Partial Differential Equations II Prof. Nam

Unofficial Lecture Notes

Martin Peev

Contents

1	L^p -Spaces	5
2	Distributions	19
3	Fourier Transform	25
4	Sobolev Space $H^m(\mathbb{R}^d)$	35
5	Sobolev Inequalities	41
6	Ground States for Schrödinger Operators	57
7	Harmonic Functions	69
8	Smoothness of Weak Solutions	83
9	Concentration Compactness Method	89
10	Boundary Value Problem	115
	10.1 Trace on \mathbb{R}^d $(d \ge 1)$	121
11	Schrödinger Dynamics	139

CONTENTS

Chapter 1

L^p -Spaces

Definition 1.1. Let Ω be a set, Σ a collection of subsets of Ω which is a σ -algebra and let $\mu : \Sigma \to [0, \infty]$ be a measure. We call (Ω, Σ, μ) a measure space.

Example 1.2. Let $\Omega \subset \mathbb{R}^d$ be open, Σ the Borel- σ -algebra, $\mu := \lambda^d$ the Borel-Lebesgue measure, uniquely characterised by

$$\mu([a_1,b_1]\times\cdots\times[a_n,b_n])=\prod_{j=1}^n|b_j-a_j|.$$

Definition 1.3. Given a measure space (Ω, Σ, μ) and $f : \Omega \to \mathbb{R}$ and f measurable. Define $Sf(t) := f^{-1}((t, \infty))$ and note that Sf is monotone and non-increasing. Then $Ff : \mathbb{R} \to [0, \infty], Ff(t) = \mu(Sf(t)), \text{ for } t \in \mathbb{R}, \text{ is decreasing in } t.$ For $f \ge 0$ everywhere define

$$\int_{\Omega} f(x) d\mu(x) := \int_{0}^{\infty} Ff(t) dt$$

where the r.h.s. is a Riemann-integral.

If the integral is not infinite, we say that f is Lebesgue-integrable.

For $f: \Omega \to \mathbb{C}$, f is measurable iff $\mathfrak{R} f$ and $\Im f$ are. For all $x \in \mathbb{R}$ let $x_{\pm} := \max\{\pm x, 0\}$. Then

$$f = (\Re f)_{+} - (\Re f)_{-} + i(\Im f)_{+} - i(\Im f)_{-}$$

If $(\mathfrak{R} f)_{\pm}$ and $(\Im f)_{\pm}$ are integrable, we say that f is integrable and

$$\int_{\Omega} f d\mu := \int_{\Omega} (\Re f)_{+} d\mu - \int_{\Omega} (\Re f)_{-} d\mu + i \int_{\Omega} (\Im f)_{+} d\mu - i \int_{\Omega} (\Im f)_{-} d\mu$$

An alternative construction: First define the Lebesgue integral on simple function and then pass to $f: \Omega \to [0, \infty)$ by approximation.

Corollary 1.4. For all $f : \Omega \to \mathbb{C}$ measurable and integrable for all $\varepsilon > 0$ there exists $a \varphi_{\varepsilon} \in S$ such that

$$\int_{\Omega} |f(x) - \varphi_{\varepsilon}(x)| \mathrm{d}\mu(x) < \varepsilon$$

Theorem 1.5 (Monotone Convergence). Let $(f_j)_{j \in \mathbb{N}}$ a non-decreasing sequence of nonnegative integrable functions on (Ω, Σ, μ) (i.e. μ -a.e. $(f_j(x))_j$ for $x \in \Omega$ is increasing), then

$$\lim_{j \to \infty} f_j(x) = f(x)$$

 $is \ measurable \ and$

$$\lim_{j \to \infty} \int_{\Omega} f_j(x) d\mu(x) = \int_{\Omega} \lim_{j \to \infty} f_j(x) d\mu(x).$$

Theorem 1.6 (Dominated Convergence). Let $(f_j)_{j \in \mathbb{N}}$ be a sequence of integrable complexvalued function on (Ω, Σ, μ) which converge to f pointwise μ -a.e. If there exists a $G \ge 0$ integrable on (Ω, Σ, μ) satisfying $|f_j(x)| \le G(x)$ for all $j \in \mathbb{N}$ μ -a.e., then f is integrable and

$$\lim_{j \to \infty} \int_{\Omega} f(x) d\mu(x) = \int_{\Omega} f(x) d\mu(x)$$

Theorem 1.7 (Fatou's Lemma). Let $(f_j)_{j\in\mathbb{N}}$ be a non-negative, integrable on (Ω, Σ, μ) . Then $f(x) := \liminf_{j\to\infty} f_j(x)$ is measurable and

$$\liminf_{j\to\infty} \int_{\Omega} f_j(x) \mathrm{d}\mu(x) \ge \int_{\Omega} f(x) \mathrm{d}\mu(x).$$

Theorem 1.8 (Brezis-Lieb, refinement of Fatou's Lemma). Let $(f_j)_{j\in\mathbb{N}} : \Omega \to \mathbb{C}$ be measurable and converging towards to $f : \Omega \to \mathbb{C}$ μ -a.e. and for $p \in (0, \infty)$ let there exist a C > 0 such that for all $j \in \mathbb{N}$ $\int_{\Omega} |f_j(x)|^p d\mu(x) \leq C$. Then

$$\lim_{j \to \infty} \int_{\Omega} ||f_j(x)|^p - |f_j(x) - f(x)|^p - |f(x)|^p |\mathrm{d}\mu(x) = 0$$

Corollary.

$$\int_{\Omega} |f_j(x)|^p \mathrm{d}\mu(x) = \int_{\Omega} |f|^p \mathrm{d}\mu + \int_{\Omega} |f - f_j|^p \mathrm{d}\mu + o(1)$$

Proof of Theorem 1.8. By Fatou's lemma $\int_{\Omega} |f|^p d\mu \leq C$. We claim that for all $p \in (0, \infty)$ and all $\varepsilon > 0$ there exists $c_{\varepsilon} > 0$ such that for all $a, b \in \mathbb{C}$

$$||a+b|^p - |b|^p| \leqslant \varepsilon |b|^p + c_\varepsilon |a|^p$$

the proof of which is an exercise.

For all $j \in \mathbb{N}$ let $g_j := f_j - f$, then $\lim_{j \to \infty} g_j(x) = 0$ μ -a.e. Now fix $\varepsilon > 0$.

$$0 \leqslant \int_{\Omega} ||f + g_j|^p - |g_j|^p - |f|^p |\mathrm{d}\mu \leqslant \varepsilon \int_{\Omega} |g_j|^p \mathrm{d}\mu + \int_{\Omega} G_{j,\varepsilon} \mathrm{d}\mu$$

with

$$G_{j,\varepsilon}(x) := \Big(\underbrace{||f + g_j|^p - |g_j|^p - |f|^p|}_{\leqslant ||f + g_j|^p - |g_j|^p + |f|^p \leqslant \varepsilon |g_j|^p + (1 + c_\varepsilon)|f|^p} - \varepsilon |g_j|^p\Big)_+ \leqslant (1 + c_\varepsilon)|f|^p$$

and thus by dominated convergence $\int G_{j,\varepsilon} d\mu \xrightarrow{j \to \infty} 0$, on the other hand

$$\int |g_j|^p \mathrm{d}\mu \leqslant \int (|f| + |f_j|)^p \mathrm{d}\mu 2^p \leqslant 2^{p+1}C,$$

taking lim sup and letting $\varepsilon \to 0$ and the claim follows.

For $(\Omega_1, \Sigma_1, \mu_1)$, $(\Omega_2, \Sigma_2, \mu_2)$ σ -finite measure spaces and define the product σ -algebra, $\Sigma_1 \otimes \Sigma_2$ as the smallest σ -algebra containing all rectangles $\{A_1 \times A_2 \mid A_1 \in \Sigma_1, A_2 \in \Sigma_2\}$. Then there exists a unique product measure $\mu_1 \otimes \mu_2$ on $\Sigma_1 \otimes \Sigma_2$ that satisfies

$$\forall A_j \in \Sigma_j, j = 1, 2$$
 $(\mu_1 \otimes \mu_2)(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$

Theorem 1.9 (Fubini-Tonelli). If $f : \Omega_1 \times \Omega_2 \to \mathbb{C}$ is $\Sigma_1 \otimes \Sigma_2$ measurable, then for $g \in \{(\mathfrak{R} f)_+, (\mathfrak{R} f)_-, (\mathfrak{I} f)_+, (\mathfrak{I} f)_-\}$ the maps

$$x_{1} \longmapsto \int_{\Omega_{2}} g(x_{1}, x_{2}) d\mu_{2}(x_{2})$$
$$x_{2} \longmapsto \int_{\Omega_{1}} g(x_{1}, x_{2}) d\mu_{1}(x_{1})$$

are respectively μ_1 and μ_2 measurable. If $f \ge 0$, $\mu_1 \otimes \mu_2$ -a.e., then

$$\int_{\Omega_1 \times \Omega_2} f d(\mu_1 \otimes \mu_2) = \int_{\Omega_1} \int_{\Omega_2} f(x_1, x_2) d\mu_2(x_2) d\mu_1(x_1) = \int_{\Omega_2} \int_{\Omega_1} f(x_1, x_2) d\mu_1(x_1) d\mu_2(x_2)$$

The same holds for $f : \Omega_1 \times \Omega_2 \to \mathbb{C}$ provided one the above integrals is finite for |f|.

Let (Ω, Σ, μ) be a measure space.

q.e.d.

Definition 1.10 (L^p -space). For $p \in [1, \infty)$, let

$$\tilde{L}^p(\Omega, \mathrm{d}\mu) := \{ f : \Omega \to \mathbb{C} \mid f \text{ is measurable and } |f|^p \text{ is integrable} \}.$$

Introducing the equivalence relation

$$f \sim g : \iff \exists N \in \Sigma : \mu(N) = 0 \land \forall x \in N^C : f(x) = g(x) \iff f = g \ \mu\text{-a.e.}$$

We define $L^p(\Omega, d\mu) := \tilde{L}^p(\Omega, d\mu) / \sim$. L^p is a vector space over \mathbb{C} with pointwise linear operations on \tilde{L}^p . This follows from $|\alpha + \beta|^p \leq 2^{p-1}(|\alpha|^p + |\beta|^p)$ for all $\alpha, \beta \in \mathbb{C}$. We define the norm

$$||f||_p := \left(\int_{\Omega} |f(x)|^p \mathrm{d}\mu(x)\right)^{\frac{1}{p}}$$

on $L^p(\Omega, d\mu)$, which is only a semi-norm on $\tilde{L}^p(\Omega, d\mu)$. Further

 $\tilde{L}^{\infty}(\Omega, \mathrm{d}\mu) := \left\{ f : \Omega \to \mathbb{C} \mid f \text{ is measurable, } \exists K \ge 0 : |f(x)| \leqslant K \, \mu\text{-a.e.} \right\}$

For $f \in L^{\infty}(\Omega, d\mu)$ we define the norm

$$||f||_{\infty} := \inf \{ K \mid |f(x)| \leq K \mu \text{-a.e.} \}.$$

Theorem 1.11 (Hölder's Inequality). Let $p, q \in [1, \infty]$ be daul indices, i.e. $\frac{1}{p} + \frac{1}{q} = 1$. For $f \in L^p(\Omega, d\mu), g \in L^q(\Omega, d\mu)$ then $fg \in L^1(\Omega, d\mu)$ and

$$\left| \int_{\Omega} fg \mathrm{d}\mu \right| \stackrel{(a)}{\leqslant} \int |f| |g| \mathrm{d}\mu \stackrel{(b)}{\leqslant} ||f|| ||g||_q.$$

Equality holds at (a) iff there exists a $\vartheta \in \mathbb{R}$ such that $f(x)g(x) = e^{i\vartheta}|f(x)||g(x)| \mu$ -a.e. For $f \neq 0$, equality holds at (b) iff there exists a $\lambda \in \mathbb{R}$ such that for $p \in (1, \infty)$, $|g(x)| = \lambda |f(x)|^{p-1} \mu$ -a.e. For p = 1, $|g(x)| \leq \lambda \mu$ -a.e. and $|g(x)| = \lambda \mu$ -a.e. when $f(x) \neq 0$. For $p = \infty$, $|f(x)| \leq \lambda \mu$ -a.e. and $|f(x)| = \lambda \mu$ -a.e. when $g(x) \neq 0$. \Box

Theorem 1.12 (Minkowski). Let (Ω, Σ, μ) and (Γ, Ξ, ν) be measure spaces with σ -finite measures. Then if $p \in [1, \infty)$ and $f \ge 0 \ \mu \otimes \nu$ measurable

$$\left(\int_{\Omega} \left(\int_{\Gamma} f(x,y) \mathrm{d}\nu(y)\right)^p \mathrm{d}\mu(x)\right)^{1/p} \leqslant \int_{\Gamma} \left(\int_{\Omega} f(x,y)^p \mathrm{d}\mu(x)\right)^{1/p} \mathrm{d}\nu(y)$$

holds. Equality and finiteness for $p \in (1, \infty)$ imply the existence of a μ -measurable $\alpha : \Omega \to [0, \infty)$ and a ν -measurable $\beta : \Gamma \to [0, \infty)$ such that $f(x, y) = \alpha(x)\beta(y)$ for $\mu \otimes \nu$ -a.e.

Corollary 1.13. For all $p \in [1, \infty]$ and all $f, g \in L^p(\Omega, d\mu)$

$$||f + g||_p \leq ||f||_p + ||g||_p$$

If $f \neq 0$ and $p \in (1, \infty)$, equality holds iff there exists a $\lambda \ge 0$ with $g = \lambda f \mu$ -a.e.

Theorem 1.14 (Completeness of L^p). For $p \in [1, \infty]$ let $(f_j)_{j \in \mathbb{N}} \subset L^p(\Omega)$ be a Cauchy sequence, *i.e.*

$$||f_j - f_k|| \xrightarrow{\min\{j,k\} \to \infty} 0.$$

Then there exists a $f \in L^p(\Omega)$ such that $f_j \xrightarrow{j \to \infty}_{L^p}$ converges (strongly) in L^p . Moreover there exists a subsequence $(f_{j_k})_k$ and $F \ge 0 \in L^p(\Omega)$ such that for all $k \in \mathbb{N}$ $|f_{j_k}| \le F$ μ -a.e. and

$$f_{j_k}(x) \xrightarrow{k \to \infty} f(x) \ \mu \text{-}a.e.$$

Definition 1.15 (Convolution). Let f, g be measurable on $(\mathbb{R}^d, \mathcal{B}^d, \lambda^d)$. The convolution is defined as

$$(f * g)(x) := \int_{\mathbb{R}^n} f(x - y)g(y)dy = (g * f)(x)$$

For $f \in L^p(\mathbb{R}^d)$, $g \in L^q(\mathbb{R}^d)$ with p, q dual g * f is well-defined and bounded by Hölder's inequatity for all $x \in \mathbb{R}^d n$. It is also measurable by Fubini's theorem.

Theorem 1.16 (Young's Inequality). For $f \in L^1(\mathbb{R}^d)$, $g \in L^p(\mathbb{R}^d)$ with $p \in [1, \infty]$, then $f * g \in L^p(\mathbb{R}^d)$ and

$$||f * g||_p \leq ||f||_1 ||g||_p$$

Proof.

$$(p=\infty)$$

$$\|(f\ast g)(x)\|_{\infty}\leqslant \|g\|_{\infty}\int\limits_{\mathbb{R}^n}|f(x-y)|\mathrm{d}y=\|g\|_{\infty}\|f\|_1.$$

 $(p \in [1,\infty))$

$$\left(\int_{\mathbb{R}^n} |(f * g)(x)|^p \mathrm{d}x \right)^{1/p} \leqslant \left(\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |g(x - y)| |f(y)| \mathrm{d}y \right)^p \mathrm{d}x \right)^{1/p} \overset{\text{Theorem 1.12}}{\leqslant} \\ \leqslant \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |g(x - y)|^p \mathrm{d}x \right)^{1/p} |f(y)| \mathrm{d}y = \|g\|_p \|f\|_1$$

q.e.d.

Theorem 1.17. For all $\Omega \subset \mathbb{R}^d$ open, for all $f \in L^p(\Omega, d\lambda^d)$, $p \in [1, \infty)$ there exists $(f_j)_{j \in \mathbb{N}} \subset \mathscr{C}^{\infty}_c(\Omega)$ such that $f_j \xrightarrow{j \to \infty}{L^p} f.$

Theorem 1.18. For $\Omega \subset \mathbb{R}^d$ and $p \in [1, \infty)$. $L^p(\Omega, d\lambda^d)$ is separable, i.e. there exists $\mathcal{F} \subset L^p(\Omega, d\lambda^d)$ countable and dense, i.e. for all $f \in L^p(\Omega)$ for all $\varepsilon > 0$ there exists $g \in \mathcal{F}$, such that $||f - g||_p < \varepsilon$.

Proof. Given $f \in L^p(\Omega)$ there exists $h \in \mathscr{C}^{\infty}_c(\Omega)$ such that $||f - h|| < \frac{\varepsilon}{2}$. Hence w.l.o.g. let us assume that $f \in \mathscr{C}^{\infty}_c$. For all $N \in \mathbb{N}$ we have

$$\mathbb{R}^d = \bigcup_{j \in \mathbb{Z}^d} \underbrace{\left([0, 2^{-N})^d + 2^{-N} j \right)}_{C_{j,N}}$$

The set of step functions with support in $C_{j,N}$ and \mathbb{C} -rational values is a countable set. Given N, j we can choose

$$c_{N,j} := \frac{1}{(2^{-N})^n} \int_{C_{j,N}} f(x) \mathrm{d}x$$

Since $f \in \mathscr{C}_c^{\infty}$ it is uniformly continuous, i.e. we can find for all $\delta > 0$ an N big enough such that for all $x \in C_{j,N}$

$$|f(x) - c_{N,j}| < \frac{\delta}{2}.$$

Further we can choose a $\tilde{c}_{N,j}$ in the rational complex numbers such that $|c_{N,j} - \tilde{c}_{N,j}| < \frac{\delta}{2}$, therefore

$$\left\|h - \sum_{j \in \mathbb{Z}^d} \tilde{c}_{N,j} \chi_{C_{j,N}}(x)\right\|_{\infty} < \delta$$

By construction the sum of step functions is compactly supported as f is therefore there exists some compact set K such that

$$\left\|h - \sum_{j \in \mathbb{Z}^d} \tilde{c}_{N,j} \chi_{C_{j,N}}(x)\right\|_p \leqslant \left\|h - \sum_{j \in \mathbb{Z}^d} \tilde{c}_{N,j} \chi_{C_{j,N}}(x)\right\|_{\infty} \mu(K)$$

thus by choosing $\delta < \frac{\varepsilon}{2\mu(K)}$, we have found the approximating function.

q.e.d.

Definition 1.19. $L: L^p(\Omega, d\mu) \to \mathbb{C}$ is a linear function iff for all $f_1, f_2 \in L^p, \alpha \in \mathbb{C}$

$$L(\alpha f_1 + f_2) = \alpha L(f_1) + L(f_2).$$

L is bounded iff there exists a K > 0 such that $|L(f)| \leq K ||f||_p$ for all $f \in L^p$. L is (sequentially) continuous iff for all $(f_j)_{j \in \mathbb{N}} \subset L^p$ with $f_j L^p \xrightarrow{j \to \infty} f$ implies that $L(f_j) \xrightarrow{j \to \infty} L(f)$. In the case of linear functionals/maps the latter two properties are equivalent.

The space of bounded linear functionals on $L^p(\Omega)$, denoted by $(L^p(\Omega))^*$ is a complete

vector space with norm

$$||L|| := \sup_{f \in L^p(\Omega) \setminus \{0\}} \frac{|Lf|}{||f||_p}$$

A sequence $(f_j)_{j\in\mathbb{N}} \subset L^p(\Omega)$ converges weakly to $f \in L^p(\Omega)$ iff for all $L \in (L^p(\Omega))^*$, $Lf_j \xrightarrow{j\to\infty} Lf$. This is written as

$$f_j \xrightarrow{j \to \infty} f$$

By Hölder's inequality $L^{p'}(\Omega) \to (L^p(\Omega))^*$ (injectively) for all $p \in [1,\infty]$ via

 $g \mapsto L_g$

with

$$L_g(f) := \int_{\Omega} f(x)g(x)\mathrm{d}\mu(x)$$

with $||Lg|| \leq ||g||_{p'}$.

Theorem 1.20 (Linear Functionals Separate). Let $p \in [1, \infty]$ (for $p = \infty$, (Ω, Σ, μ) must be σ -finite). Let $f \in L^p(\Omega)$ such that for all $L \in L^p(\Omega)^* L(f) = 0$ holds then f = 0. Consequently, if $f_j \xrightarrow{j \to \infty} k$ and $f_j \xrightarrow{j \to \infty} l$, then k = l, i.e. weak limits are unique.

Proof. For $p \in [1, \infty)$, take

$$g(x) := \begin{cases} \overline{f(x)} |f(x)|^{p-2}, & f(x) \neq 0\\ 0, & f(x) = 0 \end{cases}$$

and

$$L_gh := \int g(x)h(x)\mathrm{d}\mu(x).$$

Since, by Hölder's inequality

$$\infty > \int |f(x)|^p \mathrm{d}x = \int |g(x)|^{p'} \mathrm{d}x$$

it follows that $g \in L^{p'}(\Omega)$ and $L_g \in L^p(\Omega)^*$, where $\frac{1}{p} + \frac{1}{p'} = 1$. For this functional we have

$$L_{g}(f) = \int_{\Omega} \overline{f(x)} |f(x)|^{p-2} f(x) d\mu(x) = \int_{\Omega} |f|^{p} d\mu(x) = ||f||_{p}^{p}$$

For $p = \infty$, for $\varepsilon > 0$ choose Ω_{ε} with $\mu(\Omega_{\varepsilon}) < \infty$ such that $|f(x)| > ||f||_{\infty} - \varepsilon$ for all $x \in \Omega_{\varepsilon}$. Choosing

$$g(x) := \frac{\overline{f(x)}}{|f(x)|} \chi_{\Omega_{\varepsilon}}(x) \in L^{1}(\Omega) \implies L_{g} \in L^{\infty}(\Omega)^{*}$$

One finds that

$$L_g(f) = \int_{\Omega_{\varepsilon}} \frac{\overline{f(x)}}{|f(x)|} f(x) d\mu(x) = \int_{\Omega_{\varepsilon}} |f(x)| d\mu(x) \leqslant ||f||_{\infty} \mu(\Omega_{\varepsilon})$$

and on other hand using the definition of Ω_{ε}

$$L_g(f) \ge (||f||_{\infty} - \varepsilon) \int_{\Omega_{\varepsilon}} \mathrm{d}\mu(x) = (||f||_{\infty} - \varepsilon)\mu(\Omega_{\varepsilon})$$

q.e.a

Theorem 1.21 (Hanner's Inequality). Let $f, g \in L^p(\Omega), p \in [1, 2]$. Then

$$(\|f\|_{p} + \|g\|_{p})^{p} + \|\|f\|_{p} - \|g\|_{p}\|^{p} \leq \|f + g\|_{p}^{p} + \|f - g\|_{p}^{p}$$
(1)

and

$$\left(\|f+g\|_{p}+\|f-g\|_{p}\right)^{p}+\left\|\|f+g\|_{p}-\|f-g\|_{p}\right)^{p} \leq 2^{p}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right)$$
(2)

For $p \in [2, \infty)$ the inequalities are reversed.

Remark. For $||f - g||_p \leq ||f + g||_p$, $p \in [1, 2]$, then the

LHS(2)
$$\ge 2 \|f + g\|_p^p + p(p-1) \|f + g\|_p^{p-2} \|\|f - g\|_p^2$$

which follows from the inequality for $a, b \ge$

 $(a+b)^p + |a-b|^p \ge 2a^p + p(p-1)a^{p-2}b^2.$

To prove it we may assume w.l.o.g. that $a \neq 0$ (since otherwise the inequality holds

trivially) and devide by b to get the inequality

$$(1+x)^p + |1-x|^p \ge 2 + p(p-1)x^2$$

Noting that by assumption $1 \ge x$ hence |1 - x| = (1 - x) Since by differentiating twice this expression

$$(p-1)((1+x)^{p-2}+(1-x)^{p-2}) \ge 2(p-1)$$

which indeed holds. Then by integration one finds the asserted inequality.

Theorem 1.22 (Uniform Convexity). For all $p \in (1, \infty)$

$$\forall \varepsilon > 0 \, \exists \delta > 0 \, \forall f, g \in L^p(\Omega) : \|f\|_p = \|g\|_p = 1, \left\|\frac{f+g}{2}\right\|_p^p \ge 1 - \delta \implies \left\|\frac{f-g}{2}\right\|_p < \varepsilon$$

Lemma. Let $\alpha(r) := (1+r)^{p-1} + (1-r)^{p-1}$, and $\beta(r) := ((1+r)^{p-1} - (1-r)^{p-1})r^{1-p}$ for $r \in [0,1]$ with $\beta(0) := 0$ ($\beta(0) := \infty$ for $p \in [2,\infty)$). Then for all $A, B \in \mathbb{C}$

$$\alpha(r)|A|^{p} + \beta(r)|B|^{p} \leq |A + B|^{p} + |A - B|^{p}$$
(*)

for $p \in [1, 2)$. Equality holds iff $r = \frac{|B|}{|A|} \in [0, 1]$.

Proof. It is sufficient to assume $A, B \ge 0$. Otherwise a := |A|, b := |B| satisfy

$$|A+B|^{p} + |A-B|^{p} = \left(a^{2} + b^{2} + 2ab\cos(\vartheta)\right)^{p/2} + \left(a^{2} + b^{2} - 2ab\cos(\vartheta)\right)^{p/2} \ge (a+b)^{p} + (a-b)^{p}$$

Let $R := \frac{B}{A}$, and rewrite the asserted inequality as

$$\alpha(r) + R^p \beta(r) \leqslant (1+R)^p + (1-R)^p$$

differentiating both sides

$$\begin{aligned} \frac{d}{dr}(\alpha(r) + R^p\beta(r)) &= (p-1)(1+r)^{p-2} - (p-1)(1+r)^{p-2} + R^p(p-1)\big((1+r)^{p-2} + (1-r)^{p-2}\big) + \\ &+ R^p(1-p)\big((1+r)^{p-2}(1+r) - (1-r)^{p-2}(1-r)\big)r^{-p} = \\ &= (p-1)\big((1+r)^{p-2} - (1-r)^{p-2}\big)\left(1 - \left(\frac{R}{r}\right)^p\right)\end{aligned}$$

which vanishes only for r = R. Further since the derivative for $R \leq 1$ is positive for r < Rand negative for r > R, this is indeed the maximum. *q.e.d.*

Proof of Theorem 1.21. Noting that $R \leq 1$ can always be attained by exchanging f and g if necessary one finds that for all $r \in [0, 1]$

$$|f+g|^p + |f-g|^p \ge \alpha(r)|f|^p + \beta(r)|g|^p = \alpha(R)|f|^p + \beta(R)|g|^p$$

for $R := \frac{\|g\|_p}{\|f\|_p}$. Integrating one finds that

$$\|f+g\|_{p}^{p}+\|f-g\|_{p}^{p} \ge \alpha(R)\|f\|_{p}^{p}+\beta(R)\|g\|_{p}^{p} = (\|f+g\|_{p}+\|f-g\|_{p})^{p}+\|\|f+g\|_{p}-\|f-g\|_{p}|^{p}$$

(2) follows immediately from (1) by substituting $f \to f + g$ and $g \to f - g$.

For p = 2 this is just the standard parallelogram identity. For $p \in [1, 2)$, otherwise reverse all the inequalities. q.e.d.

Theorem 1.23 (Lower Semi-Continuity of Norms). For $p \in [1, \infty]$ if

$$f_j \xrightarrow{j \to \infty} f \implies \liminf_{j \to \infty} ||f_j||_p \ge ||f||_p$$

(For $p = \infty$, μ needs to σ -finite). If $p \in (1, \infty)$ and $\lim_{j \to \infty} ||f_j||_p = ||f||_p$ then

$$f_j \xrightarrow{j \to \infty} f.$$

Theorem 1.24 (Uniform Boundedness Principle). Let $p \in [1, \infty]$ (for $p = \infty$, (Ω, Σ, μ) need be σ -finite). Let $(f_j)_{j \in \mathbb{N}} \subset L^p(\Omega)$ such that for all $L \in L^p(\Omega)^*$ there exists a $C_L > 0$ such that $|L(f_j)| \leq C_L$ for all $j \in \mathbb{N}$. Then there exists a C > 0 such that $||f_j|| \leq C$ for **Theorem 1.25** (The Dual of $L^p(\Omega)$). For $p \in [1, \infty)$, $L^p(\Omega)^* = L^q(\Omega)$ for $\frac{1}{p} + \frac{1}{q} = 1$, i.e for all $L \in L^p(\Omega)^*$ there exists a $v \in L^q(\Omega)$ such that for all $g \in L^p(\Omega)$

$$L(g) = L_v(g) := \int v g \mathrm{d}\mu$$

with ||L|| = ||v||.

Theorem 1.26 (Banach-Alaoglu). For $p \in (1, \infty)$ let $(f_j)_{j \in \mathbb{N}}$ be bounded in $L^p(\Omega)$. Then there exists a subsequence $(f_{j_n})_{n \in \mathbb{N}}$ and $f \in L^p(\Omega)$ such that

$$f_{j_n} \xrightarrow{n \to \infty}_{L^p} f$$

Chapter 2

Distributions

Remark 2.1. $\left(L^p(\mathbb{R}^d)\right)^* = L^q(\mathbb{R}^d)$ for $\frac{1}{p} + \frac{1}{q}, 1 \leq p < \infty$.

Definition 2.2 (Test Functions). Let $\Omega \subset \mathbb{R}^d$ be open. We define the set of test functions to be $\mathscr{D}(\Omega) = \mathscr{C}^{\infty}_c(\mathbb{R}^d)$. We define a topology on this space by requiring that a sequence $\varphi_n \to \varphi$ in $\mathscr{D}(\Omega)$ converges iff

 $\begin{cases} \exists \text{ compact set } K \subset \Omega : \text{ supp } \varphi_n \subset K \\ \forall \alpha \in \mathbb{N}^n : \sup_{x \in \Omega} |D^{\alpha} \varphi_n - D^{\alpha} \varphi| \xrightarrow{n \to \infty} 0 \end{cases}$

Definition 2.3 (Distributions). We define the space of distributions to be dual space to the space of test functions, i.e. $\mathscr{D}'(\Omega)$

 $T \in \mathscr{D}'(\Omega) : \iff T : \mathscr{D}(\Omega) \to \mathbb{C}$, linear & continuous.

We define the weak-* topology on this space, i.e. a sequence $T_n \to T$ converges in $\mathscr{D}'(\Omega)$ iff for all $\varphi \in \mathscr{D}(\Omega), T_n(\varphi) \xrightarrow{n \to \infty} T(\varphi)$.

Example 2.4. If $f \in L^1_{loc}(\Omega)$, then

$$\mathcal{D}(\Omega) \longrightarrow \mathbb{C}$$
$$T_f: \qquad \varphi \longmapsto \int_{\Omega} f(x)\varphi(x) \mathrm{d}x$$

is a distribution.

Example 2.5 (Dirac delta function). The linear functional

$$\delta: \frac{\mathscr{D}(\mathbb{R}^n) \longrightarrow \mathbb{C}}{\varphi \longmapsto \varphi(0)}$$

Informally one may one may say that $\delta(x) = 0$ for all $x \neq 0$ and $\delta(0) = \infty$ such that $\int_{\mathbb{R}^n} \delta = 1$.

One might now ask the question whether if for $f, g \in L^1_{loc}(\Omega)$ with $T_f = T_g$ does imply that f = g.

Theorem 2.6 (Fundamental Theorem of the Calculus of Variations). If $f \in L^1_{loc}(\Omega)$ such that for all $\varphi \in \mathscr{C}^{\infty}_{c}(\Omega)$ $\int f\varphi = 0$

then
$$f = 0$$
.

Proof. Assume that $f \in L^1(\mathbb{R}^d)$. Then

$$\int_{\mathbb{R}^n} f(x)\varphi(x)\mathrm{d}x = 0$$

for all $\varphi \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{d})$ implies that

$$0 = \int_{\mathbb{R}^d} f(x)\varphi(y-x)dx = (f * \varphi)(y)$$

for all $y \in \mathbb{R}^d$.

Recall now that if $\varphi \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{d})$, with $\int \varphi d\lambda = 1$, and $\varphi_{n}(x) = n^{d}\varphi(nx)$ then $\varphi_{n} * f \to f$ in $L^{1}(\mathbb{R}^{d})$, since for all $y \in \mathbb{R}^{d}$

$$(f * \varphi_n)(y) = 0$$

it follows that f = 0 in $L^1(\mathbb{R}^d)$, i.e. f(x) = 0 a.e.

Now let us consider the general case, let $\Omega \subset \mathbb{R}^d$ be open, and $f \in L^1_{\text{loc}}(\Omega)$ such that

$$\int f(x)\varphi(y-x)\mathrm{d}x = 0$$

for all $\varphi \in \mathscr{C}^{\infty}_{c}(\Omega)$. We need $x \in \Omega_{2}$, $\overline{\Omega}_{2} \subset \subset \Omega$ such that $y - x \in \operatorname{supp} \varphi$, then

$$y = x + (y - x) \in \Omega_2 + \operatorname{supp} \varphi.$$

We choose $\varphi \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{d})$ such that $\operatorname{supp} \varphi \subset B(0,1)$. Define $\varphi_{n}(x) = n^{d}\varphi(nx)$. Then $\operatorname{supp} \varphi_{n} \subset B(0,\frac{1}{n})$. Then we have

$$\int f(x)\varphi_n(y-x)\mathrm{d}x = 0$$

for all $y \in \Omega_2$, with $\Omega_2 \subset \subset \Omega$. Then

$$x = y - (y - x) \in \Omega_2 \setminus \operatorname{supp} \varphi_n \subset \Omega_2 + B_{\frac{1}{n}}(0) \subset \Omega_3$$

when n is large enough. Thus we have

$$\int_{\Omega} f(x)\varphi_n(y-x)\mathrm{d}x = \int_{\Omega} \mathbf{1}_{\Omega_3} f(x)\varphi_n(y-x)\mathrm{d}x = \int_{\mathbb{R}^n} \mathbf{1}_{\Omega_3} f(x)\varphi_n(y-x)\mathrm{d}x = (\varphi_n * \mathbf{1}_{\Omega_3} f)(y)$$

Since $\mathbf{1}_{\Omega_3} f \in L^1(\mathbb{R}^d)$, we have that $\varphi_n * \mathbf{1}_{\Omega_3} f \to \mathbf{1}_{\Omega_3} f$. Thus $f|_{\Omega_3} = 0$ which implies that f(x) = 0 a.e. $x \in \Omega_3$ and thus also $x \in \Omega$.

q.e.d.

Definition 2.7 (Derivative of Distributions). For a $T \in \mathscr{D}'(\Omega)$ we define its α -derivative to be the distribution $D^{\alpha}T \in \mathscr{D}'(\Omega)$ such that

$$(D^{\alpha}T)(\varphi) = (-1)^{|\alpha|}T(D^{\alpha}\varphi)$$

for all $\varphi \in \mathscr{D}$.

Remark 2.8. This definition is motivated by the fact that for $f \in \mathscr{C}^{\infty}(\mathbb{R}^d)$

$$\int (D^{\alpha}f)\varphi = (-1)^{|\alpha|} \int f(D^{\alpha}\varphi).$$

In particular we have that if $T_n \to T$ in $\mathscr{D}'(\Omega)$, then $D^{\alpha}T_n \to D^{\alpha}T$ for any $\alpha \in \mathbb{N}^n$.

Proof. For all $\varphi \in \mathscr{D}(\Omega)$ we have

$$(D^{\alpha}T_n)(\varphi) = (-1)^{|\alpha|}T_n(D^{\alpha}\varphi) \xrightarrow{n \to \infty} (-1)^{|\alpha|}T(D^{\alpha}\varphi) = (D^{\alpha}T)(\varphi).$$

q.e.d.

Example 2.9. Let f(x) = |x|. Then its distributional derivative is

$$f'(x) = \begin{cases} -1, & y < 0\\ +1, & y > 0 \end{cases}$$

and its second distributional derivative is

 $f'' = 2\delta.$

Theorem 2.10 (Equivalence of Classical and Distributional Derivatives). 1) If $f \in \mathscr{C}^1(\Omega) \subset L^1_{loc}(\Omega)$, then $g_i = \partial_{x_i} f \in \mathscr{C}(\Omega)$ and $\partial_i(T_f) = T_{g_i}$.

2) Let $T \in \mathscr{D}'(\Omega)$ and assume that $T_{g_i} = \partial_{x_i}T$ and $g_i \in \mathscr{C}(\Omega)$, for all i = 1, ..., n. Then there exists a $f \in \mathscr{C}^1(\Omega)$ such that $T = T_f$ and $\partial_{x_i}f = g_i$.

Proof. Let $\Omega = \mathbb{R}^d$.

1) If $f \in \mathscr{C}^1(\mathbb{R}^d)$ and $g_i = \partial_i f \in \mathscr{C}(\Omega)$. Then for all $\varphi \in \mathscr{D}'(\Omega)$

$$(\partial_i(T_f))(\varphi) = -T_f(\partial_i\varphi) = -\int f(x)\partial_i\varphi(x)dx = \int \partial_i f(x)\varphi(x)dx = T_{\partial_i f}(\varphi)$$

i.e. $\partial_i T_f = T_{\partial_i f}$ in $\mathscr{D}'(\mathbb{R}^d)$.

2) Assume that $T \in \mathscr{D}'()$

q.e.d.

Chapter 3

Fourier Transform

Definition 3.1. For $f \in L^1(\mathbb{R}^d)$ one defines its Fourier transform to be

$$\hat{f}(k) = \int_{\mathbb{R}^d} f(x) e^{-2\pi i k \cdot x} \mathrm{d}x$$

Remark (Motivation). 1) For nice enough functions one has

$$\widehat{\partial_{x_i}f}(k) = 2\pi i k_i \widehat{f}(k).$$

Formally we have

$$\widehat{\partial_{x_i}f}(k) = \int_{\mathbb{R}^d} (\partial_{x_i}f)(x)e^{-2\pi ik \cdot x} \mathrm{d}x = -\int_{\mathbb{R}^d} f(x)\partial_{x_i}e^{-2\pi ik \cdot x} \mathrm{d}x = 2\pi ik_i\hat{f}(k).$$

More generally one has

$$\widehat{D^{\alpha}f}(k) = (2\pi i k)^{\alpha} \widehat{f}(k).$$

2) Further we have for nice enough functions that

$$\widehat{f} \ast \widehat{g}(k) = \widehat{f}(k)\widehat{g}(k)$$

because formally

$$\widehat{f * g}(k) = \int \int f(x - y)g(y)e^{-2\pi ik \cdot x} dy dx = \int \int f(x - y)g(y)e^{-2\pi ik \cdot (x - y)}e^{-2\pi ik \cdot y} dx dy =$$
$$= \int \int f(x - y)e^{-2\pi ik \cdot (x - y)} dxg(y)e^{-2\pi ik \cdot y} dy = \widehat{f}(k)\widehat{g}(k)$$

Theorem 3.2 (Plancherl). If $f \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$, then

$$\|f\|_2 = \|\hat{f}\|_2$$

Consequently, $f \mapsto \hat{f}$ can be extended into an isometry on $L^2(\mathbb{R}^d)$, as $L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ is dense in $L^2(\mathbb{R}^d)$. Moreover for all $f, g \in L^2(\mathbb{R}^d)$

$$\langle f,g\rangle = \left\langle \hat{f},\hat{g}\right\rangle^{1}.$$

Theorem 3.3 (Inverse Formula). Define $\check{f}(k) = \int f(x)e^{2\pi i k \cdot x} dx = \hat{f}(-k)$. Then for all $f \in L^2(\mathbb{R}^d)$ $\check{f} = f$.

We know that $f \mapsto \hat{f}$ is a bounded map from $L^1(\mathbb{R}^d) \to L^\infty(\mathbb{R}^d)$ as

$$\left|\hat{f}(k)\right| = \left|\int_{\mathbb{R}^n} f(x)e^{-2\pi i k \cdot x} \mathrm{d}x\right| \leq \int_{\mathbb{R}^n} |f(x)| \mathrm{d}x = \|f\|_{L^1}$$

and $L^2 \to L^2$ with $\|\hat{f}\|_2 = \|f\|_2$.

Theorem 3.4 (Hausdorff-Young inequality). If $f \in L^1(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$ for 1 , then

$$\|f\|_{p'} \leqslant \|f\|_p$$

¹Here we shall use the convention $\langle f,g\rangle = \int \bar{f}(x)g(x)\mathrm{d}x$

Consequently, $f \mapsto \hat{f}$ is a bounded mapping from $L^p \to L^{p'} = (L^p)^*$.

27

Theorem 3.5 (Riesz-Thorin Interpolation inequality). Let $1 \leq p_0, p_1, q_0, q_1 \leq \infty$. If $\mathscr{L} : L^{p_0} \longrightarrow L^{q_0}, \quad with \|\mathscr{L}\|_{p_0,q_0} \leq 1$ $\mathscr{L} : L^{p_1} \longrightarrow L^{q_1}, \quad with \|\mathscr{L}\|_{p_1,q_1} \leq 1$ Then $\|\mathscr{L}u\|_{p_s,q_s}$ for all $s \in (0,1)$ where $\frac{1}{p_s} = \frac{1-s}{p_0} + \frac{s}{p_1}, \quad \frac{1}{q_s} = \frac{1-s}{q_0} + \frac{s}{q_1}$

The proof this theorem is based on Hadamard's 3-line Theorem.

Theorem (Hadamard 3-lines theorem). Let $\mathbb{C} \ni z = x + iy$, and let f be holomorphic on $\Omega = \{z = x + iy, 0 < x < 1\}$. Define $M(x) = \sup_{y \in \mathbb{R}} |f(x + iy)|$, then

$$M(x) \leqslant M(0)^{1-x} M(1)^x$$

Sketch of Proof. Assume that M(0) = 1 = M(1). We need to prove that $|f(x + iy)| \leq 1$ in Ω . Define now $F_n(x) = f(z)e^{\frac{z^2-1}{n}}$ for $n \in \mathbb{N}$. Then $|F_n(z)| \leq 1$, for all $z \in \partial\Omega$, and $|F_n(z)| \to 0$ as $|z| \to \infty$. Applying the maximum principle we find that $|F_n(z)| \leq 1$ for all $z \in \Omega$. q.e.d.

Proof of Theorem 3.5. To prove this, we need the duality

$$\|\mathscr{L}\|_{q_s} = \sup_{\|\varphi\|_{q'_s} \leqslant 1} |\int (\mathscr{L}u)\varphi|.$$

Then define u_z and φ_z in an appropriate way

$$\sup \left| \int (\mathscr{L}u_z)\varphi_z \right| \leqslant \|u\|_{p'_s}$$

Proof of Theorem 3.4. Define $\mathscr{L}u = \hat{u}$. Then

$$\mathscr{L}: L^1 \longrightarrow L^{\infty}, \quad \text{with } \|\mathscr{L}\|_{1,\infty} \leq 1$$

 $\mathscr{L}: L^2 \longrightarrow L^2, \quad \text{with } \|\mathscr{L}\|_{2,2} = 1$

By Riesz-Thorin we have that $\|\hat{u}\|_{q_s} \leq \|u\|_{p_s}$ for all $s \in (0, 1)$

$$\frac{1}{p_s} = \frac{1-s}{1} + \frac{s}{2}, \quad \frac{1}{q_s} = \frac{1-s}{\infty} + \frac{s}{2}$$

which implies that $\frac{1}{p_s} = 1 - \frac{s}{2}$ and $\frac{1}{q_s} = \frac{s}{2}$ and thus

$$\frac{1}{p_s} + \frac{1}{q_s}, \quad 1 \leqslant p_s \leqslant 2 \leqslant q_s.$$

This means that $q_s = (p_s)'$.

Theorem 3.6. If $f \in L^p$, $g \in L^q$, then $f * g \in L^r$ for $\frac{1}{q} + \frac{1}{p} = 1 + \frac{1}{r}$ and $||f * g||_r \leq ||f||_p ||g||_q$.

Proof. Take $f \in L^p$ fixed and define

$$\mathscr{L}g = f * g$$

We know that

$$\|f * g\| \leq \|f\|_p \|g\|_{p'}$$
$$\|f * g\|_p \leq \|f\|_p \|g\|_1$$

By Riesz-Thorin,

$$||f * g||_{q_s} \leq ||f||_p ||g||_{p_s}$$

for all $s \in (0, 1)$. In particular

$$\frac{1}{p_s}=\frac{1-s}{p'}+\frac{s}{1},\quad \frac{1}{q_s}=\frac{1-s}{\infty}+\frac{s}{p}$$

from which follows that for $q_s = r$, $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$.

q.e.d.

q.e.d.

Corollary 3.7. If $f \in L^p$, $g \in L^q$, $1 \leq q, p \leq 2$ then $f * g \in L^r$, for $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$, then $\widehat{f * g}(k) = \widehat{f}(k)\widehat{g}(k)$

Proof. Do it for $f, g \in \mathscr{D}$, and then approximate.

Theorem 3.8 (Fourier Transform of Gaussian). $\widehat{e^{-\pi|\cdot|^2}}(k) = e^{-\pi|k|^2}$ More generally $\widehat{e^{-\pi\lambda|\cdot|^2}}(k) = \lambda^{-\frac{n}{2}} e^{-\frac{\pi|k|}{\lambda}}$ for all $\lambda > 0$.

Proof. For $\lambda = 1$, and n = 1 we have

$$\widehat{e^{-\pi|\cdot|^2}}(k) = \int_{\mathbb{R}} e^{-\pi x^2} e^{-2\pi i k \cdot x} dx = \int_{\mathbb{R}} e^{-\pi k^2} e^{-\pi (x+ik)^2} dx = e^{-\pi k^2} \int_{\mathbb{R}} e^{-\pi x^2} dx = e^{-\pi k^2}$$

where the penultimate equality follows from the Cauchy formula.

q.e.d.

Theorem 3.9 (Heat Equation). Consider for $t \ge 0$

$$\partial_t u - \Delta u = 0$$

 $u(0, x) = f(x) \in L^2(\mathbb{R}^d)$

The unique L^2 solution is given by

$$u(t,x) = \frac{1}{(4\pi t)^{d/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4t}} f(y) dy$$

Proof. Via the Fourier transform we find the equivalent equation

q.e.d.

$$\partial_t \hat{u} - (2\pi |k|)^2 \hat{u} = 0$$
$$\hat{u}(0,k) = \hat{f}(k) \in L^2(\mathbb{R}^d)$$

which can be rewritten as

$$\partial_t \left(\hat{u} e^{(2\pi|k|)^2 t} \right) = 0$$
$$\hat{u}(t,k) e^{(2\pi|k|)^2 t} \Big|_{t=0} = \hat{f}(k) \in L^2(\mathbb{R}^d)$$

which implies that $\hat{u}(t,k)e^{(2\pi|k|)^2t} = \hat{f}(k)$ for all $t \ge 0$ and therefore $\hat{u}(t,k) = e^{-(2\pi|k|)^2}\hat{f}(k) = \hat{G}_t(k)\hat{f}(k) = \widehat{G}_t * \hat{f}(k)$. Thus $u(t,x) = (G_t * f)(x)$.

What is $G_t(x)$. We need $\hat{G}_t(k) = e^{-(2\pi |k|)^2 t}$. Using the formula for the Fourier transform of a Gaussian

$$\widehat{e^{-\pi\lambda|\cdot|^2}}(k) = \lambda^{-\frac{n}{2}} e^{-\frac{\pi|k|^2}{\lambda}}$$

Choosing $(2\pi|k|)^2 t = \frac{\pi|k|^2}{\lambda}$ which implies that $\lambda = \frac{1}{4\pi t}$, from which the assertion follows. *q.e.d.*

Remark 3.10. If K is a linear operator $L^2 \to L^2$ such that

$$(Ku)(x) = \int K(x,y)u(y)dy$$

for all $u \in L^2$, then K(x, y) is called the **kernel** of K. In particular

$$G(t, x, y) = \frac{1}{(4\pi t)^{-\frac{n}{2}}} e^{-\frac{|x-y|^2}{4t}}$$

is called the *heat kernel*.

Theorem 3.11 (Heat Kernel). Let $G(t, x) = \frac{1}{(4\pi t)^{-\frac{n}{2}}} e^{-\frac{|x|^2}{4t}}$. Then for t > 0 $\partial_t G - \Delta G = 0$

and

$$\lim_{t \to 0^+} G(t, x) \xrightarrow{\mathscr{D}'(\mathbb{R}^n)} \delta_x$$

Proof. For all $\varphi \in \mathscr{D}(\mathbb{R}^d)$

$$\int (\partial_t G(t,x) - \Delta G(t,x))\varphi(y-x)dx = \partial_t (G*\varphi)(y) - (\Delta G*\varphi)(y) = \partial_t (G*\varphi)(y) - \Delta (G*\varphi)(y) = 0$$

Because $u = G * \varphi$ solves the heat equation. Thus $\partial_t G - \Delta G = 0$. Moreover, formally we find that

$$\int G(t,x)\varphi(x)dx = (G_t * \varphi)(0) = u(t,0) \xrightarrow{t \to 0} u(0) = \varphi(0) = \delta(\varphi)$$
$$\lim_{t \downarrow 0} G(t,x) = \delta(x) \quad \text{in } \mathscr{D}'(\mathbb{R}^d)$$

The last step can be made rigorous by using the fact that

$$u(t,x) = G_t * f \xrightarrow{L^2} f$$

strongly, since from Theorem 3.9 we have

$$\|u(t,\cdot) - f\|_{L^2} = \left\|\hat{u}(t,\cdot) - \hat{f}\right\| = \left\|\left(e^{-(2\pi|k|)^2 t} - 1\right)\hat{f}(k)\right\|_2 \xrightarrow{\text{Dom Conv}} 0.$$

$$q.e.d.$$

Now let us consider the Poisson equation

$$-\Delta u = f, \quad f \in L^2(\mathbb{R}^d)$$

Formally we find that

$$(2\pi|k|)^2\hat{u}(k) = \hat{f}(k)$$

which implies that

$$\hat{u}(k) = (2\pi|k|)^{-2}\hat{f}(k) = \hat{G}(k)\hat{f}(k)$$

with $\hat{G}(k) = \frac{1}{(2\pi|k|)^2}$. Then $\hat{u}(k) = \widehat{G * f}(k)$, i.e. u = G * f. What is G? $\hat{G}(k) = \frac{1}{(2\pi|k|)^2}$. More generally what is the Fourier transform of $\frac{1}{|x|^s}$.

Theorem 3.12. For 0 < s < d, then

$$c_s \frac{\hat{1}}{|x|^s} = c_{d-s} \frac{1}{|k|^{d-s}}$$

in the sense of distributions and $c_s = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$. This means that for all $\varphi \in \mathscr{D}(\mathbb{R}^d)$, then

$$\begin{pmatrix} c_s \frac{1}{|\cdot|^s} \check{\varphi} \end{pmatrix}(k) = c_{d-s} \left(\frac{1}{|k|^{d-s}} * \varphi \right)(k)$$

The latter formula serves as a definition of a convolution of distribution and a test function and is well-defined since for 0 < s < n, $\frac{1}{|x|^s} \check{\varphi}(x) \in L^1(\mathbb{R}^d)$.

Proof. Formally we have

$$c_s = \pi^{-\frac{s}{2}} \int_0^\infty \lambda^{\frac{s}{2}-1} e^{-\lambda} d\lambda = \pi^{-\frac{s}{2}} \int_0^\infty (\pi |x|^2 t)^{\frac{s}{2}-1} e^{-\pi |x|^2 t} dt = |x|^s \int_0^\infty t^{\frac{s}{2}-1} e^{-\pi |x|^2 t} dt$$

which implies that $\frac{c_s}{|x|^s} = \int_0^\infty t^{\frac{s}{2}-1} e^{-\pi |x|^2 t} dt$ and thus

$$\begin{split} \widehat{\frac{c_s}{|\cdot|^s}}(k) & " = "\int_0^\infty t^{\frac{s}{2}-1} \widehat{e^{-\pi|\cdot|^2 t}}(k) \mathrm{d}t = \int_0^\infty t^{\frac{s}{2}-1} t^{-\frac{d}{2}} e^{-\frac{\pi|k|^2}{t}} \mathrm{d}t = \int_0^\infty \left(\frac{\pi|k|^2}{\lambda}\right)^{\frac{s}{2}-\frac{d}{2}-1} e^{-\lambda} \pi|k|^2 \frac{\mathrm{d}\lambda}{\lambda^2} = \\ &= |k|^{s-d} \pi^{-\frac{d-2}{2}} \int_0^\infty \lambda^{\frac{d-s}{2}-1} e^{-\lambda} \mathrm{d}\lambda = \frac{c_{d-s}}{|k|^{d-s}} \end{split}$$

Rigorously we have

$$\begin{split} \widehat{\left(\frac{c_s}{|\cdot|^s}\check{\varphi}\right)}(k) &= \int\limits_{\mathbb{R}^d} \int\limits_{\mathbb{R}^d} \frac{c_s}{|x|^s} \varphi(p) e^{2\pi i p \cdot x} e^{-2\pi i k \cdot x} \mathrm{d} p \mathrm{d} x \xrightarrow{\mathrm{Fubini}} \int\limits_{0}^{\infty} \int\limits_{\mathbb{R}^d} \int\limits_{\mathbb{R}^d} t^{\frac{s}{2}-1} e^{-\pi |x|^2 t} \varphi(p) e^{2\pi i p \cdot x} e^{-2\pi i k \cdot x} \mathrm{d} p \mathrm{d} x \mathrm{d} t = \\ &= \int\limits_{0}^{\infty} t^{\frac{s}{2}-1} (\widehat{e^{-\pi |\cdot|^2 t}}\check{\varphi})(k) \mathrm{d} t = \int\limits_{0}^{\infty} t^{\frac{s}{2}-1} c \left(e^{-\frac{\pi |\cdot|^2}{t} \ast \varphi} \right)(k) \mathrm{d} t \end{split}$$

q.e.d.

Corollary 3.13. If 0 < 2s < d and $f \in L^p$, $p = \frac{2d}{d+2s}$, then, since $1 \leq p \leq 2$, $\hat{f}(k)$ makes sense and $\frac{c_{2s}}{|k|^{2s}}\hat{f}(k) = \left(\widehat{c_{d-2s}} * f\right)(k).$ Moreover $c_{d-2s} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{\overline{f(x)}f(y)}{|x-y|^{d-2s}} = c_{2s} \int_{\mathbb{R}^d} \frac{|\hat{f}(k)|^2}{|k|^{2s}} dk \ge 0.$

Proof. First formula, take $\varphi_n \in \mathscr{D}$ such that $\varphi_n \to f$ in L^p . Using the formula for φ_n and passing to $n \to \infty$ we find that

$$\left\|\hat{\varphi}_n - \hat{f}\right\|_{p'} \leqslant C \|\varphi_n - f\| \to 0.$$

The first formula combined with Plancherl's theorem yields the second formula as

$$c_{d-2s} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{\overline{f(x)}f(y)}{|x-y|^{d-2s}} \mathrm{d}x \mathrm{d}y = c_{d-2s} \int_{\mathbb{R}^d} \overline{f(x)} \left(f * \frac{1}{|x|^{d-2s}} \right) (x) \mathrm{d}x = \left\langle f, f * \frac{c_{d-2s}}{|\cdot|^{d-2s}} \right\rangle = \left\langle \hat{f}, f * \widehat{\frac{c_{d-2s}}{|x|^{d-2s}}} \right\rangle = \left\langle \hat{f}, \frac{c_{2s}}{|\cdot|^{2s}} \hat{f} \right\rangle = c_{2s} \int_{\mathbb{R}^d} \frac{|\hat{f}(k)|^2}{|k|^{2s}} \mathrm{d}k$$

q.e.d.

Returning to the Poisson equation we find that

$$G(x) = \frac{1}{4\pi^2} \frac{\check{1}}{|\cdot|^2} = \frac{1}{4\pi^2} \frac{c_{d-2}}{c_n} \frac{1}{|x|^{d-2}} = \begin{cases} \frac{1}{4\pi|x|}, & d=3\\ \frac{1}{(d-2)|\mathbb{S}^{d-1}|} \frac{1}{|x|^{d-2}}, & d\geqslant 3 \end{cases}$$

for $d \ge 3$.

Remark 3.14.

$$G(x) = \begin{cases} \frac{1}{(d-2)|\mathbb{S}^{n-2}|} \frac{1}{|x|^{n-2}}, & d \ge 3\\ -\frac{1}{2\pi} \ln(x), & d = 2\\ -|x|, & d = 1 \end{cases}$$

is called the Greens function of the Laplacian $(-\Delta)$ in \mathbb{R}^d . In particular G(x-y) is

the kernel of the operator $(-\Delta)^{-1}$ in $L^2(\mathbb{R}^d)$, i.e.

$$(-\Delta)^{-1}f(x) = \int_{\mathbb{R}^d} G(x-y)f(y)dy$$

Theorem 3.15 (Poisson Equation). If $f \in L^2(\mathbb{R}^d)$, then $u = G * f \in L^1_{loc}(\mathbb{R}^d)$ and $-\Delta u = f$ in $\mathscr{D}'(\mathbb{R}^d)$. Consequently, $-\Delta G = \delta$ in $\mathscr{D}'(\mathbb{R}^d)$.

Proof. For $n \ge 3$ Take $\varphi_n \in \mathscr{D}, \varphi_n \to f$ in $L^2(\mathbb{R}^d)$. Then

$$-\widehat{\Delta(G \ast \varphi_n)} = \widehat{G \ast (-\Delta \varphi_n)} = \widehat{G - \Delta \varphi_n} = \frac{1}{(2\pi |k|^2)} (2\pi |k|^2) \widehat{\varphi}_n(k) = \widehat{\varphi}_n(k).$$

Thus $-\Delta(G * \varphi_n) = \varphi_n$. Since $G * \varphi_n \to G * f$ in \mathscr{D}' it follows that $-\Delta(G * \varphi_n) \to -\Delta(G * f)$ in \mathscr{D}' . We conclude that $-\Delta(G * f) = f$ in $\mathscr{D}'(\mathbb{R}^d)$. Moreover

$$\int G(-\Delta\varphi) = \int \widehat{G-\Delta\varphi} = \int \widehat{\varphi} = \varphi(0)$$

for all $\varphi \in \mathscr{D}$, thus $-\Delta G = \delta$ in $\mathscr{D}'(\mathbb{R}^d)$.

We now turn to the Yukawa equation

$$\mu u - \Delta u = f$$

for $\mu > 0$. By taking the Fourier transform we find that

$$\left(\mu + (2\pi|k|)^2\right)\hat{u} = \hat{f}$$

which implies that $\hat{u} = \hat{G}\hat{f}$ with

$$\hat{G}(k) = \frac{1}{\mu + (2\pi|k|)^2}$$

which belong to $L^2(\mathbb{R}^d)$ for $n \ge 3$. Thus we find that the Green's function of the Yukawa equation is

$$G(x) = \begin{cases} \frac{1}{2\mu} e^{-\mu|x|}, & d = 1\\ \frac{1}{4\pi|x|} e^{-\mu|x|}, & d = 3 \end{cases}$$

q.e.d.

Chapter 4 Sobolev Space $H^m(\mathbb{R}^d)$

Definition 4.1. We define the Sobelev spaces to be

 $H^{1}(\mathbb{R}^{d}) = \left\{ f \in L^{2}(\mathbb{R}^{n}) \mid \partial_{x_{i}} f \in L^{2}(\mathbb{R}^{d}), i = 1, \dots, d \right\}$ $H^{m}(\mathbb{R}^{d}) = \left\{ f \in L^{2}(\mathbb{R}^{d}) \mid D^{\alpha} f \in L^{2}(\mathbb{R}^{d}), |\alpha| \leq m \right\}$

where the derivatives are taken in the distributional sense.

Theorem 4.2. $H^m(\mathbb{R}^d)$ is a Hilbert space with inner product,

$$\langle f,g\rangle_{H^m} = \sum_{|\alpha|\leqslant m} \langle D^\alpha f,D^\alpha g\rangle_2$$

Proof. For H^1 it is easy to see that $\langle \cdot, \cdot \rangle_{H_1}$ is a well-defined inner product. Concerning completeness, if $\{\varphi_n\}$ is a Cauchy sequence in H^1 , then both $\{f_n\}$ and $\{\partial_{x_i}f_n\}$ are Cauchy sequences in $L^2(\mathbb{R}^d)$. Hence there exist $f, g_i \in L^2$ such that $f_n \xrightarrow{L^2} f$ and $\partial_{x_i}f_n \xrightarrow{L^2} g_i$. We need to prove that $\partial_{x_i}f = g_i$ for all $i = 1, \ldots, n$ from which follows that $f \in H^1$. Take any test function $\varphi \in \mathscr{D}'$, then per definitionem we have

$$\int \partial_{x_i} f_n \varphi = -\int f_n \partial_{x_i} \varphi \xrightarrow{n \to \infty} -\int f \partial_{x_i} \varphi = \int \partial_{x_i} f \varphi$$

thus $\partial_{x_i} f_n \xrightarrow{n \to \infty} g_i$ from which follows that $\partial_{x_i} f = g_i$ and therefore $f \in H^1(\mathbb{R}^d)$. q.e.d.

Theorem 4.3. $\mathscr{D}(\mathbb{R}^d)$ is dense in $H^m(\mathbb{R}^d)$.

Proof. We shall only prove the case of H^1 . Take $f \in H^1(\mathbb{R}^d)$. We need to find $f_{\varepsilon} \in \mathcal{D}$, such that $f_{\varepsilon} \to f$ in H^1 .

Step 1. Find a sequence $g_{\varepsilon} \in H^1$, such that g_{ε} has compact support such that $g_{\varepsilon} \to f$ in H^1 . Choose $h \in \mathscr{D}$ such that h(x) = 1 for all $|x| \leq 1$ and choose $g_{\varepsilon}(x) = f(x)h(\varepsilon x)$ has compact support and $g_{\varepsilon}(x) = f(x)$, when $|x| \leq \frac{1}{\varepsilon}$. We have

$$||g_{\varepsilon} - f||_2^2 = \int |1 - h(\varepsilon x)|^2 |f(x)|^2 \mathrm{d}x \longrightarrow 0$$

by dominated convergence. Similarly

$$\begin{aligned} \|\partial_{x_i}g_{\varepsilon} - \partial_{x_i}f\|_2^2 &= \int |\partial_{x_i}f(h(\varepsilon x) - 1) + f(x)\partial_{x_i}h(\varepsilon x)|^2 \mathrm{d}x \leqslant \\ &\leqslant 2 \int |\partial_{x_i}f(x)(h(\varepsilon x) - 1)|^2 \mathrm{d}x + 2 \int |f(x)|^2 |\partial_{x_i}h(\varepsilon x)|^2 \mathrm{d}x \end{aligned}$$

Here $\int |\partial_{x_i} f(x)(h(\varepsilon x) - 1)|^2 dx \to 0$ and since $\partial_{x_i} h = 0$ in $|x| \leq \frac{1}{\varepsilon}$

$$\int |f(x)|^2 |\partial_{x_i} h(\varepsilon x)|^2 \mathrm{d}x = \int_{B_{\frac{1}{\varepsilon}}(x)^C} |f(x)|^2 |\partial_{x_i} h(\varepsilon x)|^2 \mathrm{d}x \longrightarrow 0$$

by dominated convergence.

Step 2. Consider $g_{\varepsilon} \in H^1$ with compact support. Take $\varphi \in \mathscr{D}$ with $\int \varphi = 1$ and define $\varphi_k(x) = k^n \varphi(kx)$. We know that $\varphi_n * g_{\varepsilon} \in \mathscr{C}^{\infty}c$ and $D^{\alpha}(\varphi_n * g_{\varepsilon}) \to D^{\alpha}g_{\varepsilon}$ in $L^2(\mathbb{R}^n)$ for $|\alpha| \leq 1$

We conclude by noting that

$$\|\varphi_k * g_{\varepsilon} - f\|_{H^1} \leqslant \|\varphi_n * g_{\varepsilon} - g_{\varepsilon}\|_{H^1} + \|g_{\varepsilon} - f\|_{H^1} \xrightarrow{\varepsilon \to 0}_{k \to \infty} 0$$

q.e.d.

Theorem 4.4. $\mathscr{C}_c^{\infty}(\mathbb{R}^d)$ is dense in $H^m(\mathbb{R}^d)$.
Remark 4.5. If Ω is a bounded set of \mathbb{R}^d , then

$$H^{1}(\Omega) = \left\{ f \in L^{2}(\Omega) \mid \partial_{x_{i}} f \in L^{2}(\Omega), i = 1, \dots, n \right\}$$

Then $\mathscr{C}^{\infty}_{c}(\Omega)$ is not dense in $H^{1}(\Omega)$. In fact $H^{1}_{0}(\Omega) = \overline{\mathscr{C}^{\infty}_{c}}^{H^{1}(\Omega)} \neq H^{1}(\Omega)$. We well come back to this (boundary value problems).

Theorem 4.6 (Chain Rule). If $G \in \mathscr{C}^1(\mathbb{C}, \mathbb{C})$, $|G'| \leq C$, G(0) = 0. Then for all $f \in H^1(\mathbb{R}^d)$, $G(f) \in H^1(\mathbb{R}^d)$ and

$$\partial_{x^i} G(f) = G'(f) \partial_{x_i} f$$

in $\mathscr{D}'(\mathbb{R}^d)$.

Proof. Since $f \in H^1(\mathbb{R}^d)$, we can find a sequence $\{\varphi_n\} \subset \mathscr{C}^{\infty}_c(\mathbb{R}^d)$ such that $\varphi_n \to f$ in $H^1(\mathbb{R}^d)$. We can also assume that

$$\varphi_n(x) \longrightarrow f(x)$$
 a.e.
 $\partial_{x_i}\varphi_n(x) \longrightarrow \partial_{x_i}f(x)$ a.e
 $|\varphi_n| + \sum_{i=1}^n |\partial_{x_i}\varphi_n| \leqslant F \in L^2(\mathbb{R}^d).$

We can do this by Theorem 1.14. We have (by the usual chain rule)

$$\partial_{x_i} G(\varphi_n(x)) = G'(\varphi_n(x)) \partial_{x_i} \varphi_n(x)$$

and

$$G'(\varphi_n(x))\partial_{x_i}\varphi_n(x) \longrightarrow G'(f(x))\partial_{x_i}f(x), \quad \text{a.e.}$$
$$|G'(\varphi_n(x))\partial_{x_i}\varphi_n(x)| \leqslant |G'||\partial_{x_i}\varphi_n(x)| \leqslant CF(x) \in L^2(\mathbb{R}^d)$$

which implies that

$$\partial_{x_i} G(\varphi_n(x)) = G'(\varphi_n(x)) \partial_{x_i} \varphi_n(x) \xrightarrow{L^2} G'(f(x)) \partial_{x_i} f(x)$$

Moreover, we have $G(\varphi_n(x)) \to G(f(x))$ a.e. since

$$|g(\varphi_n(x)) - G(f(x))| \leq (\sup |G'|)|\varphi_n(x) - f(x)| \leq C|\varphi_n(x) - f(x)| \xrightarrow{n \to 0} 0$$

and thus $G(\varphi_n(x)) \to G(f(x))$ in L^2 . The result follows from a general fact. q.e.d.

Lemma 4.7. If $f_n \to f$ in $L^2(\mathbb{R}^d)$ and $\partial_{x_i} f_n \to g_i$ in $L^2(\mathbb{R}^d)$ for $i = 1, \ldots, d$, then $f \in H^1(\mathbb{R}^d)$ and $\partial_{x_i} f = g_i$ for $i = 1, \ldots, n$.

Proof. Take $\varphi \in \mathscr{D}(\mathbb{R}^n)$. Compute

$$\int g_i \varphi \longleftarrow \int (\partial_{x_i} f_n) \varphi = -\int f_n(\partial_{x_i} \varphi) \longrightarrow -\int f(\partial_{x_i} \varphi)$$

and thus $-\int f(\partial_{x_i}\varphi) = \int g_i\varphi$ for all $\varphi \in \mathscr{D}(\mathbb{R}^d)$ and therefore $\partial_{x_i}f = g_i$ in $\mathscr{D}'(\mathbb{R}^d)$, i.e. $f \in H^1(\mathbb{R}^d)$.

Theorem 4.8 (Derivative of |f|). If $f \in H^1(\mathbb{R}^d)$ then $|f| \in H^1(\mathbb{R}^d)$ and

$$\partial_{x_j}|f(x)| = \begin{cases} \frac{u\partial_j u + v\partial_j v}{|f(x)|}, & \text{if } f(x) \neq 0\\ 0, & \text{if } f(x) = 0 \end{cases}$$

where f(x) = u(x) + iv(x), where $u, v : \mathbb{R}^d \to \mathbb{R}$. Consequently we have the diamagnetic inequality

$$|\nabla f(x)| \ge |\nabla |f|(x)| \quad a.e$$

Proof. Let $\varepsilon > 0$ and define $G_{\varepsilon}(t) = \sqrt{\varepsilon^2 + |t|^2} - \varepsilon$ Then $G \in \mathscr{C}^1$, $G_{\varepsilon}(0) = 0$ and

$$|G_{\varepsilon}'(t)| = \left|\frac{t}{\sqrt{\varepsilon^2 + |t|^2}}\right| \leqslant 1$$

By the chain rule $G_{\varepsilon}(f(x)) \in H^1(\mathbb{R}^d)$ and

$$\partial_{x_j} G_{\varepsilon}(f(x)) = \frac{\left(|f(x)|^2\right)'}{2\sqrt{\varepsilon^2 + |f(x)|^2}} \partial_{x_i} f(x) = \frac{u(x)\partial_j u(x) + v(x)\partial_j v(x)}{2\sqrt{\varepsilon^2 + |f(x)|^2}} \partial_{x_i} f(x), \quad \text{a.e.}$$

Passing to $\varepsilon \to 0$ we obtain

$$G_{\varepsilon}(f) = \sqrt{\varepsilon^2 + |f|^2} - \varepsilon \longrightarrow |f| \quad \text{in } L^2(\mathbb{R}^d)$$
$$\partial_{x_j} G_{\varepsilon}(f) \longrightarrow g_j(x)$$

From

$$\partial_{x_j}|f(x)| = \begin{cases} \frac{u\partial_j u + v\partial_j v}{|f(x)|}, & \text{if } f(x) \neq 0\\ 0, & \text{if } f(x) = 0 \end{cases}$$

it follows that

$$\partial_{x_j}|f(x)| \leqslant \frac{|u\partial_j u + v\partial_j v|}{|f|} \leqslant \frac{\sqrt{|u|^2 + |v|^2}\sqrt{|\partial_j u|^2 + |\partial)jv|^2}}{|f|} = \frac{|f||\partial_j f|}{|f|} = |\partial_j f|$$

Thus $|\nabla |f|(x)| \leq |\nabla f(x)|$.

q.e.d.

Theorem 4.9 (Fourier Characterisation of $H^m(\mathbb{R}^d)$). If $f \in L^2(\mathbb{R}^d)$, then $f \in H^m(\mathbb{R}^d)$ if and only if $\int (1+2\pi|k|^2)^m \left|\hat{f}(k)\right|^2 dk < \infty.$

Proof. For m = 1. Let $f \in H^1(\mathbb{R}^d)$, then

$$\|f\|_{H^{1}}^{2} = \|f\|_{2}^{2} + \sum_{i=1}^{n} \|\partial_{x_{i}}f\|_{2}^{2} = \int |\hat{f}(k)|^{2} dk + \sum_{i=1}^{n} \int (2\pi k_{i})^{2} |\hat{f}(k)|^{2} dk = \int \left(1 + (2\pi |k|)^{2}\right) |\hat{f}(k)|^{2} dk$$

For m > 1

$$||f||_{H^m}^2 = \sum_{|\alpha| \le m} ||D^{\alpha}f||_2^2 = \sum_{|\alpha| \le m} \int |(2\pi k)^{\alpha} \hat{f}(k)|^2 \mathrm{d}k.$$

q.e.d.

Corollary 4.10. If $f \in L^2(\mathbb{R}^d)$, then $f \in H^m(\mathbb{R}^d)$ iff $(-\Delta)^{\frac{m}{2}} f \in L^2(\mathbb{R}^d) \iff \int (2\pi |k|)^{2m} |\hat{f}(k)|^2 \mathrm{d}k < \infty$

Proof. For m = 2, let $f \in L^2$, then $f \in H^2(\mathbb{R}^d)$ iff $\Delta f \in L^2(\mathbb{R}^d)$ for all $|\alpha| \leq 2$, e.g. $\partial_{x_1}\partial_{x_2}f \in L^2$, while $\Delta f \in L^2$ only iff $(\partial_{x_1}^2 + \partial_{x_2}^2)f \in L^2$. But this follow easily from the Fourier characterisation. Indeed if $\Delta f \in L^2$ iff

$$\int (2\pi |k|)^4 |\hat{f}(k)|^2 \mathrm{d}k < \infty$$

So if $f, \Delta f \in L^2$ then

$$\int \left(1 + (2\pi|k|)^4\right) \left|\hat{f}(k_j)\right|^2 \mathrm{d}k < \infty$$

hence by $1 + (2\pi |k|)^4 \ge \frac{1}{2}(1 + |2\pi k|^2)^2$ (which follows from $A^2 + B^2 \ge \frac{1}{2}(A+B)^2$ for $A, B \ge 0$)

$$\int (1+|2\pi k|^2)^2 |\hat{f}(k)|^2 < \infty$$

which implies that $f \in H^2(\mathbb{R}^d)$ by the last theorem.

q.e.d.

Chapter 5

Sobolev Inequalities

These inqualities find great practical application in physics for example. Consider in the context of quantum mechanics the energy functional of a wave function ψ

$$\mathcal{E}(\psi) := \int |\nabla \psi(x)|^2 \mathrm{d}x + \int V(x) |\psi(x)|^2 \mathrm{d}x.$$

An important question concerns the stability of such a system, i.e. when does

$$\inf_{\|\psi\|_2} \mathcal{E}(\psi) \ge -C$$

for some $C \ge 0$ hold. A particular example of this would be an atom with the Coloumb potential

$$\mathcal{E}(\psi) = \int |\nabla \psi(x)|^2 \mathrm{d}x - \int \frac{|\psi(x)|^2}{|x|} \mathrm{d}x.$$

To prove the stability of this system one can use an uncertainty principle,

$$\int |\nabla \psi|^2 \ge G \left| \int V(x) |\psi(x)|^2 \mathrm{d}x \right|$$

An example would be the Heisenberg uncertainty principle which states that

$$\left(\int |\nabla \psi(x)|^2\right) \left(\int |x|^2 |\psi(x)|^2 \mathrm{d}x\right) \ge \frac{n^2}{4}$$

for all $n \ge 1$ and all $\psi \in H^1(\mathbb{R}^d)$. This can be proven using the commutation relation

$$\nabla\cdot x - x\cdot \nabla = n$$

and the Cauchy Schwarz inequality. Note that for all $f \in H^1$ there exists a $\varphi_n \in H^1(\mathbb{R}^d)$ such that $\varphi_n \to f$ in H^1 and

$$\int |x|^2 |\varphi_n(x)|^2 \mathrm{d}x \to \infty$$

i.e. the Heisenberg principle becomes "trivial" for φ_n . Hence we need a stronger inequality

Sobolev Inequality For all $\psi \in H^1(\mathbb{R}^d)$

$$\|\nabla\psi\|_2 \ge C \|\psi\|_p$$

holds. Now what is p? Let us assume that the Sobolev inequality holds and let $\psi_l(x) = \psi(lx)$ for some $\psi \in H^1$. Then

$$\begin{aligned} \|\nabla\psi_l\|_1 &= \left(\int \|\nabla\psi_l\|^2\right)^{1/2} = \left(\int |l\nabla\psi(lx)|^2\right)^{1/2} = \left(\int l^2 |\nabla\psi(lx)|^2\right)^{1/2} = \left(l^{2-d} \int |\nabla\psi(y)| \mathrm{d}y\right)^{1/2} = \\ &= l^{\frac{2-d}{2}} \|\nabla\psi\|_2 \\ \|\psi_l\|_p = \left(\int |\psi(lx)|^p \mathrm{d}x\right)^{1/p} = \left(l^{-d} \int |\psi(y)| \mathrm{d}y\right)^{1/p} = l^{-\frac{d}{p}} \|\psi\|_p \end{aligned}$$

Thus the Sobolev inequality $\|\nabla \psi_l\|_2 \ge C \|\psi_l\|_2$ implies that

$$l^{\frac{2-n}{2}} \|\nabla\psi\|_2 \geqslant l^{-\frac{n}{p}} \|\psi\|_p$$

for all l > 0. This can be possible iff $\frac{2-d}{2} = -\frac{d}{p}$, i.e.

$$p = \frac{2d}{d-2}, \qquad (n \ge 3).$$

Theorem 5.1. For all $d \ge 3$

 $\|\nabla f\|_2 \ge C \|f\|_p$ for all $f \in H^1(\mathbb{R}^d)$ and $p = \frac{2d}{d-2}$. The constant C > 0 is independent of f in particular this implies that if $f \in H^1$ then $f \in L^p$.

Lemma. For $\varphi \in \mathscr{D}(\mathbb{R}^d)$, then

$$\|\nabla\varphi\|_1 \ge \|\varphi\|_{\frac{d}{d-1}}$$

Proof. Let us focus on d = 3. Let $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Then

$$\varphi(x) = \varphi(x_1, x_2, x_3) = \int_{-\infty}^{x_1} \partial_{x_1} \varphi(x'_1, x_2, x_3) \mathrm{d}x'_1$$

which implies that

$$|\varphi(x)| \leqslant \int_{-\infty}^{x_1} |\partial_{x_1}\varphi(x_1', x_2, x_3)| dx_1' \leqslant \int_{\mathbb{R}} |\partial_{x_1}\varphi(x_1', x_2, x_3)| dx_1' \leqslant \int_{\mathbb{R}} |\nabla\varphi(x_1', x_2, x_3)| dx_1' =: g_1(x_2, x_3)$$

Similarly, one finds that

$$|\varphi(x)|^{3/2} \leqslant \sqrt{g_1(x_2, x_3)} \sqrt{g_2(x_1, x_3)} \sqrt{g_3(x_1, x_2)}$$

which implies that

$$\int_{\mathbb{R}} |\varphi(x)|^{3/2} \mathrm{d}x_1 \leqslant \sqrt{g_1} \int_{\mathbb{R}} \sqrt{g_2} \sqrt{g_3} \mathrm{d}x_1 \leqslant \sqrt{g_1} \sqrt{\int_{\mathbb{R}} g_2 \mathrm{d}x_1} \sqrt{\int_{\mathbb{R}} g_3 \mathrm{d}x_1}$$

and thus

$$\int_{\mathbb{R}} \int_{\mathbb{R}} |\varphi(x)|^{3/2} \mathrm{d}x_1 \mathrm{d}x_2 \leqslant \sqrt{\int_{\mathbb{R}} g_2 \mathrm{d}x_1} \int_{\mathbb{R}} \left(\sqrt{g_1} \sqrt{\int_{\mathbb{R}} g_3 \mathrm{d}x_1}\right) \mathrm{d}x_2 \leqslant \sqrt{\int_{\mathbb{R}} g_2 \mathrm{d}x_1} \sqrt{\int_{\mathbb{R}} g_1 \mathrm{d}x_2} \sqrt{\int_{\mathbb{R}} \int_{\mathbb{R}} g_3 \mathrm{d}x_1 \mathrm{d}x_2}$$

and analogously

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} |\varphi(x)|^{3/2} \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}x_3 \leqslant \sqrt{\int_{\mathbb{R}} \int_{\mathbb{R}} g_1 \mathrm{d}x_2 \mathrm{d}x_3} \sqrt{\int_{\mathbb{R}} \int_{\mathbb{R}} g_2 \mathrm{d}x_1 \mathrm{d}x_3} \sqrt{\int_{\mathbb{R}} \int_{\mathbb{R}} g_3 \mathrm{d}x_1 \mathrm{d}x_2} = \|\nabla \varphi\|_1^{3/2}$$

$$q.e.d.$$

Proof of Theorem 5.1. Consider $f \in \mathscr{D}(\mathbb{R}^3)$ and n = 3. Choose $\varphi = |f|^4$ and applying the

above lemma one finds that

$$\|\varphi\|_{3/2} = \left(\int |\varphi|^{3/2}\right)^{2/3} = \left(\int |f|^6\right)^{2/3}$$
$$\|\nabla\varphi\|_1 \leqslant \int 4f^3 |\nabla f| \leqslant 4\left(\int |f|^6\right)^{1/2} \|\nabla f\|_2$$

Then from the lemma

$$\left(\int |f|^6\right)^{2/4} \leqslant 4\left(\int |f|^6\right)^{1/2} \|\nabla f\|_2$$

and thus $||f||_6 \leq 4 ||\nabla f||_2$. For $n \ge 3$ choose $\varphi = |f|^{\frac{2(d-1)}{d-2}}$ and use

$$\int |\nabla f|^2 \ge \int |\nabla |f||^2$$

Theorem 5.2 (Sobolev Inequality in low dimensions). $d = 2) \text{ For all } f \in H^1(\mathbb{R}^2) \text{ and } 2 \leq p < \infty$ $\|f\|_p \leq C \|\nabla f\|_2^{\frac{p-2}{p}} \|f\|_2^{\frac{2}{p}}$ $(d = 1) \text{ For all } f \in H^1(\mathbb{R})$ $\|f\|_{\infty}^2 \leq \|f'\|_2 \|f\|_2$ (General fact the Sobolev inequality becomes "weaker" in higher dimensions)

Proof.

(d=2) From the above lemma it follows that for all $\varphi \in \mathscr{D}(\mathbb{R}^2)$, $\|\varphi\|_2 \leq \|\nabla\varphi\|_1$. Choose $\varphi = f^{\alpha}$ for $\alpha > 0, f \in \mathscr{D}(\mathbb{R}^2)$ and $f \ge 0$. We have

$$\left(\int f^{2\alpha}\right)^{1/2} \leqslant \int \alpha f^{\alpha-1} |\nabla f| \leqslant \alpha \left(\int f^{2(\alpha-1)}\right)^{1/2} \|\nabla f\|_2.$$

Using Hölder's inequality we find

$$\int f^{2(\alpha-1)} \leqslant \left(\int f^{2\alpha}\right)^{1/q'} \int \left(\int f^2\right)^{1/q}$$

with $\frac{1}{q'} + \frac{1}{q} = 1$, $2(\alpha - 1) = \frac{2\alpha}{q'} + \frac{2}{q}$, hence

$$2((\alpha-1) = \frac{2\alpha}{q'} + \frac{2}{q} = \frac{2\alpha}{q'} + \frac{2\alpha}{q} + \frac{2-2\alpha}{q} = 2\alpha + \frac{2-2\alpha}{q} \implies -2 = \frac{2-2\alpha}{q} \implies q = \alpha - 1$$

Thus

$$\int f^{2\alpha} \leqslant C\left(\int f^{2(\alpha-1)}\right) \|\nabla f\|_2^2 \leqslant C\left(\int f^{2\alpha}\right)^{1/q'} \left(\int f^2\right)^{1/q} \|\nabla f\|_2^2$$

hence

$$\left(\int f^{2\alpha}\right)^{1/q} \leqslant C\left(\int f^2\right)^{1/q} \|\nabla f\|_2^2 \implies \int f^{2\alpha} \leqslant C\left(\int f^2\right) \|\nabla f\|_2^{2(\alpha-1)} \implies \|f\|_{2\alpha} \leqslant \|f\|_2^{1/\alpha} \|\nabla f\|_2^{\frac{\alpha-1}{\alpha}}$$

for all $\alpha > 1$. Thus we have $||f||_p \leq C ||f||_2^{2/p} ||\nabla f||_2^{\frac{p-2}{p}}$ for all $p \geq 2$. Thus the inequality holds for all $f \in \mathscr{D}$, $f \geq 0$, and therefore in can be extended to all $f \in H^1(\mathbb{R}^2)$ by density and the diamagnetic inequality Theorem 4.8.

(d=1) For every $f \in \mathscr{D}$,

$$f(x) = \int_{-\infty}^{x} f'(t) dt \implies |f(x)| \leq \int_{-\infty}^{x} |f'(t)| dt$$
$$f(x) = -\int_{x}^{\infty} f'(t) dt \implies |f(x)| \leq \int_{x}^{\infty} |f'(t)| dt$$

hence

$$|f(x)| \leq \frac{1}{2} \int_{\mathbb{R}} |f'(t)| \mathrm{d}t$$

i.e. $||f||_{\infty} \leq \frac{1}{2} ||f'||_1$. Now we can replace f by f^2 to find that

$$||f||_{\infty}^{2} \leq \frac{1}{2} \int |(f^{2})'| \leq \int |f||f'| \leq ||f||_{2} ||f'||_{2}$$

for all $f \in \mathscr{D}$. Then by density we get the inequality for all $f \in H^1(\mathbb{R}^d)$.

Additional Proof of d = 2. Recall that we have the Hausdorff-Young inequality, that

$$\|\widehat{f}\|_{p'} \leqslant \|f\|_p$$

for all $f \in L^p(\mathbb{R}^n)$ and all $1 \leq p \leq 2 \leq p' \leq \infty$ with $\frac{1}{p} + \frac{1}{p'} = 1$. This inequality is equivalent to

$$\|f\|_p \leqslant \|\hat{f}\|_p$$

for all $f \in \mathscr{D}(\mathbb{R}^n)$ with $p \ge 2 \ge p', \frac{1}{p} + \frac{1}{p'} = 1$. We have

$$\|f\|_{p} \leq \left(\int |\hat{f}(k)|^{p'}\right)^{1/p'} = \left(\int |\hat{f}(k)|^{p'} (1 + 2\pi|k|)^{p'} \frac{1}{(1 + 2\pi|k|)^{p'}} \mathrm{d}k\right)^{1/p'} \leq \left(\int |\hat{f}(k)|^{2} (1 + 2\pi|k|)^{2} \mathrm{d}k\right)^{\alpha/p'} \left(\int \frac{1}{(1 + 2\pi|k|)^{pp'}} \mathrm{d}k\right)^{1 - \alpha/p'}$$

when pp' > 2 we have

$$\int \frac{1}{\left(1+2\pi|k|\right)^{pp'}} \mathrm{d}k \leqslant C < \infty$$

Thus $||f||_p \leq C_p ||f||_{H_1}$ for all $p \geq 2$ and all $f \in \mathscr{D}$. This implies the Sobolev inequality $||f||_p \leq C ||\nabla f||_{\frac{p-2}{p}}^{\frac{p-2}{p}} ||f||_2^{\frac{2}{p}}$, by a scaling argument, i.e. use $||f||_p \leq C ||f||_{H^1}$, for $f \mapsto f_l(x) = f(lx)$ for l > 0 and optimise over l > 0 q.e.d.

Theorem 5.3 (Sobolev Continuous Embedding).

$$H^{1}(\mathbb{R}^{d}) \subset L^{p}(\mathbb{R}^{d}) \qquad \text{for all} \begin{cases} 2 \leqslant p \leqslant \frac{2d}{d-2}, & \text{if } d \geqslant 3\\ 2 \leqslant p < \infty, & \text{if } d = 2\\ 2 \leqslant p \leqslant \infty, & \text{if } d = 1 \end{cases}$$

and the inclusion is continuous, i.e.

$$||f||_p \leq C ||f||_{H^1}.$$

Moreover, when d = 1, $H^1(\mathbb{R}) \subset \mathscr{C}(\mathbb{R})$, i.e. for all $f \in H^1(\mathbb{R})$, there exists exactly one $\tilde{f} \in \mathscr{C}(\mathbb{R})$, such that $f = \tilde{f}$ almost everywhere.

Proof.

 $(d \ge 3)$ We know that

$$\|f\|_{\frac{2d}{d-2}} \leqslant C \|\nabla f\|_2 \leqslant C \|f\|_{H^1}$$

By Hölder's inequality for all $2 \leq p \leq \frac{2d}{d-2}$,

$$\|f\|_p \leqslant C \|f\|_{H^1}.$$

(d=2)

$$||f||_p \leqslant C ||\nabla f||_2^{\frac{p-2}{p}} ||f||_2^{\frac{2}{p}} \leqslant C ||f||_{H^1}.$$

(d=1)

$$||f||_{\infty} \leq ||f'||_{2}^{1/2} ||f||_{2}^{1/2} \leq ||f||_{H^{1}}$$
$$||f||_{2} \leq ||f||_{H^{1}}$$

hence by Hölder's inequality for all $2 \leq p \leq \infty$, $||f||_p \leq ||f||_{H^1}$

We now have to prove that $H^1 \subset \mathscr{C}(\mathbb{R})$. Take $f \in H^1$. Then we can find a sequence φ_n such that $\varphi_n \in \mathscr{D}, \varphi_n \to f$ in H^1 and $\varphi_n(x) \to f(x)$ a.e. $x \in \mathbb{R}$. We know that

$$\varphi_n(x) - \varphi_n(y) = \int_x^y \varphi'(t) dt$$

and thus for $x \leq y$

$$|\varphi_n(x) - \varphi_n(y)| \leq \left| \int_x^y \varphi'_n(t) \mathrm{d}t \right| \leq \left(\int_x^y \mathrm{d}t \right)^{1/2} \left(\int_x^y |\varphi'(t)|^2 \mathrm{d}t \right)^{1/2} \leq \sqrt{|y - x|} \|\varphi'_n\|_2$$

for all $x, y \in \mathbb{R}$. Since $\varphi_n \to f$ in H^1 and $\varphi_n(x) \to f(x)$ for all $x \in \mathbb{R} \setminus A$ with |A| = 0. Then for all $x, y \in \mathbb{R} \setminus A$ we have

$$|f(x) - f(y)| = \lim_{n \to \infty} |\varphi_n(x) - \varphi_n(y)| \leq \sqrt{|y - x|} \lim_{n \to \infty} \|\varphi'_n\|_2 = \sqrt{|x - y|} \|f'\|_2$$

Define $\tilde{f}(x) = f(x)$ for all $x \in \mathbb{R} \setminus A$. Then we can extend \tilde{f} to be a continuous function

on all of \mathbb{R} such that $|\tilde{f}(x) - \tilde{f}(y)| \leq \sqrt{|x-y|} ||f'||_2$ for all $x, y \in \mathbb{R}$.

q.e.d.

Theorem 5.4 (Sobolev Compact Embedding). Let B be a bounded set of $H^1(\mathbb{R}^d)$ and A a bounded set of \mathbb{R}^d . Then we have

$$\mathbf{1}_{A}B \subset \subset L^{p}(A), \qquad with \begin{cases} 2 \leqslant p < \frac{2n}{n-2}, & \text{if } n \geqslant 3\\ 2 \leqslant p < \infty, & \text{if } n = 2\\ 2 \leqslant p \leqslant \infty, & \text{if } n = 1 \end{cases}$$

Remark. By $\mathbf{1}_A$ we denote the indicator/characteristic function of the set A.

$$\mathbf{1}_A B \subset \subset L^p(A)$$

means that if $(f_n)_n \subset \mathbf{1}_A B$, i.e. $f_n = \mathbf{1}_A g_n$ with $g_n \in B$, then there exists a subsequence f_{n_k} such that f_{n_k} converges strongly in $L^p(A)$.

Corollary. If f_n is bounded in $H^1(\mathbb{R}^d)$, there exists a subsequence such that $f_n(x) \to f(x)$ a.e. $x \in \mathbb{R}^d$.

Proof. A subsequence of $\mathbf{1}_{B_R(0)}f_n(x)$ converges strongly in $L^p(\mathbb{R}^d)$. Since L^p convergence implies that pointwise convergence of a subsequence we find that there exists a subsequence

$$f_{n_{k_l}}(x) \longrightarrow f(x)$$
 a.e.

for $x \in B_R(0)$. Renaming this subsequence f_n and taking $R \to \infty$ using Cantor's diagonal argument one finds a subsequence of f_n such that it converges pointwise on almost all of $\mathbb{R}^d = \bigcup_{R \uparrow \infty} B_R(0).$ q.e.d.

Proof of Theorem 5.4.

$$f_{j_n} \xrightarrow[H^1]{n \to \infty} f$$

We have to prove that $\mathbf{1}_A f_n \to \mathbf{1}_A f$ strongly in $L^p(\mathbb{R}^n)$. By linearity, we can assume that f = 0 (i.e. we consider $f_n - f$ instead of f_n). Thus we need to prove that if $f_n \to 0$ in $H^1(\mathbb{R}^d)$, then $\mathbf{1}_A f_n \to 0$ strongly in $L^p(\mathbb{R}^d)$. Now we write

$$\mathbf{1}_A f_n = \mathbf{1}_A e^{t\Delta} f_n + \mathbf{1}_A \big(f_n - e^{t\Delta} f_n \big).$$

Recall that

$$\widehat{e^{t\Delta}f}(k) = e^{-t4\pi^2k^2}\widehat{f}(k)$$

where $(e^{t\Delta}f)(x) = \int G(x-y)f(y)dy$, where G is the heat kernel. We have

$$\|\mathbf{1}_A f_n\|_2 \leq \|\mathbf{1}_A e^{t\Delta} f_n\|_2 + \|\mathbf{1}_A (f_n - e^{t\Delta} f_n)\|_2$$

By the Fourier transform and the Plancherl theorem we have

$$\begin{aligned} \|\mathbf{1}_{A}(f_{n}-e^{t\Delta}f_{n})\|_{2} &\leqslant \|f_{n}-e^{t\Delta}f_{n}\|_{2} = \|\hat{f}_{n}-\widehat{e^{t\Delta}f_{n}}\|_{2} = \left(\int \left(1-e^{-t4\pi^{2}k^{2}}\right)^{2} \left|\hat{f}_{n}(k)\right|^{2} \mathrm{d}k\right)^{1/2} \leqslant \\ &\leqslant \left(\int (t4\pi^{2}k^{2})^{2} \left|\hat{f}_{n}(k)\right|^{2} \mathrm{d}k\right)^{1/2} = \sqrt{t} \|\nabla f_{n}\|_{2} \leqslant \sqrt{t}C \end{aligned}$$

We have $\mathbf{1}_A e^{t\Delta} f_n \to 0$ strongly since, for every $x \in \mathbb{R}^d$

$$e^{t\Delta}f_n(x) = \langle G(x-\cdot), f_n \rangle \to 0$$

as $G(x - \cdot) \in L^2$ and f_n converges weakly and for all $x \in \mathbb{R}^d$

$$\left| \left(e^{t\Delta} f_n \right)(x) \right| \leqslant \left(\int_{\mathbb{R}^d} |G(x-y)|^2 \mathrm{d}y \right)^{1/2} \left(\int_{\mathbb{R}^d} |f_n(y)|^2 \mathrm{d}y \right)^{1/2} \leqslant C_t,$$

i.e. $\mathbf{1}_A e^{t\Delta} f_n$ is dominated by $C_t \mathbf{1}_A$ and thus as $e^{t\Delta} f_n$ converges pointwise it also converges strongly by the dominated convergence theorem.

 $^{1}1 - e^{-s} \leq \min\{1, s\}$

Concluding we find that

$$\|\mathbf{1}_A f_n\|_2 \leqslant \|\mathbf{1}_A e^{t\Delta} f_n\|_2 + C\sqrt{t}.$$

Taking $n \to \infty$ we have

$$\limsup_{n \to \infty} \|\mathbf{1}_A f_n\|_2 \leqslant 0 + C\sqrt{t}$$

and taking $t \to 0$ we find that

$$\limsup_{n \to \infty} \|\mathbf{1}_A f_n\|_2 \leqslant 0$$

i.e. $\mathbf{1}_A f_n \to 0$ converges strongly in $L^2(\mathbb{R}^d)$.

Moreover, we know that

$$\|\mathbf{1}_A f_n\|_q \leqslant \|f_n\|_q \leqslant C \|f_n\|_{H^1}$$

for all

$$\begin{cases} q \leqslant \frac{2d}{d-2}, & \text{if } d \geqslant 3\\ q < \infty, & \text{if } d = 2\\ q \leqslant \infty, & \text{if } dn = 1 \end{cases}$$

Then by interpolation (Hölder's inequality) we find that $\mathbf{1}_A f_n \to 0$ converges strongly in L^p for

$$\begin{cases} 2 \leqslant p < \frac{2d}{d-2}, & \text{if } d \geqslant 3\\ 2 \leqslant p < \infty, & \text{if } d \leqslant 2 \end{cases}$$

(d=1) As in $n \ge 3$ we can prove $\mathbf{1}_A B \subset \subset L^p(\mathbb{R}^n), \ 2 \le p \le \infty$.

Why can we include $p = \infty$? Let $f_n \rightarrow 0$ weakly in $H^1(\mathbb{R})$. We need to prove

$$\sup_{x \in A} |f_n(x)| \xrightarrow{n \to \infty} 0$$

Indeed, we can write

$$f_n(x) = f_n(y) + f_n(x) - f_n(y) \implies f_n(x) = \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} f_n(y) dy + \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} (f_n(x) - f_n(y)) dy$$

By the triangle inequality and Sobolev inequality we have

$$|f_n(x)| \leq \frac{1}{2\varepsilon} \left| \int\limits_{x-\varepsilon}^{x+\varepsilon} f_n(y) \mathrm{d}y \right| + \frac{1}{2\varepsilon} \int\limits_{x-\varepsilon}^{x+\varepsilon} \sqrt{|x-y|} ||f_n'||_2 \mathrm{d}y \leq \frac{1}{2\varepsilon} \left| \int\limits_{x-\varepsilon}^{x+\varepsilon} f_n(y) \mathrm{d}y \right| + \sqrt{\varepsilon} ||f_n'||_2 \mathrm{d}y$$

Take $n \to \infty$, then

$$\limsup_{n \to \infty} |f_n(x)| \leqslant \sqrt{\varepsilon} ||f'||_2$$

since $f_n \to L^2$. Take $\varepsilon \to 0$ to see that $f_n(x) \to 0$ or all $x \in \mathbb{R}$. Now we assume that $\sup_{x \in A} |f_n(x)| \neq 0$, then there must exists a subsequence f_n , and a sequence $(x_n)_n \subset A$ such that

$$\liminf_{n \to \infty} |f_n(x_n)| > 0$$

Because A is bounded, there must exists a subsequence such that $x_n \to x_0$. Then

$$f_n(x_n) = f_n(x_0) + f_n(x_n) - f_n(x_0) \implies |f_n(x_n)| \le |f_n(x_0)| + \sqrt{|x_n - x_0|} ||f_n'||_2 \xrightarrow{n \to \infty} 0$$

which is a contradiction. \mathbf{I}

q.e.d.

Sobolev Spaces $W^{m,p}(\mathbb{R}^d)$

Definition 5.5.

$$W^{m,p}(\mathbb{R}^d) := \left\{ f \in L^p \, \big| \, \forall |\alpha| \leqslant m : D^{\alpha} f \in L^p \right\}$$

Theorem 5.6. For all $m \in \mathbb{N}$, $p \in [1, \infty]$ $W^{m,p}(\mathbb{R}^d)$ is a Banach space with the norm

$$||f||_{W^{m,p}} = \left(\sum_{|\alpha| \le m|} ||D^{\alpha}f||_{p}^{p}\right)^{1/p}$$

(In particular $W^{m,2} = H^m$ is a Hilbert space).

Proof. Analogous to H^m .

Theorem 5.7 (Weak Convergence). For $m \in \mathbb{N}$, $1 , then <math>f_n \rightharpoonup f$ weakly in $W^{m,p}$ iff $D^{\alpha}f_n \rightharpoonup D^{\alpha}f$ weakly in $L^p(\mathbb{R}^d)$.

Proof. Analogous to
$$H^m$$

Theorem 5.8 (Sobolev Inequalities). Let $m \in \mathbb{N}$, 1 . Then have a continuous embedding

$$W^{m,p}(\mathbb{R}^d) \subset L^q(\mathbb{R}^d) \qquad \text{with } \begin{cases} p \leqslant q \leqslant \frac{dp}{d-mp}, & \text{if } d > mp \\ p \leqslant q < \infty, & \text{if } d = mp \\ p \leqslant q \leqslant \infty, & \text{if } n < mp \end{cases}$$

In particular if n < mp, then $W^{m,p}(\mathbb{R}^n) \subset \mathscr{C}(\mathbb{R}^n)$ and for m = 1

$$W^{1,p}(\mathbb{R}^d) \subset L^q(\mathbb{R}^d) \qquad \text{with } \begin{cases} p \leqslant q \leqslant \frac{dp}{d-p}, & \text{if } d > mp \\ p \leqslant q < \infty, & \text{if } d = p \\ p \leqslant q \leqslant \infty, & \text{if } d < p \end{cases}$$

Proof.

(m = 1) We consider n > p. We want to prove that

$$||f||_{W^{1,p}} \ge c||f||_q, \qquad p \le q \le \frac{dp}{d-p}$$

Using the inequality $||u||_{\frac{d}{d-1}} \leq ||\nabla u||_1$, for all $u \in \mathscr{D}(\mathbb{R}^d)$, $d \geq 2$ with $u = f^{\alpha}$, $f \in \mathscr{D}$, $f \geq 0$. Then

$$\left(\int f^{\alpha} \frac{d}{d-1}\right)^{\frac{n-1}{n}} \leqslant \alpha \int f^{\alpha-1} |\nabla f| \leqslant \alpha \left(\int f^{p'(\alpha-1)}\right)^{1/p'} \|\nabla f\|_p, \qquad \frac{1}{p} + \frac{1}{p'} = 1$$

We need $\alpha_{\overline{n-1}}^n = p'(\alpha - 1)$ which is equivalent to

$$\frac{d}{(d-1)p'} = \frac{\alpha-1}{\alpha} = 1 - \frac{1}{\alpha} \implies \frac{1}{\alpha} = 1 - \frac{d(p-1)}{(d-1)p} = \frac{d-p}{(d-1)p}$$

q.e.d.

i.e.

$$\boxed{\alpha = \frac{(d-1)p}{d-p}}$$

Hence,

$$\alpha \frac{d}{d-1} = \frac{(d-1)p}{d-p} \frac{d}{d-1} = \frac{dp}{d-p}$$

Thus

$$\|f\|_{\frac{dp}{d-p}} \leqslant C \|\nabla f\|_p$$

for all $f \in \mathscr{D}$, $f \ge 0$ and thus this holds for all $f \in W^{1,p}$ by density and the diagmagnetic inequality.

The case p = d is similar to H^1 . Let p > d. Why $W^{1,p} \subset L^{\infty}(\mathbb{R}^d) \cap \mathscr{C}(\mathbb{R}^d)$. Take $f \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^d)$. Write

$$f(x) - f(y) = \int_0^1 \nabla f(y + t(x - y)) \cdot (x - y) \mathrm{d}t.$$

Integrating over $B_r(y)$ we find that

$$\begin{split} \int_{B_r(y)} |f(x) - f(y)| \mathrm{d}x &\leq \int_{0}^{1} \int_{B_r(y)} |\nabla f(y + t(x - y))| |x - y| \mathrm{d}x \mathrm{d}t \stackrel{z = \underline{t(x - y)}}{=} \\ &= \int_{0}^{1} \int_{|z| < tr} |\nabla f(y + z)| \frac{|z|}{t} \frac{\mathrm{d}z}{t^d} \mathrm{d}t \leqslant \\ &\leq \int_{0}^{1} \frac{1}{t^d} \left(\int_{|z| < tr} \mathrm{d}z \right)^{1/p'} \left(\int_{|z| < tr} |\nabla f(y + z)|^p \mathrm{d}z \right)^{1/p} \mathrm{d}t \leqslant \\ &\leq Cr \int_{0}^{1} \frac{(tr)^{\frac{p}{p'}}}{t^d} ||\nabla f|| \mathrm{d}t = \\ &= Cr^{1 + \frac{d}{p'}} \left(\int_{0}^{1} t^{\frac{d}{p'} - d} \mathrm{d}t \right) ||\nabla f||_p \end{split}$$

Here

$$\int_{0}^{1} t^{\frac{d}{p'}-d} \mathrm{d}t < \infty \iff \frac{d}{p'}-d > 1 \iff d-1 < \frac{p}{p'} = p-1 \iff p > d.$$

Thus

$$\int_{|x-y| < r} |f(x) - f(y)| dx \leq Cr^{1 + \frac{d(p-1)}{p}} \|\nabla f\|_{p}$$

note that

$$1 + \frac{d(p-1)}{p} > d \iff d(p-1) > (d-1)p \iff p > d$$

Thus for some s > 0

$$\int_{|x-y| < r} |f(x) - f(y)| \mathrm{d}x \leq Cr^{d+s} \|\nabla f\|_p$$

Take $z \in \mathbb{R}^d$, we write

$$f(y) - f(z) = f(y) - f(x) + f(x) - f(z) \implies |f(y) - f(z)| \le |f(y) - f(x)| + |f(x) - f(z)|$$

integrating over x we find that $|x - y| \leq |y - z| = r$.

$$C|y-z|^{d}|f(y) - f(z)| \stackrel{2}{\leqslant} \int_{|x-y| \leqslant |y-z|} |f(x) - f(y)| dx + \int_{|x-z| \leqslant 2|y-z|} |f(x) - f(z)| dx \leqslant$$
$$\leqslant C'|y-z|^{d+s} \|\nabla f\|_{p} \implies |f(x) - f(y)| \leqslant C|y-z|^{s} \|\nabla f\|_{p}$$

for some s > 0. This implies that $W^{1,p}(\mathbb{R}^n) \subset \mathcal{C}(\mathbb{R}^n)$. We still need to prove that $W^{1,p}(\mathbb{R}^n) \subset L^{\infty}(\mathbb{R}^n)$. Write f(y) = f(x) + f(y) - f(x) and thus $|f(y)| \leq |f(x)| + |f(y) - f(x)|$. Integrating over |x - y| < 1

$$C|f(y)| \leq \int_{|x-y|<1} |f(x)| \mathrm{d}x + \int_{|x-y|<1} |f(y) - f(x)| \mathrm{d}x \leq \left(\int_{|x-y|<1} \mathrm{d}x\right)^{1/p'} \|f\|_p + C' \|\nabla f\|_p \leq C' \|f\|_{W^{1,p}}$$

Thus $\sup_{y \in \mathbb{R}^n} |f(y)| \leq C ||f||_{W^{1,p}}.$

For higher m, use that $f \in W^{m,p}(\mathbb{R}^d)$ implies that $\partial_{x_i} f \in W^{m-1,p}(\mathbb{R}^d)$. By induction and Sobolev inequality for $W^{1,p}$ implies that $\|\partial_{x_i} f\|_q \leq \|f\|_{W^{m,p}}$. Thus $f \in L^p$ and **Example 5.9.** This proof yields that $H^1(\mathbb{R}^1) \subset \mathscr{C}(\mathbb{R}^1)$, but $H^1(\mathbb{R}^2) \not\subset \mathscr{C}(\mathbb{R}^2)$, $H^1(\mathbb{R}^3) \not\subset \mathscr{C}(\mathbb{R}^3)$. However,

 $H^2(\mathbb{R}^2) \subset \mathscr{C}(\mathbb{R}^2), \quad \text{and} \; H^2(\mathbb{R}^3) \subset \mathscr{C}(\mathbb{R}^3)$

q.e.d.

Chapter 6

Ground States for Schrödinger Operators

Definition. A Schrödinger operator is operator of the form

 $-\Delta + V$

for $V: \mathbb{R}^d \to \mathbb{R}$ some external potential. The corresponding Schrödinger equation is

$$(-\Delta + V)\psi = E\psi$$

for some $E \in \mathbb{R}$ (the energy of the system).

Remark (Physical Interpretation). Let $\psi \in L^2(\mathbb{R}^d)$, $\|\psi\|_2 = 1$ be the wave function of a quantum particle, then the ground state energy is given

$$E = \inf\left\{ \int_{\mathbb{R}^d} |\nabla \psi|^2 + \int_{\mathbb{R}^d} V|\psi|^2 \, \middle| \, \psi \in H^1(\mathbb{R}^d), \|\psi\|_2 = 1 \right\}$$

Theorem 6.1 (Minimisers are Solutions). If $V \in L^p_{loc}(\mathbb{R}^d)$ where

$$\begin{cases} p \ge \frac{d}{2}, & \text{if } d \ge 3\\ p > 1, & \text{if } d = 2\\ p = 1, & \text{if } d = 1 \end{cases}$$

and ψ_0 is a minimiser for E, then

$$-\Delta\psi_0 + V\psi_0 = E\psi_0 \qquad in \ \mathscr{D}'(\mathbb{R}^d)$$

(in particular, $V\psi_0 \in L^1_{loc}$.)

Example. Let $f \in \mathscr{C}^1(\mathbb{R})$. Then $f'(x_0) = 0$ if x_0 is a minimiser of f, i.e. $f(x_0 + t) \ge f(x_0)$, hence for t > 0

$$\frac{f(x_0+t) - f(x_0)}{t} \ge 0 \implies f'(x_0) \ge 0$$

and for t < 0

$$\frac{f(x_0+t) - f(x_0)}{t} \leqslant 0 \implies f'(x_0) \leqslant 0$$

i.e. $f'(x_0) = 0$.

Proof. Let $\mathcal{E}(u) = \int |\nabla u|^2 + \int V |u|^2$, then per definitionem of ψ_0

 $\mathcal{E}(u) \geqslant \mathcal{E}(\psi_0)$

for all $u \in H^1$ with $||u||_2 = 1$. Thus for all $\varphi \in \mathscr{C}^{\infty}_c$ and |t| small enough

$$\mathcal{E}\left(\frac{\psi_0 + t\varphi}{\|\psi_0 + t\varphi\|_2}\right) \geqslant \mathcal{E}(\psi_0)$$

i.e. $t \mapsto \mathcal{E}\left(\frac{\psi_0 + t\varphi}{\|\psi_0 + t\varphi\|_2}\right)$ attains its minimum, when t = 0. Hence

$$0 = \frac{d}{dt} \mathcal{E}\left(\frac{\psi_0 + t\varphi}{\|\psi_0 + t\varphi\|_2}\right) = \frac{d}{dt} \frac{\mathcal{E}(\psi_0 + t\varphi)}{\|\psi_0 + t\varphi\|_2^2}$$

Noting that

$$\begin{aligned} \frac{d}{dt}\mathcal{E}(\psi_0 + t\varphi) &= 2\,\Re \int \overline{\nabla u_0} \nabla \varphi + 2\,\Re \int V \overline{\psi_0} \varphi \\ \mathcal{E}(\psi_0 + t\varphi)\big|_{t=0} &= E \\ \frac{d}{dt} \|\psi_0 + t\varphi\|_2^2 &= 2\,\Re \int \overline{u_0} \varphi \\ \|\psi_0 + t\varphi\|_2^2\big|_{t=0} &= 1 \end{aligned}$$

one finds that

$$0 = \frac{d}{dt} \frac{\mathcal{E}(\psi_0 + t\varphi)}{\|\psi_0 + t\varphi\|_2^2} = 2 \,\Re \int \overline{\nabla u_0} \nabla \varphi + 2 \,\Re \int V \overline{\psi_0} \varphi - 2E \,\Re \int \overline{u_0} \varphi = 2 \,\Re \left(-\int \overline{u_0} \Delta \varphi + \int V \overline{\psi_0} \varphi - 2E \int \overline{u_0} \varphi \right)$$

By changing from φ to $i\varphi$ we find that the same must hold for the imaginary part and therefore

$$0 = \int \overline{u_0} (-\Delta \varphi + V \varphi - E \varphi)$$

for all $\varphi \in \mathscr{D}$, i.e.

$$-\Delta u_0 + V u_0 = E u_0$$

in $\mathscr{D}'(\mathbb{R}^d)$. Here the condition $V \in L^p_{\text{loc}}(\mathbb{R}^d)$ ensures that $Vu_0 \in L^1_{\text{loc}}(\mathbb{R}^d)$ because $u_0 \in H^1 \subset L^q(\mathbb{R}^d)$ by the Sobolev embedding. q.e.d.

Two different types of behaviour of external potentials

- 1) Trapping potential: $V(x) \to \infty$ as $|x| \to \infty$, i.e. $\inf_{|x| \ge R} V(x) \to \infty$ as $R \to \infty$
- 2) Decaying potential: $V(x) \to 0$ as $|x| \to \infty$, i.e. $\sup_{|x| \ge R} |V(x)| \to 0$ as $R \to \infty$
- 3) There are also other potentials such as periodic ones.

Theorem 6.2 (Existence of Minimisers for Trapping Potentials). Assume that $0 \leq V$, $V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. Then

$$E = \inf\{\int |\nabla \psi|^2 + \int V|\psi|^2 \, | \, \psi \in H^1(\mathbb{R}^d), \|\psi\|_2 = 1$$

has at least one minimiser.

Proof. Assume that $V \ge 0$, then $E = \inf(\cdots) \ge 0$, thus E is finite. By definition of E, we can find a sequence $(u_n)_n \subset H^1(\mathbb{R}^d)$ such that

$$\mathcal{E}(u_n) = \int |\nabla u_n|^2 + \int V|u_n| \xrightarrow{n \to \infty} E$$

Since $\mathcal{E}(u_n) \to E$ it follows that $\mathcal{E}(u_n)$ is bounded (as $n \to \infty$) and thus $\int |\nabla u_n|^2$ and $\int V|u_n|^2$ are bounded. Thus $(u_n)_n$ is bounded in H^1 , hence we may choose a subsequence such that $u_{n_k} \to u_0$ weakly in $H^1(\mathbb{R}^d)$ and $u_n(x) \to u_0(x)$ a.e. (by Theorem 5.4). Since $\nabla u_n \to \nabla u_0$ weakly in L^2

$$\liminf_{n \to \infty} \int |\nabla u_n|^2 \ge \int |\nabla u_0|^2$$

Since $V|u_n|^2 \to V|u_0|^2$ converges pointwise

$$\liminf_{n \to \infty} \int V |u_n|^2 \ge \int V |u_0|^2$$

By Fatou's lemma. Thus

$$E = \liminf_{n \to \infty} \mathcal{E}(u_n) \ge \mathcal{E}(u_0)$$

Thus u_0 is a minimiser iff $||u_0||_2 = 1$, which is an Exercise.

Now we shall turn to vanishing potentials, i.e. $V \uparrow 0$ as $|x| \uparrow 0$ and a singularity.

Example. The Hydrogen atom potential $-\Delta - \frac{1}{|x|}$ on $L^2(\mathbb{R}^3)$. Why is this potential bounded, i.e.

$$E = \inf\left\{ \int_{\mathbb{R}^3} |\nabla u|^2 dx - \int_{\mathbb{R}^3} \frac{|u(x)|^2}{|x|} dx \ \middle| \ u \in H^1, \|u\|_2 = 1 \right\}$$

This is due to the Sobolev inequality $\|\nabla u\|_2 \ge C \|u\|_6$. For r > 0 we have

$$\int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|} dx = \int_{|x|\leqslant r} \frac{|u(x)|^{2}}{|x|} dx + \int_{|x|>r} \frac{|u(x)|^{2}}{|x|} dx \leq$$

$$\leq \left(\int_{|x|\leqslant r} |u(x)|^{6} \right)^{1/3} \left(\int_{|x|\leqslant r} \frac{1}{|x|^{3/2}} \right)^{2/3} + \int_{|x|>r} \frac{|u(x)|^{2}}{r} dx \leq C_{s} \left(\int_{\mathbb{R}^{3}} |\nabla u|^{2} \right) r + \frac{1}{r}$$

q.e.d.

i.e.

$$\mathcal{E}(u) = \int |\nabla u|^2 - \int \frac{|u(x)|^2}{|x|} \mathrm{d}x \ge \int |\nabla u|^2 (1 - C_s r) - \frac{1}{r}$$

for all r > 0. Choosing r > 0 small enough one finds that

$$\mathcal{E}(u) \ge \frac{1}{2} \int |\nabla u|^2 - C > -\infty$$

i.e. $E > -\infty$.

Lemma 6.3. If $V \in L^p(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d)$ where

$p \geqslant \frac{d}{2},$	if $d \ge 3$
p > 1,	if $d = 2$
$p \ge 1,$	if $d = 1$

then $E > -\infty$ and

$$\mathcal{E}(u) \geqslant \frac{1}{2} \int |\nabla u|^2 - C$$

for all $u \in H^1(\mathbb{R}^d)$, $||u||_2 = 1$.

Remark 6.4. • $L^p + L^{\infty} = \{f + g \mid f \in L^p, g \in L^{\infty}\}, \text{ for example }$

$$\frac{1}{|x|} = \underbrace{\frac{1}{|x|} \mathbf{1}_{\{|x| \leq 1\}}}_{\in L^{3-\varepsilon}} + \underbrace{\frac{1}{|x|} \mathbf{1}_{\{|x|>1\}}}_{\in L^{\infty}}$$

• IF $p < q < \infty$ then $L^q(\mathbb{R}^n) \subset L^p + L^\infty$.

Proof.

 $(d \ge 3)$ Let $V \in L^{d/2} + L^{\infty}$. Write $V = V_1 + V_2$, where $V_1 = V \mathbf{1}_{|V(x)| > \frac{1}{\varepsilon}}$, $V_2 = V \mathbf{1}_{|V(x)| \le \frac{1}{\varepsilon}}$. Then for $\varepsilon > 0$ small, we have

$$V_{2} \in L^{\infty}, \qquad \|V_{2}\|_{\infty} \leqslant \frac{1}{\varepsilon}$$
$$V_{1} \in L^{d/2}, \qquad \|V_{1}\|_{d/2} = \left(\int |V(x)|^{d/2} \mathbf{1}_{|V(x)| \ge \frac{1}{\varepsilon}} \mathrm{d}x\right)^{2/d} \xrightarrow{\varepsilon \searrow 0} 0$$

by dominated convergence. We have

$$\begin{split} \left| \int V|u|^{2} \right| &\leq \int |V_{1}||u|^{2} + \int |V_{2}||u|^{2} \leq \|V_{1}\|_{d/2} \|u\|_{d/2} + \|V_{2}\|_{\infty} \|u\|_{2} \leq \\ &\leq C_{S} \|V_{1}\|_{d/2} \int_{\mathbb{R}^{d}} |\nabla u|^{2} + \frac{1}{\varepsilon} \end{split}$$

for all $u \in H^1, ||u||_2 = 1$. Then

$$\mathcal{E}(u) = \int |\nabla u|^2 (1 - C_S ||V_1||_{d/2}) - \frac{1}{\varepsilon} \ge \frac{1}{2} \int |\nabla u|^2 - C$$

if we choose $\varepsilon > 0$ small enough.

q.e.d.

Definition 6.5 (Vanishing in the Weak Sense). We say that $V : \mathbb{R}^d \to \mathbb{R}$ vanishes at ∞ in the weak sense if for all $\varepsilon > 0$

$$\lambda(\{|V(x)| > \varepsilon\}) < \infty$$

Example. $V(x) \to 0$ as $|x| \to \infty$ in the strong sense, i.e.

$$\sup_{|x| \ge R} |V(x)| \xrightarrow{R \to \infty} 0$$

Remark 6.6. If $V \in L^p(\mathbb{R}^d)$, $1 \leq p < \infty$, the V vanishes at ∞ in the weak sense.

Theorem 6.7. Assume that $V \in L^p(\mathbb{R}^d) + L_0^{\infty}(\mathbb{R}^d)$, where

$p \geqslant \frac{d}{2},$	$\textit{if } d \geqslant 3$
p > 1,	if $d = 2$
$p \ge 1,$	if $d = 1$

and L_0^{∞} is the set of L^{∞} which vanish weakly at infinity. Assume that E < 0 then E

has a minimiser $u_0 \in H^1(\mathbb{R}^d)$ and

$$-\Delta u_0 + V u_0 = E u_0 \quad in \ \mathscr{D}'(\mathbb{R}^d)$$

Moreover, we can choose $u_0 \ge 0$.

Remark 6.8. Under certain conditions on V, then actually $u_0 > 0$ and it is unique. But we will prove this much later.

Lemma 6.9. Assume that $V \in L^p + L_0^\infty$. Assume that $u_n \rightharpoonup u_0$ weakly in $H^1(\mathbb{R}^d)$. Then

$$\int V|u_n|^2 \xrightarrow{n \to \infty} \int V|u_0|^2.$$

Proof.

Case 1 $V \in L^p$, $p = \frac{d}{2}$, $d \ge 3$. Then

$$V = V_1 + V_2 + V_3 = V \mathbf{1}_{\{\varepsilon < |V(x)| < \frac{1}{\varepsilon}\}} + V \mathbf{1}_{|V(x)| \leq \varepsilon} + V \mathbf{1}_{|V(x)| \geq \frac{1}{\varepsilon}}$$

Then $V_1 \in L^{\infty}$, $\lambda(\{V_1(x) \neq 0\}) < \infty$ and by the Sobolev embedding

$$\int_{\{V_1\neq 0\}} V_1 |u_n|^2 \xrightarrow{n \to \infty} \int V_1 |u_0|^2$$

strongly in L^2 .

 $V_2 \in L^{\infty}$ and $||V_2||_{\infty} \leq \varepsilon$, then for all $n \in \mathbb{N}$

$$\left|\int V_2|u_n|^2\right|\leqslant\varepsilon\implies \left|\int V_2|u|^2\right|\leqslant\varepsilon$$

 $V_3 \in L^{d/2}, \, \|V_3\|_{d/2} \to 0$ as $\varepsilon \to 0$ and therefore

$$\left| \int V_3 |u_n|^2 \right| \leqslant \|V_3\|_{d/2} \||u_n|^2\|_{\frac{d}{d-2}} \leqslant C \|V_3\|_{d/2}$$

Then

$$\left| \int V |u_n|^2 - \int V |u_0|^2 \right| \leq \left| \int V_1 |u_n|^2 - \int V_1 |u_0|^2 \right| + \varepsilon + C ||V_3||_{d/2}$$

and therefore

$$\limsup_{n \to \infty} \left| \int V |u_n|^2 - \int V |u_0|^2 \right| \leqslant \varepsilon + C \|V_3\|_{d/2} \longrightarrow 0$$

Case 2 $V \in L_0^{\infty}$, then

$$V = V_1 + V_2 = V \mathbf{1}_{\{\varepsilon < |V(x)| < \frac{1}{\varepsilon} + V(x) \mathbf{1}_{|V(x)| \leqslant \varepsilon}\}}$$

The rest of the proof works analogously to the above.

q.e.d.

Proof of Theorem 6.7.

 $(p = \frac{d}{2}, d \ge 3)$ By the lemma

$$\mathcal{E}(u) \ge \frac{1}{2} \int |\nabla u|^2 - C$$

for all $u \in H^1(\mathbb{R}^d)$, $||u||_2 = 1$. In particular E is finite and we can find a minimising sequence $(u_n)_n \subset H^1$, $||u_n||_2 = 1$, such that $\mathcal{E}(u_n) \to E$. Since

$$E \longleftarrow \mathcal{E}(u_n) \ge \frac{1}{2} \int |\nabla u_n|^2 - C$$

hence $(u_n)_n$ is bounded in $H^1(\mathbb{R}^d)$. Thus by the Sobolev compact embedding theorem, there exists a subsequence $(u_{n_k})_k$, $u_n \rightarrow u_0$ weakly in $H^1(\mathbb{R}^d)$ and $\mathbf{1}_A u_n \rightarrow \mathbf{1}_A u_0$ strongly in $L^2(\mathbb{R}^d)$ for any bounded set A. Because $\nabla u_n \rightarrow \nabla u$ weakly in L^2 , and by Fatou's lemma

$$\liminf_{n \to \infty} \int |\nabla u_n|^2 \ge \int |\nabla u_0|^2$$

and by the previous lemma, $\int V |u_n|^2 \to \int V |u_0|^2$. Thus

$$E = \liminf \mathcal{E}(u_n) \ge \mathcal{E}(u_0).$$

It is not obvious that u_0 is a minimiser as we do not whether $||u_0||_2 = 1$, because

$$u_n \xrightarrow{n \to \infty} u_0 \implies ||u_0||_2 \le \liminf ||u_n||_2 = 1$$

Now using the assumption E < 0 we find that

$$0 > E \ge \mathcal{E}(u_0) = \int |\nabla u_0|^2 + \int V |u_0|^2 = ||u_0||_2^2 \left(\int |\nabla v|^2 + \int V |v|^2 \right) \ge \underbrace{||u_0||_2^2}_{\leqslant 1} E \implies ||u_0||_2 = 1$$

where $v = \frac{u_0}{\|u_0\|_2}$, thus u_0 is a minimiser.

q.e.d.

Remark 6.10. If $E \ge 0$ then E might have no minimiser. For example if $V(x) = \frac{1}{|x|}$ in \mathbb{R}^3 , then

$$E = \inf_{\substack{u \in H^1 \\ ||u||_2 = 1}} \left(\int |\nabla u|^2 dx + \int \frac{|u(x)|^2}{|x|} dx \right) = 0$$

but it has no minimiser.

Theorem 6.11 (Hydrogen Atom). Let

$$E = \inf_{\substack{u \in H^1 \\ \|u\|_2 = 1}} \left(\int |\nabla u|^2 \mathrm{d}x - \int \frac{|u(x)|^2}{|x|} \mathrm{d}x \right)$$

then $E = -\frac{1}{4}$ and $u_0(x) = ce^{-\frac{|x|}{2}}$, $c \in \mathbb{R}$, is a minimiser.

Theorem 6.12 (Perron-Frobenius Principle). Take $\Omega \subset \mathbb{R}^d$ open, $f \in \mathscr{C}^2(\Omega)$. Assume that $V \in L^1_{loc}(\mathbb{R}^d)$, f > 0 for all $x \in \Omega$ and

$$-\Delta f + Vf = 0$$

pointwise in $\Omega.$ Then for all $u\in \mathscr{C}^1_c(\Omega),$ we have

$$\int |\nabla u|^2 \mathrm{d}x + \int V|u|^2 \ge 0.$$

Proof. Since $u \in \mathscr{C}^1_c(\Omega)$ and f > 0 we can write $u = f\varphi$ with $\varphi \in \mathscr{C}^1_c(\Omega)$ and

$$\int |\nabla u|^2 = \int |\nabla (f\varphi)|^2 = \int |\nabla f\varphi + f\nabla \varphi|^2 = \int |\nabla f|^2 |\nabla \varphi|^2 + \int |f|^2 |\nabla \varphi|^2 + 2\Re \int (\nabla f) f\bar{\varphi} \nabla \varphi.$$

Thus

$$\int |\partial_{x_i} f|^2 |\varphi|^2 = -\int f \partial_{x_i} \left((\partial_{x_i} f) |\varphi|^2 \right) = -\int f \left(\partial_{x_i}^2 f \right) |\varphi|^2 - \int f \partial_{x_i} f \partial_{x_i} |\varphi|^2$$

hence

$$\int |\nabla f|^2 |\varphi|^2 = -\int f\Delta f |\varphi|^2 - \int f\nabla f 2 \Re(\bar{\varphi}\nabla\varphi) d\varphi$$

Thus

$$\int |\nabla u|^2 = \int |f|^2 |\nabla \varphi|^2 + \int f(-\Delta f) |\varphi|^2$$

and therefore

$$\int |\nabla u|^2 + \int V|u|^2 = \int |f|^2 |\nabla \varphi|^2 + \int f \underbrace{(-\Delta f + Vf)}_{=0} |\varphi|^2 = \int |f|^2 |\nabla \varphi|^2 \ge 0.$$

q.e.d.

Proof. Let $\Omega = \mathbb{R}^3 \setminus \{0\}$ and $f(x) = ce^{-\frac{|x|}{2}}$. Then $f \in \mathscr{C}^2(\Omega), f > 0$ in Ω and

$$-\Delta f - \frac{f}{|x|} + \frac{1}{4}f = 0$$

on Ω . By the Perron-Frobenius principle

$$\int |\nabla u|^2 - \int \frac{|u(x)|^2}{|x|} + \frac{1}{4} \int |u(x)|^2 \ge 0$$

for all $u \in \mathscr{C}^1_c(\mathbb{R}^3 \setminus \{0\})$. As $\mathscr{C}^1_c(\mathbb{R}^3 \setminus \{0\})$ is dense in $H^1(\mathbb{R}^3)$ (the proof of which is left as an exercise)¹.

The for all $u \in H^1(\mathbb{R}^3)$, we can find a $u_n \in \mathscr{C}^1_c(\mathbb{R}^3 \setminus \{0\})$ such that $u_n \to u$ in $H^1(\mathbb{R}^3)$ and $u_n(x) \to u(x)$ a.e. $x \in \mathbb{R}^3$. Thus

$$\begin{split} \int |\nabla u_n|^2 \mathrm{d}x &\xrightarrow{n \to \infty} \int |\nabla u|^2 \mathrm{d}x \\ &\int |u_n|^2 \mathrm{d}x \xrightarrow{n \to \infty} \int |u|^2 \mathrm{d}x \\ &\lim \inf_{n \to \infty} \int \frac{|u_n|^2}{|x|} \mathrm{d}x \end{split}$$

n

¹Since \mathscr{C}_{c}^{∞} is dense in $H^{1}(\mathbb{R}^{3})$ one only needs to consider a $g \in \mathscr{C}_{c}^{\infty}(\mathbb{R}^{3})$ and take $h \in \mathscr{C}_{c}^{\infty}$, with $0 \leq h \leq 1, h(x) = 1$ if $|x| \leq 1$, and define $g_{n}(1 - h(nx))g(x) \in \mathscr{C}_{c}^{\infty}(\mathbb{R}^{3} \setminus \{0\})$.

$$0 \leq \limsup_{n \to \infty} \left(\int |\nabla u_n|^2 - \int \frac{|u_n|^2}{|x|} + \frac{1}{4} \int |u_n|^2 \right) \leq \left(\int |\nabla u|^2 - \int \frac{|u|^2}{|x|} + \frac{1}{4} \int |u|^2 \right).$$

$$q.e.d.$$

Lemma 6.13. For all $u \in H^1(\mathbb{R}^3)$ with $||u||_2 = 1$ holds

$$\int |\nabla u|^2 \geqslant \left(\int \frac{|u(x)|^2}{|x|}\right)^2$$

Proof. Take $u \in H^1(\mathbb{R}^3)$, $||u||_2 = 1$. Let $u_l(x) = l^{3/2}u(lx)$ for which $||u_l||_2 = ||u||_2 = 1$. We have

$$\int_{\mathbb{R}^3} |\nabla u_l|^2 = l^2 \int |\nabla u|^2, \qquad \int \frac{|u_l|^2}{|x|} dx = l \int \frac{|u|^2}{|x|} dx,$$

then we have by the above that for all l > 0

$$l^{2} \int |\nabla u|^{2} - l \int \frac{|u|^{2}}{|x|} \mathrm{d}x \ge -\frac{1}{4}$$

Noting that $l^2A - lB + C \ge 0$ for some $A, B, C \ge$ and $l \ge 0$ iff $4AC \ge B^2$, we find that the inequality implies

$$\int |\nabla u|^2 \geqslant \left(\int \frac{|u|^2}{|x|}\right)$$

for all $u \in H^1(\mathbb{R}^3)$ and $||u||_2 = 1$.

Remark 6.14. For all $u \in H^1(\mathbb{R}^3)$ and $||u||_2 = 1$ we have

$$\left(\int |\nabla u|^2 \right) \left(\int |x|^2 |u(x)|^2 \mathrm{d}x \right) \ge \left(\int \frac{|u(x)|^2}{|x|} \right)^2 \left(\int |x|^2 |u(x)|^2 \mathrm{d}x \right) \ge$$
$$\ge \left(\int |u(x)|^2 \mathrm{d}x \right)^3 = 1$$

q.e.d.

Comparing this to the Heisenberg uncertainty principle

$$\left(\int |\nabla u|^2\right) \left(\int |x|^2 |u(x)|^2 \mathrm{d}x\right) \ge \frac{g}{4}$$

we see that the Sobolev inequality is "stronger" that the Heisenberg-principle

Theorem 6.15 (Hardy Inequality).

$$\int |\nabla u|^2 \ge \frac{1}{4} \int \frac{|u(x)|^2}{|x|^2} \mathrm{d}x$$

for all $u \in H^1(\mathbb{R}^3)$.

Proof. Homework.

Remark 6.16. Hardy's inequality implies

$$\int |\nabla u|^2 \ge \frac{1}{4} \int \frac{|u|^2}{|x|^2} \ge \frac{1}{4} \left(\int \frac{|u|^2}{|x|} \right)^2$$

if $||u||_2 = 1$.

68

q.e.d.

Chapter 7

Harmonic Functions

Definition 7.1. Let $f \in L^1_{loc}(\Omega)$, for $\Omega \subset \mathbb{R}^d$ open. Then f is harmonic iff

$$\Delta f = 0 \qquad \text{in } \mathscr{D}'(\Omega).$$

Theorem 7.2 (Equivalent Definition). $f \in L^1_{loc}(\Omega)$. The f is harmonic iff

$$f(x) = \frac{1}{\lambda(B_r)} \int_{B_r(x)} f(y) dy := \int_{B_r(x)} f(y) dy \qquad a.e$$

for all r > 0 such that $B_r(x) \subset \Omega$.

Proof.

Step 1. Let $f \in \mathscr{C}_c^{\infty}$ and assume that $\Delta f = 0$. Then

$$0 = \int_{B_r(x)} \Delta f(y) \mathrm{d}y = \int_{S_r(x)} \nabla f \cdot \nu \mathrm{d}S(y) = r^{d-1} \int_{\mathbb{S}^{d-1}} \nabla f(x + rw) \cdot w \mathrm{d}S(w)$$

where $\mathbb{S}^{d-1} = S_1(0)$. Thus we have

$$0 = \int_{\mathbb{S}^{d-1}} \nabla f(x+r\omega) \cdot \omega dS(\omega) = \int_{\mathbb{S}^{d-1}} \frac{d}{dr} f(x+r\omega) d\omega = \frac{d}{dr} \int_{\mathbb{S}^{d-1}} f(x+r\omega) dS(\omega)$$

i.e. $r \mapsto \int_{\mathbb{S}^{d-1}} f(x + r\omega) dS(\omega)$ is constant, i.e. for all r > 0

$$f(x)\lambda(\mathbb{S}^{d-1}) = \int_{\mathbb{S}^{d-1}} f(x+r\omega) \cdot w \mathrm{d}S(\omega)$$

and therefore

$$|B_{r}(0)|f(x) = \int_{0}^{R} r^{d-1}\lambda(\mathbb{S}^{d-1})f(x)dr = \int_{0}^{r} r^{d-1}\int_{\mathbb{S}^{d-1}} f(x+r\omega)\cdot\omega dS(\omega)dr = \int_{B_{r}(x)} f(y)dy$$

from which $f(x) = \int_{B_r(x)} f(y) dy$ follows.

For the converse assume that $f(x) = \int_{B_r(x)} f(y) dy$ holds for all $x \in \Omega$ and r > 0. From the assumption we have

$$\lambda(\mathbb{S}^{d-1})f(x) = \int_{\mathbb{S}^{d-1}} f(x+r\omega) \cdot \omega \mathrm{d}S(\omega)$$

Taking the derivative with respect to r we get

$$0 = \frac{d}{dr} \int_{\mathbb{S}^{d-1}} f(x + r\omega) \mathrm{d}S(\omega) = \int_{\mathbb{S}^{d-1}} \nabla f(x + r\omega) \cdot \omega \mathrm{d}S(\omega) = \int_{B_r(x)} \Delta f(y) \mathrm{d}y$$

Since this holds for all r > 0 one finds that $\Delta f = 0$.

Step 2. Consider $f \in L^1_{loc}(\Omega)$. Choosing $h \in \mathscr{C}^{\infty}_c(\mathbb{R}^d)$, with $0 \leq h \leq 1$ and $\int h = 1$, h(x) = 0if |x| > 1 and h is a radial function, i.e. h(x) = f(|x|). Letting

$$h_n(x) = n^d h(nx)$$

for $n \in \mathbb{N}$. We know that $h_n * f \to f$ in $L^1_{loc}(\Omega)$, $h_n * f \in \mathscr{C}^{\infty}$ and $D^{\alpha}(h_n * f) = (D^{\alpha}h_n) * f$. Let $\Delta f = 0$ in $\mathscr{D}'(\Omega)$. Then

$$\Delta(h_n * f) = 0, \qquad \text{in } \mathscr{D}'(\Omega),$$

since for all $\varphi \in \mathscr{C}^{\infty}_{c}(\Omega)$, in particular also $h_{n}(\cdot - x)$,

$$\int \Delta \varphi(y) f(y) \mathrm{d}y = 0,$$

hence we have classically $\Delta(h_n * f) = (\Delta h_n * f) = 0$ and therefore also weakly. By step 1

$$(h_n * f)(x) = \int_{B_r(x)} (h_n * f)(y) dy = \frac{\mathbf{1}_{B_r(0)}}{\lambda(B_r(0))} * (h_n * f)(x) = h_n * \left(\frac{\mathbf{1}_{B_r(0)}}{\lambda(B_r(0))} * f\right)(x)$$

Taking the limit $n \to \infty$, the assertion follows.

For the converse assume that $f(x) = \left(\frac{\mathbf{1}_{B_r(0)}}{\lambda(B_r(0))} * f\right)(x)$ then

$$h_n * f(x) = h_n * \left(\frac{\mathbf{1}_{B_r(0)}}{\lambda(B_r(0))} * f\right)(x) = \frac{\mathbf{1}_{B_r(0)}}{\lambda(B_r(0))} * (h_n * f)(x)$$

and therefore by step 1., $\Delta(h_n * f) = 0$. Since $h_n * f \to f$ in L^1_{loc} it does also converge in $\mathscr{D}'(\Omega)$ and therefore $0 = \Delta(h_n * f) \to \Delta f$ in $\mathscr{D}'(\Omega)$.

Corollary 7.3. If f is harmonic, then
$$f \in \mathscr{C}^{\infty}(\Omega)$$
 and $f(x) = \int_{\lambda(S_r(0))} f(y) dy$. \Box

Proof. The identity follows as in the case for smooth functions. For the smoothness we shall prove that $h_n * f = f$ everywhere.

$$(h_n * f)(x) = \int f(y)f(x - y)dy = \int_0^\infty \int_{S^{d-1}} r^{d-1}h_n(r\omega)f(x - r\omega)dS(\omega)dr =$$
$$= \int_0^\infty h(r\omega)r^{d-1} \int_{\mathbb{S}^{d-1}} f(x - r\omega)dS(\omega) dr = \left(\int_{\mathbb{R}^d} h_n(y)dy\right)f(x) = f(x).$$
$$= f(x)\lambda(\mathbb{S}^{d-1})$$

Thus since $h_n * f$ is smooth so must f.

Theorem 7.4 (Harnack's Inequality). If f is harmonic on $B_r(0)$ and $f \ge 0$ then for all $x \in B_{\frac{R}{3}}(0)$, then

$$\left(\frac{3}{2}\right)^d f(0) \ge f(x) \ge \frac{f(0)}{2^d}$$

q.e.d.

Proof.

$$f(0) = \int_{B_R(0)} f(y) dy$$
$$f(x) = \int_{B_{\frac{2}{3}R}(x)} f(y) dy$$

for $x \in B_{\frac{R}{3}}(0)$. Thus we have

$$f(0) = \frac{\lambda(B_{\frac{2}{3}R}(x))}{\lambda(B_R(0))} \frac{1}{\lambda(B_{\frac{2}{3}R}(x))} \int_{B_R(0)} f(y) dy \ge \left(\frac{2}{3}\right)^d \oint_{B_{\frac{2}{3}R}(x)} f(y) dy = \left(\frac{2}{3}\right)^d f(x)$$

The other inequality follows similarly using $B_{\frac{R}{2}}(0) \subset B_{\frac{2R}{2}}(x)$.

Corollary 7.5. If f is harmonic on \mathbb{R}^d and f is bounded from above $f \leq c$ for some $c \in \mathbb{R}$ (or bounded from below), then f is constant

Proof. Assuming that $f(x) \ge -C$ for all $x \in \mathbb{R}^d$. We want to prove that f is constant. Let $E = \inf_{x \in \mathbb{R}^d} f(x)$ and define g = f - E, then $g \ge 0$ and g is harmonic, $\inf_{x \in \mathbb{R}^d} g(x) = 0$. We want to prove that $g \equiv 0$. If not, then there must exist a x_0 . If not then there exists a $x_0 \in \mathbb{R}^d$ such that $g(x_0) > 0$. By Harnack's inequality we find that

$$g(x) \geqslant \frac{g(x_0)}{2^d} > 0$$

for all $x \in \mathbb{R}^d$. Thus

$$\inf_{x \in \mathbb{R}^d} g(x) \ge \frac{g(x_0)}{2^d} > 0$$

which is a contradiction.

Theorem 7.6 (Newton's Theorem). Let μ be a positive Borel measure on \mathbb{R}^n and let μ be radial, i.e. $\mu(RA) = \mu(A)$ for all $R \in SO(3)$. Then for all $x \in \mathbb{R}^3$

$$\int_{\mathbb{R}^3} \frac{\mathrm{d}\mu(y)}{|x-y|} = \int_{\mathbb{R}^3} \frac{\mathrm{d}\mu(y)}{\max\{|x|,|y|\}} = \frac{\int \mathrm{d}\mu}{|x|}$$

q.e.d.

q.e.d.
Proof. Using $-\Delta \frac{1}{4\pi |x|} = \delta$ in $\mathscr{D}'(\mathbb{R}^3)$, in particular $\Delta \frac{1}{|x|} = 0$ for all $x \in \mathbb{R}^3 \setminus \{0\}$, hence $\frac{1}{|x|}$ is harmonic on $\Omega = \mathbb{R}^3 \setminus \{0\}$. Thus

$$f(x) = \int_{\mathbb{S}_r(x)} f(y) \mathrm{d}S(y)$$

Step 1 We consider the case μ is a uniform measure on a sphere. We want to prove that

$$\int_{|y|=R} \frac{\mathrm{d}y}{|x-y|} = \int_{|y|=R} \frac{\mathrm{d}y}{\max\{|x|,R\}}.$$

If |x| > R the function $y \mapsto \frac{1}{|x-y|} =: f(y)$ is a harmonic function on B(0, |x|), because $\Delta\left(\frac{1}{|x|}\right) = 0$ for all $x \in \mathbb{R}^3 \setminus \{0\}$. By the mean value theorem then

$$f(0) = \oint_{|y|=R} f(y) \mathrm{d}y \implies \frac{1}{|x|} = \oint_{|y|=R} \frac{\mathrm{d}y}{|x-y|}$$

and therefore

$$\int_{|y|=R} \frac{\mathrm{d}y}{|x-y|} = |S_R(0)| \frac{1}{|x|} = \int_{|y|=R} \mathrm{d}y \frac{1}{|x|} = \int_{|y|=R} \frac{\mathrm{d}y}{\max\{|x|,R\}}$$

If |x| < R

$$\int_{|y|=R} \frac{\mathrm{d}y}{|x-y|} = R^2 \int_{\mathbb{S}^2} \frac{\mathrm{d}\omega}{|x-R\omega|} = R^2 \int_{\mathbb{S}^2} \frac{\mathrm{d}\omega}{\left||x|\omega - Ry_0\right|} \stackrel{\text{Case } |x|>R}{=}$$
$$= R^2 \int_{\mathbb{S}^2} \frac{\mathrm{d}\omega}{R} = \frac{|S_R(0)|}{R} = \int_{|y|=R} \frac{\mathrm{d}y}{\max\{|x|,R\}}$$

If |x| = R then by the Dominated Convergence Theorem

$$\int_{|y|=R} \frac{\mathrm{d}y}{|x-y|} = \lim_{R_n \uparrow R} \int_{|y|=R_n} \frac{\mathrm{d}y}{|x-y|} = \lim_{R_n \uparrow R} \frac{|S_{R_n}(0)|}{|x|} = \frac{|S_R(0)|}{|x|} = \int_{|y|=R} \frac{\mathrm{d}y}{\max\{|x|,R\}}$$

Thus we proved for all R > 0 and $x \in \mathbb{R}^3$

$$\int_{|x-y|} \frac{\mathrm{d}y}{|x-y|} = \int_{|y|=R} \frac{\mathrm{d}y}{\max\{|x|,|y|\}}$$

Step 2 For general μ , with μ radial

$$\int_{\mathbb{R}^3} \frac{\mathrm{d}\mu(y)}{|x-y|} = \int_0^\infty r^2 \int_{\mathbb{S}^2} \frac{\mathrm{d}\mu(r\omega)}{|x-r\omega|} = \int_0^\infty r^2 \int_{\mathbb{S}^2} \frac{\mathrm{d}\mu(r\omega)}{\max\{|x|,r\}} = \int_{\mathbb{R}^3} \frac{\mathrm{d}\mu(y)}{\max\{|x|,|y|\}}$$
$$q.e.d.$$

Definition 7.7. Let $f \in L^1_{loc}(\Omega)$. We say that f is super-harmonic if $-\Delta f \ge 0$ in $\mathscr{D}'(\Omega)$. f is called sub-harmonic if $-\Delta f \le 0$ in $\mathscr{D}'(\Omega)$. \Box

Remark 7.8. In one dimension super-harmonic is equivalent to $-f'' \ge 0$ i.e. f is a concave function.

If $T \in \mathscr{D}'(\Omega)$, then we say that $T \ge 0$ if $T(\varphi) \ge 0$ for all $\varphi \in \mathscr{D}(\Omega)$, for $\varphi \ge 0$. Actually by the Riesz-Markov representation theorem, $T \in \mathscr{D}'(\Omega)$, $T \ge 0$ iff there exists a positive Borel measure μ such that

$$\begin{cases} T(\varphi) = \int_{\Omega} \varphi(y) \mathrm{d}\mu(y), & \forall \varphi \in \mathscr{D}(\Omega) \\ \mu(K) < \infty, & \forall K \subset \Omega \text{ compact} \end{cases}$$

However, we shall not use this result in this course. One way to prove this is to define

$$\mu(K) = \inf \left\{ T(\varphi) \mid \varphi \in \mathscr{D}, \, \varphi \ge 0 \, \varphi = 1 \text{ on } K \right\}$$
$$\mu(O) = \sup \left\{ T(\varphi) \mid \varphi \in \mathscr{D}, \, 0 \leqslant \varphi \leqslant 1, \operatorname{supp} \varphi \subset O \right\}$$

Theorem 7.9 (Mean-Value-Theorem). Let $f \in L^1_{loc}(\Omega)$. Then f is super-harmonic iff for a.e. $x \in \Omega$ and R > 0 such that $\overline{B_R(x)} \subset \Omega$

$$f(x) \ge \int_{B_R(x)} f(y) \mathrm{d}y$$

Proof. "Similar" to Theorem 7.2 for harmonic functions. First let $f \in \mathscr{C}^{\infty}$, if $-\Delta f \ge 0$, then

$$0 \ge \int_{B_r(x)} \Delta f(y) dy = r^{d-1} \frac{d}{dr} \int_{S^{d-1}} f(x+r\omega) d\omega$$

which means that $r \mapsto \int_{\mathbb{S}^{d-1}} f(x + r\omega) d\omega$ is non-increasing and therefore

$$f(x) \ge \int_{B_R(x)} f(y) \mathrm{d}y.$$

Then for $f \in L^1_{\text{loc}}$, replace f by $h_n * f \in \mathscr{C}^{\infty}$.

Theorem 7.10 (Strong Minimum Principle). Let $f \in L^1_{loc}(\Omega)$, $-\Delta f \ge 0$ in $\mathscr{D}'(\Omega)$, where $\Omega \subset \mathbb{R}^n$ is open and path-connected. Let $E = \operatorname{ess\,inf}_{\Omega} f$. Then either

- f(x) > E, for a.e. x ∈ Ω
 f = const on Ω.

Remark 7.11. The weak minimum principle tell us that $\operatorname{ess\,inf}_{\Omega} f = \operatorname{ess\,inf}_{\partial\Omega} f$.

Proof. Assume that $f(x) \ge \int_{B_R(x)} f(y) dy$ holds for all R > 0, $B_R(x) \subset \Omega$ holds for all $x \in \Omega'$, i.e. $|\Omega \setminus \Omega'| = 0$. If $x \in \Omega'$ and f(x) = E, then

$$E = f(x) \ge \oint_{B_R(x)} \underbrace{f(y)}_{\ge E} dy \ge E$$

i.e. equality has to occur and therefore f(y) = E for a.e. $y \in B_R(x) \subset \Omega$. Now for every $z \in \Omega$ there exists a continuous curve connecting x and z. We can find r > 0 and finitely

q.e.d.

many points x_1, \ldots, x_N such that $x_1 = x$ and $x_N = z$ such that $B_r(x_m) \subset \Omega$ covering the curve. Then f(X) = E implies that a.e. $y \in B_r(x)$ and by induction it follows that $f(x_m) = E$ and thus also f(z) = E. *q.e.d.*

Theorem 7.12 (Mean-Value Theorem for $(-\Delta + \mu^2)$). Let $f \in L^1_{loc}(\Omega)$, $-\Delta f + \mu^2 f \ge 0$ in $\mathscr{D}'(\Omega)$, $\mu \in \mathbb{R}$. Assume that Ω is open and path-connected.

1) Then for a.e. $x \in \Omega$ we have

$$f(x) \ge C_R \int_{B_R(x)} f(y) \mathrm{d}y$$

for all R > 0 such that $B_R(x) \subset \Omega$, where $C_R > 0$ depends only on R > 0.

2) If $f \ge 0$ and $f \ne 0$, then f(x) > 0 for a.e. $x \in \Omega$. In fact for all $K \subset \Omega$ compact, we have

$$f(x) \ge C_K \int_K f(y) \mathrm{d}y$$

for a.e. $x \in K$, where C_K depends only on K.

Proof.

Step 1. We can find a function $J : \mathbb{R}^d \to \mathbb{R}$ such that $J \ge 0, T \in L^{\infty}_{loc}, J(0) = 1$ and J is radial and

$$(-\Delta + \mu^2)J(x) = 0,$$
 pointwise.

For example in 3-dimension this is

$$J(x) = \frac{\sinh(\mu|x|)}{\mu|x|}$$

Step 2. Assume that $f \in \mathscr{C}^{\infty}$ and $-\Delta f + \mu^2 f \ge 0$ pointwise. Then

$$\int_{B_r(0)} (-\Delta f + \mu^2 f) J \ge 0.$$

On the other hand

$$\int\limits_{B_r(0)} f(-\Delta J + \mu^2 J) = 0$$

i.e.

$$0 \leqslant \int_{B_{r}(x)} \left((-\Delta f)J - f(-\Delta J) \right) = -r^{n-1} \int_{\mathbb{S}^{d-1}} \left(\nabla fJ - f\nabla f \right) \cdot \omega d\omega =$$
$$= -r^{d-1} \int_{\mathbb{S}^{d-1}} \left(\frac{d}{dr} f(r\omega)j(r\omega) - f(r\omega)\frac{d}{dr}J(r\omega) \right) d\omega =$$
$$= -r^{d-1} \left(\frac{d}{dr} \left(\int_{\mathbb{S}^{d-1}} f(r\omega) \right) J(r) - \int_{\mathbb{S}^{d-1}} f(r\omega)\frac{d}{dr}J(r) \right)$$

which implies that

$$\left(\frac{d}{dr}g\right)J - g\left(\frac{d}{dr}J\right) \leqslant 0 \implies \frac{d}{dr}\frac{g}{J} \leqslant 0$$

Thus $r\mapsto \frac{g}{J}$ is non-increasing and therefore

$$|\mathbb{S}^{d-1}|f(0) \ge \frac{g(R)}{J(R)} = \frac{1}{J(R)} \int_{B_R(0)} f(R\omega) \mathrm{d}\omega$$

for all R > 0 such that $B_R(0) \subset \Omega$ and thus also that

$$f(0) \geqslant C_R \int\limits_{B_R(0)} f(y) \mathrm{d}y$$

and

$$f(x) \ge C_R \int_{B_R(x)} f(y) \mathrm{d}y.$$

Step 3 Now let $f \in L^1_{\text{loc}}$ and consider $h_n * f \in \mathscr{C}^{\infty}$, with $h_n * f \to f$ in $L^1_{\text{loc}}(\Omega)$. From Step 2 we have

$$(h_n * f)(x) \ge C_R \int_{B_R(x)} (h_n * f)(y) dy = C_R \mathbf{1}_{B_R(0)} * (h_n * f) = C_R h_n * (\mathbf{1}_{B_R(0)} * f)$$

Taking $n \to 0$ we find that

$$f(x) \ge C_R \big(\mathbf{1}_{B_R(0)} * f \big)(x) = C_R \int_{B_R(x)} f(y) \mathrm{d}y$$

for a.e. x.

Step 4 If $f \ge 0$ and $f \ne 0$. Then the mean value inequality implies that

$$f(x) \ge C_R \int\limits_{B_R(x)} f(y) \mathrm{d}y$$

implies that f(x) > 0. The proof argument is the same as for the strong maximum principle.

Step 5 K is compact, we can find $x_1, \ldots, x_n, r > 0$ such that $K \subset \bigcup_{i=1}^N B_r(x) =: U$

$$\int_{K} f(y) dy \leqslant \int_{U} f \leqslant \sum_{i=1}^{N} \int_{B_{r}(x)} f.$$

And thus if we assume that $B_i \cap B_{i+1} \neq 0$ and $x \in B(x_1, r)$

$$f(x) \ge c \int_{B_r(x)} f(y) \mathrm{d}y \ge \int_{B(x_1,r) \cap B(x_2,r)} \ge c' |B_1 \cap B_2| \inf_{B_1 \cap B_2} \ge c' \int_{B_r(x_2)} f(y) \mathrm{d}y$$

if $|B_1 \cap B_2| \neq 0$ (or $B_i \cap B_{i+1} \neq \emptyset$ for all i). Thu

$$f(x) \ge c_1 \int_{B_1} f(y) dy \ge \dots \ge c_n \int_{B_N} f(y) dy$$

hence

$$f(x) \ge \tilde{c} \int\limits_{K} f(y) \mathrm{d}y$$

 $\tilde{c} = \inf c_i.$

q.e.d.

Theorem 7.13 (Uniqueness of Minimiser). Assume that $V \in L^1_{loc}$ and E has a minimiser. Assume that $V_+ \in L^{\infty}_{loc}(\mathbb{R}^d)$, $V_+(x) = \max\{V(x), 0\}$. Then there exists a unique

 $u_0 > 0$ minimiser for E. Moreover if u is another minimiser, then

$$u = cu_0$$

for a constant $c \in \mathbb{C}$, |c| = 1.

Proof. By the diamagnetic inequality, $\mathcal{E}(u) \ge (|u|)$. We may thus assume that E has a minimiser $u_0 \ge 0$ and we have to prove that $u_0 > 0$. Since u_0 is a minimiser, it satisfies

$$-\Delta u_0 + V u_0 = E u_0$$
 in $\mathscr{D}'(\mathbb{R}^d)$

Thus

$$-\Delta u_0 + V u_0 = E u_0$$

in $\mathscr{D}'(B)$ for all open balls in \mathbb{R}^d . Since $V_+ \in L^{\infty}(B)$ implies that $V \leq \mu^2$ in B for some constant $\mu \geq 0$. Thus

$$-\Delta u_0 + \left(\mu^2 - E\right)u_0 \ge 0 \quad \text{in } \mathscr{D}'(B).$$

By the above theorem it follows that

$$u_0(x) \ge C_K \int\limits_K u_0(y) \mathrm{d}y$$

for all compact subsets of B and a.e. $x \in K$. This means that for every $y \in \mathbb{R}^d$, r > 0, that

$$u_0(x) \geqslant C_r \int\limits_{B_r(y)} u_0(z) \mathrm{d} z$$

Because $u_0 \ge 0$, $u_0 \ne 0$ (as $||u_0||_2 = 1$), then

$$\int\limits_{B_R(0)} u(z) \mathrm{d} z > 0$$

for R big enough. Therefore $u_0(x) > 0$ for a.e. $x \in B_R(0)$ for all R large enough. Therefore $u_0(x) > 0$ for a.e. $x \in \mathbb{R}^d$.

Next assume that u is another minimiser. We can write u = f + ig, with $f, g : \mathbb{R}^d \to \mathbb{R}$.

But

$$\int |\nabla f|^2 + \int V|f|^2 \ge E \int |f|^2$$

$$\int |\nabla g|^2 + \int V|g|^2 \ge E \int |g|^2$$

By the definition of E. Thus $\frac{f}{\|f\|_2}$ and $\frac{g}{\|g\|_2}$ are also minimisers for E. Then either u is real indeed, or we assume both $f, g \neq 0$. Let us consider when both $f, g \neq 0$. Then $\frac{|f|}{\|f\|_2}, \frac{|g|}{\|g\|_2}$ are also minimisers by the diamagnetic inequality. We can therefore assume that f > 0 and g > 0.

Now we choose |u|, we know that

$$\int |\nabla u|^2 = \int |\nabla |u||^2$$

because u is minimiser. Because f, g > 0

$$\nabla|u| = \frac{f\nabla f + g\nabla g}{\sqrt{f^2 + g^2}}$$

which implies that

$$\int |\nabla f|^2 + |\nabla g|^2 = \int \frac{|f\nabla f + g\nabla g|^2}{f^2 + g^2}$$

On the other hand

$$\frac{|f\nabla f + g\nabla g|^2}{f^2 + g^2} \leqslant |\nabla f|^2 + |\nabla g|^2 \qquad \text{pointwise.}$$

Thus

$$\frac{|f\nabla f + g\nabla g|^2}{f^2 + g^2} = |\nabla f|^2 + |\nabla g|^2 \qquad \text{a.e.}$$

Hence f = constg. Consequently u = f + ig = (1 + iconst)g = constg, i.e. u is real valued and u > 0 up to a phase.

Finally, since both u and u_0 are minimisers (and positive)

$$\varphi = \frac{u + iu_0}{\|u + iu_0\|_2}$$

is also a minimiser and thus by the same argument we have $u = Cu_0$.

q.e.d.

Corollary 7.14. If there exists a $\lambda \in \mathbb{R}$ and $v \ge 0$ such that

$$-\Delta v + Vv = \lambda v$$
 in $\mathscr{D}'(\mathbb{R}^d)$

Then $\lambda = E$ and $v = u_0 > 0$ (where u_0 is the unique minimiser of \mathcal{E}).

Proof. The PDE implies

$$\int \nabla v \cdot \nabla \varphi + \int V v \varphi = \lambda \int v \varphi$$

for all $\varphi \in \mathscr{D}(\mathbb{R}^d)$ and thus

$$\int \nabla v \cdot \nabla u_0 + \int V v u_0 = \lambda \int v u_0$$

(where we have omitted some conditions on V). Moreover,

$$-\Delta u_0 + V u_0 = E u_0$$

thus

$$\int \nabla u_0 \cdot \nabla v + \int V u_0 v = E \int v u_0$$

Thus $\lambda \int v u_0 = E \int v u_0$. Since $\int v u_0 > 0$ (as $v \ge 0$, $u_0 > 0$) which implies that $\lambda = E$, hence v is a minimiser and thus $v = u_0$. q.e.d.

Chapter 8

Smoothness of Weak Solutions

Consider the Poisson equation

$$-\Delta u = f \qquad \text{in } \mathscr{D}'(\mathbb{R}^d)$$

If $f \in \mathscr{C}(\mathbb{R}^d)$, can we conclude $u \in \mathscr{C}^2(\mathbb{R}^d)$. If d = 1 yes otherwise no. But $f \in \mathscr{C}(\mathbb{R}^d)$ implies that $u \in \mathscr{C}^1(\mathbb{R}^d)$.

However, there exists the Elliptical optimal estimate that if $f \in \mathscr{C}^{\alpha}$ then $u \in \mathscr{C}^{2+\alpha}$ for $0 < \alpha < 1$, where \mathscr{C}^{α} are the Hölder spaces.

Theorem 8.1 (Basic Regularity). Assume that $u \in L^1_{loc}(\Omega), f \in L^p_{loc}(\Omega), \Omega \subset \mathbb{R}^d$ open. If $-\Delta u = f \qquad in \ \mathscr{D}'(\Omega)$

Then

u ∈ 𝔅(Ω) if *p* > ^{*d*}/₂ *u* ∈ 𝔅¹(Ω) if *p* > *d*.

Proof.

Step 1 $f \in L^p(\mathbb{R}^d)$ and f has compact support

$$-\Delta u = f$$
 in $\mathscr{D}'(\Omega)$

Then a solution is $u(x) = (G \ast f)(x) = \int\limits_{\mathbb{R}^d} G(x-y) f(y) \mathrm{d} y$ where

$$G(x) = \begin{cases} \frac{1}{(d-2)|\mathbb{S}^{d-1}|} \frac{1}{|x|^{d-2}}, & \text{if } d \neq 2\\ -\frac{1}{2\pi} \ln |x|, & \text{if } d = 2. \end{cases}$$

Let us restrict ourselves to the case $d \ge 3$.

$$u(x) = c_d \int_{\mathbb{R}^d} \frac{f(y)}{|x - y|^{d - 2}} \mathrm{d}y$$

is well-defined because

$$\int_{\mathbb{R}^d} \frac{f(y)}{|x-y|^{d-2}} \mathrm{d}y \leqslant \left(\int_{\mathbb{R}^d} |f|^p \right)^{1/p} \left(\int_{\mathrm{supp}\, f} \frac{\mathrm{d}y}{|x-y|^{(d-2)q}} \right)^{1/q} \leqslant C \|f\|_p$$

with $C < \infty$ if

$$(d-2)q < d \iff \frac{p}{p-1} < \frac{d}{d-2} \iff \frac{p-1}{p} > \frac{d-2}{d} \iff \frac{1}{p} < \frac{2}{d} \iff p > \frac{d}{2}$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Step 2 We prove prove that u(x) as defined above is continuous if $p > \frac{d}{2}$.

$$u(x) - u(x') = c_d \int f(y) \left(\frac{1}{|x - y|^{d-2}} - \frac{1}{|x' - y|^{d-2}} \right) dy$$

thus

$$|u(x) - u(x')| \leq c_d \int |f(y)| \left| \frac{1}{|x - y|^{d-2}} - \frac{1}{|x' - y|^{d-2}} \right| dy$$

Using the elementary inequality for $a,b \geqslant 0$ and $\alpha \geqslant 1$

$$\begin{split} \left|\frac{1}{a^{\alpha}} - \frac{1}{b^{\alpha}}\right| &= \frac{|a^{\alpha} - b^{\alpha}|}{a^{\alpha}b^{\alpha}} \leqslant C|a - b|\frac{a^{\alpha-1} + b^{\alpha-1}}{a^{\alpha}b^{\alpha}} \leqslant C|a - b|^{\varepsilon}|a + b|^{1-\varepsilon}\frac{(a^{\alpha-1} + b^{\alpha-1})}{a^{\alpha}b^{\alpha}} \leqslant C|a - b|^{\varepsilon}\frac{1}{a^{\alpha+\varepsilon} + \frac{1}{b^{a+\varepsilon}}} \end{split}$$

for $\varepsilon > 0$ small. Thus

$$\left|\frac{1}{|x-y|^{d-2}} - \frac{1}{|x'-y|^{d-2}}\right| \leqslant C|x-x'| \left|\frac{1}{|x-y|^{d-2+\varepsilon}} + \frac{1}{|x'-y|^{d-2+\varepsilon}}\right|$$

therefore

$$\begin{split} |u(x) - u(x')| &\leqslant C|x - x'| \int |f(y)| \left(\frac{1}{|x - y|^{d - 2 + \varepsilon}} + \frac{1}{|x' - y|^{d - 2 + \varepsilon}}\right) \, dy \leqslant \\ &\leqslant C|x - x'| \left(\int |f|^p\right)^{1/p} \left(\left(\int_{\text{supp } f} \frac{1}{|x - y|^{(d - 2 + \varepsilon)^q}}\right)^{1/q} + \left(\int_{\text{supp } f} \frac{1}{|x' - y|^{(d - 2 + \varepsilon)^q}}\right)^{1/q} \right) \, dy \end{split}$$

Thus in total we have

$$|u(x) - u(x')| \leq C|x - x'|^{\varepsilon} ||f||_p$$

if

$$(d-2+\varepsilon)q < d \iff \varepsilon \frac{d}{q} - (d-2) = \frac{d(p-1)}{p} - (d-2) = 2 - \frac{d}{p}$$

Step 3 We prove that if p > d then $u(x) = c_d \int \frac{f(y)}{|x-y|^{d-2}} dy$ is \mathscr{C}^1 .

$$\partial_{x_i} u(x) = c_d \int f(y) \frac{x_i - y_i}{|x - y|^d} dy$$

and therefore

$$|\partial_{x_i} u(x) - \partial_{x_i} u(x')| \le c_d \int |f(y)| \left| \frac{x_i - y_i}{|x - y|^d} - \frac{x'_i - y'_i}{|x' - y'|^d} \right| dy$$

Let a = |x - y|, $a_i = x_i - y_i$, b = |x' - y| and $b_i = x'_i - y_i$. We have

$$\begin{aligned} \left|\frac{a_i}{a^d} - \frac{b_i}{b^d}\right| &\leqslant \frac{|a_i - b_i|}{a^d} + |b_i| \left|\frac{1}{a^d} - \frac{1}{b^d}\right| \leqslant |x - x'|\frac{1}{a^d} + |b| \left|\frac{1}{a^d} - \frac{1}{b^d}\right| \leqslant \\ &\leqslant C|x - x'|^{\varepsilon} \left(\frac{1}{|x - y|^{d-1+\varepsilon}} + \frac{1}{|x' - y|^{d-1+\varepsilon}}\right) \end{aligned}$$

hence

$$\begin{aligned} |\partial_{x_i} u(x) - \partial_{x_i} u(x')| &\leqslant C |x - x'|^{\varepsilon} \int |f(y)| \left| \frac{1}{|x - y|^{d - 1 + \varepsilon}} + \frac{1}{|x' - y|^{d - 1 + \varepsilon}} \right| \mathrm{d}y \leqslant \\ &\leqslant |x - x'|^{\varepsilon} ||f||_p \left(\int_{\mathrm{supp}\, f} \left| \frac{\mathrm{d}y}{|x - y|^{(d - 1 + \varepsilon)} q} \right| \right)^{1/q} + \left(\int_{\mathrm{supp}\, f} \left| \frac{\mathrm{d}y}{|x - y|^{(d - 1 + \varepsilon)} q} \right| \right)^{1/q} \\ &\leqslant C |x - x'|^{\varepsilon} ||f||_p \end{aligned}$$

if

$$(d-1+\varepsilon)q < d \iff \varepsilon < \frac{d}{p} - (d-1) = \frac{d(p-1)}{p} - (d-1) = 1 - \frac{d}{p}.$$

Step 4 Now let $f \in L^p_{loc}(\Omega)$, $-\Delta u = f$ in $\mathscr{D}'(\Omega)$. Take an open ball B such that $\overline{B} \subset \Omega$. Take function u_1 such that $-\Delta u_1 = \mathbf{1}_B f$ in $\mathscr{D}'(\Omega)$, (i.e. $u_1 = G * (\mathbf{1}_B f)$) From Step 1,2,3 it follows that $u_1 \in \mathscr{C}(B)$ if $p > \frac{d}{2}$ and $\mathscr{C}^1(B)$ if p > d.

Further we also have

$$-\Delta(u - u_1) = f(1 - \mathbf{1}_B), \quad \text{in } \mathscr{D}'(\Omega)$$

Thus

$$-\Delta(u - u_1) = 0, \quad \text{in } \mathscr{D}'(B)$$

Thus $u - u_1$ is a harmonic function in B. Therefore $u - u_1 \in \mathscr{C}^{\infty}(B)$. If $u_1 \in \mathscr{C}(B)$ it follows that $u \in \mathscr{C}(B)$ and analogously for \mathscr{C}^1 . Since the ball B was arbitrary with $\overline{B} \subset \Omega$, we have

$$u \in \mathscr{C}(\Omega), \quad \text{if } p > \frac{d}{2}$$
$$u \in \mathscr{C}^{1}(\Omega), \quad \text{if } p > d$$

q.e.d.

An application of this theorem would be

Theorem 8.2. Assume that
$$u \in L^2(\mathbb{R}^3)$$
, $V \in \mathscr{C}^{\infty}(\mathbb{R}^3)$ and
 $-\Delta u + Vu = 0$, in $\mathscr{D}'(\mathbb{R})$
Then $u \in \mathscr{C}^{\infty}(\mathbb{R}^3)$.

Proof. $-\Delta u + Vu = 0$ implies that $-\Delta u = -Vu$ in $\mathscr{D}'(\mathbb{R}^3)$, $u \in L^2$, $V \in \mathscr{C}^{\infty}$, hence $Vu \in L^2_{\text{loc}}(\mathbb{R}^3)$.

By the above theorem, we have as p = 2, d = 3, $p > \frac{d}{2}$ thus $u \in \mathscr{C}(\mathbb{R}^3)$. Then as $u \in \mathscr{C}$, $V \in \mathscr{C}^{\infty}$ implies that $Vu \in \mathscr{C}(\mathbb{R}^3) \subset L^{\infty}_{\text{loc}}(\mathbb{R}^3)$. By the same theorem as $p = \infty > d$, $u \in \mathscr{C}^1(\mathbb{R}^3)$. Since $V \in \mathscr{C}^{\infty}$, $u \in \mathscr{C}^1$ we have $Vu \in \mathscr{C}^1$ and therefore

$$-\Delta(\partial_{x_i}u) = \partial_{x_i}(-\Delta u) = \partial_{x_i}(-Vu) \in \mathscr{C}(\mathbb{R}^3)$$

Applying the same regularity theorem we find that $\partial_{x_i} u \in \mathscr{C}^1$ for all i and thus $u \in \mathscr{C}^2(\mathbb{R}^3)$. By induction

$$(-\Delta)(D^{\alpha}u) = D^{\alpha}(-\Delta u) = D^{\alpha}(-Vu) \in \mathscr{C}$$

for all $|\alpha| \leq 2$, thus $D^{\alpha}u \in \mathscr{C}^1$ and therefore $u \in \mathscr{C}^3$.

q.e.d.

Chapter 9

Concentration Compactness Method

We call the functional

$$\mathcal{E}(u) = \int_{\mathbb{R}^3} |\nabla u|^2 dx - \int_{\mathbb{R}^3} \frac{Z}{|x|} |u|^2 dx + \frac{1}{2} \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|u(x)|^2 |u(y)|^2}{|x-y|} dx dy$$

the *Hartree Function* for atoms, where Z > 0 is the nuclear charge, $|u(x)|^2$ is the density of electrons. Consider the variational problem

$$E(\lambda) := \inf \left\{ \mathcal{E}(u) \mid u \in H^1(\mathbb{R}^3), \|u\|_2^2 = \lambda \right\}.$$

 $E(\lambda)$ is called the ground state energy of the atom. If u_0 is a minimiser for $E(\lambda)$, then it satisfies the following PDE

$$-\Delta u_0 - \frac{Z}{|x|} u_0 + (|u_0|^2 * |\cdot|^{-1}) u_0 = \mu u_0, \quad \text{in } \mathscr{D}'(\mathbb{R}^3)$$

with $\mu \leq 0$.

Lemma 9.1. The map $\lambda \mapsto E(\lambda)$ is non-increasing on $[0, \infty)$.

Proof. Let $0 \leq \lambda_1 < \lambda_2$. We are going to prove that $E(\lambda_1) \geq E(\lambda_2)$. By a density argument we can find a $v_1 \in D$ such that $\int |v_1|^2 dx = \lambda_1$ and $\mathcal{E}(v_1) \leq E(\lambda_1) + \varepsilon$, for $\varepsilon > 0$ small. Take another function $\varphi \in \mathscr{D}$ such that $\|\varphi\|_2^2 = \lambda_2 - \lambda_1 > 0$. Choose $v_2(x) = v_1(x) + \varphi(x - Rx_0)$, where $x_0 \in \mathbb{R}^3 \setminus \{0\}, R > 0$. For R sufficiently large v_1 and $\varphi(\cdot - Rx_0)$ have disjoint supports, then $||v_2||_2^2 = ||v_1||_2^2 + ||\varphi||_2^2 = \lambda_2$. Moreover,

$$E(\lambda_2) \leqslant \mathcal{E}(v_2) = \mathcal{E}(v_1 + \varphi(\cdot - Rx_0)) = \mathcal{E}(v_1) + \mathcal{E}(\varphi(\cdot - Rx_0)) + \int_{\operatorname{supp}(v_1) \times (\operatorname{supp}\varphi + x_0R)} \frac{|v_1(x)|^2 |\varphi(y - x_0R)|^2}{|x - y|} dxdy$$

taking $R \to \infty$, we get the inequality

$$E(\lambda_2) \leqslant E(\lambda_1) + 2\varepsilon + \int |\nabla \varphi|^2 dx$$

for all $\varphi \in \mathscr{D}$, $\|\varphi\|_2^2 = \lambda_2 - \lambda_1$. Rescaling φ , we can achieve $\|\nabla \varphi\|_2^2 < \varepsilon$ and taking $\varepsilon \to 0$, we get $E(\lambda_2) \leq E(\lambda_1)$

Theorem 9.2. a) If $0 \le \lambda \le Z$, then there exists a minimiser for $E(\lambda)$. b) If $\lambda > 2Z$, there does not exist a minimiser for $E(\lambda)$.

Proof. a) Let $(u_n)_{n\in\mathbb{N}}$ be a minimising sequence for $E(\lambda)$. By the diamagnetic inequality $|\nabla u| \ge |\nabla |u||$ we have $\mathcal{E}(u) \ge \mathcal{E}(|u|)$, thus w.l.o.g. we can assume $u_n \ge 0$ for all $n \in \mathbb{N}$. By the hydrogen atom theory

$$\int_{\mathbb{R}^3} |\nabla u|^2 \mathrm{d}x - \int_{\mathbb{R}^3} \frac{a}{|x|} |u|^2 \mathrm{d}x \ge -\frac{a^2}{4} \int_{\mathbb{R}^3} |u|^2 \mathrm{d}x$$

for all $a \ge 0$. Thus for a = 2Z

$$\mathcal{E}(u) \ge \frac{1}{2} \int |\nabla u|^2 + \frac{1}{2} \left(\int |\nabla u|^2 \mathrm{d}x - \int \frac{2Z}{|x|} |u|^2 \mathrm{d}x \right) \ge \frac{1}{2} \int |\nabla u|^2 - \frac{Z^2 \lambda}{2} \ge -\frac{Z^2 \lambda}{2}$$

for all $u \in H^1$ and $||u||_2^2 = \lambda$. Moreover, as $(u_n)_n$ is a minimising sequence,

$$\mathcal{E}(\lambda) = \lim_{n \to \infty} \mathcal{E}(u_n) \ge \frac{1}{2} \int |\nabla u_n|^2 - \frac{Z^2 \lambda}{2}$$

thus $(u_n)_n$ is bounded in $H^1(\mathbb{R}^3)$. By going to a subsequence and renaming it to the original, we may assume that $u_n \rightharpoonup u_0$ in $H^1(\mathbb{R}^3)$ and a.e. in \mathbb{R}^3 . We have $\nabla u_n \stackrel{\nabla}{\rightharpoonup} u_0$

in $L^2(\mathbb{R}^3)$ which implies that

$$\liminf_{n \to \infty} \int_{\mathbb{R}^3} |\nabla u_n|^2 \ge \int |\nabla u_0|^2$$

Moreover,

$$\frac{|u_n(x)|^2 |u_n(y)|^2}{|x-y|} \xrightarrow{n \to \infty} \frac{|u_0(x)|^2 |u_0(y)|^2}{|x-y|} \quad \text{a.e. } x, y \in \mathbb{R}^3.$$

Thus by Fatou's lemma we have

$$\liminf_{n \to \infty} \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|u_n(x)|^2 |u_n(y)|^2}{|x-y|} \mathrm{d}x \mathrm{d}y \geqslant \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|u_0(x)|^2 |u_0(y)|^2}{|x-y|} \mathrm{d}x \mathrm{d}y$$

On the other hand from $u_n \xrightarrow{H^1} u_0$ we have that the Coloumb interaction term converges as we saw from the weak-continuity of this potential energy above. Thus we have

$$E(\lambda) = \lim_{n \to \infty} \mathcal{E}(u_n) \ge \mathcal{E}(u_0).$$

To conclude that u_0 is a minimiser, we need to prove that $||u_0||_2^2 = \lambda$. By $u_n \stackrel{L^2}{\longrightarrow} u_0$, and $||u_0||^2 \leq \liminf_{n \to \infty} ||u_n||_2^2 = \lambda$. The reverse inequality is non-trivial and we shall prove it by using $\lambda \leq Z$. Now assume that $||u_0||_2^2 < \lambda$. Then $\mathcal{E}(u_0) \leq \mathcal{E}(\lambda) \leq \mathcal{E}(v)$, for all $v \in H^1$ with $||v||_2^2 = \lambda$.

Let $\varphi \in \mathscr{D}(\mathbb{R}^3)$, $\varphi \ge 0$ by the above Lemma. For $\varepsilon \in \mathbb{R}$, with $|\varepsilon|$ small we have

$$\int |u_0 + \varepsilon \varphi|^2 \leqslant \lambda \implies \mathcal{E}(u_0) \leqslant \mathcal{E}(u_0 + \varepsilon \varphi) \implies \frac{1}{2} \frac{d^2}{d\varepsilon^2} \mathcal{E}(u_0 + \varepsilon \varphi) \bigg|_{\varepsilon = 0} \geqslant 0$$

and thus

$$\begin{split} 0 &\leqslant \frac{1}{2} \frac{d^2}{d\varepsilon^2} \cdots \bigg|_{\varepsilon=0} = \\ &= \frac{1}{2} \frac{d^2}{d\varepsilon^2} \left(\int_{\mathbb{R}^3} |\nabla(u_0 + \varepsilon\varphi)|^2 \mathrm{d}x - \int \frac{Z}{|x|} |u_0 + \varepsilon\varphi|^2 \mathrm{d}x + \frac{1}{2} \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|u_0(x) + \varepsilon\varphi(x)|^2 |u_0(y) + \varepsilon\varphi(y)|^2}{|x - y|} \mathrm{d}x \mathrm{d}y \\ &= \int |\nabla\varphi|^2 \mathrm{d}x - \int \frac{Z}{|x|} |\varphi|^2 \mathrm{d}x + \int \int \frac{|u_0(y)| |\varphi(x)|^2}{|x - y|} + 2 \int \int \frac{u_0(x) u_0(y) \varphi(x) \varphi(y)}{|x - y|} \mathrm{d}x \mathrm{d}y \end{split}$$

Choosing φ to be radial and letting $\varphi = 0$ if |x| < R, where $\varphi \in \mathcal{D}, \varphi \ge 0$, we find by

Newton's theorem that

$$\begin{split} \int \int \frac{|u_0(y)| |\varphi(x)|^2}{|x-y|} &= \int \int \frac{|u_0(y)| |\varphi(x)|^2}{\max\{|x|, |y|\}} \mathrm{d}x \mathrm{d}y \leqslant \int u_0 \mathrm{d}y \int \frac{\varphi^2(x)}{|x|} \mathrm{d}x \\ \int \int \frac{u_0(x) u_0(y) \varphi(x) \varphi(y)}{|x-y|} \mathrm{d}x \mathrm{d}y \leqslant \left(\int_{|x|, |y| \geqslant R} \frac{|u_0(x)| |\varphi(y)|^2}{|x-y|} \right)^{1/2} \left(\int_{|x|, |y| > R} \frac{|u_0(y)|^2 \varphi(x)^2}{|x-y|} \right)^{1/2} \leqslant \\ &\leqslant \left(\int_{|y| \geqslant R} u_0(y)^2 \mathrm{d}y \right) \int \frac{\varphi(x)^2}{|x|} \mathrm{d}x \end{split}$$

Altogether

$$0 \leqslant \int |\nabla \varphi|^2 + \left(-Z + ||u_0||_2^2 + 2 \int_{|y|>R} |u_0(y)|^2 dy\right) \int \frac{\varphi(x)^2}{|x|} \mathrm{d}x$$

Choose $\varphi(x) := \varphi_0\left(\frac{x}{R}\right), \varphi_0 \in \mathscr{D}, \varphi_0 \ge 0$ and $\varphi_0 = 0$ in $\overline{B_1(0)}, \varphi_0 \ne 0$ and φ_0 radial. Then

$$0 \leqslant \left(\frac{1}{R} \int |\nabla \varphi_0|^2 + \left(-Z + \|u_0\|_2^2 + 2\int_{|y|>R} u_0^2\right) R^2 \int \frac{\varphi_0^2(x)}{|x|} \mathrm{d}x\right) R^2$$

by passing $R \to \infty$ it follows that

$$0 \leqslant -Z + \int u_0^2 \implies \lambda > ||u_0||^2 \geqslant Z$$

which is a contradiction.

b) If $\lambda > 2Z$, then $E(\lambda)$ has no minimiser. Assume that u_0 is a minimiser. By the diamagnetic inequality we can assume that $u_0 \ge 0$. Then for all $f \in H^1(\mathbb{R}^3)$

$$0 = \frac{1}{2} \frac{d}{d\varepsilon} \mathcal{E} \left(\sqrt{\lambda} \frac{u_0 + \varepsilon f}{\|u_0 + \varepsilon f\|_2} \right) \Big|_{\varepsilon = 0} = \int \nabla u_0 \cdot \nabla f - \int \frac{Z}{|x|} u_0 f + \int \int \frac{u_0(x)^2 u_0(y)}{f} (y) |x - y| dx dy - \mu \int u_0 f$$

with $\mu \leq 0$. Now choose $f := \varphi^2 u_0$, with $\varphi \in \mathscr{D}$, $\varphi \geq 0$, $\varphi(x) = |x|$ if $|x| \leq R$ and $|\nabla \varphi| \leq 1$ if $|x| \geq R \geq 1$.

We have

$$\begin{split} 0 &= \int \nabla u_0 \cdot \nabla \left(\varphi^2 u_0\right) - \int \frac{Z}{|x|} \varphi^2 u_0^2 + \int \int \frac{\varphi(x)^2 u_0(x)^2 u_0(y)^2}{|x-y|} - \underbrace{\mu \int \varphi^2 u_0^2 dx}_{\geqslant 0} \geqslant \\ &\geqslant \int |\nabla (\varphi u_0)|^2 - \int |\nabla \varphi|^2 |u_0|^2 - \int Z u_0^2 + \int \int_{|x| \leqslant R} \frac{\varphi(x)^2 u_0(x)^2 u_0(y)^2}{|x-y|} = \\ &= \int \frac{\varphi^2 u_0^2}{4|x|^2} - \int |\nabla \varphi|^2 |u_0|^2 - Z\lambda + \frac{1}{2} \int \int_{|x| \leqslant R} \underbrace{\frac{|x| + |y|}{|x-y|}}_{\geqslant 1} u_0(x)^2 u_0(y)^2 \geqslant \\ &\geqslant \int_{|x| \leqslant R} \underbrace{\left(\frac{\varphi^2}{4|x|^2} - |\nabla \varphi|^2\right)}_{=0} u_0^2 - \int_{x>R} \underbrace{|\nabla \varphi|^2}_{\leqslant 1} |u_0|^2 - Z\lambda + \frac{1}{2} \int \int_{|x| \leqslant R} u_0(x)^2 u_0(y)^2 \geqslant \\ &\geqslant - \int_{x>R} u_0^2 - Z\lambda + \frac{1}{2} \left(\int_{|x| \leqslant R} u_0(x)^2\right)^2 \end{split}$$

Thus

$$0 \geqslant -\int\limits_{|x|\geqslant R} u_0^2 - Z\lambda + \frac{1}{2} \left(\int\limits_{|x|\leqslant R} u_0^2\right)^2$$

for all $R \geqslant 1$ and thus taking $R \rightarrow \infty$ we have

$$0 \geqslant -Z\lambda + \frac{\lambda^2}{2} \implies \lambda \leqslant 2Z$$

which is a contradiction.

q.e.d.

For all $u, v \ge 0$ we have

$$\frac{\mathcal{E}(u) + \mathcal{E}(v)}{2} \ge \mathcal{E}\left(\sqrt{\frac{u^2 + v^2}{2}}\right)$$

with strict inequality if $u \neq v$. Consequently $\lambda \mapsto \mathcal{E}(\lambda)$ is convex. Thus there must exists a λ^* such that it minimises $E(\lambda)$. Numerically one finds that $\lambda^* \approx 1.21Z$.

Now we shall consider a general functional

$$\mathcal{E}(u) = \int_{\mathbb{R}^d} |\nabla u|^2 + \int_{\mathbb{R}^d} V|u|^2 + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} |u(x)|^2 w(x-y)|u(y)|^2 \mathrm{d}x \mathrm{d}y$$

where V is an external potential and w is an interaction potential.

Remark 9.3 (Assumptions). We shall assume that $|v|, |w| \in L^p + L^q$, for $p, q > \max\{\frac{d}{2}, 1\}$ and w(x) = w(-x).

Example 9.4. 1) Hartree $V = -\frac{Z}{|x|}$, $w = \frac{1}{|x|}$ (Coulomb potential).

2) Chequard-Pekar $w = \frac{1}{|x|}$ (Newton potential).

Definition 9.5.

$$E(\lambda) = \inf \left\{ \mathcal{E}(u) \mid u \in H^1(\mathbb{R}^d), \|u\|_2^2 = \lambda \right\}$$

$$E^0(\lambda) = \inf \left\{ \mathcal{E}^0(u) = \int |\nabla u|^2 + \frac{1}{2} \int |u(x)|^2 w(x-y) |u(y)|^2 \mid u \in H^1(\mathbb{R}^d), \|u\|_2^2 = \lambda \right\}$$

where the second minimiser is for problems at infinity.

Theorem 9.6 (Concentration-Compactness Principle). We always have

$$E(\lambda) \leqslant E(\lambda - \lambda') + E^0(\lambda')$$

for all $0 \leq \lambda' \leq \lambda$. Moreover, if we have the strict binding inequality

 $E(\lambda) < E(\lambda - \lambda') + E^0(\lambda')$

for all $0 < \lambda' \leq \lambda$ then $E(\lambda)$ has a minimiser.

For the Hartree functional $E^0(\lambda') = 0$ (by scaling).

Lemma 9.7. If $|v|, |w| \in L^p + L^q$, with $p, q > \max\{\frac{d}{2} + 1\}$, then $\int |V||u|^2 dx \leq C(\|V\|_{L^p + L^q}) \|u\|_{H^1}^2$ $\||w| * |u|^2\|_{\infty} \leq C(\|w\|_p + \|w\|_q) \|u\|_{H^1}^2$ where we $\|V\|_{L^p + L^q} = \inf\{\|V_1\|_p + \|V_2\|_q |V_1 \in L^p, V_2 \in L^q, V_1 + V_2 = V\}$ Moreover, for

$$\int |V||u|^2 dx \leqslant \varepsilon \int |\nabla u|^2 + C_{\varepsilon} \int |u|^2$$
$$||w| * |u|^2||_{\infty} \leqslant \varepsilon \int |\nabla u|^2 + C_{\varepsilon} \int |u|^2$$

Proof. If $V = V_1 + V_2$, with $V_1 \in L^p$, $V_2 \in L^q$, we have

$$\int |V_1| |u|^2 \leqslant \left(\int |V_1|^p \right)^{1/p} \left(\int |u|^{2p'} \right)^{1/p'} \leqslant C \|V_1\|_p \|u\|_{H^1}^2$$

where we used the Sobolev inequality in the second inequality, which we were allowed to as 2p' < Sobolev power. We have the same inequality for V_2 . Thus

$$\int |V| |u|^2 \leqslant C ||V||_{L^p + L^q} ||u||_{H^1}^2$$

For the second inequality we have the same method

$$|w| * |u|^{2} = \int |w(x - y)| |u(y)|^{2} dy$$

We can write $w = w_1 + w_2, w_1 \in L^p, w_2 \in L^q$ and thus

$$|w_1| * |u|^2 = \int |w_1(x-y)| |u(y)|^2 \mathrm{d}y \leq \left(\int |w_1(x-y)|^p \mathrm{d}y\right)^{1/p} \left(\int |u(y)|^{2p'} \mathrm{d}y\right)^{1/p'} \leq C ||w_1||_p ||u||_{H^1}^2$$

By the same bound for w_2 , we get the bound for W.

Now take $\varepsilon > 0$. Since $V \in L^p + L^q$, we can decompose it into

$$V = V_{\varepsilon} + V_{\infty}$$

where $||V_{\varepsilon}||_{L^p+L^q} \leq \varepsilon$ and $V_{\infty} \in L^{\infty}$. Then

$$\int |V||u|^2 \leqslant \int |V_{\varepsilon}||u|^2 + \int |V_{\infty}||u|^2 \leqslant C \underbrace{\|V_{\varepsilon}\|_{L^p + L^q}}_{\leqslant \varepsilon} \|u\|_{H^1} + \underbrace{\|V_{\infty}\|_{\infty}}_{\leqslant C_{\varepsilon}} \|u\|_2^2.$$

For our general interaction energy have by this Lemma

$$\mathcal{E}(u) \ge (1-\varepsilon) \int |\nabla u|^2 - C_{\varepsilon} \int |u|^2$$

for all $\varepsilon > 0$ and thus

$$\mathcal{E}(u) \ge \frac{1}{2} \int |\nabla u|^2 - C$$

Thus $E(\lambda) = \inf \left\{ \mathcal{E}(u) \mid u \in H^1, \|u\|_2^2 = \lambda \right\} \ge -C\lambda > \infty.$

Now take a minimising sequence $u_n \in H^1$, $\int |u_n|^2 = \lambda$ and $\mathcal{E}(u_n) \to E(\lambda)$. By the diamagnetic inequality we have $|\nabla u_n| \ge |\nabla |u_n||$ (pointwise), $\mathcal{E}(u_n) \ge \mathcal{E}(|u_n|)$, so we can assume that $u_n \ge 0$.

Because $\frac{1}{2} \int |\nabla u_n|^2 - C \leq \mathcal{E}(u_n) \to E(\lambda)$. We have u_n is bounded in H^1 . By choosing a subsequence we can assume that $u_n \rightharpoonup u_0$ weakly in H^1 .

Lemma 9.8. If $u_n \rightarrow u_0$ weakly in H^1 , then $\lim_{n \rightarrow \infty} \left(\mathcal{E}(u_n) - \mathcal{E}(u_0) - \mathcal{E}^0(u_n - u_0) \right) = 0.$

Proof. Let us denote $v_n = u_n - u_0$, the $v_n \rightarrow 0$ weakly in H^1 .

$$\int |\nabla u_n|^2 - \int |\nabla u_0|^2 - \int |\nabla v_n|^2 = 2 \int \nabla u_0 \cdot \nabla v_n \longrightarrow 0$$

by weak convergence.

Second we have for the external potential

$$\int V|u_n|^2 - \int V|u_0|^2 \longrightarrow 0$$

because $u_n \rightharpoonup u_0$ and $V \in L^p + L^q$, as we have already proven above.

For the interaction term we have

$$\int \int |u_n(x)|^2 w(x-y) |u_n(y)|^2 dx dy - \int \int |u_0(x)|^2 w(x-y) |u_0(y)|^2 dx dy - \int \int |v_n(x)|^2 w(x-y) |v_n(y)|^2 dx dy$$

$$\begin{split} \int |u_n(x)|^2 w(x-y) |u_n(y)|^2 dx dy &= \int \left(|u_n(x)|^2 - |u_0(x)|^2 - |v_n(x)|^2 \right) w(x-y) |v_n(y)|^2 dx dy + \\ &+ \int \left(|u_0(x)|^2 + |v_n(x)|^2 \right) w(x-y) \left(|u_n(y)|^2 - |v_n(y)|^2 \right) dx dy + \\ &+ \int \left(|u_0(x)|^2 - |u_0(x)|^2 - |v_n(x)|^2 \right) w(x-y) |v_n(y)|^2 dx dy + \\ &+ \int \left(|u_0(x)|^2 + |v_n(x)|^2 \right) w(x-y) \left(|u_n(y)|^2 - |u_0(y)|^2 - |v_n(y)|^2 \right) dx dy + \\ &+ \int |u_0(x)|^2 w(x-y) |u_0(y)|^2 dx dy + \\ &+ \int |v_n(x)|^2 w(x-y) |v_n(y)|^2 dx dy + \\ &+ \int |v_n(x)|^2 w(x-y) |v_n(y)|^2 dx dy + \\ &+ 2 \int |u_0(x)|^2 w(x-y) |v_n(y)|^2 dx dy \end{split}$$

We shall now estimate the first (I), second (II) and last term (III) and other terms cancel. For (III) we shall prove that

$$\int |u_0(x)|^2 w(x-y) |v_n(y)|^2 \mathrm{d}x \mathrm{d}y \longrightarrow 0$$

for this we split the integral into

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} |u_0(x)|^2 w(x-y) |v_n(y)| \mathrm{d}x \mathrm{d}y = \int_{\substack{|y| \le R \\ |x-y| \le \frac{R}{2}}} + \int_{\substack{|y| \ge R \\ |x-y| \le \frac{R}{2}}} + \int_{\substack{|y| \ge R \\ |x-y| \ge \frac{R}{2}}} = \mathrm{III}_a + \mathrm{III}_b + \mathrm{III}_b$$

We have

$$III_{a} = \int_{|y| \leq R} |u_{0}(x)|w(x-y)|v_{n}(y)|^{2} = \int_{|y| \leq R} (|w| * |u_{0}|^{2})|v_{n}(y)|dy$$

Since $||w * |u_0|^2 ||_{\infty} \leq C ||w||_{L^p + L^q} ||u_0||_{H^1}^2$ and thus

$$\operatorname{III}_{a} \leqslant C \int_{|y| \leqslant R} |v_{n}(y)|_{2} \mathrm{d}y \xrightarrow{n \to \infty} 0$$

for all R > 0, as $v_n \rightharpoonup 0$ weakly in H^1 and Sobolev.

$$\begin{split} \text{III}_{b} &= \int\limits_{\substack{|y| \ge R|x-y| \le \frac{R}{2} \\ \leqslant C \underbrace{\|v_{n}\|_{H^{1}}^{2}}_{n \to \infty} \int |u_{0}(x)|^{2} |w(x-y)| |v_{n}(y)|^{2} = \int\limits_{\substack{|x| \ge \frac{R}{2} \\ |x| \ge \frac{R}{2}} |u_{0}(x)| \left(|w| * |v_{n}|^{2}\right) \mathrm{d}x \leqslant \\ &\leq C \underbrace{\|v_{n}\|_{H^{1}}^{2}}_{\text{bounded as}|x| \ge \frac{R}{2}} \int |u_{0}(x)|^{2} \leqslant C \int\limits_{|x| \ge \frac{R}{2}} |u_{0}(x)|^{2} \xrightarrow{R \to \infty} 0 \end{split}$$

and or the third term

$$\begin{split} \text{III}_{c} &= \int_{\substack{|y| \ge R \\ |x-u| > \frac{R}{2}}} \leqslant \int |u_{0}(x)|^{2} \Big(\mathbf{1}_{|x-y| > \frac{R}{2}} w(x-y) \Big) |v_{n}(y)|^{2} \mathrm{d}x \mathrm{d}y \leqslant C \| \mathbf{1}_{B_{\frac{R}{2}}(0)^{C}} w \|_{L^{p}+L^{q}} \|u_{0}\|_{L^{2}}^{2} \|v_{n}\|_{H^{1}}^{2} \leqslant C \| \mathbf{1}_{B_{\frac{R}{2}}(0)^{C}} w \|_{L^{p}+L^{q}} \xrightarrow{R \to \infty} 0. \end{split}$$

For I we have

$$I = 2 \int |u_0(x)| |v_n(x)| |w(x-y)| |u_0(y)|^2 dy dx \leq \left(\int |u_0(x)|^2 |w(x-y)| |v_n(y)|^2 \right)^{1/2} \underbrace{\left(\int |v_n(x)|^2 |w(x-y)| |u_n(y)|^2 \right)^{1/2}}_{\leqslant C ||w||_{L^p + L^q} ||u_0||_2^2 ||u_n||_{H^1}^2 \leqslant C} \underbrace{\left(\int |v_n(x)|^2 |w(x-y)| |u_n(y)|^2 \right)^{1/2}}_{\text{Simiilar to III}}$$

q.e.d.

and the proof II goes similarly.

Proof of Theorem 9.6. Recall that u_n is a minimising sequence, $u_n \rightharpoonup u_0$, $v_n = u_n - u_0 \rightharpoonup 0$ weakly in H^1 , then

$$\mathcal{E}(u_n) - \mathcal{E}(u_0) - \mathcal{E}^0(v_n) \xrightarrow{n \to \infty} 0$$

On the other hand we have

$$\mathcal{E}(u_n) \longrightarrow E(\lambda)$$

$$\mathcal{E}(u_0) \ge E(\lambda - \lambda'), \quad \text{for } \lambda - \lambda' = \int |u_0|^2 \leqslant \lambda$$

$$\mathcal{E}^0(v_n) \ge E^0\left(\int |v_n|^2\right) \longrightarrow E^0(\lambda')$$

since

$$\int |v_n|^2 = \int |u_n - u_0|^2 = \underbrace{\int |u_n|^2}_{=\lambda} + \underbrace{\int |u_0|^2}_{=\lambda - \lambda'} - 2 \underbrace{\int u_n u_0}_{\to \int |u_0|^2 = \lambda - \lambda'} \longrightarrow \lambda'$$

Thus $E(\lambda) \ge E(\lambda - \lambda') + E^0(\lambda')$. However, by the strict binding inequality we have

$$E(\lambda) < E(\lambda - \lambda') + E^0(\lambda')$$

for all $0 < \lambda' \leq \lambda$. Thus we have to conclude that $\lambda' = 0$, which means that $\int |u_0|^2 = \lambda - \lambda' = \lambda$ and $\mathcal{E}(u_n) - \mathcal{E}(u_0) \to 0$ since $\mathcal{E}^0(v_n) \to 0$ as $\int |v_n|^2 \to \lambda' = 0$. Thus $\mathcal{E}(u_0) = E(\lambda)$ and $\int |u_0|^2 = \lambda$. So u_0 is a minimiser. *q.e.d.*

Theorem 9.9.

Remark 9.10.

Translation Invariant Cases

$$\mathcal{E}^{0}(u) = \int |\nabla u|^{2} + \frac{1}{2} \int \int |u(x)|^{2} w(x-y) |u(y)|^{2} dx dy$$
$$E^{0}(\lambda) = \inf \left\{ \mathcal{E}^{0}(u) \mid u \in H^{1}, \, \|u\|_{2}^{2} = \lambda \right\}$$

Remark 9.11. $\mathcal{E}^0(u) = \mathcal{E}^0(u(\cdot + z))$ for all $z \in \mathbb{R}^d$.

• If u_n is a minimising sequence for $E^0(\lambda)$ then $\tilde{u}_n := u_n(\cdot + x_n), x_n \in \mathbb{R}^d$ then \tilde{u}_n is also a minimising sequence. But if $u_n \to u$ strongly in H^1 and $x_n \to \infty$, then $u_n \to 0$ weakly in H^1 , i.e. we lack compactness or in other words one has compactness up to translation.

Definition 9.12 (Vanishing Sequence). Let $(u_n)_n$ be bounded in $H^1(\mathbb{R}^d)$. We call $(u_n)_n$

a vanishing sequence if for all $(x_n)_n \subset \mathbb{R}^d$ and all subsequences of $(u_n)_n, u_n(\cdot + x_n) \rightharpoonup 0$ weakly in $H^1(\mathbb{R}^d)$.

Theorem 9.13 (Characterisation of Vanishing Sequences). If $(u_n)_n$ is bounded in $H^1(\mathbb{R}^d)$ and $(u_n)_n$ is vanishing, then

• For all *R* > 0

$$\sup_{x \in \mathbb{R}^n} \int_{B_R(x)} |u_n(y)|^2 \mathrm{d}y \xrightarrow{n \to \infty} 0$$

• $u_n \to 0$ strongly in $L^p(\mathbb{R}^d)$ for all 2 with

$$p^* = \begin{cases} \frac{2d}{d-2}, & \text{if } d > 2\\ \infty, & \text{if } d = 1, 2 \end{cases}$$

Proof. Let us assume that there exists a R > 0, $\varepsilon > 0$ such that

$$\sup_{x \in \mathbb{R}^d} \int_{B_R(x)} |u_n|^2 \ge \varepsilon > 0.$$

Then there exists a sequence $(x_n)_n \subset \mathbb{R}^d$ such that

$$\int_{B_R(x)} |u_n(x)|^2 \ge \frac{\varepsilon}{2} > 0$$

for all $n \in \mathbb{N}$. Define $v_n(x) = u_n(x + x_n)$. Then for all $n \in \mathbb{N}$

$$\int\limits_{B_R(0)} |v_n|^2 \geqslant \frac{\varepsilon}{2} > 0,$$

hence $v_n \neq 0$ weakly in $H^1(\mathbb{R}^d)$ by Sobolev embedding, which is a contradiction. Thus for all R > 0,

$$\sup_{x \in \mathbb{R}^d} \int_{B_R(x)} |u_n|^2 \xrightarrow{n \to \infty} 0$$

We shall consider the case $d \ge 3$. Let $p = 2 + \frac{4}{d}$, then

$$\int_{\mathbb{R}^d} |u_n|^{2+\frac{4}{d}} \leqslant \left(\int_{\mathbb{R}^d} |u_n|^{\frac{2d}{d-2}}\right)^{\frac{d-2}{d}} \left(\int_{\mathbb{R}^d} |u_n|^2\right)^{\frac{2}{d}} \leqslant c \left(\int_{\mathbb{R}^d} |\nabla u_n|^2\right) \left(\int_{\mathbb{R}^d} |u_n|^2\right)^{\frac{2}{d}} \leqslant C$$

Now we shall use a localisation argument. Take $Q := \left[-\frac{1}{2}, \frac{1}{2}\right]^d \subset \mathbb{R}^d$. Take $\varphi \in \mathscr{C}_c^{\infty}$, $0 \leq \varphi \leq 1$ with $\varphi|_Q \equiv 1$ and $\varphi|_{(2Q)^C} \equiv 0$. Take $z \in \mathbb{Z}^d$ and define $Q_z := Q + z$, and $\varphi_z = \varphi(\cdot + z)$. We have

$$1 \leq \sum_{z \in \mathbb{Z}} \varphi_z(x) \leq C, \qquad \sum_{z \in \mathbb{Z}^d} |\nabla \varphi_z(x)|^2 \leq C$$

and thus

$$\int_{\mathbb{R}^d} |u_n|^{2+\frac{4}{d}} = \sum_{z \in \mathbb{Z}^d} \int_{\mathbb{R}^d} |u_n|^{2+\frac{4}{d}} \leq \sum_{z \in \mathbb{Z}^d} \left(\int_{Q_z} |u_n|^{\frac{2d}{d-2}} \right)^{\frac{d-2}{d}} \left(\int_{Q_z} |u_n|^2 \right)^{\frac{2}{d}}$$

Now note that

$$\|\mathbf{1}_{Q_{z}}u_{n}\|_{\frac{2d}{d-2}}^{2} \leq \|\varphi_{z}u_{n}\|_{\frac{2d}{d-2}}^{2} \leq C \|\nabla(\varphi_{z}u_{n})\|_{2}^{2} \leq 2C \int \left(|\nabla\varphi_{z}(x)|^{2}|u_{n}(x)|^{2} + |\varphi_{z}(x)|^{2}|\nabla u_{n}(x)|^{2}\right) dx$$

and thus

$$\begin{split} \int_{\mathbb{R}^d} |u_n|^{2+\frac{4}{d}} &\leqslant C \sum_{z \in \mathbb{Z}^d} \left(\int_{\mathbb{R}^d} \left(|\nabla \varphi_z(x)|^2 |u_n(x)|^2 + |\varphi_z(x)|^2 |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \left(\int_{Q_z} |u_n|^2 \right)^{\frac{2}{d}} \\ &\leqslant C \sup_{z' \in \mathbb{Z}^d} \left(\int_{Q'_z} |u_n|^2 \right)^{\frac{2}{d}} \sum_{z \in \mathbb{Z}^d} \left(\int_{\mathbb{R}^d} \left(|\nabla \varphi_z(x)|^2 |u_n(x)|^2 + |\varphi_z(x)|^2 |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leqslant C \sup_{z' \in \mathbb{Z}^d} \left(\int_{Q'_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(|u_n(x)|^2 + |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leqslant C \sup_{z \in \mathbb{Z}^d} \left(\int_{Q'_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(|u_n(x)|^2 + |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leqslant C \sup_{z \in \mathbb{Z}^d} \left(\int_{Q'_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(|u_n(x)|^2 + |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leqslant C \sup_{z \in \mathbb{Z}^d} \left(\int_{Q'_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(|u_n(x)|^2 + |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leqslant C \sup_{z \in \mathbb{Z}^d} \left(\int_{Q_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(|u_n(x)|^2 + |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leqslant C \sup_{z \in \mathbb{Z}^d} \left(\int_{Q_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(|u_n(x)|^2 + |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leqslant C \sup_{z \in \mathbb{Z}^d} \left(\int_{Q_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(|u_n(x)|^2 + |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leqslant C \sup_{z \in \mathbb{Z}^d} \left(\int_{Q_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(|u_n(x)|^2 + |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leqslant C \sup_{z \in \mathbb{Z}^d} \left(\int_{Q_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(|u_n(x)|^2 + |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leq C \sup_{z \in \mathbb{Z}^d} \left(\int_{Q_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(|u_n(x)|^2 + |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leq C \sup_{z \in \mathbb{Z}^d} \left(\int_{Q_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(|u_n(x)|^2 + |\nabla u_n(x)|^2 \right) \mathrm{d}x \right) \\ &\leq C \sup_{z \in \mathbb{Z}^d} \left(\int_{Q_z} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} |u_n|^2 \right) \right) \\ &\leq C \sup_{z \in \mathbb{Z}^d} \left(\int_{\mathbb{R}^d} |u_n|^2 \right)^{\frac{2}{d}} \left(\int_{\mathbb{R}^d} |u_n|^2 \right)^$$

by the convergence proven above as $\int\limits_{Q_z} |u_n|^2 \leqslant \int\limits_{B_2(z')} |u_n|^2.$ Thus

$$\int_{\mathbb{R}^d} |u_n|^{2+\frac{4}{d}} \xrightarrow{n \to \infty} 0$$

Now we prove $\int_{\mathbb{R}^d} |u_n|^p \to 0$ for all 2 . By interpolation, if <math>2 ,

$$\|u_n\|_p \leqslant \underbrace{\|u_n\|_2^a}_{\leqslant C} \underbrace{\|u_n\|_{p_1}^{1-a}}_{\to 0}$$

for $a \in (0,1)$. Similarly $p_1 as <math>||u_n||_{p^*} \leq ||\nabla u||_2 \leq C$.

We shall apply this to

$$\mathcal{E}^{0}(u) = \int |\nabla u|^{2} + \frac{1}{2} \int \int |u(x)|^{2} w(x-y) |u(y)| dx dy$$

for $w \in L^p + L^q$, with $\max\left\{1, \frac{d}{2}\right\} < p, q < \infty$ and

$$E^{0}(\lambda) = \inf \left\{ \mathcal{E}^{0}(u) \mid u \in H^{1}(\mathbb{R}^{d}), \, \|u\|_{2}^{2} = \lambda \right\}$$

Theorem 9.14 (Concentration Compactness for the Translation Invariant Case). Assume that $w \in L^p + L^q$ and

$$E^{0}(\lambda) < E^{0}(\lambda - \lambda') + E^{0}(\lambda')$$

for all $0 < \lambda' < \lambda$ and $E^0(\lambda') < 0$ for all $0 < \lambda' \leq \lambda$, then $E^0(\lambda)$ has a minimiser. \Box

Proof. Take u_n to be a minimising sequence for $E^0(\lambda)$. Recall that for all $\varepsilon > 0$

$$E^{0}(\lambda) \longleftarrow \mathcal{E}^{0}(u_{n}) \ge (1-\varepsilon) \int |\nabla u_{n}|^{2} - C_{\varepsilon}$$

thus u_n is bounded in $H^1(\mathbb{R}^d)$. We want to prove that u_n is non-vanishing. Assume by contradiction that u_n is vanishing,

$$0 > E^{0}(\lambda) \longleftarrow \mathcal{E}^{0}(u_{n}) = \int |\nabla u_{n}|^{2} + \frac{1}{2} \int |u_{n}(x)|^{2} (w * |u_{n}|^{2})(x) dx$$

q.e.d.

which implies that

$$\int |u_n(x)|^2 \left(w * |u_n|^2\right)(x) \mathrm{d}x < -\varepsilon < 0$$

or all n large enough for some $\varepsilon > 0$.

However,

$$-\varepsilon > \int |u_n(x)|^2 \left(w * |u_n|^2\right)(x) \mathrm{d}x \ge \int_{\mathbb{R}^d} |u_n(x)|^2 \mathrm{d}x \inf_{z \in \mathbb{R}^d} \left(w * |u_n|^2\right)(z)$$

which implies that

$$\inf_{z \in \mathbb{R}^d} \left(w * |u_n|^2 \right)(z) < -\frac{\varepsilon}{\lambda}$$

for n large and therefore there exists a sequence $(z_n)_n \subset \mathbb{R}^d$ such that

$$(w * |u_n|^2)(z_n) < -\frac{\varepsilon}{2\lambda}$$

for n large. Thus

$$\int |u_n(x+z_n)|^2 w(x) \mathrm{d}x < -\frac{\varepsilon}{2\lambda}$$

and therefore

$$\int |u_n(x+z_n)|^2 w(-x) \mathrm{d}x < -\frac{\varepsilon}{2\lambda}$$

It follows that $u_n(\cdot + z_n) \rightharpoonup 0$ weakly in $H^1(\mathbb{R}^d)$, then

$$\int |u_n(x+z_n)|^2 w(-x) \mathrm{d}x \xrightarrow{n \to \infty} 0$$

because $w \in L^p + L^q$. Thus $u_n(\cdot + z_n) \not\simeq 0$ weakly. We know that $u_n(\cdot + z_n) \not\simeq 0$ weakly in $H^1(\mathbb{R}^d)$. Because $u_n(\cdot + z_n)$ is also a minimising sequence we can assume that $z_n = 0$, $u_n \not\simeq 0$ weakly in $H^1(\mathbb{R}^d)$ (otherwise we consider $\tilde{u}_n(x) = u_n(x + x_n)$). Since u_n is bounded in H^1 , we can go to a subsequence such that $u_n \rightharpoonup u_0 \not\equiv 0$ weakly in H^1 . Assume that $\int |u_n|^2 = \lambda$ and that for $\lambda' > 0$, $\int |u_n - u_0|^2 \rightarrow \lambda'$. We have already proven that

$$\underbrace{\mathcal{E}^0(u_n)}_{\to E^0(\lambda)} - \underbrace{\mathcal{E}^0(u_0) - \mathcal{E}^0(u_n - u_0)}_{\geqslant E^0(\|u_n - u_0\|_2^2) \to E(\lambda')} \xrightarrow{n \to \infty} 0$$

from which follows that

$$\mathcal{E}^{0}(u_{0}) \leqslant E^{0}(\lambda) - E^{0}(\lambda') \leqslant E^{0}(\lambda - \lambda')$$

Thus u_0 is minimiser for $E^0(\lambda - \lambda')$ and $E^0(\lambda) + E^0(\lambda - \lambda')$. By the strict inequality $\lambda - \lambda' = \lambda$ and thus $||u_n||_2^2 = \lambda$ and u_0 is a minimiser for $E(\lambda)$. q.e.d.

Applications of the Concentration-Compactness Principle

Definition 9.15 (Choquard-Pekar Problem).

$$\begin{aligned} \mathcal{E}(u) &:= \int_{\mathbb{R}^3} |\nabla u|^2 + \int_{\mathbb{R}^3} V(x) |u(x)|^2 \mathrm{d}x - \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{|u(x)|^2 |u(y)|^2}{|x - y|} \mathrm{d}x \mathrm{d}y \\ E(\lambda) &:= \inf \left\{ \mathcal{E}(u), \left| u \in H^1(\mathbb{R}^3), \, \|u\|_2^2 = \lambda \right\} \end{aligned}$$

Theorem 9.16. If $V \in L^p + L^q(\mathbb{R}^3)$, $p, q \in \left(\frac{3}{2}, \infty\right)$ and $V \leq 0$ then for all $\lambda > 0$, $E(\lambda)$ has a minimiser. Moreover, the minimiser solves

$$-\Delta u_0 + V u_0 - \left(|u_0|^2 * \frac{1}{|x|} \right) u_0 = \mu u_0 \quad in \ \mathscr{D}'(\mathbb{R}^3).$$

Proof.

 $V\equiv 0$

$$\mathcal{E}^{0}(u) := \int_{\mathbb{R}^{3}} |\nabla u|^{2} - \frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{|u(x)|^{2} |u(y)|^{2}}{|x - y|} dx dy$$
$$E^{0}(\lambda) := \inf \left\{ \mathcal{E}^{0}(u), \left| u \in H^{1}(\mathbb{R}^{3}), \left\| u \right\|_{2}^{2} = \lambda \right\}$$

From the concentration compactness principle, we need to check

- a) $E^{0}(\lambda) < 0$
- b) $E^0(\lambda) < E^0(\lambda \lambda') + E^0(\lambda')$ for all $0 < \lambda' < \lambda$.

Proof. a) Take $\varphi \in H^1(\mathbb{R}^3)$, $\varphi \not\equiv 0$, $\|\varphi\|_2^2 = \lambda$. For $\ell > 0$, let $\varphi_\ell(x) = \ell^{3/2} \varphi(\ell x)$, $\|\varphi_\ell\|_2^2 = \|\varphi\|_2^2 = \lambda$ and

$$\mathcal{E}^{0}(\varphi_{\ell}) = \ell^{2} \int |\nabla\varphi|^{2} - \ell \frac{1}{2} \int \int \frac{\varphi(x)\varphi(y)}{|x-y|} \mathrm{d}x \mathrm{d}y = A\ell^{2} - B\ell < 0$$

if $\ell > 0$ small enough, as A > 0, B > 0. Thus $E^0(\lambda) \leq \mathcal{E}^0(\varphi_\ell) < 0$ if $\ell > 0$ small enough.

b) It follows from the following lemma that for all $0 < \lambda' < \lambda$

$$E^{0}(\lambda) = \frac{\lambda - \lambda'}{\lambda} E^{0}(\lambda) + \frac{\lambda'}{\lambda} < E(\lambda - \lambda') + E^{0}(\lambda')$$
q.e.d.

We can thus conclude that $E^{0}(\lambda)$ has a minimiser. Then by using variational formulae

$$\mathcal{E}^{0}\left(\frac{(u_{0}+\varepsilon\varphi)\sqrt{\lambda}}{\|u_{0}+\varepsilon\varphi\|_{2}}\right) \geqslant \mathcal{E}^{0}(u_{0})$$

for all $\varepsilon \in \mathbb{R}$ small and thus

$$0 = \frac{d}{d\varepsilon}(\cdots)\Big|_{\varepsilon=0} \implies -\Delta u_0 - \left(|u_0|^2 * \frac{1}{|x|}\right)u_0 = \mu u_0$$

with $\mu \leq 0$, and $\lambda \mapsto E^0(\lambda)$ is decreasing.

 $V \leqslant 0.V \not\equiv 0 \,$ We need to prove the binding inequality

$$E(\lambda) < E(\lambda - \lambda') + E^0(\lambda')$$

for all $0 < \lambda' \leq \lambda$. Using the second of the following lemmata we can conclude that

$$E(\lambda) = \frac{\lambda - \lambda'}{\lambda} E(\lambda) + \frac{\lambda'}{\lambda} E(\lambda) \leqslant E(\lambda - \lambda') + E(\lambda')$$

To conclude, we need to show that $E(\lambda') < E^0(\lambda')$ for all $0 < \lambda' \leq \lambda$. By the case $V \equiv 0$, we have $E^0(\lambda')$ has a minimiser, $u_{\lambda'}$ and

$$E(\lambda') - E^{0}(\lambda') \leqslant \mathcal{E}(u_{\lambda'}) - \mathcal{E}^{0}(u_{\lambda'}) = \int V(x) |u_{\lambda'}(x)|^{2} \mathrm{d}x$$

Assume for the sake of contradiction that $E(\lambda') = E^0(\lambda')$ for which we would need

$$\int V(x)|u_{\lambda'}(x)|^2 \mathrm{d}x \ge 0$$

and thus $V(x)|u_{\lambda'}(x)|^2 = 0$ a.e. (since $V \leq 0$). Thus V(x) = 0 for a.e. x such that

 $u_{\lambda'}(x) \neq 0$. Since $\mathcal{E}^0(u)$ is translation invariant, $u_{\lambda'}$ is a minimiser for $E^0(\lambda')$. Thus $u_{\lambda'}(\cdot + y)$ is also a minimiser for $E^0(\lambda')$ for all $y \in \mathbb{R}^3$.

By the above argument it follows that V(x) = 0 for a.e. x such that $u_{\lambda'}(x+y) \neq 0$ for all $y \in \mathbb{R}^3$.

Here $\int |u_{\lambda'}|^2 = \lambda' > 0$ and thus $u_{\lambda'} \neq 0$, hence there must exists a ball $B_r(z)$ such that $u_{\lambda'} \neq 0$ for a.e. $x \in B_r(z)$. Hence V(x) = 0 for a.e. $x \in \mathbb{R}^3$ which is a contradiction to the assumption $V \neq 0$.

Thus $E(\lambda') < E^0(\lambda')$ for all $0 < \lambda'$ and $E(\lambda) < E(\lambda - \lambda') + E^0(\lambda')$ for all $0 < \lambda' < \lambda$.

Therefore, $E(\lambda)$ has a minimiser and the equation follows similarly to $E^0(\lambda)$.

q.e.d.

Lemma 9.17. For all $\lambda > 0$, for all $0 < \vartheta < 1$

$$\vartheta E^0(\lambda) < E^0(\vartheta \lambda).$$

Proof. Take f_n a minimising sequence for $E^0(\vartheta\lambda)$, i.e. $||f_n||_2^2 = \vartheta\lambda$, $\mathcal{E}^0(f_n) \to E^0(\vartheta\lambda)$. Define $g_n = \frac{f_n}{\sqrt{\vartheta}}$, $||g_n||_2^2 = \lambda$. Thus

$$E^{0}(\lambda) \leqslant \mathcal{E}^{0}(g_{n}) = \mathcal{E}^{0}\left(\frac{f_{n}}{\sqrt{\vartheta}}\right) \frac{1}{\vartheta} \int |\nabla f_{n}|^{2} - \frac{1}{\vartheta^{2}} \int \int \frac{|f_{n}(x)|^{2}|f_{n}(y)|^{2}}{|x-y|} = \frac{1}{\vartheta} \mathcal{E}^{0}(f_{n}) + \left(\frac{1}{\vartheta} - \frac{1}{\vartheta^{2}}\right) \frac{1}{2} \int \int \frac{|f_{n}(x)|^{2}|f_{n}(y)|^{2}}{|x-y|}$$

Using $\mathcal{E}^0(f_n) \to E^0(\vartheta \lambda)$ and

$$\frac{1}{2} \int \int \frac{|f_n(x)|^2 ||f_n(y)|^2}{|x-y|} = \int |\nabla f_n|^2 - \mathcal{E}^0(f_n) \ge -\mathcal{E}^0(f_n) \longrightarrow -E(\vartheta \lambda)$$

and thus

$$E^{0}(\lambda) \leqslant \frac{1}{\vartheta} E^{0}(\vartheta \lambda) + \left(\frac{1}{\vartheta} - \frac{1}{\vartheta^{2}}\right) \left(-E^{0}(\vartheta \lambda)\right) = \frac{E^{0}(\vartheta \lambda)}{\vartheta^{2}} < \frac{E^{0}(\vartheta \lambda)}{\vartheta}$$

since $0 < \vartheta < 1, E^0(\vartheta \lambda) < 0.$

q.e.d.

Lemma 9.18. Suppose that $V \leq 0, V \not\equiv 0$. For all $\lambda > 0$, for all $0 < \vartheta < 1$

$$\vartheta E(\lambda) \leqslant E(\vartheta \lambda).$$

Proof. Similar to the previous lemma.

Gagliardo-Nirenberg Interpolation Inequality

$$\|\nabla u\|_2^{\alpha} \|u\|_2^{d-\alpha} \ge c \|u\|_p$$

for all $2 with <math>p^* = \frac{2d}{d-2}$ if $d \ge 3$ and $p^* = \infty$ if d = 1, 2. By a scaling argument $\frac{1}{p} = \frac{d-2}{2d}\alpha + \frac{1-\alpha}{2}, \alpha \in (0, 1)$.

Remark 9.19.
$$u_{\ell}(x) = \ell^{\frac{d}{2}} u(\ell x), ||u_{\ell}||_2 = ||u||_2$$
$$\frac{||\nabla u_{\ell}||_2^{\alpha} ||u_{\ell}||_2^{1-\alpha}}{||u_{\ell}||_p}$$

is independent of ℓ .

Theorem 9.20. For these p, α , then the variational problem

$$E = \inf \left\{ \frac{\|\nabla u\|_{2}^{\alpha} \|u_{2}\|_{2}^{1-\alpha}}{\|u\|_{p}} \, \middle| \, u \in H^{1}(\mathbb{R}^{d}), u \neq 0 \right\}$$

has a minimiser. The minimiser can be chosen such that $Q \ge 0$ and

 $-\Delta Q + Q - Q^{p-1} = 0, \qquad in \ \mathscr{D}'(\mathbb{R}^n).$

q.e.d.

Thomas Fermi Problem

$$\mathcal{E}(\rho) = \int_{\mathbb{R}^3} \rho^{5/3} - \int \frac{Z}{|x|} \rho(x) dx + \frac{1}{2} \int_{\mathbb{R}^3} \frac{1}{2} \int_{\mathbb{R}^3} \frac{\rho(x)\rho(y)}{|x-y|} dx dy$$
$$E(\lambda) = \left\{ \inf \mathcal{E}(\rho) \, \big| \, \rho \ge 0, \rho \in L^1 \cap L^{5/3}, \int \rho = \lambda \right\}$$

Theorem 9.21. Let Z > 0 constant. Then for all $\lambda \in (0, Z]$, $E(\lambda)$ has a unique minimiser. Moreover the minimiser ρ_0 satisfies

$$\frac{5}{3}\rho_0^{2/3}(x) = \left[\frac{Z}{|x|} - \rho_0 * \frac{1}{|x|} + \mu\right]_+$$

for some constant $\mu \leq 0$. Moreover, $E(\lambda)$ has no minimiser if $\lambda > Z$.

Proof. Take a minimising sequence ρ_n for $E(\lambda)$. We want to prove ρ_n is bounded in $L^{5/3}$.

$$\int \frac{Z}{|x|} \rho_n(x) = \int_{|x| \le 1} + \int_{|x| > 1} \le Z \left(\int_{|x| \le 1} \frac{1}{|x|^{5/2}} \right)^{2/5} \left(\int_{|x| \le 1} \rho_n^{5/3} \right)^{3/5} + Z \int_{|x| > 1} \rho_n(x) \mathrm{d}x \le C Z \left(\int \rho_n^{5/3} \right)^{3/5} + Z \lambda$$

This implies that

$$E(\lambda) \longleftarrow \mathcal{E}(\rho_n) - \int \rho_n^{5/3} - CZ \left(\int \rho_n^{5/3}\right)^{3/5} - Z\lambda$$

Thus $E(\lambda) > -\infty$ and ρ_n is bounded in $L^{5/3}$. By going to a subsequence we may assume that $\rho_n \rightharpoonup \rho_0$ weakly in $L^{5/3}$. We have to prove that

 $\liminf \mathcal{E}(\rho_n) \ge \mathcal{E}(\rho_0)$
By weak convergence we have

$$\liminf_{n \to \infty} \int \rho_n^{5/3} \ge \int \rho_0^{5/3}$$
$$\lim_{n \to \infty} \int \frac{Z\rho_n(x)}{|x-y|} = \int \frac{Z\rho_0(x)}{|x-y|}$$
$$\liminf_{n \to \infty} \int \int \frac{\rho_n(x)\rho_n(y)}{|x-y|} \ge \int \int \frac{\rho_0(x)\rho_0(y)}{|x-y|}$$

where the last one is an exercise. Thus

$$E(\lambda) = \lim \mathcal{E}(\rho_n) \ge \mathcal{E}(\rho_0) \ge E(\lambda_0)$$

with $\lambda_0 = \int \rho_0$.

To prove that ρ_0 is a minimiser for $E(\lambda)$, need to prove that $\lambda_0 = \lambda$. Assuming that $\lambda_0 < \lambda$. Then $E(\lambda) \ge \mathcal{E}(\rho_0) \ge E(\lambda_0) \ge E(\lambda)$, hence

$$\mathcal{E}(\rho_0) = E(\lambda_0) = E(\lambda) = E(\lambda')$$

for all $\lambda' \in [\lambda_0, \lambda]$.

Concerning the variational equation for ρ_0 we have $\mathcal{E}(\rho_0 + \varepsilon \varphi) \ge \mathcal{E}(\rho_0)$ for all $\varphi \in L^1 \cap L^{5/3}$, $\varphi \ge 0$ and $\varepsilon \ge 0$ small enough. Thus

$$\left. \frac{d}{d\varepsilon} \mathcal{E}(\rho_0 + \varepsilon \varphi) \right|_{\varepsilon = 0} \ge 0$$

Thus

$$\int \frac{5}{3} \rho^{2/3} \varphi - \int \frac{Z}{|x|} \rho_0 \varphi + \int \left(\rho_0 * \frac{1}{|x|} \right) \varphi \ge$$

and therefore

$$\int \left(\frac{5}{3}\rho_0^{2/3} - \frac{Z}{|x|} + \rho_* * \frac{1}{|x|}\right)\varphi \ge 0$$

for all $\varphi \in L^1 \cap L^{5/3}$, and $\varphi \ge 0$. Using he following lemma it follows that

$$\frac{5}{3}\rho_0^{2/3}(x) - \frac{Z}{|x|} + \rho_0 * \frac{1}{|x|} \ge 0$$

Contradiction to $\int \rho_0 = \lambda_0 < \lambda \leq Z$. Using the convexity we find that ρ_0 is a minimiser for $E(\lambda_0)$ implies that ρ_0 is unique.

Assume that $E(\lambda)$ has a minimiser ρ_0 (λ not necessarily $\leq Z$), then for all $\rho \in L^1 \cap L^{5/3}$, $\int \rho = \lambda$

$$\mathcal{E}(\rho_0) \leqslant \mathcal{E}(\rho)$$

Choose $\rho_{\varepsilon} = \rho_0 + \varepsilon \varphi$, for $\varphi \in L^1 \cap L^{5/3}$, $\int \varphi = 0$ and $\varphi(x) \ge -C\rho_0(x)$ for all x. Then

$$\mathcal{E}(\rho_0) \leqslant \mathcal{E}(\rho_\varepsilon)$$

for all $\varepsilon \ge 0$ small enough. This implies that

$$\left. \frac{d}{d\varepsilon} \mathcal{E}(\rho_{\varepsilon}) \right|_{\varepsilon=0} \ge 0$$

And therefore

$$\int \underbrace{\left(\frac{5}{3}\rho^{2/3} - \frac{Z}{|x|} + \rho_0 * \frac{1}{|x|}\right)}_{=:W} \varphi \ge 0$$

Choose $\varphi = g - \frac{\int g}{\lambda} \rho_0$, $\int \varphi = \int g - \frac{\int g}{\lambda} \int \rho_0 = 0$ with $g \in L^1 \cap L^{5/3}$, $g(x) \ge -C\rho_0(x)$. This implies that

$$0 \leqslant \int W\varphi = \int W\left(g - \frac{\int \rho}{\lambda}\rho_0\right) = \int Wg - \frac{\int W\rho_0}{\lambda}\int \rho = \int (W - \mu)\rho$$

with $\mu := \frac{\int W \rho_0}{\lambda} \in \mathbb{R}$. We deduce that

$$\begin{cases} W(x) - \mu = 0, & \text{if } \rho_0(x) > 0 \\ W(x) - \mu \ge 0, & \text{for all } x \in \mathbb{R}^3 \end{cases}$$

and therefore

$$\frac{5}{3}\rho_0^{2/3} - \frac{Z}{|x|} + \rho_0 * \frac{1}{|x|} - \mu \begin{cases} = 0, & \text{if } \rho_0(x) > 0 \\ \ge 0, & \text{for all } x \in \mathbb{R}^3 \end{cases}$$

which in turn implies

$$\frac{5}{3}\rho_0^{2/3} \begin{cases} = \frac{Z}{|x|} - \rho_0 * \frac{1}{|x|} + \mu, & \text{if } \rho_0(x) > 0 \\ \geqslant \frac{Z}{|x|} - \rho_0 * \frac{1}{|x|} + \mu, & \text{for all } x \in \mathbb{R}^3 \end{cases}$$

and thus

$$\frac{5}{3}\rho_0^{2/3} = \left[\frac{Z}{|x|} - \rho_0 * *\frac{1}{|x|} + \mu\right]_+$$

Now we shall show that $\mu \leq 0$. Assume that $\mu > 0$. Then the Thomas Fermi equation reads

$$\frac{5}{3}\rho^{2/3} \ge \mu - \left|\frac{Z}{|x|} - \rho_0 * \frac{1}{|x|}\right|$$

and

$$\rho_0 * \frac{1}{|x|} = \int \frac{\rho_0(y)}{|x-y|} dy = \int \frac{\rho_0(y)}{\max\{|x|, |y|\}} \leq \frac{\int \rho_0}{|x|} = \frac{\lambda}{|x|}$$

which implies that

$$\mu \leqslant \frac{5}{3} \underbrace{\frac{2^{2/3}}{\rho_0^{2/3}}}_{\in L^{3/2}} + \frac{Z + \lambda}{|x|}$$

and therefore $\mu \leq 0$.

$$\frac{5}{3}\rho^{^{2/3}} \geqslant \mu - \frac{Z+\lambda}{|x|} \stackrel{\mu>0}{\geqslant} \frac{\mu}{2}$$

for |x| large this implies

$$\underbrace{\left(\frac{5}{3}\rho_0^{2/3}\right)^{\frac{3}{2}}}_{\in L^1} \geqslant \left(\frac{\mu}{2}\right)^{3/2}$$

for |x| large.

We remark here that $\mu < 0$ if $\lambda = \int \rho < Z$ and that $\mu = 0$ if $\lambda = Z$, the proof of which is left as an exercise.

We shall now prove the non-existence of a minimiser for $\lambda > Z$. The proof presented was first given by Simon-Lieb. We have the Thomas Fermi equation

$$\frac{5}{3}\rho^{2/3} = \left[\frac{Z}{|x|} - \rho_* * \frac{1}{|x|} + \mu\right]_+, \qquad \mu \leqslant 0$$

Assume that $\int \rho_0 > Z$, and define

$$f(x) := \frac{Z}{|x|} - \rho_* * \frac{1}{|x|} + \mu$$

• f(x) < 0 if |x| large. Since

$$f(x) \leq \frac{Z}{|x|} - \rho_* * \frac{1}{|x|} = \frac{Z}{|x|} - \int \frac{\rho(y)}{\max\{|x|, |y|\}} dy \leq \frac{Z}{|x|} - \int_{|y| \leq R} \frac{\rho_0(y)}{\max\{|x|, |y|\}} dy = \left(Z - \int_{|y| \leq R} \rho_0\right) \frac{1}{|x|}$$

if $|x| \ge R$. Since

$$\int_{|y|\leqslant R} \rho_0 \xrightarrow{R\to\infty} \int_{\mathbb{R}^3} \rho_0 = \lambda > Z \implies Z - \int_{|y|\leqslant R} \rho_0 < 0$$

if R large.

• f(x) > 0 if |x| is small enough

$$f(x) = \frac{Z}{|x|} - \rho_0 * \frac{1}{|x|} + \mu = \frac{Z}{|x|} - \int \frac{\rho_0(y)}{\max\{|x|, |y|\}} dy + \mu \ge \frac{Z}{|x|} - \int \frac{\rho_0(y)}{|y|} + \mu > 0$$

if |x| small.

• The Thomas Fermi equation reeds

$$\frac{5}{3}\rho_0^{2/3} = [f(x)]_+ \implies \rho_0 = 0$$

if |x| large enough since f(x) < 0. Define $\Omega = \{x \in \mathbb{R}^3 \mid f(x) < 0\}$. Ω is open, $\Omega \neq \emptyset$ and $0 \notin \Omega$.

On Ω , we have

$$\Delta f(x) = \Delta \left(\frac{Z}{|x|} - \rho_* * \frac{1}{|x|} + \mu \right) = 4\pi\rho_0 \stackrel{\text{TF}}{=} 0$$

as $-\Delta \frac{1}{|x|} = 4\pi delta_0$. Thus f is harmonic on Ω .

By the maximum principle $\inf_{\Omega} f \ge \inf_{\partial \Omega} f = 0$, which is a contradiction.

We shall now present a second proof. Using the Thomas-Fermi equation

$$\frac{5}{3}\rho_0^{2/3} = \left[\frac{Z}{|x|} - \rho_0 * \frac{1}{|x|} + \mu\right]_+$$

which implies that

$$\underbrace{\frac{5}{3}\rho_0^{5/3}}_{\geqslant 0} = \frac{Z}{|x|}\rho_0 - \left(\rho_* * \frac{1}{|x|}\right)\rho_* + \underbrace{\mu\rho_0}_{\leqslant 0}$$

and thus

$$\frac{Z}{|x|}\rho_0(x) \ge \left(\rho_0 * \frac{1}{|x|}\right)\rho_0(x)$$

for all x. Integrating against $|x|^k \mathbf{1}_{|x| \leq R}$ we find that

$$\int_{|x|\leqslant R} \frac{Z}{|x|} |x|^k \rho(x) \mathrm{d}x \ge \int_{|x|\leqslant R} \left(\rho_0 * \frac{1}{|x|}\right) |x|^k \rho_0(x) \mathrm{d}x \leqslant \int_{|x|\leqslant R} \int_{|y|\leqslant R} \frac{\rho_0(y) |x|^k \rho(y)}{\max\{|x|, |y|\}} \mathrm{d}x \mathrm{d}y$$

Using the elementary inequality

$$\forall x, y \in \mathbb{R}^3 \setminus \{0\} : \frac{|x|^k + |y|^k}{2\max\{|x|, |y|\}} \ge \frac{|x|^{k-1} + |y|^{k-1}}{2} \left(1 - \frac{1}{k}\right).$$

Now

$$\int_{|x|\leqslant R} Z|x|^{k-1}\rho_0(x)\mathrm{d}x \ge \int_{|x|\leqslant R} \int_{|y|\leqslant R} \rho_0(x)\rho_0(y)\left(1-\frac{1}{k}\right)\left(\frac{|x|^{k-1}+|y|^{k-1}}{2}\right)\mathrm{d}x\mathrm{d}y = \left(\int_{|x|\leqslant R} \rho_0(x)|x|^{k-1}\mathrm{d}x\right)\left(\int_{|y|\leqslant R} \rho_0(y)\mathrm{d}y\right)\left(1-\frac{1}{k}\right)$$

which implies that

$$Z \geqslant \left(\int_{|y| \leqslant R} \rho_0(y) \mathrm{d}y \right) \left(1 - \frac{1}{k} \right)$$

for all R > 0, for all $k \in \mathbb{N}$. Passing $R \to \infty$ and $k \to \infty$ we find that

$$Z \geqslant \int \rho_0 = \lambda$$

To prove of the elementary inequality we need to prove that for $M \ge m > 0$, then

$$\frac{M^k + m^k}{M} \ge \left(1 - \frac{1}{k}\right) \left(M^{k-1} + m^{k-1}\right) \iff \left(M^{k-1} + \frac{m^k}{M}\right) k \ge (k-1) \left(M^{k-1} + m^{k-1}\right) \iff M^{k-1} + k \frac{m^k}{M} \ge (k-1)m^{k-1}$$

Using the Arithmetic Mean- Geometric Mean, in equality, i.e. that for all $a_1, \ldots, a_k \ge 0$

$$\frac{a_1 + a_2 + \dots + a_k}{k} \geqslant \sqrt[k]{a_1 a_2 \cdots a_k}$$

consequently

$$M^{k-1} + \underbrace{\frac{m^k}{M} + \frac{m^k}{M} + \dots + \frac{m^k}{M}}_{\mathbf{k} \to 1} \ge k \left(M^{k-1} \left(\frac{m^k}{M} \right)^{k-1} \right)^{\frac{1}{k-1}}$$

from which the inequality follows.

q.e.d.

Lemma 9.22. $\lambda \mapsto E(\lambda)$ is decreasing.

Lemma 9.23. If $\int f\varphi \ge 0$, for all $\varphi \in \mathscr{D}$, $\varphi \ge 0$, then $f \ge 0$ a.e.

Lemma 9.24. $\rho \mapsto \mathcal{E}(\rho)$ is a convex functional. $\mathcal{E}(\rho_1) + \mathcal{E}(\rho_2) > 2\mathcal{E}\left(\frac{\rho_1 + \rho_2}{2}\right)$

Chapter 10

Boundary Value Problem

Example 10.1. Let Ω be open, bounded in \mathbb{R}^d .

1) The Dirichlet problem

$$-\Delta u + u = f \qquad \text{in } \Omega$$
$$u = g \qquad \text{on } \partial \Omega$$

2) The von Neumann problem

$$-\Delta u + u = f \qquad \text{in } \Omega$$
$$\frac{\partial u}{\partial n} = \eta \qquad \text{on } \partial \Omega$$

where $\frac{\partial u}{\partial n} = \nabla u \cdot n$, where *n* is the unit normal vector field to the boundary surface, if it exists.

We need

- Sobolev spaces in Ω
- Value of H^1 function on $\partial\Omega \longrightarrow$ trace theorem, as for $d \ge 2 H^1(\mathbb{R}^d) \not\subset \mathscr{C}(\mathbb{R}^d)$.

Definition 10.2.

$$H^m(\Omega) := \left\{ f \in L^2(\Omega) \left| D^\alpha f \in L^2(\Omega), \, |\alpha| \leqslant m \right\} \right\}$$

where $D^{\alpha}f = g$ in $\mathscr{D}'(\Omega)$ iff

$$(-1)^{|\alpha|} \int f(D^{\alpha}\varphi) = \int g\varphi$$

for all $\varphi \in \mathscr{C}^{\infty}_{c}(\Omega)$.

Theorem 10.3. $H^m(\Omega)$ is a Hilbert space for every $m \in \mathbb{N}$, with norm

$$||u||_{H^m}^2 := \sum_{|\alpha| \leqslant m} ||D^{\alpha}u||_2^2$$

We want given $u \in H^1(\Omega)$, find a $\tilde{u} \in H^1(\mathbb{R}^d)$ such that $\tilde{u}|_{\Omega} = u$. For this we need some smoothness of $\partial\Omega$.

Example 10.4. Extension by reflection. Let $x \in \mathbb{R}^d$, with $x = (x', x_d), x' = (x_1, \dots, x_{d-1})$ Let

$$Q = \left\{ x \in \mathbb{R}^d \, \big| \, |x'| < 1, |x_d| < 1 \right\}$$

which for example is a cylinder in d = 3. Further let

$$Q_{+} := \{ x \in Q \mid x_{d} > 0 \}, \quad Q_{0} := \{ x \in Q \mid x_{d} = 0 \}, \quad Q_{-} := \{ x \in Q \mid x_{d} < 0 \}$$

Theorem 10.5. Given $u \in H^1(Q_+)$, define

$$u^{*}(x', x_{d}) := \begin{cases} u(x', x_{d}), & \text{if } (x', x_{d}) \in Q_{+} \\ -u(x', -x_{d}), & \text{if } (x', x_{d}) \in Q_{-} \end{cases}$$

Then $u^* \in H^1(Q)$ and $||u^*||_{H^1(Q)} \leq 2||u||_{H^1(Q_+)}$ and $||u^*||_{L^2(Q)} \leq 2||u||_{L^2(Q_+)}$

Proof. We have

$$\partial_{x_i} u^* = (\partial_{x_i} u)^*$$

if $i = 1, \ldots, d - 1$ and

$$\partial_{x_d} u^* = \begin{cases} \partial u_d(x', x_d), & \text{if } x_d > 0\\ -\partial u_d(x', -x_d), & \text{if } x_d < 0 \end{cases}$$

in the distributional sense. If $u \in \mathscr{C}^{\infty}$ then this is trivial. In the general case $u \in H^1(\Omega)$ and let $\varphi \in \mathscr{C}^{\infty}_c(Q)$. We want to prove

$$\int_{Q} u^*(x', x_d) \partial_{x_d} \varphi \mathrm{d}x = -\left(\int_{Q_+} \partial_{x_d} u^*(x', x_d) \varphi \mathrm{d}x + \int_{Q_-} (\partial_{x_d} u^*(x', -x_d)) \varphi \mathrm{d}x\right)$$

Defining $\tilde{\varphi}(x', x_d) = \varphi(x', x_d) - \varphi(x', -x_d)$ with $(x', x_d) \in Q_+$ then this is equivalent to

$$\int\limits_{Q_+} u\partial_{x_d}\tilde{\varphi} = -\int\limits_{Q_+} \partial_{x_d} u\tilde{\varphi}$$

This is trivial if $\tilde{\varphi} \in \mathscr{C}^{\infty}_{c}(Q_{+})$. More generally consider $\eta_{\varepsilon}\tilde{\varphi} \in \mathscr{C}^{\infty}_{c}(Q_{+})$ with $\eta_{\varepsilon}(x_{d}) = \eta\left(\frac{x_{d}}{\varepsilon}\right)$ with $\eta(t) = \text{if } t \leq \frac{1}{2}, \eta(t) = 1$ if $t \geq 1$ and $\eta \in \mathscr{C}^{\infty}$. Per definitionem of $\partial_{x_{d}}u$ in Q_{+} , we have

$$\int_{Q_+} u(\partial_{x_d}(\eta_\varepsilon \tilde{\varphi})) = \int_{Q_+} \partial_d u(\eta_\varepsilon \tilde{\varphi}).$$

Taking $\varepsilon \to 0$ we find that

$$\int_{Q_+} \partial_{x_d} u(\eta_{\varepsilon} \tilde{\varphi}) \longrightarrow \int \partial_{x_d} u \tilde{\varphi}$$

by dominated convergence as $\eta_{\varepsilon}(x_d) \to 1$ and

$$|\partial_{x_d} u(\eta_{\varepsilon} \tilde{\varphi})| \leqslant C |\partial_{x_d} u \tilde{\varphi}| \in \mathbf{L}^1(Q_+)$$

Moreover,

$$\int_{Q_+} u(\partial_{x_d}(\eta_\varepsilon \tilde{\varphi})) = \int_{Q_+} u(\partial_{x_d}\eta_\varepsilon) \tilde{\varphi} + \int_{Q_+} u\eta_\varepsilon \partial_{x_d} \tilde{\varphi}$$

Here

$$\int\limits_{Q_+} u\eta_{\varepsilon}\partial_{x_d}\tilde{\varphi} \longrightarrow \int u\partial_{x_d}\tilde{\varphi}$$

by dominated convergence. It remains to prove that $\int_{Q_+} u(\partial_{x_d} \eta_{\varepsilon}) \tilde{\varphi} \to 0$. Because $\eta_{\varepsilon} = \eta\left(\frac{x_d}{\varepsilon}\right)$ we have

$$|\partial_{x_d}\eta_{\varepsilon}| \leqslant \frac{C}{\varepsilon} \mathbf{1}_{\{0 < |x_d| < \varepsilon\}}$$

And $\mathscr{C}^1(Q) \ni \tilde{\varphi}(x', x_d) = \varphi(x', x_d) - \varphi(x', -x_d)$ and $\varphi(x', 0) = 0$. Thus we have

$$|\tilde{\varphi}(x', x_d)| \leqslant C |x_d| \leqslant C \varepsilon$$

if $0 < |x_d| < \varepsilon$. Thus

$$\left| \int\limits_{Q_+} u(\partial_{x_d} \eta_{\varepsilon}) \tilde{\varphi} \right| \leqslant \int\limits_{Q_+} u \frac{C}{\varepsilon} \mathbf{1}_{\{0 < |x_d| < \varepsilon\}} c \varepsilon = Cc \int\limits_{Q_+ \cap \{0 < |x_d| < \varepsilon\}} u \longrightarrow 0$$

by dominated convergence. We conclude that needed equality is correct.

q.e.d.

Definition 10.6 (Extension Problem). If $u \in H^1(\Omega)$, when does there exist a $Pu \in H^1(\mathbb{R}^d)$ such that, $Pu|_{\Omega} = u$, $||Pu||_{H^1} \leq C ||u||_{H^1}$.

Example 10.7. Let $\Omega = [0,1]^d \subset \mathbb{R}^d$. Then extension is easy by reflection we can extend $u \in H^1(\Omega)$ by $\tilde{u} \in H^1(\Omega')$ with $\overline{\Omega} \subset \Omega'$ such that $\eta = 1$ on Ω . Define $\eta \tilde{u} \in H^1(\Omega')$ and as compact support. Extend $\eta \tilde{u}$ to $H^1(\mathbb{R}^d)$ setting it to 0 outside Ω' . Thus the of $u \in H^1(\Omega)$

Theorem 10.8 (Urysohn's Lemma). If Ω, Ω' are open with $\overline{\Omega} \subset \Omega'$ then there exists $\eta \in \mathscr{C}^{\infty}_{c}(\Omega')$ such that $\eta = 1$ on Ω .

Definition 10.9 (\mathscr{C}^1 - boundary condition on Ω). Let Ω be open, bounded set in \mathbb{R}^d . We say that $\partial\Omega$ is \mathscr{C}^1 if for all $x \in \partial\Omega$, there exists an open neighbourhood such that there exists $h: U \to Q$ satisfying

- $h \in \mathscr{C}^1$ and $h^{-1} \in \mathscr{C}^1$,
- $h(U \cap \Omega) = Q_+,$
- $h(U \cap \partial \Omega) = Q_0.$

Theorem 10.10. Assume that Ω is open and bounded and has a \mathscr{C}^1 boundary. Then for all $u \in H^1(\Omega)$ there exists a $Pu \in H^1(\mathbb{R}^d)$ such that $Pu|_{\Omega} = u$, $||Pu||_{H^1(\mathbb{R}^d)} \leq$ $C \|u\|_{H^1(\Omega)}, \|Pu\|_{L^2(\mathbb{R}^d)} \leq C \|u\|_{L^2(\Omega)}$ and Pu has compact support. Here the constant C depends only on Ω , but is independent of u.

Proof.

- Step 1 (Local Map) By the definition of \mathscr{C}^1 condition, for all $x \in \partial \Omega$ there exist open neighbourhood U_x satisfying the Q conditions. Thus $\partial \Omega \subset \bigcup_{x \in \partial \Omega} U_x$. Since $\partial \Omega$ is compact, there exists a finite subcover $\{U_{x_1}, \ldots U_{x_n}\}$ also covering $\partial \Omega$.
- Step 2 (Partition of Unity) Let $U_i := U_{x_i}$ if i = 1, ..., n and $U_0 = \Omega$. Then there exist $\eta_i \in \mathscr{C}_c^{\infty}(U_i)$ for all i = 0, ..., n such that $\eta_i \ge 0$ and $\sum_{i=0}^N \eta_i |_{\Omega} = 1$, as follows from the existence of partitions of unity subordinate to the cover $\left\{\Omega, U_1, \ldots, U_n, \overline{\Omega}^C\right\}$.
- Step 3 We write $u = \sum_{i=0}^{n} \eta_i u = \sum_{i=0}^{n} u_i$ where $u_i := \eta_i u, i = 0, ..., n$. We want to extend every u_i to a function $H^1(\mathbb{R}^d)$. For i = 0 we can do this by defining

$$\tilde{u}_0(x) := \begin{cases} u_0(x), & \text{if } x \in \Omega \\ 0, & \text{if } x \notin \Omega \end{cases}$$

Then $\tilde{u}_0 \in H^1(\mathbb{R}^d)$ and $\tilde{u}_0|_{\Omega} = u_0$.

For $1 \leq i \leq n$. Per definitionem there exist $h_i : U_i \to Q$ satisfying all conditions in \mathscr{C}^1 boundary condition. As $u_i = \eta_i u \in H^1(U_i \cap \Omega)$ it follows that $v_i := u_i \circ h_i^{-1} \in H^1(Q_+)$, because $h^{-1} \in \mathscr{C}^1$.

We can extend v_i to $v_i^* \in H^1(Q)$ by reflection. Define $\tilde{u}_i := v_i^* \circ h_i \in H^1(U_i)$ as $h_i \in \mathscr{C}^1$. Since $u_i = \eta_i u$ with $\eta_i \in \mathscr{C}^{\infty}_c(U_i)$ it follows that \tilde{u}_i has compact support in U_i and thus can be extended trivially to all \mathbb{R}^d

Conclusion Defining $\tilde{u} := \sum_{i=0}^{n} \tilde{u}_i$ we have

- $\tilde{u}|_{\Omega} = \sum_{i=0}^{n} \tilde{u}_i|_{\Omega} = \sum_{i=0}^{n} u_i = u$
- \tilde{u} has compact support.
- $\|\tilde{u}\|_{H^1(\mathbb{R}^d)} \leq C \|u\|_{H^1(\Omega)}$ and $\|\tilde{u}\|_{L^2(\mathbb{R}^d)} \leq c \|u\|_{L^2(\Omega)}$ follows from the construction.

q.e.d.

Theorem 10.11 (Sobolev Inequality in Ω). Assume that Ω is open, bounded and has

 \mathscr{C}^1 boundary. Then $\|u\|_{H^1(\Omega)} \ge C \|u\|_{L^p(\Omega)}$ for all p with

$$\begin{cases} p \leqslant \frac{2d}{d-2}, & \text{if } d \geqslant 3\\ p < \infty, & \text{if } d = 2\\ p \leqslant \infty, & \text{if } d = 1 \end{cases}$$

Moreover, if $\{u_n\}$ is bounded in $H^1(\Omega)$, then there exists a subsequence such that $u_n \to u$ strongly in $L^p(\Omega)$ for all p with

$$\begin{cases} p < \frac{2d}{d-2}, & \text{if } d \ge 3\\ p < \infty, & \text{if } d = 2\\ p \le \infty, & \text{if } d = 1 \end{cases}$$

In particular $H^1(\Omega) \subset \mathscr{C}(\overline{\Omega})$, if $\Omega \subset \mathbb{R}$.

Proof. If $u \in H^1(\Omega)$, then there exists $\tilde{u} \in H^1(\mathbb{R}^d)$ such that $\tilde{u}|_{\Omega} = u$ and $\|\tilde{u}\|_{H^1(\mathbb{R}^d)} \leq C\|\tilde{u}\|_{H^1(\Omega)}$. By the Sobolev inequality in $H^1(\mathbb{R}^d)$ we have

$$||u||_{L^p(\Omega)} \leq ||\tilde{u}||_{L^p(\mathbb{R}^d)} \leq C ||\tilde{u}||_{H^1} \leq c ||u||_{H^1}.$$

The remaining assertions are similarly to Sobolev compact embedding. q.e.d.

Remark 10.12. The constant C is independent of u.

Theorem 10.13 (Density). $\mathscr{C}^{\infty}(\overline{\Omega})$ is dense in $H^{1}(\Omega)$ but $\mathscr{C}^{\infty}_{c}(\Omega)$ is not dense in $H^{1}(\Omega)$.

Definition 10.14.

$$H^1_0(\Omega) := \overline{\mathscr{C}^\infty_c(\Omega)}^{H^1(\Omega)} \subsetneq H^1(\Omega) = \overline{\mathscr{C}^\infty_c(\Omega)}^{H^1(\Omega)}$$

Example 10.15. In one dimension $H^1(\Omega) \subset \mathscr{C}(\overline{\Omega})$ for all $\Omega \subset \mathbb{R}$. If $u \in H^1(\Omega)$, then $u(x_0)$ is well-defined, i.e. there exists exactly one continuous representative of the equivalence class u which we may use define $u(x_0)$. If $\Omega = (0, 1)$, and $u \in H^1_0((0, 1))$, then u(0) = u(1) = 0.

 $\begin{array}{l} \textit{Proof. } u \in H_0^1((0,1)) \text{ implies that there exists a sequence } (u_n)_n \in \mathscr{C}_c^\infty((0,1)) \text{ such that} \\ u_n \xrightarrow{n \to \infty} u \text{ in } H^1. \text{ Thus } u_n(x) \to u(x) \text{ for all } x \in (0,1) \text{ because } H^1((0,1)) \subset \mathscr{C}((0,1)), \\ \text{ and therefore } u(0) = u(1) = 0. \\ q.e.d. \end{array}$

Indeed we shall prove that

$$H_0^1((0,1)) = \left\{ u \in H^1((0,1)) \, \middle| \, u(0) = u(1) = 0 \right\} \subsetneq H^1(0,1).$$

10.1 Trace on \mathbb{R}^d $(d \ge 1)$

Consider the set

$$\mathbb{R}^{d}_{+} = \left\{ x = (x', x_{d}) \in \mathbb{R}^{d} \, \big| \, x_{d} > 0 \right\}$$

If $u \in H^1(\mathbb{R}^d_+)$, the is $u|_{\mathbb{R}^d_0}$ well-defined?

Theorem 10.16 (Trace Theorem in \mathbb{R}^d_+). If $u \in \mathscr{C}^{\infty}_c(\mathbb{R}^d)$, then for $\Gamma = \mathbb{R}^{d-1} \times \{0\}$

$$\|u\|_{L^2(\Gamma)} \leqslant C \|u\|_{H^1(\mathbb{R}^d_+)}$$

where C is independent of u.

Proof.

$$|u(x',0)|^{2} = \left| -\int_{0}^{\infty} \frac{d}{dx_{d}} |u(x',x_{d})|^{2} dx_{d} \right| \leq \int_{0}^{\infty} 2|u(x',x_{d})| \left| \frac{d}{dx_{d}} u(x',x_{d}) \right| dx_{d} \leq \int_{0}^{\infty} \left(|u(x',x_{d})|^{2} + \left| \frac{d}{dx_{d}} u(x',x_{d}) \right|^{2} \right) dx_{d}$$

Integrating over $x' \in \mathbb{R}^{d-1}$ one finds that

$$\int_{\mathbb{R}^{n-1}} |u(x',0)|^2 \mathrm{d}x' \leqslant \int_{\mathbb{R}^{n-1}} \int_0^\infty \left(|u(x',x_d)|^2 + \left| \frac{d}{dx_d} u(x',x_d) \right|^2 \right) \mathrm{d}x_d \leqslant ||u||_{H^1(\mathbb{R}^d_+)}^2$$

$$q.e.d.$$

Thus we can define the trace operator

$$\operatorname{tr}: \frac{\mathscr{C}^{\infty}_{c}(\mathbb{R}^{d}) \longrightarrow L^{2}(\Gamma)}{u \longmapsto u|_{\Gamma}}$$

This is a bounded linear function (i.e. continuous) on a dense subset of $H^1(\mathbb{R}^d_+)$ and therefore may be uniquely extended to the whole space.

Theorem 10.17 (Trace Theorem in Ω). Let $\Omega \subset \mathbb{R}6d$ be bounded, open, $\partial \Omega \in \mathscr{C}^1$. Then the there exists a trace operator

$$\operatorname{tr}: \frac{H^1(\Omega) \longrightarrow L^2(\partial \Omega)}{u \longmapsto u \big|_{\partial \Omega}}$$

satisfying

- if u ∈ H¹(Ω) ∩ C(Ω), then u|_{∂Ω} = u restricted to ∂Ω.
 ||u||_{L²(Ω)} ≤ C||u||_{H¹(Ω)} for all u ∈ H¹(Ω), with C independent of u.

Proof. As in the proof of Theorem 10.10 we have $\partial \Omega \subset \bigcup_{i=1}^{n} U_i$ with U_i open and for all i there exists a $h_i: U_i \to Q$, with $h_i, h_i^{-1} \in \mathscr{C}^1$, $h_i(U_i) = Q$, $h_i(U_i \cap \Omega) = Q_+$ and $h_i(U_i \cap \partial \Omega) = Q_0$. Also there exists a smooth partition of unity $(\vartheta_i)_i$ subordinate to the cover $\left\{\Omega, U_1, \ldots, U_n, \overline{\Omega}^C\right\}$. Define $u_i = \vartheta_i u$.

For every i = 1, ..., n, we have $w_i = u_i \circ h_i^{-1}$ and $w_i \in H^1(Q_i)$. Indeed, we can extend w_i to $H^1(\mathbb{R}^d_+)$ by setting $w_i(x) = 0$, if $x \notin Q$. By the Trace theorem in \mathbb{R}^d_+ we can define $w_i|_{Q_0} \in L^2(Q_0)$, with $||w_i|_{Q_0}||_{L^2(Q_0)} \leq ||w_i||_{H^1(Q_+)}$. Define

$$u_i\big|_{\partial\Omega\cap U_i} := w_i\big|_Q \circ h_i \in L^2(\partial\Omega\cap\Omega)$$

and define

$$u\Big|_{\partial\Omega} := \sum_{i=1}^n u_i\Big|_{\partial\Omega\cap\Omega} \in L^2(\partial\Omega)$$

Moreover

$$\|u\|_{L^{2}(\partial\Omega)} \leqslant C \sum_{i=1}^{n} \|u_{i}\|_{L^{2}(\partial\Omega \cap U_{i})} \leqslant C \sum_{i=1}^{n} \|w_{i}\|_{L^{2}(Q_{+})} \leqslant C \sum_{i=1}^{n} \|w_{i}\|_{H^{1}(Q_{+})} \leqslant C \sum_{i=1}^{n} \|u_{i}\|_{H^{1}(\Omega)} \leqslant C \|u\|_{H^{1}(\Omega)}$$

Remark 10.18. The trace operator $u \mapsto u \big|_{\partial\Omega}$ is bounded.

Theorem 10.19. The trace operator $u \mapsto u|_{\partial\Omega}$ is bounded as an operator $H^1(\Omega) \to H^{1/2}(\partial\Omega)$. Consequently, $u \mapsto u|_{\partial\Omega}$ is a compact mapping $H^1(\Omega) \to L^2(\partial\Omega)$.

$$H^1(\Omega) \stackrel{cont.}{\subset} H^{1/2}(\partial \Omega) \stackrel{comp.}{\subset} L^2(\partial \Omega)$$

Definition 10.20 (Fractional Sobolev Spaces).

$$H^{1/2}(\mathbb{R}^d) := \left\{ u \in L^2(\mathbb{R}^d) \left| \int_{\mathbb{R}^d} (1 + 2\pi |k|) |\hat{u}(k)|^2 \mathrm{d}k < \infty \right\}$$

with the norm

$$||u||_{H^{1/2}(\mathbb{R}^d)}^2 = \int_{\mathbb{R}^d} (1 + 2\pi |k|) |\hat{u}(k)|^2 \mathrm{d}k.$$

Remark 10.21. This definition extend the notion of n^{th} using the equivalent definition of the standard Sobolev

$$H^1(\mathbb{R}^d) := \left\{ u \in L^2(\mathbb{R}^d) \left| \int_{\mathbb{R}^d} (1 + 2\pi |k|)^2 |\hat{u}(k)|^2 \mathrm{d}k < \infty \right\} \right\}$$

Further we may define use this definition to define $\sqrt{-\Delta}$, via

$$\left\langle u, \sqrt{-\Delta}u \right\rangle = \left\langle \hat{u}, |k|\hat{u} \right\rangle = \int_{\mathbb{R}^d} 2\pi |k| |\hat{u}(k)|^2 \mathrm{d}k.$$

Theorem 10.22 (Sobolev Inequality for $H^{1/2}(\mathbb{R}^d)$).

$$\|u\|_{H^{1/2}(\mathbb{R}^d)} \ge C \|u\|_{L^q(\mathbb{R}^d)}$$

for all $q \leqslant q^*$ with

$$q^* = \begin{cases} \frac{2d}{d-1}, & \text{if } d \ge 2\\ \infty, & \text{if } d = 1 \end{cases}$$

And if $\{u_n\}$ is bounded in $H^{1/2}(\mathbb{R}^d)$, then $u_n \rightharpoonup u$ in $H^{1/2}(\mathbb{R}^d)$ and $u_n \mathbf{1}_B \rightarrow u \mathbf{1}_B$ strongly in $L^2(B)$ for all B bounded.

Corollary 10.23. If Ω is bounded and $\partial \Omega \in \mathscr{C}^1$, then

$$H_0^1(\Omega) = \left\{ u \in H^1(\Omega), \left| u \right|_{\partial \Omega} = 0 \right\}$$

Moreover

$$||u||_{H_0^1}^2 := \int_{\Omega} |\nabla u|^2 \ge C ||u||_{H^1(\Omega)}$$

Proof. Since $H_0^1(\Omega) = \overline{\mathscr{C}_c^{\infty}(\Omega)}^{H^1(\Omega)}$, if $u \in H_0^1(\Omega)$ there exists $(u_n)_n \subset \mathscr{C}_c^{\infty}(\Omega)$ such that $u_n \xrightarrow{n \to \infty} u$ strongly in $H^1(\Omega)$. Then by continuity of the trace operator

$$0 = u_n \big|_{\partial\Omega} \longrightarrow u \big|_{\partial\Omega} \implies u \big|_{\partial\Omega} = 0$$

For the converse, let $u \in H^1(\Omega)$ and suppose that $u|_{\partial\Omega}$, then $u \in H^1_0$ (which is left as an exercise).

To prove

$$\int_{\Omega} |\nabla u|^2 \ge C ||u||^2_{H^1(\Omega)} = C \int_{\Omega} \left(|\nabla u|^2 + |u|^2 \right) \iff \int_{\Omega} |\nabla u|^2 \ge C ||u||^2_{H^1(\Omega)} = C \int_{\Omega} |u|^2 ||u|^2 = C \int_{\Omega} |u|^2 ||u|^2 ||u|^2 = C \int_{\Omega} |u|^2 ||u|^2 ||u|^2 = C \int_{\Omega} |u|^2 ||u|^2 ||u|^2 = C \int_{\Omega} ||u|^2 ||u|^2 ||u|^2 = C \int_{\Omega} ||u|^2 ||u|^2 ||u|^2 = C \int_{\Omega} ||u|^2 ||u|^2 ||u|^2 ||u|^2 = C \int_{\Omega} ||u|^2 ||u|^2 ||u|^2 ||u|^2 = C \int_{\Omega} ||u|^2 ||u|^2$$

Assume by contradiction that the latter inequality fails. Then there exits a sequence $(u_n)_n \subset H_0^1(\Omega)$ such that $\int_{\Omega} |u_n|^2 = 1$, but $\int_{\Omega} |\nabla u_n|^2 \to 0$. Since u_n is bounded in $H^1(\Omega)$, we can descend to a subsequence and assume that $u_n \to u$ weakly in $H^1(\Omega)$ and thus strongly in $L^2(\Omega)$. We have

$$\int_{\Omega} |u|^2 = \lim_{n \to \infty} \int_{\Omega} |u_n|^2 = 1$$
$$\int_{\Omega} |\nabla u|^2 \leq \liminf_{n \to \infty} \int_{\Omega} |\nabla u_n|^2 = 0$$

i.e. u = const on Ω , which means that $u = \text{const} \neq 0$. But

$$0 = u_n \big|_{\partial\Omega} \longrightarrow u \big|_{\partial\Omega}$$

strongly in $L^2(\partial\Omega)$ and thus $u\big|_{\partial\Omega} = 0$ which is a contradiction.

Consider the Dirichlet problem

$$\begin{cases} -\Delta u + u = f & \text{in } \Omega \\ u \big|_{\partial \Omega} = 0 \end{cases}$$

Theorem 10.24. If $f \in L^2(\Omega)$, then there exits a unique $u \in H^1_0(\Omega)$ such that u is a solution of the Dirichlet problem in the distributional sense. Further

$$\int_{\Omega} \nabla u \cdot \nabla \varphi + \int_{\Omega} u \varphi = \int_{\Omega} f \varphi$$

for all $\varphi \in H_0^1(\Omega)$, and u minimises

$$E = \inf\left\{\frac{1}{2}\|v\|_{H^{1}} - \int_{\Omega} fv \, \middle| \, v \in H_{0}^{1}\right\}$$

q.e.d.

Proof. Using that $T: \varphi \mapsto \int f\varphi$ is a continuous functional on $L^2(\Omega)$ it follows that T is continuous on $H_0^1(\Omega)$, then by the Riesz representation theorem if follows that there exists a unique $u \in H_0^1$ such that $\langle u, \cdot \rangle_{H^1} = \langle f, \cdot \rangle_{L^2}$ (where we used that $H_0^1(\Omega)$ is a Hilbert space with norm $\|\cdot\|_{H^1(\Omega)}$). Thus for all $\varphi \in H_0^1(\Omega)$

$$\int f\varphi = \int \nabla u \cdot \nabla \varphi + \int u\varphi$$

and for $\varphi\in \mathscr{C}^\infty_c(\Omega)$

$$\int f\varphi = -\int u\Delta\varphi + \int u\varphi$$

which implies that

$$f = -\Delta u + u$$
 in $\mathscr{D}'(\Omega)$

q.e.d.

Consider the von Neumann problem

$$\begin{cases} -\Delta u + u = f & \text{in } \Omega\\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega \end{cases}$$

Theorem 10.25. For all $f \in L^2(\Omega)$ there exists a unique $u \in H^1(\Omega)$ such that it solves the von Neumann problem in the distributional sense and

$$\int_{\Omega} \nabla u \cdot \nabla \varphi + \int_{\Omega} u\varphi = \int_{\Omega} f\varphi$$

for all $\varphi \in H^1(\Omega)$. Moreover, u minimises

$$E = \inf\left\{ \left\|v\right\|_{H^{1}(\Omega)}^{2} - \int_{\Omega} fv \left\|v \in H^{1}(\Omega)\right\}\right\}$$

Remark 10.26. $\frac{\partial u}{\partial n}\Big|_{\partial\Omega}$ is well-defined if $u \in H^2(\Omega)$, since then

$$H^1 \ni \nabla u \longmapsto \nabla u \Big|_{\partial \Omega}$$

makes sense by the trace theorem, therefore need some regularity. To motivate this consider the case $u \in \mathscr{C}^2(\Omega)$, $-\Delta u + u = f$ pointwise. Using

$$\int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} (-\Delta u) \varphi + \int_{\partial \Omega} \frac{\partial u}{\partial n} \varphi = \int f \varphi - \int u \varphi$$

by the PDE. But

$$\int (-\Delta)\varphi = \int f\varphi - \int u\varphi$$

by equation $-\Delta u = fu$ and there

$$\int\limits_{\partial\Omega}\frac{\partial u}{\partial n}\varphi=0$$

for all $\varphi \in \mathscr{C}^2(\mathbb{R}^d), \ \frac{\partial u}{\partial n} = 0 \ \text{on} \ \partial \Omega.$

When is a weak solution in $H^2(\Omega)$? Does $f \in L^2(\Omega)$ imply that $\Delta u \in L^2(\Omega)$. If $\Omega = \mathbb{R}^d$, it is true that $u, \Delta u \in L^2$, then $u \in H^2$ (via the Fourier transform). If Ω is a bounded set one has to be more careful.

Definition 10.27. We say that $\partial \Omega \in \mathscr{C}^2$ if for all $x \in \partial \Omega$, there exists an open neighbourhood U of x, such that

• there exists $h: U \to Q$ such that $h \in \mathscr{C}^2(\overline{U}), h \in \mathscr{C}^2(h(\overline{U})).$

•
$$h(U \cap \Omega) = Q_+$$

•
$$h(U \cap \partial \Omega) = Q_0$$
.

Theorem 10.28 (Regularity). Assume that Ω has $\partial \Omega \in \mathscr{C}^2$ and $f \in L^2$.

1) If $u \in H_0^1(\Omega)$, for all $\varphi \in H_0^1(\Omega)$ $\int \nabla u \cdot \nabla \varphi + \int u\varphi = \int f\varphi$ then $u \in H^2(\Omega)$. 2) If $u \in H^1(\Omega)$, for all $\varphi \in H^1(\Omega)$ $\int \nabla u \cdot \nabla \varphi + \int u\varphi = \int f\varphi$ then $u \in H^2(\Omega)$ and $\frac{\partial u}{\partial n} = \mathbf{n} \cdot \nabla u = 0, \quad \text{on } \partial\Omega.$

We shall prove this via the translation method by Nirenberg. But first we shall need a lemma.

Definition 10.29. For $h \in \mathbb{R}^d$ we define

$$(D_h u)(x) = \frac{u(x+h) - u(x)}{|h|}$$

Lemma 10.30. Let $u \in L^2(\Omega)$, then the following are equivalent

(i) $u \in H^1(\Omega)$

(ii)

$$\sup_{\substack{\varphi \in \mathscr{D}(\Omega) \\ |\varphi||_2 \leq 1}} \left| \int_{\Omega} u \partial_{x_i} \varphi \right| < \infty$$

(iii) For all h small, and all $\Omega' \subset \subset \Omega$

 $||D_h u||_{L^2(\Omega')} \leqslant C$

Proof.

(i) ⇒(ii) Obvious as for all $\varphi\in \mathscr{C}^\infty_c(\Omega)$

$$\left| \int_{\Omega} u \partial_{x_i} \varphi \right| = \left| -\int_{\Omega} \partial_{x_i} u \varphi \right| \leq \| \nabla u \|_{L^2(\Omega)} \| \varphi \|_{L^2(\Omega)}$$

(ii) \Rightarrow (i) Define for all $\varphi \in \mathscr{D}(\Omega)$

$$T(\varphi) = \int_{\Omega} u \partial_{x_i} \varphi^{\varphi}$$

Then T is linear and bounded, as $|T(\varphi)| \leq C ||\varphi||_{L^2(\Omega)}$.

Thus T can be extended to a linear, bounded mapping in $L^2(\Omega)$ by the Riesz theorem there exists $v \in L^2(\Omega)$ such that for all $\varphi \in L^2(\Omega)$

$$T(\varphi) = \int\limits_{\Omega} v\varphi$$

In particular if $\varphi \in \mathscr{D}$. Thus

$$\int_{\Omega} v\varphi = T(\varphi) = \int_{\Omega} u\partial_{x_i}\varphi.$$

which implies that $\partial_{x_i} = -v \in L^2(\Omega)$.

(iii) \Rightarrow (ii) For all $\varphi \in \mathscr{D}(\Omega)$, and defining y = x + h

$$\int_{\Omega} (D_h u)\varphi = \int_{\Omega} \frac{u(x+h) - u(x)}{|h|} \varphi(x) dx = \int_{\Omega} \frac{u(y)\varphi(y-h) - u(y)\varphi(y)}{h} dx = \int_{\Omega} u(D_{-h}\varphi)$$

Thus

$$\left| \int_{\Omega} u(D_{-h}\varphi) \right| = \left| \int_{\Omega} (D_{h}u)\varphi \right| \leq \|D_{h}u\|_{L^{2}(\Omega')} \|\varphi\|_{L^{2}}$$

Choosing $h = (0, \ldots, h_i, \ldots, 0)$ and $h_i \to 0$ then

$$\left| \int_{\Omega} u \partial_{x_i} h \right| \leqslant C \|\varphi\|_{L^2(\Omega)}$$

for all $\varphi \in \mathscr{D}(\Omega)$.

(i) \Rightarrow (iii) Let $u_n \in \mathscr{C}^{\infty}(\overline{\Omega})$ and $u_n \to u$ strongly in $H^1(\Omega)$. Then

$$(D_{h}u_{n})(x) = \frac{u_{n}(x+h) - u_{n}(x)}{|h|} = \frac{1}{|h|} \int_{0}^{1} h \cdot \nabla u_{n}(x+th) dt$$
$$|(D_{h}u_{n})(x)|^{2} = \left| \int_{0}^{1} \frac{h}{|h|} \cdot \nabla u_{n}(x+th) dt \right|^{2} \leqslant \int_{0}^{1} |\nabla u_{n}(x+th)|^{2} dt$$
$$\int_{\Omega'} |D_{h}u_{n}|^{2} \leqslant \int_{\Omega'} \int_{0}^{1} |\nabla u_{n}(x+th)|^{2} dt dx = \int_{0}^{1} \int_{\Omega'} |\nabla u_{n}(x+th)|^{2} dx dt = ||\nabla u_{n}||^{2}_{L^{2}(\Omega)}$$

where h has to be chosen small enough so that $\Omega' + h \subset \Omega$. Taking n to infinity $\|D_h u\|_{L^2(\Omega)}^2$ we find that

$$||D_h u||^2_{L^2(\Omega')} \leq ||\nabla u_n||^2_{L^2(\Omega)}$$

Thus (iii) holds with $C = \|\nabla u_n\|_{L^2(\Omega)}^2$ for all $u \in H^1(\Omega)$.

q.e.d.

Proof of Theorem 10.28. In the case $\Omega = \mathbb{R}^d$, it follows from the variational formula

$$\int \nabla u \cdot \nabla \varphi + \int u\varphi = \int f\varphi$$

for all $\varphi \in H^1(\mathbb{R}^d)$. We can choose $\varphi = D_{-h}(D_h u) \in H^1(\mathbb{R}^d)$ for all $h \neq 0$. Thus

$$\int u\varphi = \int uD_{-h}(D_h u) = \int D_h u \cdot D_h u = \int |D_h u|^2$$
$$\int \nabla u \cdot \nabla \varphi = \int \nabla u \cdot \nabla D_{-h}(D_h(u)) = \int \nabla uD_{-h}(D_h(\nabla u)) \int |D_h(\nabla u)|^2$$

Thus

$$\int |D_h(\nabla u)|^2 + \int |D_h u|^2 = \int f D_{-h}(D_h u) \leqslant ||f||_2 ||D_{-h}(D_h u)||_2 \leqslant ||f||_2 ||\nabla(D_h u)||_2 = ||f||_2 ||D_h(\nabla u)||_2$$

and thus

$$||D_h(\nabla u)||_2 \leq ||f||_2, \qquad ||D_h(\nabla u)||_2 \leq ||f||_2$$

from which follows that $\nabla u \in H^1(\mathbb{R}^d)$ by the lemma and therefore $u \in H^2(\mathbb{R}^d)$, i.e. $\partial_{x_i} \partial_{x_j} u \in L^2$.

Now we shall consider the case $\Omega = \mathbb{R}^d_+$.

Assume that $u \in H^1(\mathbb{R}^d_+)$ and

$$\int \nabla u \cdot \nabla \varphi + \int u\varphi = \int f\varphi$$

for all $\varphi \in H^1(\mathbb{R}^d_+)$ (for the von Neumann problem! For the Dirichlet problem we only need to change H^1 to H^1_0). By the same argument we have

$$||D_h(\nabla u)||_2 \leqslant ||f||_2$$

for all h parallel to Γ . Choosing $h = (0, \ldots, h_i, \ldots, 0)$ for $i = 1, \ldots, d-1$ and $h_i \to 0$, it follows from the lemma that $\partial_{x_i} \nabla u \in L^2$ for all $i = 1, \ldots, d-1$ and thus $\partial_{x_i} \partial_{x_j} u \in L^2$ for $j = 1, \ldots, d$ and $i = 1, \ldots, d-1$.

Is $\partial_{x_d}^2 u \in L^2$? Yes, because $-\sum_{i=1}^d \partial_{x_i}^2 u = -\Delta u = f - u \in L^2(\Omega)$ and therefore

$$\partial_{x_d}^2 u = -\Delta + \sum_{i=1}^{d-1} \partial_{x_i}^2 u \in L^2(\Omega)$$

For the general case of Ω open, bounded and $\partial \Omega \in \mathscr{C}^2$.

We know that there exist a finite cover of $\Omega =: U_0$ via charts and a smooth partition of unity $\{\vartheta_i\}$ subordinate to that cover.

Defining $u_i = \vartheta_i u$ we only need to prove that $u_i \in H^2$.

For $i = 0, -\Delta u + u = f$ in $\mathscr{D}'(\Omega)$ because for all $\varphi \in \mathscr{C}^{\infty}_{c}$

$$-\Delta(\vartheta_0 u) = -\Delta\vartheta_0 u - 2\Delta\nabla\vartheta_0 \cdot \nabla u - \vartheta_0 \Delta u = -\Delta\vartheta_0 u - 2\Delta\nabla\vartheta_0 \cdot \nabla u - \vartheta_0 (f-u) + \vartheta_0 u \equiv g \in L^2(\Omega)$$

Since $\vartheta_0 u \in H^1(\Omega)$ and $\vartheta_0 u$ has compact support we return to the case $\Omega = \mathbb{R}^d$ and thus $\vartheta_0 u \in H^2$.

For $i = 1, \ldots, N$, $u_i = theta_i u$ satisfies

$$-\Delta(\vartheta_i u) + \vartheta_i u = g_i \in L^2(U_i \cap \Omega)$$

Define $v_i = u_i \circ h_i^{-1}$. The function v_i satisfies a second order elliptical equation

$$\sum_{k,l=1}^{d} \int_{Q_{+}} a_{kl} \partial_{x_{k}} v_{i} \partial_{x_{l}} \varphi + + \vartheta_{0} u b v_{i} \varphi = + \vartheta_{0} u \tilde{g}_{i} \varphi$$

for all $\varphi \in H^1(Q_+)$. By a similar argument in \mathbb{R}^d_+ , we can show that $v_i \in H^2(Q_+)$. Since the matrix *a* is symmetric we can change variables to return to the standard $-\Delta$ case. Because $v_i \in H^2(Q_+)$ and $h, h^{-1} \in \mathscr{C}^2$, it follows that $u_i \in H^2$. Thus $u = \sum_i u_i \in H^2$. To prove the von Neumann problem $\partial_n u = 0$ we shall need the Green Formulae, which proven below.

By regularity we have $u \in H^2(\Omega)$

$$\int_{\Omega} \nabla u \cdot \nabla \varphi + \int_{\Omega} = \int_{\Omega} f \varphi$$

for all $\varphi \in H^1(\Omega)$. If we choose $\varphi \in \mathscr{D}$ then

 $-\Delta u + u = f$

in $\mathscr{D}'(\Omega)$, and $u \in H^2(\Omega)$ implies that the equality holds in the L^2 sense. Integrating against $\varphi \in H^1(\Omega)$ and using the second Green formula we find that

$$\int (-\Delta u)\varphi + \int u\varphi = \int f\varphi$$

implies

$$\int_{\Omega} \nabla u \cdot \nabla \varphi + \int_{\partial \Omega} \frac{\partial u}{\partial n} \varphi + \int_{\Omega} u \varphi = \int_{\Omega} f \varphi$$

for all $\varphi \in H^1(\Omega)$. It follows for all $\varphi \in H^1(\Omega)$

$$\int_{\partial\Omega} \frac{\partial u}{\partial n} \varphi = 0$$

and therefore

$$\frac{\partial u}{\partial n}$$
 on $\partial \Omega$

q.e.d.

Theorem 10.31 (Green Formulae). For Ω open and bounded with $\partial \Omega \in \mathscr{C}^1$. If $u, \varphi \in H^1(\Omega)$, then

$$\int_{\Omega} \partial_{x_i} u \varphi dx = -\int_{\Omega} u \partial_{x_i} \varphi dx + \int_{\partial \Omega} u \Big|_{\partial \Omega} \varphi \Big|_{\partial \Omega} n_i dS(x)$$

where \boldsymbol{n} is the outward pointing unit normal vector to $\partial\Omega$. Moreover, if $u \in H^2(\Omega)$

$$\int_{\Omega} (\Delta u)\varphi = -\int_{\Omega} \nabla u \cdot \nabla \varphi + \int_{\partial \Omega} \frac{\partial u}{\partial n} \varphi dS(x).$$

Proof. These formulae follow from the continuous case as the trace operator is continuous. q.e.d.

Example 10.32 (Von Neumann Problem). Let $\Omega = (0, 1)$ and consider the von Neumann problem for $f \in L^2((0, 1))$

$$\begin{cases} -u'' + u = f & \text{in } (0,1) \\ u'(0) = u'(1) = 0 \end{cases}$$

We can prove that there exists a unique $u \in H^1((0,1))$ such that

$$\int u'\varphi' + \int u\varphi = \int f\varphi$$

for all $\varphi \in H^1((0,1))$. If we choose $\varphi \in \mathscr{D}$ it follows that

$$-u'' + u = f \qquad \text{in } \mathscr{D}'((0,1))$$

But $u, f \in L^2$ and therefore $u'' = u - f \in L^2$ which implies that $u \in H^2((0,1))$. And therefore

$$0 = \int_{0}^{1} (-u'' + u - f)\varphi = \int u'\varphi' + \int u \ phi \int f\varphi + u'\varphi \Big|_{0}^{1}$$

for all $\varphi \in H^2((0,1))$. And thus we have

$$u'(1)\varphi(1) - u'(0)\varphi(0) = 0$$

for all $\varphi \in H^1(0, 1)$. Choosing $\varphi(x) = x$ implies that u'(1) = 0 and $\varphi(x) = 1 - x$ implies u'(0) = 0.

Example 10.33 (Periodic Problem). Consider the periodic problem, for $f \in L^2$

$$\begin{cases} -u'' + u = f \\ u(0) = u(1) \\ u'(0) = u'(1) \end{cases}$$

To solve this consider the set

$$H = \left\{ u \in H^1((0,1)) \, \middle| \, u(0) = u(1) \right\}$$

H is a Hilbert space, with H^1 inner product. Thus there exists a unique u such that

$$\int u'\varphi' + \int u\varphi = \int f\varphi$$

for all $\varphi \in H$. From this we can deduce that $u \in H^2$, and u'(0) = u'(1) which is left as an exercise.

Example 10.34 (Inhomogeneous Von Neumann Problem). Consider the Robin problem, for $f \in L^2$ real valued

$$\begin{cases} -u'' + u = f \\ u'(0) = \alpha \\ u'(1) = \beta \end{cases}$$

Theorem 10.35. For all $f \in L^2((0,1))$ there exists a unique solution $u \in H^2((0,1))$ to the inhomogeneous von Neumann problem.

Proof. What is the variational formula? Assume that $u \in H^2((0,1))$ is a solution then

$$\int_{0}^{1} (-u'' + u - f)\varphi = 0$$

for all $\varphi \in H^1((0,1))$. Integrating by parts

$$\int_{0}^{1} -u''\varphi = \int_{0}^{1} u'\varphi' - u'(1)\varphi(1) + u'(0)\varphi(0)$$

which yields

$$\int_{0}^{1} u'\varphi' + \int_{0}^{1} u\varphi - \int_{0}^{1} f\varphi - u'(1)\varphi(1) + u'(0)\varphi(0) = 0$$

for all $\varphi \in H^1((0,1))$. If $u'(0) = \alpha, u'(1) = \beta$ this reduces to

$$\int_{0}^{1} u'\varphi' + \int_{0}^{1} u\varphi = \int_{0}^{1} f\varphi + \beta\varphi(1) - \alpha\varphi(0)$$

for all $\varphi \in H^1((0,1))$.

Thus define the linear functional

$$H^{1}((0,1)) \longrightarrow \mathbb{R}$$

$$\mathscr{L}: \qquad \varphi \longmapsto \int_{0}^{1} f\varphi + \beta \varphi(1) - \alpha \varphi(0)$$

which is bounded as

$$|\mathscr{L}(\varphi)| \leq \left| \int_{0}^{1} f\varphi + \beta\varphi(1) - \alpha\varphi(0) \right| \leq ||f||_{2} ||\varphi||_{2} + (|\beta| + |\alpha|) ||\varphi||_{\infty} \leq C ||\varphi||_{H^{1}}$$

where the last inequality follows from the one dimensional Sobolev inequality.

Thus $\mathscr L$ is a linear, bounded functional on H^1 and therefore there exists a unique $u\in H^1((0,1))$ such that

$$\int_{0}^{1} u'\varphi' + \int_{0}^{1} u\varphi = \langle u, \varphi \rangle_{H^{1}} = \mathscr{L}(\varphi)$$

for all $\varphi \in H^1((0,1))$. Hence we have found a unique H^1 solution the problem integrated by parts. To finish the proof we need to show that $u \in H^2((0,1))$. For this purpose we note that for all $\varphi \in \mathscr{D}((0,1))$

$$\int_{0}^{1} u'\varphi' + \int_{0}^{1} u\varphi = \int_{0}^{1} f\varphi \implies -u'' + u = f \qquad \text{in } \mathscr{D}'((0,1)) \implies u'' = u - f \in L^2$$

and thus $u \in H^2((0,1))$. Therefore if for all $\varphi \in H^1((0,1))$

$$\int_{0}^{1} (-u'' + u - f)\varphi = 0$$

then

$$\int_{0}^{1} u'\varphi' + \int_{0}^{1} u\varphi - \int_{0}^{1} f\varphi - u'(1)\varphi(1) + u'(0)\varphi(0) = 0$$

but we already know that

$$\int_{0}^{1} u'\varphi' + \int_{0}^{1} u\varphi - \int_{0}^{1} f\varphi - \beta\varphi(1) + \alpha\varphi(0) = 0$$

and therefore

$$-u'(1)\varphi(1) + u'(0)\varphi(0) = -\beta\varphi(1) + \alpha\varphi(0)$$

for all $\varphi \in H^1((0,1))$. Choosing $\varphi(x)$ and $\varphi(x) = 1 - x$ imply respectively $-u'(1) = -\beta$ and $u'(0) = \alpha$. q.e.d.

Example 10.36 (Robin Problem). Consider the Robin problem, for $f \in L^2$

$$\begin{cases} -u'' + u = f \\ u'(0) = u(0) \\ u(1) = 0 \end{cases}$$

There exists a unique $H^2(0,1)$ for this problem.

Theorem 10.37. For all $f \in L^2((0,1))$ there exists a unique $u \in H^2((0,1))$ solving the Robin problem.

Proof. Assume that u is a solution. Then for all $\varphi \in H^1$

$$0 = \int_{0}^{1} (-u'' + u - f)\varphi = \int_{0}^{1} (u'\varphi' + u\varphi - f\varphi) - u'(1)\varphi(0) + \underbrace{u'(0)\varphi(0)}_{=u(0)\varphi(0)}$$

which is equivalent to

$$\int_{0}^{1} u'\varphi' + \int_{0}^{1} u\varphi + u(0)\varphi(0) = \int_{0}^{1} f\varphi$$

for all $\varphi \in H^1$.

Now define the linear functional

$$H^{1}((0,1)) \longrightarrow \mathbb{R}$$
$$\mathscr{L}: \qquad \varphi \longmapsto \int_{0}^{1} f\varphi$$

and define the new Hilbert space $\mathscr{H}=H^1$ with inner product

$$\langle u, \varphi \rangle_{\mathscr{H}} = \int_{0}^{1} u' \varphi' + \int_{0}^{1} u \varphi + u(0) \varphi(0)$$

We claim that ${\mathscr H}$ is a Hilbert space and that

$$\|u\|_{H^1} \leqslant \|u\|_{\mathscr{H}} \leqslant C \|u\|_{H^1}$$

which follows from $|u(0)|^2 \leqslant C ||u||_{H^1}^2$.

Applying the Riesz theorem for \mathscr{H} we find that there exists a unique $u \in \mathscr{H} = H^1((0,1))$ such that

$$\langle u,\varphi\rangle_{\mathscr{H}}=\mathscr{L}(\varphi)=\int\limits_{0}^{1}u\varphi$$

for all $\varphi \in \mathscr{H} = H^1((0,1))$. Thus there exists a unique H^1 solution to

$$\int_{0}^{1} u'\varphi' + \int_{0}^{1} u\varphi + u(0)\varphi(0) = \int_{0}^{1} f\varphi$$

for all $\varphi \in H^1$.

To prove that $u \in H^2((0,1))$ note that for $\varphi \in \mathscr{D}$ we have

$$-u'' + u = f \in \mathscr{D}' \implies u'' \in L^2 \implies u \in H^2 \implies -u'' + u = f \in L^2$$

and thus same as above we find that u'(1) = 0 and u'(0) = u(0).

q.	e.	d.
----	----	----

Chapter 11

Schrödinger Dynamics

$$i\partial_t\psi = H\psi$$

with some initial condition $\psi(t=0) = \psi_0$. Here ψ represents the wave function and $|\psi(x)|^2$ represents the probability density of a particle in configuration space and $|\hat{\psi}(p)|^2$ represents the probability density of a particle in momentum space.

H here is an (unbounded) operator on $L^2(\mathbb{R}^d)$ the Hamiltonian and

$$\langle \psi, H\psi \rangle = \text{energy of }\psi$$

Example 11.1. Consider for example for some measurable function $V : \mathbb{R}^d \to \mathbb{R}$ the operator

$$H = -\Delta + V(x)$$
 in $L^2(\mathbb{R}^d)$.

For this problem to have a solution we need some conditions on H. Let \mathscr{H} be a Hilbert space. For an inner product $\langle \cdot, \cdot \rangle$ we require

$$\forall \psi \in D(H) : \langle \psi, H\psi \rangle \in \mathbb{R}$$

where

$$D(H) = \left\{ \psi \, \middle| \, H\psi \in \mathscr{H} \right\}.$$

Lemma 11.2. Let H be a linear operator on \mathscr{H} with domain D(H) (dense in \mathscr{H}).

Then

$$\forall \psi \in D(H) : \langle \psi, H\psi \rangle \in \mathbb{R} \iff \forall u, v \in D(H) : \langle u, Hv \rangle = \langle Hu, v \rangle$$

We call H a symmetric operator in this case.

Definition 11.3 (Adjoint). Let H be an operator on a Hilbert space \mathscr{H} with dense domain D(H). Then we define

$$H^*: D(H^*) \longrightarrow \mathscr{H}$$

which satisfies

$$\forall u \in D(H^*) \,\forall v \in D(H) : \langle u, Hv \rangle = \langle H^*u, v \rangle$$

where

 $D(H^*) = \left\{ u \in \mathscr{H} \mid \langle u, H \cdot \rangle \text{ is a linear functional on } v \right\}$

The map is well-defined as D(H) is dense in \mathcal{H} .

Proposition 11.4. If $u \in D(H^*)$, then there exists $f \in H$ such that for all $v \in D(H)$

$$\langle u, Hv \rangle = \langle f, v \rangle$$

and thus we can define uniquely $H^*u := f$

Proposition 11.5. If H is symmetric, then $H \subset H^*$, i.e. $D(H) \subset D(H^*)$ and $H^*|_{D(H)} = H$.

Definition 11.6. *H* is called a self-adjoint operator iff $H^* = H$ (in particular $D(H^*) = D(H)$).

Proposition 11.7. In finite dimensions, if $H = (H_{ij})_{ij}$ is a matrix, then it self-adjoint w.r.t. to the standard inner product iff $H_{ji} = \overline{H_{ij}}$.

Example 11.8. $-\Delta$ is a self-adjoint operator on $L^2(\mathbb{R}^d)$ with domain $D(-\Delta) = H^2(\mathbb{R}^d)$.

Example 11.9. $\mathscr{H} = L^2(\Omega, \mu)$ is a measure space, $f : \Omega \to \mathbb{R}$ measurable, then the multiplication operator

$$T_f: \qquad (T_f u)(x) = f(x)u(x)$$

is a self-adjoint operator with domain

$$D(T_f) = \left\{ u \in L^2(\Omega, \mu) \, \middle| \, fu \in L^2(\Omega, \mu) \right\}.$$

Theorem 11.10 (Spectral Theorem). Assume that A is a self-adjoint operator on a Hilbert space \mathscr{H} with domain D(A). Then there exists a unitary operator $U : \mathscr{H} \to L^2(\Omega, \mu)$ and a measurable function $f : \Omega \to \mathbb{R}$ such that

$$UAU^{-1} = T_f.$$

Definition 11.11. We call $A \ge 0$ iff for all $u \in D(A) \langle u, Au \rangle \ge 0$. Further $A \ge B$ iff $A - B \ge 0$.

Theorem 11.12 (Friedrichs Extension). If $A \ge -C$, where A is a symmetric operator and $C \in \mathbb{R}$, then there exists unique self-adjoint extension \tilde{A} of A and

$$\inf_{\substack{u \in D(\tilde{A}) \\ \|u\|=1}} \left\langle u, \tilde{A}u \right\rangle = \inf_{\substack{u \in D(A) \\ \|u\|=1}} \left\langle u, Au \right\rangle.$$

Theorem 11.13 (Kato-Rellich). If A is a self-adjoint operator and B symmetric with $D(B) \supset D(A)$, and

$$|Bu|| \leqslant a ||Au|| + C||u||$$

for all $u \in D(A)$ with a < 1, then A + B is self-adjoint with D(A + B) = D(A).

Example 11.14. If $V \in L^2(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3)$, then $-\Delta + V$ is self-adjoint on $H^2(\mathbb{R}^3)$.

Proof. Consider $A = -\Delta$, B = V. For every $\varepsilon > 0$ we can write $V = V_1 + V_2$, with $\|V_1\|_2 \leq \varepsilon$, $V_2 \in L^{\infty}$. Therefore

$$\begin{aligned} \|Vu\|_{2} &\leqslant \|V_{1}u\|_{2} + \|V_{2}u\|_{2} \leqslant \|V_{1}\|_{2} \|u\|_{\infty} + \|V_{2}\|_{\infty} \|u\|_{2} \leqslant C\varepsilon \|u\|_{H^{1}} + C_{\varepsilon} \|u\|_{2} \leqslant \\ &\leqslant C\varepsilon \|\Delta u\|_{2} + C_{\varepsilon} \|u\|_{2} \end{aligned}$$

by the Sobolev embedding as $L^{\infty} \subset H^2$. Choosing $a = C\varepsilon < 1$ we find the desired result. q.e.d.

Theorem 11.15. If A is self-adjoint, then the equation

$$\begin{cases} i\partial_t u = Au\\ u(t=0) = u_0 \end{cases}$$

has a unique solution, if $u_0 \in D(A)$ and

$$u(t,\cdot) \in \mathscr{C}^1((0,\infty),\mathscr{H}) \cap \mathscr{C}([0,\infty),D(A))$$

with $||u||_{D(A)} = ||u|| + ||Au||$ for all D(A). "Symbolically" we can write

$$u(t) = e^{-itA}u_0$$

*Proof*Step 1 Assume that A is bounded. Then e^{-itA} well-defined by

$$e^{-itA} = \sum_{n=0}^{\infty} \frac{t^n}{n!} (-iA)^n$$

$$\left\| e^{-itA} \right\| \leq \sum_{n=0}^{\infty} \frac{t^n}{n!} \|A\|^n = e^{t\|A\|} < \infty$$

Thus we can define $u(t) = e^{-itA}u_0$ and check that it satisfies

$$i\partial_t \left(e^{-itA} \right) = A e^{-itA}$$

Step 2 Assume that $A \ge 0$. Then we can define $A_n = \frac{nA}{A+n^2}$ is a bounded operator. By step 1 there exists a solution u_n to the corresponding problem with A_n . If we can prove that $u_n(t) \xrightarrow{n \to \infty} u(t)$ (in L^2) then we have found a solution. Noting that e^{-itA} is unitary it follows that $\frac{d}{dt} ||u_n(t)||_2 = 0$ which implies that $||u_n(t)|| = u_0$ and therefore we find that

$$\frac{d}{dt}\|u_n - u_m\|^2 = \frac{d}{dt} \left(\|u_n\|^2 + \|u_m\|^2 + 2\Re \langle u_m, U - n \rangle\right) = 2\Re(\langle -iA_m u_n, u_m \rangle + \langle u_n, iA_n u_m \rangle) =$$
$$= 4\Im \langle u_n, (A_m - A_n)u_m \rangle \xrightarrow{n, m \to \infty} 0$$

as

$$A_m - A_n = \frac{nA}{A+n} - \frac{mA}{A+m} = \frac{(m-n)}{(A+m)(A+n)} \sim \frac{m-n}{mn} \xrightarrow{m,n \to \infty} 0.$$

This implies that $u_n(t)$ converges to some u(t) in \mathscr{H} which solves the equation.

q.e.d.