H1/2
(
Rd
)
).

‖u‖H1/2(Rd) > C‖u‖Lq(Rd)

for all q 6 q∗ with

q∗ =

 2d
d−1

, if d > 2

∞, if d = 1

And if {un} is bounded in H1/2
(
Rd
)
, then un ⇀ u in H1/2

(
Rd
)

and un1B → u1B strongly

in L2(B) for all B bounded.

�

Corollary 10.23. If Ω is bounded and ∂Ω ∈ C 1, then

H1
0 (Ω) =

{
u ∈ H1(Ω),

∣∣u∣∣
∂Ω

= 0
}

Moreover

‖u‖2
H1

0
:=

∫
Ω

|∇u|2 > C‖u‖H1(Ω).

�

Proof. Since H1
0 (Ω) = C∞c (Ω)

H1(Ω)
, if u ∈ H1

0 (Ω) there exists (un)n ⊂ C∞c (Ω) such that

un
n→∞−−−→ u strongly in H1(Ω). Then by continuity of the trace operator

0 = un
∣∣
∂Ω
−→ u

∣∣
∂Ω

=⇒ u
∣∣
∂Ω

= 0

For the converse, let u ∈ H1(Ω) and suppose that u
∣∣
∂Ω

, then u ∈ H1
0 (which is left as an

exercise).



10.1. TRACE ON RD (D > 1) 125

To prove∫
Ω

|∇u|2 > C‖u‖2
H1(Ω) = C

∫
Ω

(
|∇u|2 + |u|2

)
⇐⇒

∫
Ω

|∇u|2 > C‖u‖2
H1(Ω) = C

∫
Ω

|u|2

Assume by contradiction that the latter inequality fails. Then there exits a sequence (un)n ⊂
H1

0 (Ω) such that
∫

Ω
|un|2 = 1, but

∫
Ω
|∇un|2 → 0. Since un is bounded in H1(Ω), we can

descend to a subsequence and assume that un → u weakly in H1(Ω) and thus strongly in

L2(Ω). We have ∫
Ω

|u|2 = lim
n→∞

∫
Ω

|un|2 = 1

∫
Ω

|∇u|2 6 lim inf
n→∞

∫
Ω

|∇un|2 = 0

i.e. u = const on Ω, which means that u = const 6= 0. But

0 = un
∣∣
∂Ω
−→ u

∣∣
∂Ω

strongly in L2(∂Ω) and thus u
∣∣
∂Ω

= 0 which is a contradiction. E q.e.d.

Consider the Dirichlet problem −∆u+ u = f in Ω

u
∣∣
∂Ω

= 0

Theorem 10.24. If f ∈ L2(Ω), then there exits a unique u ∈ H1
0 (Ω) such that u is a

solution of the Dirichlet problem in the distributional sense. Further∫
Ω

∇u · ∇ϕ+

∫
Ω

uϕ =

∫
Ω

fϕ

for all ϕ ∈ H1
0 (Ω), and u minimises

E = inf

1

2
‖v‖H1 −

∫
Ω

fv

∣∣∣∣∣∣ v ∈ H1
0


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�

Proof. Using that T : ϕ 7→
∫
fϕ is a continuous functional on L2(Ω) it follows that T is

continuous on H1
0 (Ω), then by the Riesz representation theorem if follows that there exists

a unique u ∈ H1
0 such that 〈u, ·〉H1 = 〈f, ·〉L2 (where we used that H1

0 (Ω) is a Hilbert space

with norm ‖ · ‖H1(Ω)). Thus for all ϕ ∈ H1
0 (Ω)∫

fϕ =

∫
∇u · ∇ϕ+

∫
uϕ

and for ϕ ∈ C∞c (Ω) ∫
fϕ = −

∫
u∆ϕ+

∫
uϕ

which implies that

f = −∆u+ u in D ′(Ω)

q.e.d.

Consider the von Neumann problem−∆u+ u = f in Ω

∂u
∂n

= 0 on ∂Ω

Theorem 10.25. For all f ∈ L2(Ω) there exists a unique u ∈ H1(Ω) such that it solves

the von Neumann problem in the distributional sense and∫
Ω

∇u · ∇ϕ+

∫
Ω

uϕ =

∫
Ω

fϕ

for all ϕ ∈ H1(Ω). Moreover, u minimises

E = inf

‖v‖2
H1(Ω) −

∫
Ω

fv

∣∣∣∣∣∣ v ∈ H1(Ω)


�
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Remark 10.26. ∂u
∂n

∣∣
∂Ω

is well-defined if u ∈ H2(Ω), since then

H1 3 ∇u 7−→ ∇u
∣∣
∂Ω

makes sense by the trace theorem, therefore need some regularity.

To motivate this consider the case u ∈ C 2(Ω), −∆u+ u = f pointwise. Using∫
Ω

∇u · ∇ϕ =

∫
Ω

(−∆u)ϕ+

∫
∂Ω

∂u

∂n
ϕ =

∫
fϕ−

∫
uϕ

by the PDE. But ∫
(−∆)ϕ =

∫
fϕ−

∫
uϕ

by equation −∆u = fu and there ∫
∂Ω

∂u

∂n
ϕ = 0

for all ϕ ∈ C 2(Rd), ∂u
∂n

= 0 on ∂Ω. �

When is a weak solution in H2(Ω)? Does f ∈ L2(Ω) imply that ∆u ∈ L2(Ω). If Ω = Rd, it

is true that u,∆u ∈ L2, then u ∈ H2 (via the Fourier transform). If Ω is a bounded set one

has to be more careful.

Definition 10.27. We say that ∂Ω ∈ C 2 if for all x ∈ ∂Ω, there exists an open

neighbourhood U of x, such that

• there exists h : U → Q such that h ∈ C 2
(
U
)
, h ∈ C 2

(
h
(
U
))

.

• h(U ∩ Ω) = Q+

• h(U ∩ ∂Ω) = Q0.

�

Theorem 10.28 (Regularity). Assume that Ω has ∂Ω ∈ C 2 and f ∈ L2.
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1) If u ∈ H1
0 (Ω), for all ϕ ∈ H1

0 (Ω)∫
∇u · ∇ϕ+

∫
uϕ =

∫
fϕ

then u ∈ H2(Ω).

2) If u ∈ H1(Ω), for all ϕ ∈ H1(Ω)∫
∇u · ∇ϕ+

∫
uϕ =

∫
fϕ

then u ∈ H2(Ω) and
∂u

∂n
= n · ∇u = 0, on ∂Ω.

�

We shall prove this via the translation method by Nirenberg. But first we shall need a

lemma.

Definition 10.29. For h ∈ Rd we define

(Dhu)(x) =
u(x+ h)− u(x)

|h|
.

�

Lemma 10.30. Let u ∈ L2(Ω), then the following are equivalent

(i) u ∈ H1(Ω)

(ii)

sup
ϕ∈D(Ω)
‖ϕ‖261

∣∣∣∣∣∣
∫
Ω

u∂xiϕ

∣∣∣∣∣∣ <∞
(iii) For all h small, and all Ω′ ⊂⊂ Ω

‖Dhu‖L2(Ω′) 6 C
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�

Proof.

(i)⇒(ii) Obvious as for all ϕ ∈ C∞c (Ω)∣∣∣∣∣∣
∫
Ω

u∂xiϕ

∣∣∣∣∣∣ =

∣∣∣∣∣∣−
∫
Ω

∂xiuϕ

∣∣∣∣∣∣ 6 ‖∇u‖L2(Ω)‖ϕ‖L2(Ω)

(ii)⇒(i) Define for all ϕ ∈ D(Ω)

T (ϕ) =

∫
Ω

u∂xiϕ‘

Then T is linear and bounded, as |T (ϕ)| 6 C‖ϕ‖L2(Ω).

Thus T can be extended to a linear, bounded mapping in L2(Ω) by the Riesz theorem

there exists v ∈ L2(Ω) such that for all ϕ ∈ L2(Ω)

T (ϕ) =

∫
Ω

vϕ

In particular if ϕ ∈ D . Thus ∫
Ω

vϕ = T (ϕ) =

∫
Ω

u∂xiϕ.

which implies that ∂xi = −v ∈ L2(Ω).

(iii)⇒(ii) For all ϕ ∈ D(Ω), and defining y = x+ h∫
Ω

(Dhu)ϕ =

∫
Ω

u(x+ h)− u(x)

|h|
ϕ(x)dx =

∫
Ω

u(y)ϕ(y − h)− u(y)ϕ(y)

h
dx =

∫
Ω

u(D−hϕ)

Thus ∣∣∣∣∣∣
∫
Ω

u(D−hϕ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

(Dhu)ϕ

∣∣∣∣∣∣ 6 ‖Dhu‖L2(Ω′)‖ϕ‖L2

Choosing h = (0, . . . , hi, . . . , 0) and hi → 0 then∣∣∣∣∣∣
∫
Ω

u∂xih

∣∣∣∣∣∣ 6 C‖ϕ‖L2(Ω)
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for all ϕ ∈ D(Ω).

(i)⇒(iii) Let un ∈ C∞
(
Ω
)

and un → u strongly in H1(Ω). Then

(Dhun)(x) =
un(x+ h)− un(x)

|h|
=

1

|h|

1∫
0

h · ∇un(x+ th)dt

|(Dhun)(x)|2 =

∣∣∣∣∣∣
1∫

0

h

|h|
· ∇un(x+ th)dt

∣∣∣∣∣∣
2

6

1∫
0

|∇un(x+ th)|2dt

∫
Ω′

|Dhun|2 6
∫
Ω′

1∫
0

|∇un(x+ th)|2dtdx =

1∫
0

∫
Ω′

|∇un(x+ th)|2dx

︸ ︷︷ ︸
6
∫
Ω

|∇un|2

dt = ‖∇un‖2
L2(Ω)

where h has to be chosen small enough so that Ω′ + h ⊂ Ω.

Taking n to infinity ‖Dhu‖2
L2(Ω) we find that

‖Dhu‖2
L2(Ω′) 6 ‖∇un‖2

L2(Ω)

Thus (iii) holds with C = ‖∇un‖2
L2(Ω) for all u ∈ H1(Ω).

q.e.d.

Proof of Theorem 10.28. In the case Ω = Rd, it follows from the variational formula∫
∇u · ∇ϕ+

∫
uϕ =

∫
fϕ

for all ϕ ∈ H1(Rd). We can choose ϕ = D−h(Dhu) ∈ H1(Rd) for all h 6= 0. Thus∫
uϕ =

∫
uD−h(Dhu) =

∫
Dhu ·Dhu =

∫
|Dhu|2∫

∇u · ∇ϕ =

∫
∇u · ∇D−h(Dh(u)) =

∫
∇uD−h(Dh(∇u))

∫
|Dh(∇u)|2

Thus∫
|Dh(∇u)|2 +

∫
|Dhu|2 =

∫
fD−h(Dhu) 6 ‖f‖2‖D−h(Dhu)‖2 6 ‖f‖2‖∇(Dhu)‖2 = ‖f‖2‖Dh(∇u)‖2

and thus

‖Dh(∇u)‖2 6 ‖f‖2, ‖Dh(∇u)‖2 6 ‖f‖2
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from which follows that∇u ∈ H1(Rd) by the lemma and therefore u ∈ H2(Rd), i.e. ∂xi∂xju ∈
L2.

Now we shall consider the case Ω = Rd
+.

Assume that u ∈ H1
(
Rd

+

)
and ∫

∇u · ∇ϕ+

∫
uϕ =

∫
fϕ

for all ϕ ∈ H1(Rd
+) (for the von Neumann problem! For the Dirichlet problem we only need

to change H1 to H1
0 ). By the same argument we have

‖Dh(∇u)‖2 6 ‖f‖2

for all h parallel to Γ. Choosing h = (0, . . . , hi, . . . , 0) for i = 1, . . . , d − 1 and hi → 0, it

follows from the lemma that ∂xi∇u ∈ L2 for all i = 1, . . . , d − 1 and thus ∂xi∂xju ∈ L2 for

j = 1, . . . , d and i = 1, . . . , d− 1.

Is ∂2
xd
u ∈ L2? Yes, because −

∑d
i=1 ∂

2
xi
u = −∆u = f − u ∈ L2(Ω) and therefore

∂2
xd
u = −∆ +

d−1∑
i=1

∂2
xi
u ∈ L2(Ω)

For the general case of Ω open, bounded and ∂Ω ∈ C 2.

We know that there exist a finite cover of Ω =: U0 via charts and a smooth partition of unity

{ϑi} subordinate to that cover.

Defining ui = ϑiu we only need to prove that ui ∈ H2.

For i = 0, −∆u+ u = f in D ′(Ω) because for all ϕ ∈ C∞c

−∆(ϑ0u) = −∆ϑ0u−2∆∇ϑ0·∇u−ϑ0∆u = −∆ϑ0u−2∆∇ϑ0·∇u−ϑ0(f−u)+ϑ0u ≡ g ∈ L2(Ω)

Since ϑ0u ∈ H1(Ω) and ϑ0u has compact support we return to the case Ω = Rd and thus

ϑ0u ∈ H2.

For i = 1, . . . , N , ui = thetaiu satisfies

−∆(ϑiu) + ϑiu = gi ∈ L2(Ui ∩ Ω)
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Define vi = ui ◦ h−1
i . The function vi satisfies a second order elliptical equation

d∑
k,l=1

∫
Q+

akl∂xkvi∂xlϕ+ +ϑ0ubviϕ = +ϑ0ug̃iϕ

for all ϕ ∈ H1(Q+). By a similar argument in Rd
+, we can show that vi ∈ H2(Q+). Since

the matrix a is symmetric we can change variables to return to the standard −∆ case.

Because vi ∈ H2(Q+) and h, h−1 ∈ C 2, it follows that ui ∈ H2. Thus u =
∑

i ui ∈ H2.

To prove the von Neumann problem ∂nu = 0 we shall need the Green Formulae, which

proven below.

By regularity we have u ∈ H2(Ω)∫
Ω

∇u · ∇ϕ+

∫
Ω

=

∫
Ω

fϕ

for all ϕ ∈ H1(Ω). If we choose ϕ ∈ D then

−∆u+ u = f

in D ′(Ω), and u ∈ H2(Ω)implies that the equality holds in the L2 sense. Integrating against

ϕ ∈ H1(Ω) and using the second Green formula we find that∫
(−∆u)ϕ+

∫
uϕ =

∫
fϕ

implies ∫
Ω

∇u · ∇ϕ+

∫
∂Ω

∂u

∂n
ϕ+

∫
Ω

uϕ =

∫
Ω

fϕ

for all ϕ ∈ H1(Ω). It follows for all ϕ ∈ H1(Ω)∫
∂Ω

∂u

∂n
ϕ = 0

and therefore
∂u

∂n
on ∂Ω

q.e.d.
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Theorem 10.31 (Green Formulae). For Ω open and bounded with ∂Ω ∈ C 1. If u, ϕ ∈
H1(Ω), then ∫

Ω

∂xiuϕdx = −
∫
Ω

u∂xiϕdx+

∫
∂Ω

u
∣∣
∂Ω
ϕ
∣∣
∂Ω
nidS(x)

where n is the outward pointing unit normal vector to ∂Ω.

Moreover, if u ∈ H2(Ω)∫
Ω

(∆u)ϕ = −
∫
Ω

∇u · ∇ϕ+

∫
∂Ω

∂u

∂n
ϕdS(x).

�

Proof. These formulae follow from the continuous case as the trace operator is continuous.

q.e.d.

Example 10.32 (Von Neumann Problem). Let Ω = (0, 1) and consider the von Neu-

mann problem for f ∈ L2((0, 1))−u′′ + u = f in (0, 1)

u′(0) = u′(1) = 0

We can prove that there exists a unique u ∈ H1((0, 1)) such that∫
u′ϕ′ +

∫
uϕ =

∫
fϕ

for all ϕ ∈ H1((0, 1)). If we choose ϕ ∈ D it follows that

−u′′ + u = f in D ′((0, 1))

But u, f ∈ L2 and therefore u′′ = u− f ∈ L2 which implies that u ∈ H2((0, 1)).

And therefore

0 =

1∫
0

(−u′′ + u− f)ϕ =

∫
u′ϕ′ +

∫
u phi

∫
fϕ+ u′ϕ

∣∣1
0
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for all ϕ ∈ H2((0, 1)). And thus we have

u′(1)ϕ(1)− u′(0)ϕ(0) = 0

for all ϕ ∈ H1(0, 1). Choosing ϕ(x) = x implies that u′(1) = 0 and ϕ(x) = 1−x implies

u′(0) = 0.

Example 10.33 (Periodic Problem). Consider the periodic problem, for f ∈ L2


−u′′ + u = f

u(0) = u(1)

u′(0) = u′(1)

To solve this consider the set

H =
{
u ∈ H1((0, 1))

∣∣u(0) = u(1)
}

H is a Hilbert space, with H1 inner product. Thus there exists a unique u such that∫
u′ϕ′ +

∫
uϕ =

∫
fϕ

for all ϕ ∈ H. From this we can deduce that u ∈ H2, and u′(0) = u′(1) which is left as

an exercise.

Example 10.34 (Inhomogeneous Von Neumann Problem). Consider the Robin prob-

lem, for f ∈ L2 real valued 
−u′′ + u = f

u′(0) = α

u′(1) = β

Theorem 10.35. For all f ∈ L2((0, 1)) there exists a unique solution u ∈ H2((0, 1))

to the inhomogeneous von Neumann problem. �
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Proof. What is the variational formula? Assume that u ∈ H2((0, 1)) is a solution then

1∫
0

(−u′′ + u− f)ϕ = 0

for all ϕ ∈ H1((0, 1)). Integrating by parts

1∫
0

−u′′ϕ =

1∫
0

u′ϕ′ − u′(1)ϕ(1) + u′(0)ϕ(0)

which yields
1∫

0

u′ϕ′ +

1∫
0

uϕ−
1∫

0

fϕ− u′(1)ϕ(1) + u′(0)ϕ(0) = 0

for all ϕ ∈ H1((0, 1)). If u′(0) = α, u′(1) = β this reduces to

1∫
0

u′ϕ′ +

1∫
0

uϕ =

1∫
0

fϕ+ βϕ(1)− αϕ(0)

for all ϕ ∈ H1((0, 1)).

Thus define the linear functional

L :

H1((0, 1)) −→ R

ϕ 7−→
1∫

0

fϕ+ βϕ(1)− αϕ(0)

which is bounded as

|L (ϕ)| 6

∣∣∣∣∣∣
1∫

0

fϕ+ βϕ(1)− αϕ(0)

∣∣∣∣∣∣ 6 ‖f‖2‖ϕ‖2 + (|β|+ |α|)‖ϕ‖∞ 6 C‖ϕ‖H1

where the last inequality follows from the one dimensional Sobolev inequality.

Thus L is a linear, bounded functional on H1 and therefore there exists a unique u ∈
H1((0, 1)) such that

1∫
0

u′ϕ′ +

1∫
0

uϕ = 〈u, ϕ〉H1 = L (ϕ)
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for all ϕ ∈ H1((0, 1)). Hence we have found a unique H1 solution the problem integrated by

parts. To finish the proof we need to show that u ∈ H2((0, 1)).

For this purpose we note that for all ϕ ∈ D((0, 1))

1∫
0

u′ϕ′ +

1∫
0

uϕ =

1∫
0

fϕ =⇒ −u′′ + u = f in D ′((0, 1)) =⇒ u′′ = u− f ∈ L2

and thus u ∈ H2((0, 1)). Therefore if for all ϕ ∈ H1((0, 1))

1∫
0

(−u′′ + u− f)ϕ = 0

then
1∫

0

u′ϕ′ +

1∫
0

uϕ−
1∫

0

fϕ− u′(1)ϕ(1) + u′(0)ϕ(0) = 0

but we already know that

1∫
0

u′ϕ′ +

1∫
0

uϕ−
1∫

0

fϕ− βϕ(1) + αϕ(0) = 0

and therefore

−u′(1)ϕ(1) + u′(0)ϕ(0) = −βϕ(1) + αϕ(0)

for all ϕ ∈ H1((0, 1)). Choosing ϕ(x) and ϕ(x) = 1− x imply respectively −u′(1) = −β and

u′(0) = α. q.e.d.

Example 10.36 (Robin Problem). Consider the Robin problem, for f ∈ L2


−u′′ + u = f

u′(0) = u(0)

u(1) = 0

There exists a unique H2(0, 1) for this problem.



10.1. TRACE ON RD (D > 1) 137

Theorem 10.37. For all f ∈ L2((0, 1)) there exists a unique u ∈ H2((0, 1)) solving the

Robin problem. �

Proof. Assume that u is a solution. Then for all ϕ ∈ H1

0 =

1∫
0

(−u′′ + u− f)ϕ =

1∫
0

(u′ϕ′ + uϕ− fϕ)− u′(1)ϕ(0) + u′(0)ϕ(0)︸ ︷︷ ︸
=u(0)ϕ(0)

which is equivalent to
1∫

0

u′ϕ′ +

1∫
0

uϕ+ u(0)ϕ(0) =

1∫
0

fϕ

for all ϕ ∈ H1.

Now define the linear functional

L :

H1((0, 1)) −→ R

ϕ 7−→
1∫

0

fϕ

and define the new Hilbert space H = H1 with inner product

〈u, ϕ〉H =

1∫
0

u′ϕ′ +

1∫
0

uϕ+ u(0)ϕ(0)

We claim that H is a Hilbert space and that

‖u‖H1 6 ‖u‖H 6 C‖u‖H1

which follows from |u(0)|2 6 C‖u‖2
H1 .

Applying the Riesz theorem for H we find that there exists a unique u ∈ H = H1((0, 1))

such that

〈u, ϕ〉H = L (ϕ) =

1∫
0

uϕ
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for all ϕ ∈H = H1((0, 1)). Thus there exists a unique H1 solution to

1∫
0

u′ϕ′ +

1∫
0

uϕ+ u(0)ϕ(0) =

1∫
0

fϕ

for all ϕ ∈ H1.

To prove that u ∈ H2((0, 1)) note that for ϕ ∈ D we have

−u′′ + u = f ∈ D ′ =⇒ u′′ ∈ L2 =⇒ u ∈ H2 =⇒ −u′′ + u = f ∈ L2

and thus same as above we find that u′(1) = 0 and u′(0) = u(0).

q.e.d.



Chapter 11

Schrödinger Dynamics

i∂tψ = Hψ

with some initial condition ψ(t = 0) = ψ0. Here ψ represents the wave function and |ψ(x)|2

represents the probability density of a particle in configuration space and |ψ̂(p)|2 represents

the probability density of a particle in momentum space.

H here is an (unbounded) operator on L2(Rd) the Hamiltonian and

〈ψ,Hψ〉 = energy of ψ

Example 11.1. Consider fore example for some measurable function V : Rd → R the

operator

H = −∆ + V (x) in L2(Rd).

For this problem to have a solution we need some conditions on H. Let H be a Hilbert

space. For an inner product 〈·, ·〉 we require

∀ψ ∈ D(H) : 〈ψ,Hψ〉 ∈ R

where

D(H) =
{
ψ
∣∣Hψ ∈H

}
.

Lemma 11.2. Let H be a linear operator on H with domain D(H) (dense in H ).

139
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Then

∀ψ ∈ D(H) : 〈ψ,Hψ〉 ∈ R ⇐⇒ ∀u, v ∈ D(H) : 〈u,Hv〉 = 〈Hu, v〉

We call H a symmetric operator in this case. �

Definition 11.3 (Adjoint). Let H be an operator on a Hilbert space H with dense

domain D(H). Then we define

H∗ : D(H∗) −→H

which satisfies

∀u ∈ D(H∗)∀v ∈ D(H) : 〈u,Hv〉 = 〈H∗u, v〉

where

D(H∗) =
{
u ∈H

∣∣ 〈u,H·〉 is a linear functional on v
}

The map is well-defined as D(H) is dense in H . �

Proposition 11.4. If u ∈ D(H∗), then there exists f ∈ H such that for all v ∈ D(H)

〈u,Hv〉 = 〈f, v〉

and thus we can define uniquely H∗u := f �

Proposition 11.5. If H is symmetric, then H ⊂ H∗, i.e. D(H) ⊂ D(H∗) and

H∗
∣∣
D(H)

= H. �

Definition 11.6. H is called a self-adjoint operator iff H∗ = H (in particular D(H∗) =

D(H)). �

Proposition 11.7. In finite dimensions, if H = (Hij)ij is a matrix, then it self-adjoint

w.r.t. to the standard inner product iff Hji = Hij. �
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Example 11.8. −∆ is a self-adjoint operator on L2(Rd) with domain D(−∆) =

H2
(
Rd
)
.

Example 11.9. H = L2(Ω, µ) is a measure space, f : Ω → R measurable, then the

multiplication operator

Tf : (Tfu)(x) = f(x)u(x)

is a self-adjoint operator with domain

D(Tf ) =
{
u ∈ L2(Ω, µ)

∣∣ fu ∈ L2(Ω, µ)
}
.

Theorem 11.10 (Spectral Theorem). Assume that A is a self-adjoint operator on a

Hilbert space H with domain D(A). Then there exists a unitary operator U : H →
L2(Ω, µ) and a measurable function f : Ω→ R such that

UAU−1 = Tf .

�

Definition 11.11. We call A > 0 iff for all u ∈ D(A) 〈u,Au〉 > 0. Further A > B iff

A−B > 0. �

Theorem 11.12 (Friedrichs Extension). If A > −C, where A is a symmetric operator

and C ∈ R, then there exists unique self-adjoint extension Ã of A and

inf
u∈D(Ã)
‖u‖=1

〈
u, Ãu

〉
= inf

u∈D(A)
‖u‖=1

〈u,Au〉 .

�
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Theorem 11.13 (Kato-Rellich). If A is a self-adjoint operator and B symmetric with

D(B) ⊃ D(A), and

‖Bu‖ 6 a‖Au‖+ C‖u‖

for all u ∈ D(A) with a < 1, then A+B is self-adjoint with D(A+B) = D(A). �

Example 11.14. If V ∈ L2(R3) + L∞(R3), then −∆ + V is self-adjoint on H2(R3).

Proof. Consider A = −∆, B = V . For every ε > 0 we can write V = V1 + V2, with

‖V1‖2 6 ε, V2 ∈ L∞. Therefore

‖V u‖2 6 ‖V1u‖2 + ‖V2u‖2 6 ‖V1‖2‖u‖∞ + ‖V2‖∞‖u‖2 6 Cε‖u‖H1 + Cε‖u‖2 6

6 Cε‖∆u‖2 + Cε‖u‖2

by the Sobolev embedding as L∞ ⊂ H2. Choosing a = Cε < 1 we find the desired

result. q.e.d.

Theorem 11.15. If A is self-adjoint, then the equationi∂tu = Au

u(t = 0) = u0

has a unique solution, if u0 ∈ D(A) and

u(t, ·) ∈ C 1((0,∞),H ) ∩ C ([0,∞), D(A))

with ‖u‖D(A) = ‖u‖+ ‖Au‖ for all D(A).

“Symbolically” we can write

u(t) = e−itAu0

�

Proof.Step 1 Assume that A is bounded. Then e−itA well-defined by

e−itA =
∞∑
n=0

tn

n!
(−iA)n
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which is in the operator (norm) topology as

∥∥e−itA∥∥ 6 ∞∑
n=0

tn

n!
‖A‖n = et‖A‖ <∞

Thus we can define u(t) = e−itAu0 and check that it satisfies

i∂t
(
e−itA

)
= Ae−itA

Step 2 Assume that A > 0. Then we can define An = nA
A+n2 is a bounded operator.

By step 1 there exists a solution un to the corresponding problem with An.

If we can prove that un(t)
n→∞−−−→ u(t) (in L2) then we have found a solution.

Noting that e−itA is unitary it follows that d
dt
‖un(t)‖2 = 0 which implies that ‖un(t)‖ =

u0 and therefore we find that

d

dt
‖un − um‖2 =

d

dt

(
‖un‖2 + ‖um‖2 + 2R 〈um, U − n〉

)
= 2R(〈−iAmun, um〉+ 〈un, iAnum〉) =

= 4= 〈un, (Am − An)um〉
n,m→∞−−−−→ 0

as

Am − An =
nA

A+ n
− mA

A+m
=

(m− n)

(A+m)(A+ n)
∼ m− n

mn

m,n→∞−−−−→ 0.

This implies that un(t) converges to some u(t) in H which solves the equation.

q.e.d.
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