Mathematical Quantum Mechanics Prof. Phan Thành Nam, Prof. Armin Scrinzi

Official Lecture Notes

Martin Peev

Contents

1 Review of Analysis 7
1.1 Measure Theory 7
1.2 Fundamental Theorems on Integration 10
$1.3 \quad L^{p}$ Spaces 12
1.4 Fourier Transform 24
1.5 Sobolev Space 25
1.6 Hilbert Space 26
2 Principles of Quantum Mechanics 33
2.1 Stability of the Hydrogen Atom 35
3 Sobolev Spaces 39
3.1 Distribution Theory 39
3.2 Sobelev Inequalities 43
3.3 Application of Sobolev Embedding 61
4 Spectral Theorem 63
4.1 Unbounded Self-Adjoint Operators 81
5 Self-Adjoint Extensions 99
5.1 Quadratic Forms 104
6 Quantum Dynamics 111
7 Bound States 121
7.1 Weyl Theory 125
7.2 Bound States 128
7.3 Argument for Unitary Evolution 142
7.4 Trace Out of Density Matrix 143
8 Scattering Theory 145
8.1 General RAGE 148
8.2 Wave Operator 157
9 Many-Body Quantum Theory 175
9.1 Particle Statistics 183
10 Entropy 191

Outline

1) Review of Basic Concepts of Analysis
2) Principles of Quantum Mechanics
3) Spectral Theorem
4) Quantum Dynamics
5) Scattering Theory
6) Many-Body Quantum Mechanics
7) Density Functional Theory
8) Entropy
9) Stability and Instability of Matter

Chapter 1

Review of Analysis

1.1 Measure Theory

In measure theory the basic object is a measure space (Ω, Σ, μ) consisting of a (measure) space Ω, a Sigma-algebra Σ, and a measure μ.

Definition 1.1 (Sigma-Algebra). A Sigma-algebra Σ is a collection of subsets of Ω such that

1) $\emptyset, \Omega \in \Sigma$,
2) if $A \in \Sigma$ then $A^{C}:=\Omega \backslash A \in \Sigma$,
3) if $\left(A_{n}\right)_{n=1}^{\infty} \subset \Sigma$ then $\bigcup_{n=1}^{\infty} A_{n} \in \Sigma$.

If $A \in \Sigma, A$ is called measurable.

Definition 1.2 (Measure). A measure μ is a function $\Sigma \rightarrow[0, \infty]$ such that

1) $\mu(A) \geqslant 0$ for all $A \in \Sigma$,
2) if $\left(A_{n}\right)_{n=1}^{\infty} \subset \Sigma$, such that $A_{n} \cap A_{m}=\emptyset$ if $n \neq m$, then

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

Example 1.3. The most common example of a measure space is $\Omega=\mathbb{R}^{d}, \Sigma$ being the Lebesgue measurable sets, and μ being the Lebesgue measure.
The properties characterising this measure space are:

1) Σ contains all open and closed sets,
2) For all $A \in \Sigma$ and $\varepsilon>0$, there exists an open set B such that $A \subset B$ and $\mu(B \backslash A)<\varepsilon($ Outer Regularity $)$.

For all $A \in \Sigma$, there exists a sequence of closed/compact sets $\left(B_{n}\right)_{n}$ such that $B_{n} \subset A$, and

$$
\mu\left(A \backslash \bigcup_{n=1}^{\infty} B_{n}\right)=0
$$

i.e. $A=\bigcup_{n=1}^{\infty} B_{n}$ almost everywhere (a.e.) (Inner Regularity).
3) Completeness: If $A \in \Sigma$ and $\mu(A)=0$, then for all $B \subset A, B \in \Sigma$ and $\mu(B)=0$.
4) For all $x \in \mathbb{R}^{d}$, and all $A \in \Sigma, A+x \in \Sigma$ and $\mu(A+x)=\mu(A)$ (Translation Invariance).

For all $\lambda \in \mathbb{R}$, and all $A \in \Sigma, \lambda A \in \Sigma$ and $\mu(\lambda A)=|\lambda|^{d} \mu(A)$ (Dilation).
5) Normalisation: The unit cube has measure 1, i.e. $\mu\left([0,1]^{d}\right)=1$.

Definition 1.4 (Measurable Functions). Given a measure space (Ω, Σ, μ), a function $f: \Omega \rightarrow[0, \infty]$ is called measurable iff

$$
f^{-1}((t, \infty])=\{x \in \Omega \mid f(x)>t\} \in \Sigma
$$

for all $t \geqslant 0$. These sets are called level sets.
Or equivalently

- $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$, where f_{n} is a step function, i.e.

$$
f_{n}(x)=\sum_{i=1}^{I} \lambda_{i} \chi_{A_{i}}
$$

where $\lambda_{i} \in \mathbb{R}, A_{i} \in \Sigma$ and

$$
\chi_{A_{i}}(x)= \begin{cases}1, & \text { if } x \in A_{i} \\ 0, & \text { otherwise }\end{cases}
$$

or

- (if $\left.\Omega=\mathbb{R}^{d}\right) f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$, where f_{n} is a really simple function, i.e. $f_{n}(x)=$ $\sum_{i=1}^{I} \lambda_{i} \chi_{A_{i}}$ where $\lambda_{i} \geqslant 0$ and A_{i} are cubes.

In general a function $f: \Omega \rightarrow \mathbb{C}$ can be split into $f=f_{1}-f_{2}+i f_{3}-i f_{4}$ with $f_{i}: \Omega \rightarrow[0, \infty]$. Then f is measurable iff all f_{i} are.

Remark 1.5 (Reminder of Riemann Integral). The Riemann integral can only be defined for functions that are continuous up to a countable set.

Definition 1.6 (Integration). For any measurable function $f: \Omega \rightarrow[0, \infty]$ we define its Lebesgue integral to be

$$
\int_{\Omega} f(x) \mathrm{d} \mu(x):=\int_{0}^{\infty} \mu(\{x \in \Sigma \mid f(x)>t\}) \mathrm{d} t
$$

where the right-hand-side is interpreted as a Riemann integral. This is well-defined as $t \mapsto \mu(\{x \in \Sigma \mid f(x)>t\})$ is monotone decreasing, and thus it is continuous up to a countable set (Exercise 1.1).
For a measurable function $f: \Omega \rightarrow \mathbb{C}$ we define

$$
\int_{\Omega} f(x) \mathrm{d} \mu(x):=\int f_{1}-\int f_{2}+i \int f_{3}-i \int f_{4}
$$

which makes sense iff $\int f_{i}<\infty$ for all $i \in\{1, \ldots, 4\}$. In this case we call f integrable.

Equivalently, f is integrable iff $|f|$ is measurable and $\int|f|<\infty$.

1.2 Fundamental Theorems on Integration

Theorem 1.7 (Monotone Convergence). If $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of measurable, real, and integrable functions, $f_{n}(x) \uparrow f(x)$ (i.e. $f(x) \geqslant f_{n+1}(x) \geqslant f_{n}(x)$ for all $n \in \mathbb{N}$) for a.e. x (i.e. up to a set of measure 0), then

$$
\int_{\Omega} f(x) \mathrm{d} \mu(x)=\lim _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) \mathrm{d} \mu(x) .
$$

(which holds even when both sides are $+\infty$).

Theorem 1.8 (Dominated Convergence). If $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of measurable and integrable functions $\left(f_{n}: \Omega \rightarrow \mathbb{C}\right), f_{n}(x) \xrightarrow{n \rightarrow \infty} f(x)$ for a.e. x, and there exists an integrable function G, such that $\left|f_{n}(x)\right| \leqslant G(x)$ for a.e. x. Then

$$
\int_{\Omega} f(x) \mathrm{d} \mu(x)=\lim _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) \mathrm{d} \mu(x)
$$

(and both sides are finite).

Remark 1.9. Under the same conditions as in the Theorem 1.8 we also have

$$
\int_{\Omega}\left|f_{n}(x)-f(x)\right| \mathrm{d} \mu(x) \xrightarrow{n \rightarrow \infty} 0
$$

This is stronger than the previous convergence theorem as

$$
\left|\int_{\Omega} f(x) \mathrm{d} \mu(x)-\int_{\Omega} f_{n}(x) \mathrm{d} \mu(x)\right|=\left|\int_{\Omega}\left(f(x)-f_{n}(x)\right) \mathrm{d} \mu(x)\right| \leqslant \int_{\Omega}\left|f(x)-f_{n}(x)\right| \mathrm{d} \mu(x) .
$$

Remark 1.10 ("Inverse" of Dominated Convergence). If $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of integrable functions, f integrable, and

$$
\int_{\Omega}\left|f_{n}-f\right| \mathrm{d} \mu \xrightarrow{n \rightarrow \infty} 0
$$

then there exists a subsequence $\left(f_{n_{k}}\right)_{k}$ of $\left(f_{n}\right)_{n}$ such that

$$
\begin{cases}f_{n_{k}}(x) \xrightarrow{k \rightarrow \infty} f(x), & \text { for a.e. } x \\ \left|f_{n_{k}}(x)\right| \leqslant G(x), & \text { for a.e. } x\end{cases}
$$

for an integrable function G.

Theorem 1.11 (Fatou's Lemma). If $\left(f_{n}\right)_{n}$ is a sequence of integrable functions, $f_{n} \geqslant 0$, $f_{n}(x) \xrightarrow{n \rightarrow \infty} f(x)$ for a.e. x. Then

$$
\liminf _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) \mathrm{d} \mu(x) \geqslant \int_{\Omega} f(x) \mathrm{d} \mu(x)
$$

Remark 1.12 (Notation).

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n}=a_{0}: \Longleftrightarrow \forall \varepsilon>0 \exists N_{\varepsilon} \in \mathbb{N} \forall n \geqslant N_{\varepsilon}:\left|a_{n}-a_{0}\right|<\varepsilon \\
\liminf _{n \rightarrow \infty} a_{n}:=\lim _{n \rightarrow \infty} \inf _{m \geqslant n} a_{m} \\
\limsup _{n \rightarrow \infty} a_{n}:=\lim _{n \rightarrow \infty} \sup _{m \geqslant n} a_{m} \\
\liminf _{n \rightarrow \infty} a_{n} \geqslant a_{0} \Longleftrightarrow \forall \varepsilon>0 \exists N_{\varepsilon} \in \mathbb{N} \forall n \geqslant N_{\varepsilon}: a_{n}-a_{0} \geqslant-\varepsilon \\
\limsup _{n \rightarrow \infty} a_{n} \leqslant a_{0} \Longleftrightarrow \forall \varepsilon>0 \exists N_{\varepsilon} \in \mathbb{N} \forall n \geqslant N_{\varepsilon}: a_{n}-a_{0} \leqslant \varepsilon
\end{aligned}
$$

Theorem 1.13 (Brezis-Lieb Refinement of Fatou's Lemma). Assume that $\left(f_{n}\right)_{n}$ is a sequence of integrable functions, $f_{n} \rightarrow f$ for a.e. x, f integrable. Then

$$
\int\left|\left|f_{n}\right|-|f|-\left|f_{n}-f\right|\right| \mathrm{d} \mu \xrightarrow{n \rightarrow \infty} 0
$$

Consequently,

$$
\int\left|f_{n}\right|-\int|f|-\int\left|f_{n}-f\right| \xrightarrow{n \rightarrow \infty} 0
$$

and if $f_{n} \rightarrow f$ a.e. and $\int\left|f_{n}\right| \rightarrow \int|f|$ then $\int\left|f_{n}-f\right| \rightarrow 0$.

Proof. $\left|f_{n}\right|-\left|f_{n}-f\right| \xrightarrow{n \rightarrow \infty}|f|$ a.e. and

$$
\left|\left|f_{n}\right|-\left|f_{n}-f\right|\right| \leqslant|f|
$$

with $|f|$ being integrable. The assertion then follows from the dominated convergence Theorem 1.8

Theorem 1.14 (Approximation by Continuous Functions). If $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is an integrable function, then there exists a sequence of continuous functions with compact support (i.e. $\left.f_{n}\right|_{K^{C}} \equiv 0$ for some compact set $\left.K\right)\left(f_{n}\right)_{n} \subset \mathscr{C}_{c}\left(\mathbb{R}^{d}\right)$ such that

$$
\int_{\mathbb{R}^{d}}\left|f_{n}-f\right| \mathrm{d} x \xrightarrow{n \rightarrow \infty} 0 .
$$

$1.3 \quad L^{p}$ Spaces

Definition 1.15 (L^{p} Space). Let (Ω, Σ, μ) be a measure space. For all $1 \leqslant p \leqslant \infty$ we define

$$
L^{p}(\Omega):=\left\{f: \Omega \rightarrow \mathbb{C} \mid f \text { is measurable, }\|f\|_{L^{p}}<\infty\right\}
$$

where

$$
\|f\|_{L^{p}}:= \begin{cases}\left(\int_{\Omega}|f|^{p} \mathrm{~d} \mu\right)^{1 / p}, & \text { if } p<\infty \\ \operatorname{ess} \sup _{x \in \Omega}|f(x)|, & \text { if } p=\infty\end{cases}
$$

Here

$$
\underset{x \in \Omega}{\operatorname{ess} \sup }|f(x)|:=\inf \{\lambda \in \mathbb{R}| | f(x) \mid \leqslant \lambda \text { for a.e. } x\} .
$$

Convergence with respect to the topology generated by $\|\cdot\|_{L^{p}}$ is called norm convergence or strong convergence.

Remark 1.16 (Fundamental Results for L^{p}). All fundamental results for L^{1} extend to L^{p} for all $1 \leqslant p<\infty$.

1) (Monotone Convergence for $\left.L^{p}\right)$ If $\left(f_{n}\right)_{n} \subset L^{p}(\Omega)$ is a sequence of a.e. increasing functions, converging a.e. to f then

$$
\int\left|f_{n}\right|^{p} \xrightarrow{n \rightarrow \infty} \int|f|^{p} .
$$

2) (Dominated Convergence) If $\left(f_{n}\right)_{n} \subset L^{p}(\Omega)$ is a sequence functions converging a.e. to f and for all $n \in \mathbb{N}\left|f_{n}\right| \leqslant G \in L^{p}(\Omega)$, then

$$
\int\left|f_{n}\right|^{p} \xrightarrow{n \rightarrow \infty} \int|f|^{p} \text { and } \int\left|f_{n}-f\right|^{p} \xrightarrow{n \rightarrow \infty} 0 .
$$

Sketch of Proof. $\left|f_{n}-f\right|^{p} \xrightarrow{n \rightarrow \infty} 0$ a.e. and

$$
\left|f_{n}-f\right|^{p} \leqslant\left(\left|f_{n}\right|+|f|\right)^{p} \leqslant 2^{p} G^{p} \in L^{1} .
$$

Then the assertion follows from the standard dominated convergence Theorem 1.8.
3) (Fatou) If $\left(f_{n}\right)_{n} \subset L^{p}(\Omega)$ is a sequence of non-negative functions, converging a.e. to f, then

$$
\int|f|^{p} \leqslant \liminf _{n \rightarrow \infty} \int\left|f_{n}\right|^{p}
$$

4) If $\left(f_{n}\right)_{n} \subset L^{p}(\Omega)$ is a sequence functions converging a.e. to f and for all $n \in \mathbb{N}$ $\int\left|f_{n}\right|^{p} \leqslant C$, then

$$
\int\left|\left|f_{n}\right|^{p}-|f|^{p}-\left|f_{n}-f\right|^{p}\right| \xrightarrow{n \rightarrow \infty} 0
$$

Definition 1.17 (Dual Space). For any Banach Space X its dual space is

$$
X^{*}:=\{\mathcal{L}: X \longrightarrow \mathbb{C} \mid \mathcal{L} \text { is linear and continuous }\}
$$

This is a Banach space with norm

$$
\|\mathcal{L}\|_{X^{*}}:=\sup _{\|f\|_{X} \leqslant 1}|\mathcal{L}(f)|
$$

Remark 1.18 (Properties of $L^{p}(\Omega)$). 1) $L^{p}(\Omega)$ is a Banach space with norm $\|\cdot\|_{L^{p}}$ for all $1 \leqslant p \leqslant \infty$, i.e.

- $\|f\|_{L^{p}} \geqslant 0$ for all $f \in L^{p}(\Omega)$ and $\|f\|_{L^{p}}=0 \Longleftrightarrow f=0$ (a.e. x),
- $\|\lambda f\|_{L^{p}}=|\lambda|\|f\|_{L^{p}}$ for all $\lambda \in \mathbb{C}$,
- $\|f+g\|_{L^{p}} \leqslant\|f\|_{L^{p}}+\|g\|_{L^{p}}$ (triangle inequality) ,
and it is complete, i.e. if $\left(f_{n}\right)_{n} \subset L^{p}(\Omega)$ is a Cauchy sequence, i.e. $\lim _{n, m \rightarrow \infty}\left\|f_{n}-f_{m}\right\|_{L^{p}}=0$, then there exists a $f \in L^{p}(\Omega)$ such that

$$
\left\|f-f_{n}\right\|_{L^{p}} \xrightarrow{n \rightarrow \infty} 0 .
$$

2) (Hölder's Inequality) If $p, q \in[1, \infty]$ and $\frac{1}{p}+\frac{1}{q}=1$ (such p, q are called dual powers) then

$$
\|f g\|_{L^{1}} \leqslant\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for all $f \in L^{p}$ and $g \in L^{q}$. More generally if $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots \frac{1}{p_{n}}=1$, then

$$
\left\|f_{1} f_{2} \cdots f_{n}\right\|_{L^{1}} \leqslant\left\|f_{1}\right\|_{L^{p_{1}}}\left\|f_{2}\right\|_{L^{p_{2}}} \cdots\left\|f_{n}\right\|_{L^{p_{n}}}
$$

3) (Dual of L^{p})

$$
\left(L^{p}(\Omega)\right)^{*}=L^{q}(\Omega)
$$

where $\frac{1}{p}+\frac{1}{q}=1$ for all $1 \leqslant p<\infty$. Note that $\left(L^{\infty}(\Omega)\right)^{*} \supsetneq L^{1}(\Omega)$.
This means that for all $\mathcal{L} \in\left(L^{p}(\Omega)\right)^{*}$ there exists a unique $g \in L^{q}(\Omega)$ such that for all $f \in L^{p}(\Omega)$

$$
\mathcal{L}(f)=\int f g
$$

Moreover,

$$
\|\mathcal{L}\|_{\left(L^{p}\right)^{*}}=\sup _{\|f\|_{L^{p}} \leqslant 1}\left|\int f g\right|=\|g\|_{L^{q}}
$$

Sketch of Proof of (2) \& (3). By Young's inequality for all $a, b \geqslant 0, \frac{1}{p}+\frac{1}{q}=1$ with $1<p<$ ∞

$$
a b \leqslant \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

A stronger version of this inequality asserts that

$$
a b=\inf _{\varepsilon>0}\left\{\frac{(\varepsilon a)^{p}}{p}+\frac{\left(\varepsilon^{-1} b\right)^{q}}{q}\right\}
$$

In particular, we have

$$
|f g| \leqslant \frac{|\varepsilon f|^{p}}{p}+\frac{\left|\varepsilon^{-1} g\right|^{q}}{q}
$$

pointwise. Thus,

$$
\int|f g| \leqslant \frac{\left(\varepsilon\|f\|_{L^{p}}\right)^{p}}{p}+\frac{\left(\varepsilon^{-1}\|g\|_{L^{q}}\right)^{q}}{q}
$$

for all $\varepsilon>0$. The infimum of the right-hand-side is equal to $\|f\|_{L^{p}}\|g\|_{L^{q}}$. This yields Hölder's inequality.

Consequently,

$$
\sup _{\|f\|_{L^{p} \leqslant 1}}\left|\int f g\right| \leqslant\|g\|_{L^{q}}
$$

On the other hand, for all $g \in L^{q}, g \neq 0$ we can define

$$
f:=\frac{\bar{g}|g|^{q-2}}{\left(\int|g|^{q}\right)^{1 / p}}
$$

then $\|f\|_{L^{p}}=1$ and

$$
\int f g=\left(\int|g|^{q}\right)^{1 / q}=\|g\|_{L^{q}}
$$

Definition 1.19 (Weak Convergence). Let $1<p<\infty$. Then a sequence $\left(f_{n}\right)_{n} \subset L^{p}(\Omega)$ is said to converge weakly in L^{p}

$$
f_{n} \xrightarrow{n \rightarrow \infty} f
$$

iff for all $g \in L^{q}(\Omega)$, with $\frac{1}{p}+\frac{1}{q}=1$,

$$
\int f_{n} g \xrightarrow{n \rightarrow \infty} \int f g
$$

Theorem 1.20 (Banach-Alaoglu). Let $1<p<\infty$. If $\left(f_{n}\right)_{n}$ is a bounded sequence in L^{p} (i.e. $\left\|f_{n}\right\|_{L^{p}} \leqslant C$ for all $n \in \mathbb{N}$), then there exists a subsequence $\left(f_{n_{k}}\right)_{k}$ such that $f_{n_{k}} \xrightarrow{k \rightarrow \infty} f$ in L^{p}.

Theorem 1.21 (Banach-Steinhaus, Uniform Boundedness Principle). If $f_{n} \xrightarrow{n \rightarrow \infty} f$ in L^{p}, then $\left(f_{n}\right)_{n}$ is bounded in L^{p}.

Remark 1.22. Strong convergence (i.e. convergence in norm) implies weak convergence.

Example 1.23. Let $f, \varphi \in \mathscr{C}_{c}\left(\mathbb{R}^{d}\right)$. Define

$$
f_{n}(x):=f(x)+\varphi\left(x+x_{n}\right)
$$

where $\left|x_{n}\right| \rightarrow \infty$. Then for $\left|x_{n}\right|$ large enough

$$
\int\left|f_{n}\right|^{p}=\int|f|^{p}+\int|\varphi|^{p} \quad \therefore \quad\left\|f_{n}-f\right\|_{L^{p}}=\|\varphi\|_{L^{p}} \neq 0
$$

Thus $f_{n} \nrightarrow f$ strongly in L^{p}. But $f_{n} \rightharpoonup f$ weakly. Indeed, for all $g \in L^{q}(\Omega)$

$$
\int f_{n} g-\int f g=\int \varphi\left(x+x_{n}\right) g(x) \mathrm{d} \mu(x) \xrightarrow{n \rightarrow \infty} 0
$$

by the dominated convergence Theorem 1.8 and approximating g by a function $g_{\varepsilon} \in L_{c}^{q}$ with $\left\|g-g_{\varepsilon}\right\|_{q}<\varepsilon$.

Proof of Theorem 1.20. For all $g \in L^{q},\left(\int f_{n} g\right)_{n}$ is a bounded sequence in \mathbb{C} as

$$
\left|\int f_{n} g\right| \leqslant\left\|f_{n}\right\|_{L^{p}}\|g\|_{L^{q}} \leqslant C\|g\|_{L^{q}}
$$

This means that there exists a subsequence $\left(f_{n_{k}}\right)_{k}$ such that $\int f_{n_{k}} g$ converges for $k \rightarrow \infty$.
Now take a sequence $\left(g_{m}\right)_{m=1}^{\infty}$ in $L^{q}(\Omega)$. Then we can choose a subsequence $\left(f_{n_{k}}\right)_{k}$ such that $\int f_{n_{k}} g_{m}$ converges as $k \rightarrow \infty$ for all $m \in \mathbb{N}$, which can be done by a "Cantor Diagonal Argument".
Taking the subsequence $\left(f_{n_{k_{1}}}\right)_{k_{1}}$ constructed for g_{1}, we may extract a subsequence of this sequence $\left(f_{n_{k_{2}}}\right)_{k_{2}}$ converging also for g_{2}. Doing this for all $m \in \mathbb{N}$ we obtain the double sequence $\left(f_{n_{k_{m}}}\right)_{(k, m) \in \mathbb{N}^{2}}$. Then for the sequence $\left(f_{n_{k_{k}}}\right)_{k \in \mathbb{N}}$, the integrals $\int f_{n_{k_{k}}} g_{m}$ converge as $k \rightarrow \infty$ for all $m \in \mathbb{N}$, since $\left(f_{n_{k_{k}}}\right)_{k \geqslant m}$ is a subsequence of the convergent sequence $\left(f_{n_{k_{m}}}\right)_{k \geqslant m}$, hence it is itself convergent.
Using the fact that $L^{q}(\Omega)$ is separable, i.e. that there exists a sequence $\left(g_{m}\right)_{m=1}^{\infty} \subset L^{q}(\Omega)$ that is dense in $L^{q}(\Omega)$. (Separability follows from the approximation of L^{p} functions by step functions or continuous functions with compact support. $L^{\infty}(\Omega)$ is not separable, hence the assertion fails in that case.)
With this choice of $\left(g_{m}\right)_{m}$ we can define a linear functional $\mathcal{L}: L^{q}(\Omega) \rightarrow \mathbb{C}$ via

$$
\mathcal{L}\left(g_{m}\right):=\lim _{k \rightarrow \infty} \int f_{n_{k_{k}}} g_{m}
$$

By the above this is well-defined, and as $\left(g_{m}\right)_{m}$ is dense this functional can be uniquely extended to all of $L^{q}(\Omega)$ if it is bounded on $\left(g_{m}\right)_{m}$. This is the case as

$$
\left|\mathcal{L}\left(g_{m}\right)\right|=\lim _{k \rightarrow \infty}\left|\int f_{n_{k_{k}}} g_{m}\right| \leqslant \lim _{k \rightarrow \infty}\left\|f_{n_{k_{k}}}\right\|_{L^{p}}\left\|g_{m}\right\|_{L^{q}} \leqslant C\left\|g_{m}\right\|_{L^{q}} .
$$

Thus $\mathcal{L} \in\left(L^{q}(\Omega)\right)^{*}$ and there exists a unique $f \in L^{p}(\Omega)$ such that $\mathcal{L}(g)=\int f g$ for all $g \in L^{q}$.

By this, we have for all g_{m}

$$
\lim _{k \rightarrow \infty} \int f_{n_{k_{k}}} g_{m}=\mathcal{L}\left(g_{m}\right)=\int f g_{m}
$$

For an arbitrary $g \in L^{q}(\Omega)$ choose a subsequence $\left(g_{m_{l}}\right)_{l}$ converging to g strongly. Then

$$
\begin{aligned}
\left|\int f_{n_{k_{k}}} g-\int f\right| & \leqslant\left|\int f_{n_{k_{k}}}\left(g-g_{m_{l}}\right)\right|+\left|\int f_{n_{k_{k}}} g_{m_{l}}-\int f g_{m_{l}}\right|+\left|\int f\left(g_{m_{l}}-g\right)\right| \leqslant \\
& \leqslant\left\|f_{n_{k_{k}}}\right\|_{L^{p}}\left\|g-g_{m_{l}}\right\|_{L^{q}}+\left|\int f_{n_{k_{k}}} g_{m_{l}}-\int f g_{m_{l}}\right|+\left\|f_{n_{k_{k}}}\right\|_{L^{p}}\left\|g-g_{m_{l}}\right\|_{L^{q}} \leqslant \\
& \leqslant C\left\|g-g_{m_{l}}\right\|_{L^{q}}+\left|\int f_{n_{k_{k}}} g_{m_{l}}-\int f g_{m_{l}}\right|+C\left\|g-g_{m_{l}}\right\|_{L^{q}} \xrightarrow{k \rightarrow \infty} \\
& \longrightarrow 2 C\left\|g-g_{m_{l}}\right\|_{L^{q}}
\end{aligned}
$$

The right-hand side can now be made arbitrarily small (by choosing l large enough), hence $\left|\int f_{n_{k_{k}}} g-\int f g\right| \xrightarrow{k \rightarrow \infty} 0$. Thus, indeed

$$
f_{n_{k_{k}}} \xrightarrow{k \rightarrow \infty} f .
$$

Definition 1.24. Let $\Omega=\mathbb{R}^{d}, f, g$ measurable and define their convolution for each $x \in \mathbb{R}^{d}$, if it exists, to be

$$
(f * g)(x)=\int_{\mathbb{R}^{d}} f(x-y) g(y) \mathrm{d} y
$$

Remark 1.25. $f * g=g * f$ and $(f * g) * h=f *(g * h)$.

Theorem 1.26 (Young's Inequality). Let $1 \leqslant p, q, r \leqslant \infty$. If $f \in L^{p}, g \in L^{q}$, then $f * g \in L^{r}$ with

$$
1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}
$$

and $\|f * g\|_{L^{r}} \leqslant\|f\|_{L^{p}}\|g\|_{L^{q}}$.

Remark 1.27. The Young inequality is equivalent to

$$
\left|\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(x) g(x-y) h(y) \mathrm{d} x \mathrm{~d} y\right| \leqslant\|f\|_{L^{p}}\|g\|_{L^{q}}\|h\|_{L^{r^{\prime}}}
$$

where

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r^{\prime}}=2
$$

and $\frac{1}{r}+\frac{1}{r^{\prime}}=1$.

Theorem 1.28 (Approximation by Convolution). Let $1 \leqslant p<\infty$ and $f \in L^{p}\left(\mathbb{R}^{d}\right)$. Let $g \in L^{1}\left(\mathbb{R}^{d}\right), \int g=1$ and for $\varepsilon>0, g_{\varepsilon}=g\left(\frac{x}{\varepsilon}\right) \frac{1}{\varepsilon^{d}}$, i.e. $\int g_{\varepsilon}=1$.
Then $g_{\varepsilon} * f \xrightarrow{\varepsilon \rightarrow 0} f$ strongly in $L^{p}\left(\mathbb{R}^{d}\right)$

Corollary 1.29. For all $L^{p}\left(\mathbb{R}^{d}\right), 1 \leqslant p<\infty$ there exists a sequence $\left(f_{n}\right)_{n} \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, $\left\|f_{n}-f\right\|_{L^{p}} \rightarrow 0$.

Proof. By approximation, we may assume that $f \in \mathscr{C}_{c}\left(\mathbb{R}^{d}\right)$ which we shall prove later. For simplicity, we assume that g has compact support. Then

$$
\begin{aligned}
\left|\left(g_{\varepsilon} * f\right)(x)-f(x)\right| & =\left|\int_{\mathbb{R}^{d}} g_{\varepsilon}(y) f(x-y) \mathrm{d} y-\int_{\mathbb{R}^{d}} g_{\varepsilon}(y) f(x) \mathrm{d} y\right|= \\
& =\left|\int_{\mathbb{R}^{d}} g_{\varepsilon}(y)(f(x-y)-f(x)) \mathrm{d} y\right| \leqslant \\
& \leqslant \sup _{z \in \operatorname{supp} g_{\varepsilon}}|f(x-z)-f(x)| \int_{\mathbb{R}^{d}}\left|g_{\varepsilon}(y)\right| \mathrm{d} y \leqslant \\
& \leqslant \sup _{|z| \leqslant R \varepsilon}|f(x-z)-f(x)|\|g\|_{L^{1}} \xrightarrow{\varepsilon \rightarrow 0} 0
\end{aligned}
$$

where $\operatorname{supp} g \subset B_{R}(0)$. Because f has compact support it is uniformly continuous, hence the last limit can be taken uniformly for all $x \in \mathbb{R}^{d}$.

Thus, $\left\|g_{\varepsilon} * f-f\right\|_{\infty} \xrightarrow{\varepsilon \rightarrow 0} 0$. Since f, g have compact support it follows that $g_{\varepsilon} * f$ has one as

$$
\operatorname{supp}\left(g_{\varepsilon} * f\right) \subset \operatorname{supp} g_{\varepsilon}+\operatorname{supp} f \subset B_{\varepsilon R}(0)+\operatorname{supp} f \subset B_{R}(0)+\operatorname{supp}(f)
$$

for $\varepsilon \leqslant 1$. Thus, $\left\|g_{\varepsilon} * f-f\right\|_{L^{r}} \rightarrow 0$ for all $1 \leqslant r \leqslant \infty$ as

$$
\|f\|_{L^{r}} \leqslant(\mu(\operatorname{supp} f))^{\frac{1}{r}-\frac{1}{p}}\|f\|_{L^{p}} \quad \therefore \quad\|f\|_{L^{r}} \leqslant(\mu(\operatorname{supp} f))^{\frac{1}{r}}\|f\|_{L^{\infty}}
$$

which follows from Hölder's inequality.
To remove the assumption that f and g have compact support we use sequences $\left(f_{n}\right)_{n},\left(g_{n}\right)_{n} \subset$ \mathscr{C}_{c} such that

$$
\left\|f_{n}-f\right\|_{L^{p}} \xrightarrow{n \rightarrow \infty} 0, \quad\left\|g_{n}-g\right\|_{L^{1}} \xrightarrow{n \rightarrow \infty} 0
$$

and utilise Young's inequality $\|f * g\|_{L^{p}} \leqslant\|f\|_{L^{p}}\|g\|_{L^{1}}$ to estimate

$$
f * g_{\varepsilon}-f=\left(f_{n} * g_{\varepsilon}-f_{n}\right)+\left(f-f_{n}\right) * g_{\varepsilon}+\left(f_{n}-f\right),
$$

where the third vanishes by assumption and the second term vanishes by both Young's inequality and our assumption as $n \rightarrow \infty$, and the first term goes to 0 by the above as $\varepsilon \rightarrow 0$.
Concerning g we have the similar estimate

$$
f * g_{\varepsilon}-f=\left(f * g_{\varepsilon, n}-f\right)+f *\left(g_{\varepsilon}-g_{\varepsilon, n}\right)
$$

the second term vanishes by Young's inequality and our assumption as $n \rightarrow \infty$ and the first term vanishes as $\varepsilon \rightarrow 0$ per our assumption.
For the corollary, we can choose $g \in \mathscr{C}_{c}^{\infty}, \int g=1$ and if $f \in \mathscr{C}_{c}\left(\mathbb{R}^{d}\right)$, then $g_{\varepsilon} * f \in$ $\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
q.e.d.

Theorem 1.30 (Hardy - Littlewood - Sobolev Inequality).

$$
\left|\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{f(x) g(y)}{|x-y|^{\lambda}} \mathrm{d} x \mathrm{~d} y\right| \leqslant C\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for $\frac{1}{p}+\frac{1}{q}+\frac{\lambda}{d}=2$, for all $0<\lambda<d$, and $C=C(p, q, \lambda, d)$ independent of f, g.

Remark 1.31. The HLS inequality does not come from Young's inequalty as for
$h(z)=\frac{1}{|z|^{\lambda}}$

$$
\int|h(z)|^{r}=\int|h(z)|^{\frac{d}{\lambda}}=\int_{\mathbb{R}^{d}} \frac{1}{|z|^{d}} \mathrm{~d} z=+\infty
$$

This inequality is also called the "weak Young inequality" as it involves a weak norm of h.

Proof. We shall use the "Layer-cake" representation

$$
\int_{\mathbb{R}^{d}}|f(x)|^{p}=p \int_{0}^{\infty} h_{1}(a) a^{p-1} \mathrm{~d} a
$$

where

$$
h_{1}(a)=|\{|f(x)|>a\}|=\int_{\mathbb{R}^{d}} \mathbf{1}_{\{|f(x)|>a\}} \mathrm{d} x
$$

and

$$
\int_{\mathbb{R}^{d}}|g(x)|^{p}=q \int_{0}^{\infty} h_{2}(b) b^{q-1} \mathrm{~d} b, \quad h_{2}(b)=\int_{\mathbb{R}^{d}} \mathbf{1}_{\{|g(y)|>b\}} \mathrm{d} y .
$$

Without loss of generality we may assume that $\|f\|_{L^{p}}=\|g\|_{L^{q}}=1$ (otherwise rescale the functions). For the left-hand-side, we use

$$
\begin{aligned}
|f(x)| & =\int_{0}^{\infty} \mathbf{1}_{\{|f(x)|>a\}} \mathrm{d} a \\
|g(y)| & =\int_{0}^{\infty} \mathbf{1}_{\{|g(y)|>b\}} \mathrm{d} b \\
\frac{1}{|x-y|^{\lambda}} & =\int_{0}^{\infty} \mathbf{1}_{\left\{\frac{1}{\left.|x-y|^{\lambda}>c\right\}}\right.} \mathrm{d} c=\lambda \int_{0}^{\infty} \mathbf{1}_{\{|x-y|<c\}} \frac{\mathrm{d} c}{c^{\lambda+1}}
\end{aligned}
$$

where the substitution $c \rightarrow c^{-\lambda}$ was used for the last equality. Using this, the left-hand-side takes the form

$$
\left|\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{f(x) g(y)}{|x-y|^{\lambda}} \mathrm{d} x \mathrm{~d} y\right|=\lambda \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}\left(\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{\mathbf{1}_{\{|f(x)|>a\}} \mathbf{1}_{\{|g(y)|>b\}} \mathbf{1}_{\{|x-y|<c\}}}{c^{\lambda+1}} \mathrm{~d} x \mathrm{~d} y\right) \mathrm{d} a \mathrm{~d} b \mathrm{~d} c .
$$

We shall denote the function within the parentheses as $I(a, b, c)$. Note that we may arbitrarily exchange by Tonelli's theorem all the integrals in this expression as the integrand is positive.

Now we use a trick: By ignoring one of the three characteristic function we can estimate

$$
\begin{aligned}
& I(a, b, c) \leqslant \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{\mathbf{1}_{\{|f(x)|>a\}} \mathbf{1}_{\{|g(y)|>b\}}}{c^{\lambda+1}} \mathrm{~d} x \mathrm{~d} y=\frac{h_{1}(a) h_{2}(b)}{c^{\lambda+1}} \\
& I(a, b, c) \leqslant \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{\mathbf{1}_{\{|f(x)|>a\}} \mathbf{1}_{\{|x-y|<c\}}}{c^{\lambda+1}} \mathrm{~d} x \mathrm{~d} y=h_{1}(a) \int_{\mathbb{R}^{d}} \frac{\mathbf{1}_{\{|y|<c\}}}{c^{\lambda+1}} \mathrm{~d} y=h_{1}(a)\left|B_{1}\right| \frac{c^{d}}{c^{\lambda+1}} \\
& I(a, b, c) \leqslant h_{2}(b)\left|B_{1}\right| \frac{c^{d}}{c^{\lambda+1}}
\end{aligned}
$$

where $\left|B_{1}\right|$ is the volume of the unit ball. Thus,

$$
I(a, b, c) \leqslant C \frac{\min \left\{h_{1}(a) h_{2}(b), h_{1}(a) c^{d}, h_{2}(b) c^{d}\right\}}{c^{\lambda+1}}
$$

where C is some constant.
Recalling that

$$
\left|\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{f(x) g(y)}{|x-y|^{\lambda}} \mathrm{d} x \mathrm{~d} y\right| \leqslant \lambda \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} I(a, b, c) \mathrm{d} a \mathrm{~d} b \mathrm{~d} c
$$

We have

$$
\begin{aligned}
\int_{0}^{\infty} I(a, b, c) \mathrm{d} c & =\int_{h_{1}(a)>c^{d}} I(a, b, c) \mathrm{d} c+\int_{h_{1}(a) \leqslant c^{d}} I(a, b, c) \mathrm{d} c \leqslant \\
& \leqslant \int_{h_{1}(a)>c^{d}} \frac{h_{2}(b) c^{d}}{c^{\lambda+1}} \mathrm{~d} c+\int_{h_{1}(a) \leqslant c^{d}} \frac{h_{1}(a) h_{2}(b)}{c^{\lambda+1}} \mathrm{~d} c= \\
& =h_{2}(b) \int c^{d-\lambda-1} \mathrm{~d} c+h_{1}(a) h_{2}(b) \int_{h_{1}(a)^{\frac{1}{d} \leqslant c}} \frac{1}{c^{\lambda+1}} \mathrm{~d} c= \\
& =\frac{h_{2}(b)\left(h_{1}(a)^{\frac{1}{d}}\right)^{d-\lambda}}{d-\lambda}+\frac{1}{\lambda\left(h_{1}(a)^{\left.\frac{1}{d}\right)^{\lambda}}\right.} h_{1}(a) h_{2}(b) \leqslant C h_{1}(a)^{\frac{d-\lambda}{d}} h_{1}(b)
\end{aligned}
$$

Similarly we have

$$
\int_{0}^{\infty} I(a, b, c) \mathrm{d} c \leqslant C h_{1}(a) h_{2}(b)^{\frac{d-\lambda}{d}} .
$$

Thus

$$
\int_{0}^{\infty} I(a, b, c) \mathrm{d} c \leqslant C \min \left\{h_{1}(a)^{1-\frac{\lambda}{d}} h_{2}(b), h_{1}(a) h_{2}(b)^{1-\frac{\lambda}{d}}\right\} .
$$

We want to estimate the a - and b-integrals in terms of

$$
\begin{aligned}
& 1=\int_{\mathbb{R}^{d}}|f(x)|^{p} \mathrm{~d} x=p \int_{0}^{\infty} h_{1}(a) a^{p-1} \mathrm{~d} a \\
& 1=\int_{\mathbb{R}^{d}}|g(y)|^{q} \mathrm{~d} y=q \int_{0}^{\infty} h_{2}(b) b^{q-1} \mathrm{~d} b
\end{aligned}
$$

Using these identities we get

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} I(a, b, c) \mathrm{d} a \mathrm{~d} b \mathrm{~d} c & \leqslant C \int_{0}^{\infty} \int_{0}^{\infty} \min \left\{h_{1}(a)^{1-\frac{\lambda}{d}} h_{2}(b), h_{1}(a) h_{2}(b)^{1-\frac{\lambda}{d}}\right\} \mathrm{d} a \mathrm{~d} b \leqslant \\
& \leqslant C \iint_{a^{p} \geqslant b^{q}} \cdots \mathrm{~d} a \mathrm{~d} b+C \iint_{a^{p}<b^{q}} \cdots \mathrm{~d} a \mathrm{~d} b \leqslant \\
& \leqslant C \iint_{b \leqslant a^{\frac{p}{q}}} h_{1}(a) h_{2}(b)^{1-\frac{\lambda}{d}} \mathrm{~d} a \mathrm{~d} b+C \iint_{a^{\frac{p}{q}}<b} h_{1}(a)^{1-\frac{\lambda}{d}} h_{2}(b) \mathrm{d} a \mathrm{~d} b
\end{aligned}
$$

The first term can be estimated by

$$
\iint_{b \leqslant a^{\frac{p}{q}}} h_{1}(a) h_{2}(b)^{1-\frac{\lambda}{d}} \mathrm{~d} a \mathrm{~d} b=\iint_{b \leqslant a^{\frac{p}{q}}} h_{1}(a) a^{p-1} \frac{1}{a^{p-1}} h_{2}(b)^{1-\frac{\lambda}{d}} \mathrm{~d} a \mathrm{~d} b
$$

We need

$$
\int_{b \leqslant a^{\frac{p}{q}}} \frac{1}{a^{p-1}} h_{2}(b)^{1-\frac{\lambda}{d}} \mathrm{~d} b \leqslant C
$$

and we conclude. This is done by

$$
\int_{b \leqslant a^{\frac{p}{q}}} \frac{1}{a^{p-1}} h_{2}(b)^{1-\frac{\lambda}{d}} \mathrm{~d} b \leqslant a^{1-p} \underbrace{\left(\int_{b \leqslant a^{\frac{p}{q}}} h_{2}(b) b^{q-1} \mathrm{~d} b\right)^{1-\frac{\lambda}{d}}}_{\leqslant 1}\left(\int_{0}^{a^{\frac{p}{q}}} \frac{1}{b^{\xi}} \mathrm{d} b\right)^{\frac{\lambda}{d}}=\text { const }
$$

Here Hölder's inequality was used in the first inequality and

$$
(q-1)\left(1-\frac{\lambda}{d}\right)-\xi \frac{\lambda}{d}=0
$$

Remark 1.32. Another application of the Layer cake representation is the pqr theorem, i.e. let $p<q<r,\left(f_{n}\right)_{n} \subset L^{p}, L^{q}, L^{r}$ and $\left\|f_{n}\right\|_{L^{p}},\left\|f_{n}\right\|_{L^{r}} \leqslant C$ and $\left\|f_{n}\right\|_{L^{q}} \geqslant \varepsilon>0$ then there exists a subsequence such that $f_{n} \rightharpoonup f \neq 0$. (Exercise 2.3.)

1.4 Fourier Transform

For all $f \in L^{1}\left(\mathbb{R}^{d}\right)$ we may define the Fourier transform to be

$$
\hat{f}(k)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i k \cdot x} \mathrm{~d} x
$$

where $k \cdot x=\sum_{j=1}^{d} k_{j} x_{j}$.

Theorem 1.33 (Plancherl). • For all $f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right),\|\hat{f}\|_{L^{2}}=\|f\|_{L^{2}}$.

- We can extend the Fourier transform to $L^{2}\left(\mathbb{R}^{d}\right)$ as an isometry, i.e. for all $f \in$ $L^{2}\left(\mathbb{R}^{d}\right)$

$$
\|f\|_{L^{2}}=\|\hat{f}\|_{L^{2}}
$$

and therefore for all $f, g \in L^{2}\left(\mathbb{R}^{d}\right)$

$$
\int_{\mathbb{R}^{d}} \overline{\hat{f}} \hat{g}=\int_{\mathbb{R}^{d}} \bar{f} g .
$$

Proposition 1.34 (Properties of the Fourier Transform). 1) (Inverse formula) Let $\check{f}(x)=\int_{\mathbb{R}^{d}} f(k) e^{2 \pi i k \cdot x} \mathrm{~d} k$, then

$$
f=\check{\hat{f}}=\hat{\tilde{f}}
$$

2) (Convolution) $\widehat{f * g}(k)=\hat{f}(k) \hat{g}(k)$.
3) (Fourier vs. Derivatives) Let $D^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{d}}^{\alpha_{d}}$ where $\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$. Then

$$
\widehat{D^{\alpha} f}(k)=(2 \pi i k)^{\alpha} \hat{f}(k)
$$

where $(2 \pi i k)^{\alpha}=\prod_{j=1}^{d}\left(2 \pi i k_{j}\right)^{\alpha_{j}}$, for $k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{R}^{d}$.
4)

$$
\widehat{e^{-\pi|\cdot|^{2}}}(k)=e^{-\pi|k|^{2}}
$$

Proof. 2)

$$
\begin{aligned}
\widehat{f * g}(k) & =\int_{\mathbb{R}^{d}}(f * g)(x) e^{-2 \pi i k \cdot x} \mathrm{~d} x=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(y) g(x-y) e^{-2 \pi i k \cdot x} \mathrm{~d} x \mathrm{~d} y= \\
& =\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(y) e^{-2 \pi i k \cdot y} g(x-y) e^{-2 \pi i k \cdot(x-y)} \mathrm{d} x \mathrm{~d} y= \\
& =\int_{\mathbb{R}^{d}} f(y) e^{-2 \pi i k \cdot y} \mathrm{~d} x \int_{\mathbb{R}^{d}} g(z) e^{-2 \pi i k \cdot z} \mathrm{~d} z=\hat{f}(k) \hat{g}(k)
\end{aligned}
$$

3)

$$
\begin{aligned}
\widehat{\partial_{x_{1}} f}(k) & =\int_{\mathbb{R}^{d}}\left(\partial_{x_{1}} f\right)(x) e^{-2 \pi i k \cdot x} \mathrm{~d} x=-\int_{\mathbb{R}^{d}} f(x) \partial_{x_{1}}\left(e^{-2 \pi i k \cdot x}\right) \mathrm{d} x= \\
& =-\int f(x)\left(-2 \pi i k_{1}\right) e^{-2 \pi i k \cdot x} \mathrm{~d} x=\left(2 \pi i k_{1}\right) \hat{f}(k) .
\end{aligned}
$$

1.5 Sobolev Space

Definition 1.35. The $m^{\text {th }}$ Sobolev Space is defined to be the Banach space

$$
\begin{aligned}
H^{m} & :=\left\{f \in L^{2}\left(\mathbb{R}^{d}\right)\left|\forall \alpha \in \mathbb{N}^{d}:|\alpha|=\sum_{j=1}^{d} \alpha_{j} \leqslant m \Longrightarrow D^{\alpha} f \in L^{2}\left(\mathbb{R}^{d}\right)\right\}=\right. \\
& =\left\{f \in L^{2}\left(\mathbb{R}^{d}\right) \left\lvert\,\left(1+|k|^{2}\right)^{\frac{m}{2}} \hat{f}(k) \in L^{2}\left(\mathbb{R}^{d}\right)\right.\right\}
\end{aligned}
$$

with norm

$$
\|f\|_{H^{m}}=\sqrt{\sum_{|\alpha| \leqslant m}\left\|D^{\alpha} f\right\|_{L^{2}}^{2}}
$$

An equivalent norm is given by

$$
\sqrt{\sum_{\ell \leqslant m}\left\|\left(1+|k|^{2}\right)^{\frac{\ell}{2}} \hat{f}\right\|_{L^{2}}^{2}}
$$

Remark 1.36. The derivatives used in this definition are so-called "distributional derivatives". They coincide with the normal derivative if the function is differentiable and shall be discussed further in section 3.1.

1.6 Hilbert Space

Definition 1.37. A complex Hilbert space \mathscr{H} is a Banach space equipped with an inner product $\langle\cdot, \cdot\rangle$ that is anti-linear in its first argument and linear in its second, i.e. $\langle\lambda f, \alpha g\rangle=\bar{\lambda} \alpha\langle f, g\rangle$. The corresponding Banach space norm is given by

$$
\|f\|_{\mathscr{H}}=\sqrt{\langle f, f\rangle} .
$$

Definition 1.38 (Orthogonality). f is said to be orthogonal to $g, f \perp g$, iff $\langle f, g\rangle=0$. An orthonormal family $\left(f_{n}\right)_{n}$ is a sequence of functions in \mathscr{H} such that $\left\langle f_{n}, f_{m}\right\rangle=\delta_{n m}$, where $\delta_{n m}$ is the Kronecker delta.
An orthonormal basis $\left(f_{n}\right)_{n}$ is a sequence of function in \mathscr{H} that is an orthonormal
family and is complete, i.e. for all $f \in \mathscr{H}$

$$
\left(\forall n \in \mathbb{N}: f \perp f_{n}\right) \Longleftrightarrow f=0
$$

Remark 1.39. For all Hilbert spaces there exists an orthonormal basis (by Zorn's lemma). In this lecture, we will always consider separable Hilbert spaces, i.e. Hilbert spaces with a countable basis.

Theorem 1.40 (Parseval). If $\left(u_{n}\right)_{n=1}^{\infty}$ is an ONB of \mathscr{H}, then for all $u \in \mathscr{H}$

$$
\|u\|_{\mathscr{H}}^{2}=\sum_{n=1}^{\infty}\left|\left\langle u_{n}, u\right\rangle\right|^{2}
$$

Moreover,

$$
u=\sum_{n=1}^{\infty}\left\langle u_{n}, u\right\rangle u_{n}
$$

Corollary 1.41 (Bessel's Inequality). If $\left(u_{n}\right)_{n \in \mathbb{N}}$ is an orthonormal family, then for all $u \in \mathscr{H}$

$$
\|u\|^{2} \geqslant \sum_{n=1}^{\infty}\left|\left\langle u_{n}, u\right\rangle\right|^{2}
$$

Theorem 1.42 (Riesz Representation Theorem). Let $\mathscr{L} \in \mathscr{H}^{*}$ be a bounded (or continuous) linear functional $\mathscr{L}: \mathscr{H} \rightarrow \mathbb{C}$, then there exists a unique $v \in \mathscr{H}$ such that

$$
\mathscr{L}(u)=\langle v, u\rangle
$$

for all $u \in \mathscr{H}$.

Definition 1.43 (Weak Convergence). A sequence $\left(u_{n}\right)_{n} \subset \mathscr{H}$ converges weakly to u, i.e. $u_{n} \xrightarrow{n \rightarrow \infty} u$, iff for all $v \in \mathscr{H}$

$$
\left\langle v, u_{n}\right\rangle \xrightarrow{n \rightarrow \infty}\langle v, u\rangle .
$$

Remark 1.44. Any separable Hilbert space is $\boldsymbol{i s o m e t r i c}$ to $L^{2}(\mathbb{R})$, i.e. there exists a unitary operator $T: \mathscr{H} \rightarrow L^{2}(\mathbb{R})$, that is T is linear and for all $u, v \in \mathscr{H}$

$$
\langle u, v\rangle=\langle T u, T v\rangle_{L^{2}} .
$$

As a consequence, we have the Banach-Alaoglu theorem, Theorem 1.20, i.e. if $\left(u_{n}\right)_{n}$ is bounded in \mathscr{H} then there exists a subsequence such that $u_{n_{k}} \xrightarrow{k \rightarrow \infty} u$ weakly in \mathscr{H}.
The Banach-Steinhaus theorem, Theorem 1.21, also holds for all separable Hilbert spaces by the same argument.

Physics Introduction

Remark 1.45. For more detailed information on this section see: http://www.mathematik. uni-muenchen.de/~nam/notes_ws18_19_1.pdf.

Postulates of Quantum Mechanics

- (State): Described by an element $\psi \in \mathscr{H}$ of a Hilbert space \mathscr{H}.
- (Properties): Given by "Observable" linear operators on \mathscr{H}
- (Measurement Value a): Eigenvalues of A
- (Probability for $a): \sum_{|a, i\rangle \in \operatorname{ker}(A-a \mathbb{I})}|\langle a, i \mid \psi\rangle|^{2}$, where $|a, i\rangle$ form an orthonormal basis of the eigenvectors of A corresponding to a, i.e $|a, i\rangle \in \operatorname{ker}(A-a)$. Using this basis the measurement probability can also be written as

$$
\left.\sum_{|a, i\rangle \in \operatorname{ker}(A-a I)}|\langle a, i \mid \psi\rangle|^{2}=\sum_{i}=\langle\psi \mid a, i\rangle\langle a, i \mid \psi\rangle=\sum_{i}\langle\psi| P|\psi\rangle=\sum_{i}\|P\| \psi\right\rangle \|^{2}
$$

where $P:=\sum_{i}|a, i\rangle\langle a, i|$ is the projector onto the subspace of a eigenvectors.

- (Measurement): After the measurement the new state is given by an eigenvector of a
- (Dynamics (I)): $\frac{d}{d t}|\psi\rangle=-i H \psi$,
- (Dynamics (II)): $|\psi, t\rangle=U_{t}|\psi, 0\rangle$.

The last two points are equivalent by Stones theorem.

Postulates of Classical Mechanics

In terms of point particles (the classical equivalent of pure states, i.e. wave functions):

- (State): Described by an element $(x, p) \in T^{*} Q$ in phase space.
- (Properties): Given by observables A, i.e. functions on $T^{*} Q$.
- (Measurement Value $a): A(x, p)=a$
- (Probability for $a)$: If $A(x, p)=a$ then probability is 1 , and otherwise it is 0 .
- (Measurement): After the measurement the system is in the same state.
- $($ Dynamics $): \frac{d}{d t}(x, p)=X_{H}$.

In terms of probability distributions (the classical equivalent of mixed states, i.e. density matrices, incorporating classical as well as quantum mechanical lack of knowledge):

- (State): Described by a function $\rho(x, p)$ on $T^{*} Q$ phase space.
- (Properties): Given by observables A, i.e. functions on $T^{*} Q$.
- (Measurement Value $a): A(x, p)=a$
- (Probability for $a): P(a, \rho)=\int_{\{A(x, p)=a\}} \rho(x, p) \mathrm{d} x \mathrm{~d} p$.
- (Measurement): After the measurement the new state is given $\frac{\rho(x) \mathbf{1}_{\{A(x, p)=a\}}}{P(a, \rho)}$.
- (Dynamics): $\frac{d}{d t} \rho=£_{X_{H}} \rho=\{H, \rho\}$.

Strange Observations

Assume that particles only have the properties

- C (colour): red/green (r / g),
- S (status): hard/soft (h / s).

Further assume that we have two apparatuses a colouriser \hat{C} which takes as input a particle of any type and may produce a red or green. Analogously we have the same for the status \hat{S}.

Suppose that we our experiments yield the following uniform distributions ${ }^{1}$

$$
\mathbb{P}(\rightarrow \hat{C})=\frac{1}{2}, \quad \mathbb{P}(\rightarrow \hat{C} \rightarrow \hat{S})=\frac{1}{4}, \quad \mathbb{P}(\rightarrow \hat{C} \rightarrow \hat{S} \rightarrow \hat{C})=\frac{1}{8}
$$

However, we also measure

$$
\begin{aligned}
& \mathbb{P}(\rightarrow \hat{C})=\frac{1}{2}, \quad \mathbb{P}_{\hat{C}^{2}}(r r)=\mathbb{P}_{\hat{C}^{2}}(g g)=\frac{1}{2}, \mathbb{P}_{\hat{C}^{2}}(r g)=\mathbb{P}_{\hat{C}^{2}}(g r)=0, \\
& \mathbb{P}_{\hat{S} \hat{C}^{2}}(h r r)=\mathbb{P}_{\hat{S} \hat{C}^{2}}(s r r)=\mathbb{P}_{\hat{S} \hat{C}^{2}}(h g g)=\mathbb{P}_{\hat{S} \hat{C}^{2}}(s g g)=\frac{1}{4}
\end{aligned}
$$

and the other probabilities of the last measurement are 0 .
This is the content of the Stern-Gerlach experiment.

EPR - Einstein, Podolski, Rosen (1934)

They made two assumptions of locality and reality and took QM on face value and a system of 2 particles in 1 dimension, i.e.

$$
\psi^{(a, b)}\left(x_{1}, x_{2}\right) \in \mathscr{H}^{a} \otimes \mathscr{H}^{b}=L^{2}\left(\mathbb{R}^{3}\right) \otimes L^{2}\left(\mathbb{R}^{3}\right)=L^{2}\left(\mathbb{R}^{6}\right)
$$

Suppose that $\psi=d\left(x_{1}-x_{2}-L\right) d\left(p_{1}+p_{2}\right)$, where d is an almost δ function.
If we measure x_{1}, we know also $x_{2}=x_{1}-L$ and similarly if we measure p_{1} then we know that $p_{2}=-p_{1}$.

Bell Inequality

Suppose that we have reality and locality. Imagine two particles are fully determined by $\boldsymbol{\lambda}, \boldsymbol{\mu}$ and measurements a, b, c such that results of the measurement are $a(\boldsymbol{\lambda}), b(\boldsymbol{\lambda}), c(\boldsymbol{\lambda}), a(\boldsymbol{\mu}), \ldots$, are functions of $\boldsymbol{\lambda}, \boldsymbol{\mu}$.
Suppose that we have a source of particles producing $\boldsymbol{\lambda}_{j}, \boldsymbol{\mu}_{j}, \ldots$
Say that a, b, c are polarisers in direction $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ respectively.

[^0]Suppose that our apparatus gives only ± 1. Suppose that we have a source of pair $\left(\boldsymbol{\lambda}_{j}, \boldsymbol{\mu}_{j}\right)$, such that $c\left(\boldsymbol{\lambda}_{j}\right)=c\left(\boldsymbol{\mu}_{j}\right)$ then

$$
1-b\left(\boldsymbol{\mu}_{j}\right) c\left(\boldsymbol{\lambda}_{j}\right)=a\left(\boldsymbol{\lambda}_{j}\right)\left(b\left(\boldsymbol{\mu}_{j}\right)-c\left(\boldsymbol{\mu}_{j}\right)\right), \text { or } 1-b\left(\boldsymbol{\mu}_{j}\right) c\left(\boldsymbol{\lambda}_{j}\right)=-a\left(\boldsymbol{\lambda}_{j}\right)\left(b\left(\boldsymbol{\mu}_{j}\right)-c\left(\boldsymbol{\mu}_{j}\right)\right)
$$

Taking the average over many pairs $j=0,1, \ldots, N-1$ we get the inequalities

$$
1-\langle b c\rangle \geqslant \max \{\langle a[b-c]\rangle,-\langle a[b-c]\rangle\}
$$

i.e.

$$
1-\langle b c\rangle \geqslant|\langle a b\rangle-\langle a c\rangle| .
$$

Quantum mechanics violates this inequality.

Chapter 2

Principles of Quantum Mechanics

Basic Setting of Quantum Mechanics

- A quantum state is a vector in a Hilbert space \mathscr{H},
- Observables are (bounded or unbounded) operators on \mathscr{H},
- The Hamiltonian H is a self-adjoint operator, with $\langle\psi, H \psi\rangle$ representing the energy of the state ψ,
- The Schrödinger equation:

$$
\partial_{t} \psi(t)=-i H \psi(t)
$$

- Mixed states: γ which are trace class operators on $\mathscr{H}, \gamma \geqslant 0$, $\operatorname{Tr} \gamma=1$ which is equivalent to

$$
\gamma=\sum_{i} \lambda_{i}\left|u_{i}\right\rangle\left\langle u_{i}\right|
$$

where $\left(u_{i}\right)_{i}$ is an orthonormal family, $\lambda_{i} \geqslant 0$ and $\sum_{i} \lambda_{i}=1$.

Remark 2.1 (Dirac "Bra-Ket"). By Riesz's representation Theorem $1.42 \mathscr{H}=\mathscr{H}^{*}$ with the isomorphism being given by

$$
v \longmapsto\left(\mathscr{L}_{v}: u \mapsto\langle v, u\rangle\right)
$$

for all $u \in \mathscr{H}$. We say that a state $|u\rangle \in \mathscr{H}$ is a ket, and $\langle u| \in \mathscr{H}^{*}$ is a bra. In
particular the inner product of $u, v \in \mathscr{H}$ is written as

$$
\langle u \mid v\rangle
$$

If $u \in \mathscr{H}$, then $|u\rangle\langle u|$ is the projection onto u, i.e.

$$
(|u\rangle\langle u|) \varphi=(|u\rangle\langle u|)|\varphi\rangle=\underbrace{\langle u \mid \varphi\rangle}_{\in \mathbb{C}}|u\rangle .
$$

Remark 2.2. In classical mechanics we think of particles as being point-like and moving along fixed trajectories in phase/configuration space. In particular their dynamics is determined by the set of equations

$$
\begin{aligned}
& \dot{x}(t)=v(t) \\
& \dot{v}(t)=F(x(t), v(t))
\end{aligned}
$$

with $(x, v) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$.
However, within classical mechanics the hydrogen atom is not stable. The ground energy of that system is given by

$$
\inf _{(x, v) \in \mathbb{R}^{d} \times \mathbb{R}^{d}}\left(\frac{m v^{2}}{2}-\frac{1}{|x|}\right)=-\infty,
$$

which leads to this problem.

In quantum mechanics a particle is described by a wave function $\psi \in L^{2}\left(\mathbb{R}^{d}\right)$ with $\|\psi\|_{L^{2}}=1$, where $|\psi(x)|^{2}$ is thought of as the probability distribution of the position of the particle, in particular

$$
\mathbb{P}(" \psi \in \Omega ")=\int_{\Omega}|\psi(x)|^{2} \mathrm{~d} x
$$

Analogously, its Fourier transform $|\hat{\psi}(k)|^{2}$ describes a probability distribution for the momentum.

In this case the energy of a particle in the Hydrogen system is given by

$$
\begin{aligned}
\langle\psi, H \psi\rangle & \left.=\left.\langle\psi,| p\right|^{2} \psi\right\rangle-\left\langle\psi, \frac{1}{|x|} \psi\right\rangle=\int|2 \pi k|^{2}|\hat{\psi}(k)|^{2} \mathrm{~d} k-\int \frac{|\psi(x)|^{2}}{|x|} \mathrm{d} x= \\
& =\int\left(|\nabla \psi(x)|^{2}-\frac{|\psi(x)|^{2}}{|x|}\right) \mathrm{d} x=\left\langle\psi,\left(-\Delta-\frac{1}{|x|}\right) \psi\right\rangle
\end{aligned}
$$

Definition 2.3 (Momentum Operator). We define the momentum operator p to be given by

$$
p=-i \nabla
$$

in x-space, or in k-space

$$
p=2 \pi k
$$

2.1 Stability of the Hydrogen Atom

Why does

$$
\mathcal{E}(u):=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}-\frac{|u|^{2}}{|x|}\right) \mathrm{d} x \geqslant-C
$$

hold for all u with $\|u\|_{L^{2}}=1$?
We can prove this with the help of so-called uncertainty principles.

Theorem 2.4 (Hardy Uncertainty Principle). If $u \not \equiv 0$, then $u(x)$ and $\hat{u}(k)$ cannot both have compact support. A stronger version of Hardy's uncertainty principle is given by: If for $\alpha>0$

$$
|u(x)| \lesssim e^{-\pi \alpha|x|^{2}}
$$

then

$$
|\hat{u}(k)| \gtrsim e^{-\frac{\pi|k|^{2}}{\alpha}}
$$

as $|k| \rightarrow \infty$.

Note here that

$$
\widehat{e^{-\pi \alpha|\cdot|^{2}}}(k)=e^{-\frac{\pi|k|^{2}}{\alpha}}
$$

Theorem 2.5 (Heisenberg Uncertainty Principle). For all $u \in \mathscr{C}_{c}^{1}\left(\mathbb{R}^{d}\right),\|u\|_{L^{2}}=1$

$$
\left(\int|\nabla u|^{2} \mathrm{~d} x\right)\left(\int|x|^{2}|u(x)|^{2} \mathrm{~d} x\right) \geqslant \frac{d^{2}}{4}
$$

Proof. See Exercise 3.4.
q.e.d.

Remark 2.6. The Heisenberg uncertainty principle is not enough to prove the stability of the Hydrogen atom!

Theorem 2.7 (Refined Hardy Uncertainty Principle, Hardy's Inequality). For all $u \in$ $\mathscr{C}_{c}^{1}\left(\mathbb{R}^{3}\right)$,

$$
\int_{\mathbb{R}^{3}}|\nabla u(x)|^{2} \mathrm{~d} x \geqslant \frac{1}{4} \int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|^{2}} \mathrm{~d} x
$$

Proof. Let $g(x)=u(x)|x|^{1 / 2}$. Then $g(0)=0$ and

$$
\nabla u(x)=\nabla\left(\frac{g(x)}{|x|^{1 / 2}}\right)=\frac{\nabla g(x)}{|x|^{1 / 2}}-\frac{1}{2} g(x) \frac{x}{|x|^{5 / 2}}
$$

which implies that

$$
|\nabla u(x)|^{2}=\frac{|\nabla g(x)|^{2}}{|x|}+\frac{1}{4} \frac{|g(x)|^{2}}{|x|^{3}}-\mathfrak{R} \frac{\overline{\nabla g(x)} g(x) x}{|x|^{3}} .
$$

Integrating over this expression yields

$$
\int|\nabla u(x)|^{2} \mathrm{~d} x=\underbrace{\int \frac{|\nabla g(x)|^{2}}{|x|} \mathrm{d} x}_{\geqslant 0}+\frac{1}{4} \int \frac{|u(x)|^{2}}{|x|^{2}} \mathrm{~d} x-\int \mathfrak{R} \frac{\overline{\nabla g(x)} g(x) x}{|x|^{3}} \mathrm{~d} x .
$$

We claim that the last term vanishes which proves the assertion. To see this we integrate by parts

$$
\begin{aligned}
\int \mathfrak{R} \frac{\overline{\nabla g(x)} g(x) x}{|x|^{3}} \mathrm{~d} x & =-\frac{1}{2} \int_{\mathbb{R}^{3}}\left(\nabla\left(|g(x)|^{2}\right)\right) \nabla\left(\frac{1}{|x|}\right) \mathrm{d} x=\frac{1}{2} \int_{\mathbb{R}^{3}}|g(x)|^{2} \Delta\left(\frac{1}{|x|}\right) \mathrm{d} x= \\
& =-2 \pi|g(0)|^{2}=0
\end{aligned}
$$

because $g(0)=0$ and $-\Delta \frac{1}{|x|}=4 \pi \delta(x)$ (in the distributional sense).
q.e.d.

Remark 2.8 (Comments on the Proof). We proved that

$$
\mathcal{E}(u)=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}-\frac{1}{4} \frac{|u(x)|^{2}}{|x|^{2}}\right) \mathrm{d} x \geqslant 0 .
$$

If there exists a minimiser for

$$
\inf _{u \in \mathscr{C}_{c}^{1}}\left(\int\left(|\nabla u(x)|^{2}-\frac{1}{4} \frac{|u(x)|^{2}}{|x|^{2}}\right) \mathrm{d} x\right)
$$

then it would have to solve the Euler-Lagrange equation, i.e. $\frac{d}{d t} \mathcal{E}(u+t \varphi)=0$ for all $\varphi \in \mathscr{C}_{c}^{\infty}$. In this case this is equivalent to

$$
\left(-\Delta-\frac{1}{4|x|^{2}}\right) u(x)=0 \quad \Longleftrightarrow \quad u(x)=\frac{1}{|x|^{1 / 2}} .
$$

However, $\frac{1}{|x|^{1 / 2}} \notin L^{2}\left(\mathbb{R}^{3}\right)$ and thus Hardy's inequality is strict, i.e. for all $u \not \equiv 0$

$$
\int|\nabla u|^{2}>\frac{1}{4} \int \frac{|u(x)|^{2}}{|x|^{2}} \mathrm{~d} x .
$$

Still, we can think of $\frac{1}{|x|^{1 / 2}}$ as a "ground state". The choice $u(x)=\frac{g(x)}{|x|^{1 / 2}}$ corresponds to the so-called "ground-state substitution".

Theorem 2.9 (Stability of the Hydrogen Atom). There exists $C \geqslant 0$ such that for all $u \in \mathscr{C}_{c}^{1}\left(\mathbb{R}^{3}\right),\|u\|_{L^{2}}=1$

$$
\int_{\mathbb{R}^{3}}\left(|\nabla u(x)|^{2}-\frac{|u(x)|^{2}}{|x|}\right) \mathrm{d} x \geqslant-C .
$$

Proof. We shall combine Hardy's inequality with Hölder's

$$
\int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|} \leqslant\left(\int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|^{2}}\right)^{1 / 2}\left(\int_{\mathbb{R}^{3}}|u(x)|^{2}\right)^{1 / 2} \leqslant\left(4 \int_{\mathbb{R}^{3}}|\nabla u(x)|^{2} \mathrm{~d} x\right)^{1 / 2}
$$

Thus we find that

$$
\int\left(|\nabla u(x)|^{2}-\frac{|u(x)|^{2}}{|x|}\right) \geqslant \int|\nabla u|^{2}-2\left(\int|\nabla u|^{2}\right)^{1 / 2} \geqslant-1
$$

where we used that $t^{2}-2 t \geqslant-1$. q.e.d.

Remark 2.10. In fact one can prove that

$$
\int_{\mathbb{R}^{3}}\left(|\nabla u(x)|^{2}-\frac{|u(x)|^{2}}{|x|}\right) \mathrm{d} x \geqslant-\frac{1}{4}
$$

where the constant $-\frac{1}{4}$ is sharp.

Chapter 3

Sobolev Spaces

3.1 Distribution Theory

Definition 3.1 (Test Functions). We define $\mathscr{D}\left(\mathbb{R}^{d}\right):=\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ with the very strong topology

$$
\varphi_{n} \xrightarrow{n \rightarrow \infty} \varphi \text { in } \mathscr{D}\left(\mathbb{R}^{d}\right): \Longleftrightarrow\left\{\begin{array}{l}
\left\|D^{\alpha} \varphi_{n}-D^{\alpha} \varphi\right\|_{L^{\infty}} \xrightarrow{n \rightarrow \infty} 0, \quad \text { for all } \alpha \in \mathbb{N}^{d} \text { and } \\
\bigcup_{n \in \mathbb{N}} \operatorname{supp} \varphi_{n} \text { is compact. }
\end{array}\right.
$$

Definition 3.2 (Distributions). We define the space of distributions $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$ to be the set of continuous linear functionals on $\mathscr{D}\left(\mathbb{R}^{d}\right)$, i.e.

$$
T: \mathscr{C}_{c}^{\infty} \longrightarrow \mathbb{C} .
$$

We equip $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$ with the weak topology, i.e.

$$
T_{n} \xrightarrow{n \rightarrow \infty} T: \Longleftrightarrow \forall u \in \mathscr{D}\left(\mathbb{R}^{d}\right): T_{n}(u) \xrightarrow{n \rightarrow \infty} T(u) .
$$

Example 3.3. Let $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$, i.e. $\mathbf{1}_{\Omega} f \in L^{1}\left(\mathbb{R}^{d}\right)$ for any compact set Ω. Then

$$
\begin{aligned}
\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right) & \longrightarrow \mathbb{C} \\
T_{f}: & \varphi \longmapsto \int_{\mathbb{R}^{d}} f \varphi^{.}
\end{aligned}
$$

Here T_{f} is obviously a linear functional and it is continuous. Too see the latter let $\left(\varphi_{n}\right)_{n} \subset \mathscr{D}\left(\mathbb{R}^{d}\right)$ with $\varphi_{n} \xrightarrow{n \rightarrow \infty} \varphi$ in $\mathscr{D}\left(\mathbb{R}^{d}\right)$. Then $\left(\left\|\varphi_{n}\right\|_{L^{\infty}}\right)_{n}$ is bounded by some constant C and $\Omega:=\bigcup_{n} \operatorname{supp} \varphi_{n}$ is compact. Thus for all $n \in \mathbb{N}$

$$
\left|f \varphi_{n}\right|=\left|f \mathbf{1}_{\Omega} \varphi_{n}\right| \leqslant C|f| \mathbf{1}_{\Omega} \in L^{1}\left(\mathbb{R}^{d}\right)
$$

is an integrable majorant independent of $n \in \mathbb{N}$ and we may apply the dominated convergence theorem to conclude

$$
\lim _{n \rightarrow \infty} T_{f}\left(\varphi_{n}\right)=\lim _{n \rightarrow \infty} \int f \varphi_{n}=\int f \varphi=T_{f}(\varphi)
$$

Lemma 3.4 (Fundamental Lemma of the Calculus of Variations). If $f \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ and $\int f \varphi=0$ for all $\varphi \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, then $f \equiv 0$.

Proof. 1) Assume that $f \in L^{1}\left(\mathbb{R}^{d}\right)$. Then for all $\varphi \in \mathscr{C}_{c}^{\infty}$ and all $x \in \mathbb{R}^{d}$

$$
(f * \varphi)(x)=\int_{\mathbb{R}^{d}} f(y) \varphi(x-y)=0
$$

because $y \mapsto \varphi(x-y) \in \mathscr{C}_{c}^{\infty}$. In particular, take $g \in \mathscr{C}_{c}^{\infty}$, with $\int g=1, g_{\varepsilon}(x):=\frac{1}{\varepsilon^{d}} g\left(\frac{x}{\varepsilon}\right)$.
Then $g_{\varepsilon} * f \xrightarrow{\varepsilon \rightarrow 0} f$ in $L^{1}\left(\mathbb{R}^{d}\right)$. But $g_{\varepsilon} * f=0$ by the above argument. Hence $f \equiv 0$.
2) If $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$, then taking $g \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, $f g \in L^{1}\left(\mathbb{R}^{d}\right)$. We have

$$
\int_{\mathbb{R}^{d}}(f g) \varphi=\int_{\mathbb{R}^{d}} f \underbrace{(g \varphi)}_{\in \mathscr{C}_{c}^{\infty}}=0
$$

for all $\varphi \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. Applying the first step to $f g \in L^{1}\left(\mathbb{R}^{d}\right)$ we conclude that $f g \equiv 0$. Thus $f=0$ on $\operatorname{supp} g$. But g is arbitrary in \mathscr{C}_{c}^{∞} and therefore $f \equiv 0$.

Definition 3.5 (Derivatives of Distributions). If $T \in \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$, we can define $\partial_{x_{i}} T \in$ $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$ via

$$
\left(\partial_{x_{i}} T\right)(\varphi)=-T\left(\partial_{x_{i}} \varphi\right)
$$

for all $\varphi \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. In general we define for $\alpha \in \mathbb{N}^{d}, D^{\alpha} T \in \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$ via

$$
\left(D^{\alpha} T\right)(\varphi)=(-1)^{|\alpha|} T\left(D^{\alpha} \varphi\right)
$$

Remark 3.6. The motivation for this definition is that for $f \in \mathscr{C}^{1}\left(\mathbb{R}^{d}\right)$

$$
\int \partial_{x_{i}} f \varphi=-\int f \partial_{x_{i}} \varphi
$$

for all $\varphi \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. In this case, $\partial_{x_{i}} T_{f}=T_{\partial_{x_{i}} f}$, i.e. the distributional derivative equals the classical derivative wherever the function is differentiable.
To make sure that this derivative is well-defined, one has to check that $\varphi \mapsto T\left(D^{\alpha} \varphi\right)$ is linear (trivial) and continuous in $\mathscr{D}\left(\mathbb{R}^{d}\right)$. (Exercise)

Theorem 3.7.

$$
\begin{aligned}
H^{m}\left(\mathbb{R}^{d}\right) & =\left\{\left.f \in L^{2}\left(\mathbb{R}^{d}\right)| | k\right|^{m} \hat{f}(k) \in L^{2}\left(\mathbb{R}^{d}\right)\right\}= \\
& =\left\{f \in L^{2}\left(\mathbb{R}^{d}\right) \mid D^{\alpha} f \in L^{2}\left(\mathbb{R}^{d}\right) \text { for all }|\alpha| \leqslant m\right\}
\end{aligned}
$$

Proof. Take $f \in L^{2}\left(\mathbb{R}^{d}\right)$, with $|k|^{m} \hat{f}(k) \in L^{2}\left(\mathbb{R}^{d}\right)$. Take g such that $\hat{g}(k)=(2 \pi i k)^{\alpha} \hat{f}(k)$ which is in $L^{2}\left(\mathbb{R}^{d}\right)$ for all $|\alpha| \leqslant m$. In particular we also have $g \in L^{2}\left(\mathbb{R}^{d}\right)$.
Now we prove that $g=D^{\alpha} f$ in the distributional sense, i.e. for all $\varphi \in \mathscr{C}_{c}^{\infty}$

$$
\int g \varphi=(-1)^{|\alpha|} \int f\left(D^{\alpha} \varphi\right) \Longleftrightarrow \int \bar{\varphi} g=(-1)^{|\alpha|} \int \overline{\left(D^{\alpha} \varphi\right)} f
$$

To prove this we use Placherl's identity to get

$$
\begin{aligned}
\int \bar{\varphi} g & =\int \bar{\varphi} \hat{g}=\int \overline{\hat{\varphi}(k)}(2 \pi k i)^{\alpha} \hat{f}(k) \mathrm{d} k=(-1)^{|\alpha|} \int \overline{(2 \pi i k)^{\alpha} \hat{\varphi}(k)} \hat{f}(k) \mathrm{d} k= \\
& =(-1)^{|\alpha|} \int \overline{\widehat{D^{\alpha} \varphi}(k)} f(k) \mathrm{d} k=(-1)^{|\alpha|} \int \overline{D^{\alpha} \varphi} f
\end{aligned}
$$

The other direction is an easy exercise.

Theorem 3.8. For all $m \geqslant 1, \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $H^{m}\left(\mathbb{R}^{d}\right)$.

Proof. 1) Take $f \in H^{1}\left(\mathbb{R}^{d}\right)$. Assume that f has compact support. Take $g \in \mathscr{C}_{c}^{\infty}, \int g=1$, $g_{\varepsilon}(x):=\frac{1}{\varepsilon^{d}} g\left(\frac{x}{\varepsilon}\right)$. Then $\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right) \ni g_{\varepsilon} * f \xrightarrow{\varepsilon \rightarrow 0} f$ in $L^{2}\left(\mathbb{R}^{d}\right)$.
Moreover,

$$
\partial_{x_{i}}\left(g_{\varepsilon} * f\right)=g_{\varepsilon} * \underbrace{\left(\partial_{x_{i}} f\right)}_{L^{2}} \xrightarrow{\varepsilon \rightarrow 0} \partial_{x_{i}} f
$$

in $L^{2}\left(\mathbb{R}^{d}\right)$.
2) If $f \in H^{1}\left(\mathbb{R}^{d}\right)$, take $h \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. Then $f h \in H^{1}\left(\mathbb{R}^{d}\right)$ and

$$
\partial_{x_{i}}(f h)=\underbrace{\left(\partial_{x_{i}} f\right)}_{\in L^{2}} h+f \underbrace{\left(\partial_{x_{i}} h\right)}_{\mathscr{C}_{c}^{\infty}},
$$

i.e. for all $\varphi \in \mathscr{C}_{c}^{\infty}$

$$
\int f h\left(\partial_{x_{i}} \varphi\right)=\int\left(\left(\partial_{x_{i}} f\right) h+f\left(\partial_{x_{i}} h\right)\right) \varphi .
$$

This is left as an exercise. Thus $f h$ and $\partial_{x_{i}}(f h)$ have compact support and we can approximate $f h$ by $\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ functions in $H^{1}\left(\mathbb{R}^{d}\right)$. Finally, we can choose a sequence $\left(h_{n}\right)_{n} \subset \mathscr{C}_{c}^{\infty}$ such that

$$
f h_{n} \xrightarrow{n \rightarrow \infty} f \text { in } H^{1}\left(\mathbb{R}^{d}\right) .
$$

(e.g. take $h_{n}=1$ if $|x| \leqslant n, h_{n}(x)=0$ if $|x| \geqslant 2 n$ and $\left|\nabla h_{n}\right| \leqslant \frac{C}{n}$ (Exercise)).

3.2 Sobelev Inequalities

Remark 3.9. To see that Hardy's inequality is sharp we may use a so-called scaling argument. Let $u(x) \mapsto \lambda u(\ell x)$ be a dilation. Then for $\lambda=1$ for example we have

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}|\nabla u(\ell x)|^{2} \mathrm{~d} x & =\int_{\mathbb{R}^{3}} \ell^{2}|\nabla u(x)| \frac{\mathrm{d} x}{\ell^{3}}=\int_{\mathbb{R}^{3}} \frac{|\nabla u|^{2}}{\ell} \mathrm{~d} x, \\
\int \frac{|u(\ell x)|^{2}}{|x|^{2}} \mathrm{~d} x & =\int \frac{\left|u(x)^{2}\right|}{\left|\frac{x}{\ell}\right|^{2}} \frac{\mathrm{~d} x}{\ell^{3}}=\int \frac{|u(x)|^{2}}{\ell|x|^{2}} \mathrm{~d} x .
\end{aligned}
$$

Theorem 3.10 (Standard Sobolev Inequality). If $d \geqslant 3$. Then for all $u \in H^{1}\left(\mathbb{R}^{d}\right)$

$$
\int_{\mathbb{R}^{d}}|\nabla u(x)|^{2} \mathrm{~d} x \geqslant C\left(\int_{\mathbb{R}^{d}}|u(x)|^{p} \mathrm{~d} x\right)^{\frac{2}{p}}
$$

for $p=\frac{2 d}{d-2}$. Here the constant $C=C(d)$ is independent of u. In particular we have

$$
\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)} \geqslant \frac{\sqrt{3}}{2}\left(2 \pi^{2}\right)^{\frac{1}{3}}\|u\|_{L^{6}\left(\mathbb{R}^{6}\right)} \approx 2.34\|u\|_{L^{6}\left(\mathbb{R}^{3}\right)}
$$

Remark 3.11. The Sobolev inequality is invariant under the dilation

$$
u_{\ell}(x)=\ell^{\frac{d}{2}} u(\ell x)
$$

for which we have $\left\|u_{\ell}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}$ and

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left|\nabla u_{\ell}(x)\right|^{2} \mathrm{~d} x & =\int_{\mathbb{R}^{d}} \ell^{d} \ell^{2}|(\nabla u)(\ell x)|^{2} \mathrm{~d} x=\ell^{2} \int_{\mathbb{R}^{d}}|\nabla u(x)|^{2} \mathrm{~d} x \\
\left(\int_{\mathbb{R}^{d}}\left|u_{\ell}(x)\right|^{p} \mathrm{~d} x\right)^{\frac{2}{p}} & =\left(\int_{\mathbb{R}^{d}} \ell^{\frac{p d}{2}}|u(\ell x)|^{p} \mathrm{~d} x\right)^{\frac{2}{p}}\left(=\ell^{\frac{p d}{2}-d} \int_{\mathbb{R}^{d}}|u(x)|^{p} \mathrm{~d} x\right)^{\frac{2}{p}}= \\
& =\ell^{\left(\frac{p d}{2}-d\right) \frac{2}{p}}\left(\int_{\mathbb{R}^{d}}|u(x)|^{p} \mathrm{~d} x\right)^{\frac{2}{p}}
\end{aligned}
$$

If we want

$$
\int_{\mathbb{R}^{d}}\left|\nabla u_{\ell}\right|^{2} \geqslant C\left(\int_{\mathbb{R}^{d}}\left|u_{\ell}\right|^{p}\right)^{\frac{2}{p}} \Longleftrightarrow \ell^{2} \int_{\mathbb{R}^{d}}|\nabla u|^{2} \geqslant C \ell^{d-\frac{2 d}{p}}\left(\int_{\mathbb{R}^{d}}|u|^{p}\right)^{\frac{2}{p}}
$$

This holds for all $\ell>0$ with a universal constant C iff

$$
2=d-\frac{2 d}{p} \Longleftrightarrow p=\frac{2 d}{d-2}
$$

Lemma 3.12. Let $c_{s}:=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)$, where $\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} \mathrm{~d} t$. Then, on \mathbb{R}^{d}

$$
\frac{\widehat{c_{s}}}{|\cdot|^{s}}(k)=\frac{c_{d-s}}{|k|^{d-s}} .
$$

for all $0<s<d$. As neither the left nor the right-hand side are integrable this is taken to mean that for all $f \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\frac{\widehat{c_{s}} * f}{|x|^{s}}=\frac{c_{d-s}}{|k|^{d-s}} \hat{f}(k) .
$$

Proof. Making the substitution $t=\pi \lambda|x|^{2}$ we find that

$$
\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} \mathrm{~d} t=\int_{0}^{\infty} e^{-\pi \lambda|x|^{2}}\left(\pi \lambda|x|^{2}\right)^{s-1} \pi|x|^{2} \mathrm{~d} \lambda .
$$

Therefore

$$
\Gamma\left(\frac{s}{2}\right)=\pi^{\frac{s}{2}}|x|^{s} \int_{0}^{\infty} e^{-\pi \lambda|x|^{2}} \lambda^{\frac{s}{2}-1} \mathrm{~d} \lambda
$$

Thus we have for all $x \in \mathbb{R}^{d} \backslash\{0\}$

$$
\frac{c_{s}}{|x|^{s}}=\int_{0}^{\infty} e^{-\pi \lambda|x|^{2}} \lambda^{\frac{s}{2}-1} \mathrm{~d} \lambda
$$

As we know the Fourier transform of the Gaussian

$$
\widehat{e^{-\pi \lambda|\cdot|^{2}}}(k)=\frac{e^{-\pi \frac{|k|^{2}}{\lambda}}}{\lambda^{\frac{d}{2}}} .
$$

we find

$$
\begin{aligned}
\frac{\widehat{c_{s}}}{|\cdot|^{s}} & =\int_{0}^{\infty} \widehat{e^{-\pi \lambda|\cdot|^{2}}} \lambda^{\frac{s}{2}-1} \mathrm{~d} \lambda=\int_{0}^{\infty} \frac{e^{-\pi \frac{|k|^{2}}{\lambda}}}{\lambda^{\frac{d}{2}}} \lambda^{\frac{s}{2}-1} \mathrm{~d} \lambda \xlongequal{\lambda \mapsto \lambda^{-1}} \int_{0}^{\infty} e^{-\pi \lambda|k|^{2}} \lambda^{\frac{d}{2}} \lambda^{1-\frac{s}{2}} \frac{\mathrm{~d} \lambda}{\lambda^{2}}= \\
& =\int_{0}^{\infty} e^{-\pi \lambda|k|^{2}} \lambda^{\frac{d-s}{2}-1} \mathrm{~d} \lambda=\frac{c_{d-s}}{|k|^{d-s}}
\end{aligned}
$$

Proof of Theorem 3.10. Define $\hat{g}(k)=|2 \pi k| \hat{u}(k)$, then

$$
\|\nabla u\|_{L^{2}}=\left(\int_{\mathbb{R}^{d}}|2 \pi k|^{2}|\hat{u}(k)|^{2} \mathrm{~d} k\right)^{\frac{1}{2}}=\left(\int_{\mathbb{R}^{d}}|\hat{g}(k)|^{2} \mathrm{~d} k\right)^{\frac{1}{2}}=\left(\int_{\mathbb{R}^{d}}|g(x)|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}=\|g\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

On the other hand

$$
\hat{u}(k)=\frac{1}{|2 \pi k|} \hat{g}(k)=\frac{1}{2 \pi c_{1}} \frac{c_{1}}{|k|} \hat{g}(k)=\frac{1}{2 \pi c_{1}} \frac{\widehat{c_{d-1}}}{|x|^{d-1}} * g(k)
$$

by the above lemma. Therefore,

$$
u(x)=\frac{c_{d-1}}{2 \pi c_{1}}\left(\frac{1}{|x|^{d-1}} * g\right)(x)=\frac{c_{d-1}}{2 \pi c_{1}} \int_{\mathbb{R}^{d}} \frac{1}{|x-y|^{d-1}} g(y) \mathrm{d} y .
$$

Thus we want to prove that

$$
\|g\|_{L^{2}\left(\mathbb{R}^{d}\right)} \geqslant C\left\|\frac{1}{|x|^{d-1}} * g\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} .
$$

Recall that by the Hardy-Littlewood-Sobolev inequality Theorem 1.30

$$
\left|\int_{\mathbb{R}^{d}} f(x)\left(\frac{1}{|\cdot|^{d-1}} * g\right)(x) \mathrm{d} x\right|=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{|f(x) g(y)|}{\left.|x-y|\right|^{d-1}} \mathrm{~d} x \mathrm{~d} y \leqslant C\|f \mid\|_{L^{q}}\|g\|_{L^{2}}
$$

where $\frac{1}{q}+\frac{1}{2}+\frac{d-1}{d}=2$, i.e. $q=\frac{2 d}{d+2}$. Now using that

$$
\|h\|_{L^{q^{\prime}}}=\sup _{f \in L^{q}\left(\mathbb{R}^{d}\right) \backslash\{0\}} \frac{\left|\int f(x) h(x) \mathrm{d} x\right|}{\|f\|_{L^{q}}} .
$$

we get

$$
\left\|\frac{1}{|\cdot \cdot|^{d-1}} * g\right\|_{L^{q^{\prime}}\left(\mathbb{R}^{d}\right)}=\sup _{f \in L^{q}\left(\mathbb{R}^{d}\right) \backslash\{0\}} \frac{\left|\int f(x)\left(\frac{1}{\left.|\cdot|\right|^{-1}} * g\right)(x) \mathrm{d} x\right|}{\|f\|_{L^{q}}} \leqslant C\|g\|_{L^{2}}
$$

where $\frac{1}{q^{\prime}}+\frac{d+2}{2 d}=1$, i.e. $q^{\prime}=\frac{2 d}{d-2}$.

Remark 3.13. The proof of the sharp constant is more complicated. It requires socalled "rearrangement inequalities" i.e. for u^{*} radial

$$
\|\nabla u\|_{L^{2}} \geqslant\left\|\nabla u^{*}\right\|_{L^{2}}, \quad\|u\|_{L^{p}}=\left\|u^{*}\right\|_{L^{p}}
$$

Example 3.14 (Using Sobolev's Inequality to prove the Stability of the Hydrogen Atom). We can prove the stability of the hydrogen atom

$$
\int_{\mathbb{R}^{3}}|\nabla u|^{2}-\int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|} \mathrm{d} x \geqslant-C
$$

for all $u \in H^{1}\left(\mathbb{R}^{3}\right)$, with $\|u\|_{L^{2}}=1$. We know that

$$
\int_{\mathbb{R}^{3}}|\nabla u|^{2} \geqslant \frac{3}{4}\left(2 \pi^{2}\right)^{\frac{2}{3}}\|u\|_{L^{6}}^{2}
$$

and

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|} & =\int_{|x| \leqslant R} \frac{|u(x)|^{2}}{|x|} \mathrm{d} x+\int_{|x| \geqslant R} \frac{|u(x)|^{2}}{|x|} \mathrm{d} x \leqslant \\
& \leqslant\left(\int_{|x| \leqslant R}|u(x)|^{6}\right)^{\frac{1}{3}}\left(\int_{|x| \leqslant R} \frac{1}{|x|^{\frac{3}{2}}}\right)^{\frac{2}{3}}+\int_{|x| \geqslant R} \frac{|u(x)|^{2}}{R} \mathrm{~d} x \leqslant\|u\|_{L^{6}}^{2} 4\left(\frac{\pi}{3}\right)^{\frac{2}{3}} R+\frac{1}{R}
\end{aligned}
$$

Theorem 3.15 (Sobolev Inequality in Lower Dimensions).
$d=1$: For all $2 \leqslant p \leqslant \infty$ we have

$$
\|u\|_{L^{p}(\mathbb{R})} \leqslant C\|u\|_{H^{1}(\mathbb{R})} .
$$

Moreover, $H^{1}(\mathbb{R}) \subset \mathscr{C}(\mathbb{R})$, with the embedding $\iota: H^{1}(\mathbb{R}) \rightarrow \mathscr{C}(\mathbb{R})$ being continuous, and $\|u\|_{L^{\infty}}^{2} \leqslant\left\|u^{\prime}\right\|_{L^{2}}\|u\|_{L^{2}}$ for all $u \in H^{1}(\mathbb{R})$.
$d=2:$ For all $2 \leqslant p<\infty$

$$
\|u\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|u\|_{H^{1}\left(\mathbb{R}^{2}\right)} .
$$

$d=1$: Take $u \in \mathscr{C}_{c}^{\infty}(\mathbb{R})$. Then

$$
u(x)=\int_{-\infty}^{x} u^{\prime}(t) \mathrm{d} t=-\int_{x}^{\infty} u^{\prime}(t) \mathrm{d} t
$$

Thus for all $x \in \mathbb{R}$

$$
|u(x)| \leqslant \frac{1}{2} \int_{-\infty}^{\infty}\left|u^{\prime}(t)\right| \mathrm{d} t
$$

and therefore

$$
|u(x)|^{2}=\left|u(x)^{2}\right| \leqslant \frac{1}{2} \int_{-\infty}^{\infty}\left|\frac{d}{d t}\left(u(t)^{2}\right)\right| \mathrm{d} t=\int_{-\infty}^{\infty}\left|u^{\prime}(t)\|u(t) \mid \mathrm{d} t \leqslant\| u^{\prime}\left\|_{L^{2}}\right\| u \|_{L^{2}}\right.
$$

Thus

$$
\|u\|_{L^{\infty}}^{2} \leqslant\left\|u^{\prime}\right\|_{L^{2}}\|u\|_{L^{2}} \leqslant\|u\|_{H^{1}}^{2} .
$$

Moreover, $\|u\|_{L^{2}} \leqslant\|u\|_{H^{1}}$. By interpolation we therefore have for all $2 \leqslant p \leqslant \infty$

$$
\|u\|_{L^{p}} \leqslant \max \left\{\|u\|_{L^{2}},\|u\|_{L^{\infty}}\right\} \leqslant\|u\|_{H^{1}(\mathbb{R})} .
$$

Now for $u \in H^{1}(\mathbb{R})$, then we can find a sequence $\left(u_{n}\right)_{n} \subset \mathscr{C}_{c}^{\infty}$ such that $u_{n} \xrightarrow{n \rightarrow \infty} u$ in $H^{1}(\mathbb{R})$. Moreover

$$
\left\|u_{n}-u_{m}\right\|_{L^{\infty}(\mathbb{R})} \leqslant\left\|u_{n}-u_{m}\right\|_{H^{1}(\mathbb{R})} \xrightarrow{n, m \rightarrow \infty} 0 .
$$

Thus $\left(u_{n}\right)_{n}$ is a Cauchy sequence in L^{∞}, i.e $u_{n} \rightarrow v \in L^{\infty}$. However, using the implied weak convergence it follows that $u=v$.

We also have for any compact set $\Omega \subset \mathbb{R},\left(u_{n}\right)_{n}$ is a Cauchy sequence in $\mathscr{C}(\Omega)$ with the supremum-norm for any compact Ω. Thus $u_{n} \rightarrow \varphi$ in $\mathscr{C}(\Omega)$. Thus $\left.u\right|_{\Omega}=\varphi \in \mathscr{C}(\Omega)$. Since Ω was arbitrary it follows that $u \in \mathscr{C}(\mathbb{R})$.
$d=2$: We take $u \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{2}\right)$. We first prove that

$$
\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leqslant\|\nabla u\|_{L^{1}\left(\mathbb{R}^{2}\right)} .
$$

Indeed

$$
\begin{aligned}
& |u(x, y)| \leqslant \frac{1}{2} \int_{-\infty}^{\infty}\left|\partial_{x} u(z, y)\right| \mathrm{d} z \\
& |u(x, y)| \leqslant \frac{1}{2} \int_{-\infty}^{\infty}\left|\partial_{y} u\left(x, z^{\prime}\right)\right| \mathrm{d} z^{\prime}
\end{aligned}
$$

Therefore,

$$
|u(x, y)|^{2} \leqslant \frac{1}{4} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\partial_{x} u(z, y)\right|\left|\partial_{y}\left(x, z^{\prime}\right)\right| \mathrm{d} z \mathrm{~d} z^{\prime}
$$

Taking the x, y integrals we now get

$$
\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2} \leqslant \frac{1}{4} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}}\left|\partial_{x} u(z, y) \| \partial_{y}\left(x, z^{\prime}\right)\right| \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} z^{\prime} \leqslant \frac{1}{4}\left(\int_{\mathbb{R}^{2}}|\nabla u(x, y)| \mathrm{d} x \mathrm{~d} y\right)^{2}
$$

and thus

$$
\|u\|_{L^{2}} \leqslant\|\nabla u\|_{L^{1}} .
$$

Using $\|u\|_{L^{2}} \leqslant\|\nabla u\|_{L^{1}}$ with u replaced by $u^{n}, n \in \mathbb{N}$ we get

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}|u(\xi)|^{2 n} \mathrm{~d} \xi & \leqslant\left(\int_{\mathbb{R}^{2}}\left|\nabla\left(u(\xi)^{n}\right)\right| \mathrm{d} \xi\right)^{2}=\left(\int_{\mathbb{R}^{2}} n|\nabla u(\xi)| n\left|u(\xi)^{n-1}\right| \mathrm{d} \xi\right)^{2} \leqslant \\
& \leqslant n^{2}\left(\int|\nabla u|^{2}\right)\left(\int|u|^{2(n-1)}\right) \leqslant n^{2}(n-1)^{2}\left(\int|\nabla u|^{2}\right)^{2}\left(\int u^{2(n-2)}\right) \leqslant \\
& \leqslant(n!)^{2}\|u\|_{H^{1}}^{2 n} .
\end{aligned}
$$

Thus $\|u\|_{L^{2 n}}\left(\mathbb{R}^{2}\right) \leqslant \sqrt[n]{n!}\|u\|_{H^{1}(\mathbb{R})}$ for all $n \in \mathbb{N}$.
For any $2 \leqslant p<\infty$, we can find $n \in \mathbb{N}$ such that $2 n \leqslant p \leqslant 2(n+1)$ thus

$$
\|u\|_{L^{p}} \leqslant \max \left\{\|u\|_{L^{2 n}},\|u\|_{L^{2(n+1)}}\right\} \leqslant \sqrt[n+1]{(n+1)!}\|u\|_{H^{1}\left(\mathbb{R}^{2}\right)}
$$

i.e. $\|u\|_{L^{p}} \leqslant C_{p}\|u\|_{H^{1}\left(\mathbb{R}^{2}\right)}$. Here we cannot take $p=\infty$ because $C_{p} \xrightarrow{p \rightarrow \infty} \infty$.

For $u \in H^{1}\left(\mathbb{R}^{2}\right)$ we approximate it by a sequence of \mathscr{C}_{c}^{∞} functions.

Remark 3.16 (Riesz-Thorin Inequality for L^{p} spaces). For $p<q<r$ we have

$$
\|u\|_{L^{q}} \leqslant\|u\|_{L^{p}}^{1-\vartheta(q)}\|u\|_{L^{r}}^{\vartheta(q)}
$$

where $\vartheta(q)=\frac{r(q-p)}{q(r-p)}$ which can be proven using the Hölder inequality.

Remark 3.17. Recall that weak convergence $u_{n} \xrightarrow{n \rightarrow \infty} u$ in $H^{1}\left(\mathbb{R}^{d}\right)$ means that for all $\varphi \in H^{1}\left(\mathbb{R}^{d}\right)$

$$
\left\langle u_{n}, \varphi\right\rangle_{H^{1}} \xrightarrow{n \rightarrow \infty}\langle u, \varphi\rangle_{H^{1}}
$$

where

$$
\langle u, \varphi\rangle_{H^{1}}=\langle u, \varphi\rangle_{L^{2}}+\langle\nabla u, \nabla \varphi\rangle_{L^{2}}=\langle u, \varphi\rangle_{L^{2}}+\sum_{i=1}^{d}\left\langle\partial_{x_{i}} u, \partial_{x_{i}} \varphi\right\rangle_{L^{2}}
$$

Lemma 3.18. Weak convergence $u_{n} \xrightarrow{n \rightarrow \infty} u$ in $H^{1}\left(\mathbb{R}^{d}\right)$ is equivalent to

$$
\begin{cases}u_{n} \stackrel{n \rightarrow \infty}{ } u, & \text { in } L^{2}, \\ \partial_{x_{i}} u_{n} \xrightarrow{n \rightarrow \infty} \partial_{x_{j}} u & \text { in } L^{2} \text { for all } j=1, \ldots, d\end{cases}
$$

Proof. (\Leftarrow) Trivial as

$$
\left\langle u_{n}, \varphi\right\rangle_{L^{2}}+\left\langle\nabla u_{n}, \nabla \varphi\right\rangle_{L^{2}} \xrightarrow{n \rightarrow \infty}\langle u, \varphi\rangle_{L^{2}}+\langle\nabla u, \nabla \varphi\rangle_{L^{2}}=\langle u, \varphi\rangle_{H^{1}}
$$

(\Rightarrow) Define for all $\varphi \in L^{2}$ the functional

$$
\mathscr{L}_{\varphi}: v \longmapsto\langle\varphi, v\rangle_{L^{2}} .
$$

This functional is a linear and continuous map $L^{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$ and $H^{1}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$ because $\|\varphi\|_{L^{2}} \leqslant\|\varphi\|_{H^{1}}$.

Thus $u_{n} \rightharpoonup u$ in H^{1} implies that $\mathscr{L}_{\varphi}\left(u_{n}\right) \xrightarrow{n \rightarrow \infty} \mathscr{L}_{\varphi}(u)$, i.e. for all $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$

$$
\left\langle u_{n}, \varphi\right\rangle_{L^{2}} \xrightarrow{n \rightarrow \infty}\langle u, \varphi\rangle_{L^{2}}
$$

Analogously $u_{n} \rightharpoonup u$ in H^{1} implies that $\partial_{x_{i}} u_{n} \rightharpoonup \partial_{x_{i}} u$ in L^{2}.

Definition 3.19 (Kernel of Operators). For an operator $K: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$, we call a function $K(x, y)$ the kernel of K if for all $f \in L^{2}\left(\mathbb{R}^{d}\right)$

$$
(K f)(x)=\int_{\mathbb{R}^{d}} K(x, y) f(y) \mathrm{d} y
$$

Example 3.20. - Green's Function of the Laplacian: If $K=(-\Delta)^{-1}$ and
$d=3$ then

$$
K(x, y)=\frac{1}{4 \pi|x-y|}
$$

- Heat Kernel: Let $K=e^{t \Delta}$, i.e.

$$
\widehat{e^{t \Delta}} f(k)=e^{-t|2 \pi k|^{2}} \hat{f}(k)
$$

then

$$
K(x, y)=\frac{1}{(4 \pi t)^{\frac{d}{2}}} e^{-\frac{|x-y|^{2}}{4 t}}=G(x-y)
$$

This is the case as

$$
\widehat{G * f}(k)=\hat{G}(k) \hat{f}(k)=e^{-t|2 \pi k|^{2}} \hat{f}(k) .
$$

Lemma 3.21 (Heat Kernel). If $f \in L^{2}\left(\mathbb{R}^{d}\right)$, then for all $t>0$

$$
e^{t \Delta} f \in H^{m}\left(\mathbb{R}^{d}\right)
$$

for all $m \geqslant 1$. Moreover, if $f_{n} \rightharpoonup f$ weakly in $L^{2}\left(\mathbb{R}^{d}\right)$, then

$$
e^{t \Delta} f_{n} \xrightarrow{n \rightarrow \infty} e^{t \Delta} f
$$

point-wise and for any bounded set $\Omega \subset \mathbb{R}^{d}$

$$
\mathbf{1}_{\Omega} e^{t \Delta} f_{n} \xrightarrow{n \rightarrow \infty} \mathbf{1}_{\Omega} e^{t \Delta} f
$$

strongly in $L^{2}\left(\mathbb{R}^{d}\right)$.

Proof. 1) If $f \in L^{2}$ then

$$
\widehat{e^{t \Delta}} f(k)=e^{-t|2 \pi k|^{2}} \hat{f}(k)
$$

and thus for all $m \geqslant 1$

$$
\left(1+|k|^{2}\right)^{\frac{m}{2}} \widehat{e^{t \Delta}} f(k)=\left(1+|k|^{2}\right)^{\frac{m}{2}} e^{-t|2 \pi k|^{2}} \hat{f}(k) \in L^{2}\left(\mathbb{R}^{d}\right)
$$

because $\hat{f} \in L^{2}$ and $\left(1+|k|^{2}\right)^{\frac{m}{2}} e^{-t|2 \pi k|^{2}}$ is bounded. Thus $e^{t \Delta} f \in H^{m}\left(\mathbb{R}^{d}\right)$.
2)

$$
\left(e^{t \Delta} f\right)(x)=\frac{1}{(4 \pi t)^{\frac{d}{2}}} \int e^{-\frac{|x-y|^{2}}{4 t}} f(y) \mathrm{d} y
$$

For all $x \in \mathbb{R}^{d}$ we have

$$
\left(e^{t \Delta} f_{n}\right)(x)=\frac{1}{(4 \pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{4 t}} f_{n}(y) \mathrm{d} y \xrightarrow{n \rightarrow \infty} \frac{1}{(4 \pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{4 t}} f(y) \mathrm{d} y=\left(e^{t \Delta} f\right)(x)
$$

because $f_{n} \rightharpoonup f$ weakly in L^{2} and $e^{-\frac{|x-y|^{2}}{4 t}} \in L^{2}\left(\mathbb{R}^{d}\right)$.
Moreover if $x \in \Omega$, for $\Omega \subset \mathbb{R}^{d}$ bounded, then

$$
\begin{aligned}
\left|e^{t \Delta} f_{n}(x)\right| & =\frac{1}{(4 \pi t)^{\frac{d}{2}}}\left|\int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{4 t}} f_{n}(y) \mathrm{d} y\right| \leqslant \frac{1}{(4 \pi t)^{\frac{d}{2}}}\left(\int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{2 t}} \mathrm{~d} y\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{d}}\left|f_{n}(y)\right|^{2} \mathrm{~d} y\right)^{\frac{1}{2}} \leqslant \\
& \leqslant \frac{1}{(4 \pi t)^{\frac{d}{2}}}\left(\int_{\mathbb{R}^{d}} e^{-\frac{|y|^{2}}{2 t}} \mathrm{~d} y\right)^{\frac{1}{2}} C \leqslant C_{t}
\end{aligned}
$$

as $f_{n} \rightharpoonup f$ and thus $\left\|f_{n}\right\|_{L^{2}}$ is bounded. Therefore for any bounded set $\mathbf{1}_{\Omega}$ the function

$$
\left|e^{t \Delta} f_{n}(x)\right| \leqslant C_{t} \mathbf{1}_{\Omega}
$$

is an integrable majorant independent of n. Thus as we have point-wise convergence
by dominated convergence it follows that

$$
\mathbf{1}_{\Omega} e^{t \Delta} f_{n} \xrightarrow{n \rightarrow \infty} \mathbf{1}_{\Omega} e^{t \Delta} f
$$

strongly in $L^{2}\left(\mathbb{R}^{d}\right)$.
q.e.d.

Theorem 3.22 (Sobolev Embedding of $H^{1}\left(\mathbb{R}^{d}\right)$). If $u_{n} \xrightarrow{n \rightarrow \infty} u$ weakly in $H^{1}\left(\mathbb{R}^{d}\right)$, then for all $\Omega \subset \mathbb{R}^{d}$ bounded, $\mathbf{1}_{\Omega} u_{n} \xrightarrow{n \rightarrow \infty} \mathbf{1}_{\Omega} u$ strongly in $L^{p}\left(\mathbb{R}^{d}\right)$ for

$$
\begin{cases}2 \leqslant p<\frac{2 d}{d-2}, & \text { if } d \geqslant 3 \\ 2 \leqslant p<\infty, & \text { if } d=2 \\ 2 \leqslant p \leqslant \infty & \text { if } d=1\end{cases}
$$

This means that the embedding $\mathbf{1}_{\Omega} L^{1}\left(\mathbb{R}^{d}\right) \subset \mathbf{1}_{\Omega} L^{p}\left(\mathbb{R}^{d}\right)$ is compact

Proof. First we prove that $\mathbf{1}_{\Omega} u_{n} \rightarrow \mathbf{1}_{\Omega} u$ strongly in $L^{2}\left(\mathbb{R}^{d}\right)$ using the heat kernel:

$$
\mathbf{1}_{\Omega} u_{n}-\mathbf{1}_{\Omega} u=\mathbf{1}_{\Omega}\left(u_{n}-e^{t \Delta} u_{n}\right)+\mathbf{1}_{\Omega}\left(e^{t \Delta} u_{n}-e^{t \Delta} u\right)+\mathbf{1}_{\Omega}\left(e^{t \Delta} u-u\right)
$$

and thus

$$
\left\|\mathbf{1}_{\Omega} u_{n}-\mathbf{1}_{\Omega} u\right\|_{L^{2}} \leqslant\left\|\mathbf{1}_{\Omega}\left(u_{n}-e^{t \Delta} u_{n}\right)\right\|_{L^{2}}+\left\|\mathbf{1}_{\Omega}\left(e^{t \Delta} u_{n}-e^{t \Delta} u\right)\right\|_{L^{2}}+\left\|\mathbf{1}_{\Omega}\left(e^{t \Delta} u-u\right)\right\|_{L^{2}}
$$

Note that

$$
\left\|\mathbf{1}_{\Omega}\left(e^{t \Delta} u-u\right)\right\|_{L^{2}}^{2} \leqslant\left\|e^{t \Delta} u-u\right\|_{L^{2}}^{2}=\left\|\widehat{e^{t \Delta} u}-\hat{u}\right\|_{L^{2}}^{2}=\int_{\mathbb{R}^{d}}\left|1-e^{-t|2 \pi k|^{2}}\right||\hat{u}(k)|^{2} \mathrm{~d} k
$$

and

$$
0 \leqslant 1-e^{-t|2 \pi k|^{2}} \leqslant \min \left\{t|2 \pi k|^{2}, 1\right\} \quad \therefore\left|1-e^{-t|2 \pi k|^{2}}\right| \leqslant \min \left\{t|2 \pi k|^{2}, 1\right\} \leqslant t|2 \pi k|^{2}
$$

Thus

$$
\left\|\mathbf{1}_{\Omega}\left(e^{t \Delta} u-u\right)\right\|_{L^{2}}^{2} \leqslant \int_{\mathbb{R}^{d}} t|2 \pi k|^{2}|\hat{u}(k)|^{2} \mathrm{~d} k=t\|\nabla u\|_{L^{2}}^{2} \leqslant t\|u\|_{H^{1}}^{2}
$$

Therefore we have

$$
\left\|\mathbf{1}_{\Omega}\left(u_{n}-u\right)\right\|_{L^{2}} \leqslant C \sqrt{t}+\left\|\mathbf{1}_{\Omega}\left(e^{t \Delta} u_{n}-e^{t \Delta} u\right)\right\|_{L^{2}}
$$

By strong convergence the last term converges to 0 as $n \rightarrow \infty$ thus

$$
\limsup _{n \rightarrow \infty}\left\|\mathbf{1}_{\Omega}\left(u_{n}-u\right)\right\|_{L^{2}} \leqslant C \sqrt{t} \xrightarrow{t \downarrow 0} 0
$$

which proves the strong convergence $\mathbf{1}_{\Omega} u_{n} \xrightarrow{n \rightarrow \infty} \mathbf{1}_{\Omega} u$.
The strong convergence in L^{p} with L^{p} with $2 \leqslant p<\frac{2 d}{d-2}=: p^{*}$ follows by interpolation. Note that we proved in Exercise 2.4. (i) that if $f_{n} \rightarrow f$ strongly in $L^{2}\left(\mathbb{R}^{d}\right)$ and $\left\|f_{n}\right\|_{L^{p^{*}}}$ is bounded for $p^{*}>2$ (which follows by the Sobolev inequality, weak convergence and the uniform boundedness principle) then $f_{n} \rightarrow f$ strongly in $L^{p}\left(\mathbb{R}^{d}\right)$ for all $2 \leqslant p<p^{*}$.
In the case $d=1$, we have to prove that

$$
\left\|\mathbf{1}_{\Omega} u_{n}-\mathbf{1}_{\Omega} u\right\|_{L^{\infty}} \xrightarrow{n \rightarrow \infty} 0 .
$$

First we prove that $u_{n}(x) \rightarrow u(x)$ pointwise. Since $\mathbf{1}_{\Omega} u_{n} \rightarrow \mathbf{1}_{\Omega} u$ in L^{2} we can find a subsequence such that this holds. In fact, this is already true for the original sequence because

$$
u(y)-u(x)=\int_{x}^{y} u^{\prime}(t) \mathrm{d} t
$$

Therefore, if $u_{n}\left(x_{0}\right) \rightarrow u\left(x_{0}\right)$ then

$$
u_{n}(y)-u_{n}\left(x_{0}\right)=\int_{x_{0}}^{y} u_{n}^{\prime}(t) \mathrm{d} t \xrightarrow{n \rightarrow \infty} \int_{x_{0}}^{y} u^{\prime}(t) \mathrm{d} t=u(y)-u\left(x_{0}\right)
$$

as $\mathbf{1}_{\left[x_{0}, y\right]} \in L^{2}\left(\mathbb{R}^{d}\right)$. Thus for all $u_{n}(y) \rightarrow u(y)$ for all $y \in \mathbb{R}$.
From $u(y)-u(x)=\int_{x}^{y} u^{\prime}(t) \mathrm{d} t$ we have

$$
|u(y)-u(x)| \leqslant\left|\int_{x}^{y} \mathrm{~d} t\right|^{\frac{1}{2}}\left|\int_{x}^{y}\right| u^{\prime}(t)|\mathrm{d} t|^{\frac{1}{2}} \leqslant \sqrt{|x-y|}\|u\|_{H^{1}}
$$

and

$$
\left|u_{n}(y)-u_{n}(x)\right| \leqslant \sqrt{|x-y|}\left\|u_{n}\right\|_{H^{1}} \leqslant C \sqrt{|x-y|}
$$

Now we conclude that $\sup _{x \in \Omega}\left|u_{n}(x)-u(x)\right| \rightarrow 0$ for any bounded set $\Omega \subset \mathbb{R}$. Assume that $\sup _{x \in \Omega}\left|u_{n}(x)-u(x)\right| \nrightarrow 0$. Then there exists a $\delta>0$ and a subsequence $\left(u_{n_{k}}\right)_{k}$ and a sequence $\left(x_{k}\right)_{k} \subset \Omega$ such that

$$
\left|u_{n_{k}}\left(x_{k}\right)-u\left(x_{k}\right)\right| \geqslant \delta>0
$$

for all $k \in \mathbb{N}$. Because $\left(x_{k}\right)_{k} \subset \Omega$ is bounded, we can descend to a subsequence, and assume that $x_{k} \xrightarrow{k \rightarrow \infty} x_{\infty}$. Thus

$$
\begin{aligned}
\left|u_{n_{k}}\left(x_{k}\right)-u\left(x_{k}\right)\right| & \leqslant\left|u_{n_{k}}\left(x_{k}\right)-u_{k}\left(x_{\infty}\right)\right|+\left|u_{n_{k}}\left(x_{\infty}\right)-u\left(x_{\infty}\right)\right|+\left|u\left(x_{\infty}\right)-u\left(x_{k}\right)\right| \leqslant \\
& \leqslant C \sqrt{\left|x_{k}-x_{\infty}\right|}+\left|u_{n}\left(x_{\infty}\right)-u\left(x_{\infty}\right)\right|
\end{aligned}
$$

and therefore

$$
\lim _{n \rightarrow \infty}\left|u_{n}\left(x_{n}\right)-u\left(x_{n}\right)\right| \leqslant 0
$$

which is a contradiction. Thus we conclude that

$$
\sup _{x \in \Omega}\left|u_{n}(x)-u(x)\right| \xrightarrow{n \rightarrow \infty} 0 .
$$

q.e.d.

Theorem 3.23 (Sobolev Inequality and Embeddings for $H^{s}\left(\mathbb{R}^{d}\right)$). For any $s \geqslant 1$
1)

$$
\|f\|_{H^{s}} \geqslant C\|f\|_{L^{p}}
$$

for all

$$
\begin{cases}2 \leqslant p \leqslant \frac{2 d}{d-2 s}, & \text { if } 2 s<d \\ 2 \leqslant p<\infty, & \text { if } 2 s=d \\ 2 \leqslant p \leqslant \infty, & \text { if } 2 s>d\end{cases}
$$

In particular, if $2 s>d$, then $H^{s}\left(\mathbb{R}^{d}\right) \subset \mathscr{C}\left(\mathbb{R}^{d}\right)$, e.g. $H^{2}\left(\mathbb{R}^{3}\right) \subset \mathscr{C}\left(\mathbb{R}^{3}\right)$.
2) If $f_{n} \rightharpoonup f$ weakly in $H^{s}\left(\mathbb{R}^{d}\right)$, then for all $\Omega \subset \mathbb{R}^{d}$ bounded

$$
\mathbf{1}_{\Omega} f_{n} \xrightarrow{n \rightarrow \infty} \mathbf{1}_{\Omega} f
$$

strongly in $L^{p}\left(\mathbb{R}^{d}\right)$ for all

$$
\begin{cases}2 \leqslant p<\frac{2 d}{d-2 s}, & \text { if } 2 s<d \\ 2 \leqslant p<\infty, & \text { if } 2 s=d \\ 2 \leqslant p<\infty, & \text { if } 2 s>d\end{cases}
$$

Sketch of Proof. 1) The fact that

$$
\|f\|_{H^{s}} \geqslant C\|f\|_{L^{p}}
$$

if $p=\frac{2 d}{d-2 s}$ if $2 s<d$ follows from the Hardy-Littlewood-Sobolev inequality (Exericse).

Now let us focus on $2 s>d$. We prove that

$$
\|f\|_{\infty} \leqslant C\|f\|_{H^{s}\left(\mathbb{R}^{d}\right)} .
$$

We can write

$$
\begin{aligned}
|f(x)| & \leqslant\left|\int e^{2 \pi i k \cdot x} \hat{f}(k) \mathrm{d} k\right| \leqslant\left(\int_{\mathbb{R}^{d}}|\hat{f}(k)|^{2}\left(1+|k|^{2}\right)^{s} \mathrm{~d} k\right)^{\frac{1}{2}} \underbrace{\left(\int_{\mathbb{R}^{d}} \frac{\left|e^{2 \pi i k \cdot x}\right|}{\left(1+|k|^{2}\right)^{s}} \mathrm{~d} k\right)^{\frac{1}{2}}}_{\text {if } 2 s>d} \leqslant \\
& \leqslant C\|f\|_{H^{s} .}
\end{aligned}
$$

Next, we prove that $H^{s}\left(\mathbb{R}^{d}\right) \subset \mathscr{C}\left(\mathbb{R}^{d}\right)$. We have

$$
\begin{aligned}
\left|f(x)-f\left(x^{\prime}\right)\right| & =\left|\int_{\mathbb{R}^{d}}\left(e^{2 \pi i k \cdot x}-e^{2 \pi i k \cdot x^{\prime}}\right) \hat{f}(k) \mathrm{d} k\right| \leqslant \\
& \leqslant\left(\int_{\mathbb{R}^{d}}|\hat{f}(k)|^{2}\left(1+|k|^{2}\right)^{s} \mathrm{~d} k\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{d}} \frac{\left|e^{2 \pi i k \cdot x}-e^{2 \pi i k \cdot x^{\prime}}\right|}{\left(1+|k|^{2}\right)^{s}} \mathrm{~d} k\right)^{\frac{1}{2}} .
\end{aligned}
$$

Note that

$$
\left|e^{2 \pi i k \cdot x}-e^{2 \pi i k \cdot x^{\prime}}\right| \leqslant \min \left\{|2 \pi k|\left|x-x^{\prime}\right|, 1\right\}
$$

and therefore

$$
\left|e^{2 \pi i k \cdot x}-e^{2 \pi i k \cdot x^{\prime}}\right|^{2} \leqslant C_{\varepsilon}|k|^{\varepsilon}\left|x-x^{\prime}\right|^{\varepsilon}
$$

for all $\varepsilon>0$ small enough. Thus

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leqslant C_{\varepsilon}\|f\|_{H^{s}}\left(\int_{\mathbb{R}^{d}} \frac{|k|^{\varepsilon}\left|x-x^{\prime}\right|^{\varepsilon}}{\left(1+|k|^{2}\right)^{s}} \mathrm{~d} k\right)^{\frac{1}{2}} \leqslant C_{\varepsilon}\left|x-x^{\prime}\right|^{\frac{\varepsilon}{2}}
$$

if $\varepsilon-2 s<-d$ which is equivalent to $\varepsilon<2 s-d$, i.e. for all such ε

$$
\sup _{x \neq x^{\prime}} \frac{\left|f(x)-f\left(x^{\prime}\right)\right|}{\left|x-x^{\prime}\right|^{\frac{\varepsilon}{2}}}<C_{\varepsilon}
$$

2) For the proof of the embedding $\mathbf{1}_{\Omega} f_{n} \rightarrow \mathbf{1}_{\Omega} f$ in L^{p}, the only difficult part is the L^{∞} convergence when $2 s>d$.

For the pointwise convergence $f_{n} \rightharpoonup f$ in $H^{s}\left(\mathbb{R}^{d}\right)$, then $f_{n}(x) \rightarrow f(x)$ for all $x \in \mathbb{R}^{d}$.

$$
\begin{aligned}
\left|f_{n}(x)-f(x)\right| & =\left|\int_{\mathbb{R}^{d}} e^{2 \pi i k \cdot x}\left(\hat{f}_{n}(k)-\hat{f}(k)\right) \mathrm{d} k\right| \leqslant \\
& \leqslant\left|\int_{k \mid \leqslant K} e^{2 \pi i k \cdot x}\left(\hat{f}_{n}-\hat{f}\right) \mathrm{d} k\right|+\int_{|k| \geqslant K}\left|\hat{f}_{n}(k)-\hat{f}(k)\right| \mathrm{d} k \leqslant \\
& \leqslant\left|\int_{k \mid \leqslant K} \cdots\right|+\left(\int\left|\hat{f}_{n}(k)-\hat{f}(k)\right|^{2}\left(1+|k|^{2}\right)^{s} \mathrm{~d} k\right)^{\frac{1}{2}}\left(\int_{|k| \geqslant K} \frac{1}{\left(1+|k|^{2}\right)^{s}} \mathrm{~d} k\right)^{\frac{1}{2}} \leqslant \\
& \leqslant\left|\int_{\mid \leqslant K} \cdots\right|+\frac{c_{\varepsilon}}{K^{\varepsilon}}
\end{aligned}
$$

for some $\varepsilon>0$. Letting $n \rightarrow \infty$ the first term vanishes as $\hat{f}_{n} \rightharpoonup \hat{f}$ weakly and letting $K \rightarrow \infty$ the second one does as well.
q.e.d.

Remark 3.24. 1) The kernel $K=(-\Delta)^{-1}, K(x, y)=\frac{1}{4 \pi|x-y|}$ in \mathbb{R}^{3} appears in
physical applications as the potential $x \mapsto \frac{1}{|x|}$, for example in Coulomb's law

$$
\frac{Z_{1} Z_{2}}{|x-y|}
$$

and Newton's law of Gravitation

$$
\frac{m_{1} m_{2}}{|x-y|}
$$

Recall that $\Delta\left(\frac{1}{|x|}\right)=0$ for any $x \neq 0$ in \mathbb{R}^{3}. More generally, if $\Delta u=0$ on $\Omega \subset \mathbb{R}^{d}$ then we call u a harmonic function on Ω.

Theorem 3.25 (Harmonic Functions). 1) If $\Delta u=0$ on $\Omega \subset \mathbb{R}^{d}$ open, then

$$
\frac{1}{\left|B_{r}(x)\right|} \int_{B(x, r)} u(y) \mathrm{d} y=u(x)=\frac{1}{|S(x, r)|} \int_{|x-y|=r} u(y) \mathrm{d} y .
$$

for for all balls and spheres such that $B(x, r), S(x, r) \subset \Omega$ This called the meanvalue theorem for harmonic functions.
2) $O n \mathbb{R}^{3}$, if f is a radially symmetric function, i.e. $f(R x)=f(x)$ for all $R \in S O(3)$, then

$$
\int_{\mathbb{R}^{3}} \frac{f(y)}{|x-y|} \mathrm{d} y=\int_{\mathbb{R}^{3}} \frac{f(y)}{\max \{|x|,|y|\}} \mathrm{d} y .
$$

This result is called Newton's Theorem.

Remark 3.26. 1) If u is harmonic on Ω, then $u \in \mathscr{C}^{\infty}(\Omega)$, which we shall not prove.
However, this means that it makes sense to talk about the values of u at a point.
2) Newton's theorem can be used with $f(x)$ replaced by a measure $\mathrm{d} \mu(x)$ as well.
3) It also implies that if supp $f \subset B_{r}(0)$ and $|x|>r$ then

$$
\int_{\mathbb{R}^{3}} \frac{f(y)}{|x-y|} \mathrm{d} y=\frac{1}{|x|} \int_{\mathbb{R}^{3}} f(y) \mathrm{d} y .
$$

Proof. 1) By Stokes's theorem we have

$$
0=\int_{B(x, r)} \Delta u(y) \mathrm{d} y=\int_{S(x, r)} \nabla u(y) \cdot \boldsymbol{n} \mathrm{d} y
$$

where \boldsymbol{n} is the unit normal vector to the point on $y \in S(x, r)$. By a change of variables we have

$$
\begin{aligned}
\int_{S(x, r)} \nabla u(y) \cdot \boldsymbol{n} \mathrm{d} y & =r^{d-1} \int_{S(0,1)} \nabla u(x+r \omega) \cdot \omega \mathrm{d} \omega \quad \therefore \\
\therefore \quad 0 & =\int_{S(0,1)} \frac{d}{d r}(u(x+r \omega)) \mathrm{d} \omega=\frac{d}{d r} \int_{S(0,1)} u(x+r \omega) \mathrm{d} \omega .
\end{aligned}
$$

This means that the value of the integral is independent of r, and thus

$$
\begin{aligned}
\int_{S(x, r)} u(y) \mathrm{d} y & =r^{d-1} \int_{S(0,1)} u(x+r \omega) \mathrm{d} \omega=r^{d-1} \int_{S(0,1)} u(x) \mathrm{d} \omega=u(x) r^{d-1} S(0,1)= \\
& =u(x) S(x, r)
\end{aligned}
$$

which proves the second equality. The first follows immediately from integration over r.
2) Exercise!
q.e.d.

Theorem 3.27. If $f \in H^{1}\left(\mathbb{R}^{d}\right)$, then $|f| \in H^{1}\left(\mathbb{R}^{d}\right)$ and

$$
\nabla|f|(x)= \begin{cases}\frac{\Re f \nabla \Re f+\Im f \nabla \Im f}{|f|}, & \text { if } f(x) \neq 0 \\ 0, & \text { if } f(x)=0\end{cases}
$$

Consequently we have $|\nabla f(x)| \geqslant|\nabla| f|(x)|$ for a.e. x.

Proof. Take $f_{n} \in \mathscr{C}_{c}^{\infty}$ such that $f_{n} \rightarrow f$ in $H^{1}\left(\mathbb{R}^{d}\right)$ and where we assume that f_{n} and ∇f_{n} converge also pointwise a.e. x. Write $f_{n}=u_{n}+i v_{n}$, and define $G_{n}(x)=\sqrt{\frac{1}{n^{2}}+\left|u_{n}(x)\right|^{2}+\left|v_{n}(x)\right|^{2}}-$ $\frac{1}{n}$. Note that

$$
G_{n}(x) \xrightarrow{n \rightarrow \infty} \sqrt{|u(x)|^{2}+|v(x)|^{2}}
$$

pointwise. Thus

$$
\nabla G_{n}(x)=\frac{2 u_{n} \nabla u_{n}+2 v_{n} \nabla v_{n}}{2 \sqrt{\frac{1}{n^{2}}+\left|u_{n}(x)\right|^{2}+\left|v_{n}(x)\right|^{2}}} \xrightarrow{n \rightarrow \infty} \frac{u(x) \nabla u(x)+v(x) \nabla v(x)}{|f(x)|}
$$

pointwise if $f(x) \neq 0$.
????Other case????
We actually have L^{2} convergence by dominated convergence as

$$
\begin{aligned}
\left|G_{n}(x)\right| & =\sqrt{\frac{1}{n^{2}}+\left|u_{n}(x)\right|^{2}+\left|v_{n}(x)\right|^{2}}-\frac{1}{n}=\frac{\left|u_{n}(x)\right|^{2}+\left|v_{n}(x)\right|^{2}}{\sqrt{\frac{1}{n^{2}}+\left|u_{n}(x)\right|^{2}+\left|v_{n}(x)\right|^{2}}+\frac{1}{n}} \leqslant \\
& \leqslant \sqrt{\left|u_{n}(x)\right|^{2}+\left|v_{n}(x)\right|^{2}}=\left|f_{n}(x)\right| \leqslant F(x) \in L^{2}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

The existence of F follows from Remark 1.10. Thus $G_{n} \rightarrow|f|$ strongly in $L^{2}\left(\mathbb{R}^{d}\right)$. Moreover, by the Cauchy-Schwarz inequality we have

$$
\begin{aligned}
\left|\nabla G_{n}(x)\right| & =\left|\frac{u_{n} \nabla u_{n}+v_{n} \nabla v_{n}}{\sqrt{\frac{1}{n^{2}}+\left|u_{n}\right|^{2}+\left|v_{n}\right|^{2}}}\right| \leqslant \frac{\sqrt{\left|u_{n}\right|^{2}+\left|v_{n}\right|^{2}} \sqrt{\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2}}}{\sqrt{\frac{1}{n^{2}}+\left|u_{n}\right|^{2}+\left|v_{n}\right|^{2}}} \leqslant \\
& \leqslant \sqrt{\left|\nabla u_{n}\right|^{2}+\left|\nabla v_{n}\right|^{2}}=\left|\nabla f_{n}\right| \leqslant \widetilde{F}(x) \in L^{2}\left(\mathbb{R}^{d}\right) .
\end{aligned}
$$

Thus we have

$$
\nabla G_{n}(x) \xrightarrow{n \rightarrow \infty} \nabla G= \begin{cases}\frac{\mathfrak{R} f \nabla \Re f+\Im f \nabla \Im f}{|f|}, & \text { if } f(x) \neq 0 \\ 0, & \text { if } f(x)=0 .\end{cases}
$$

strongly in $L^{2}\left(\mathbb{R}^{d}\right)$. Thus $|f| \in H^{1}\left(\mathbb{R}^{d}\right)$ with $G(x)=\nabla|f|(x)$. q.e.d.

Proposition 3.28. If $\left(f_{n}\right)_{n} \subset H^{1}\left(\mathbb{R}^{d}\right)$ s.t. $f_{n} \rightarrow f$ in $L^{2}\left(\mathbb{R}^{d}\right)$ and $\nabla f_{n} \rightarrow F$ in $L^{2}\left(\mathbb{R}^{d}\right)$, then $f \in H^{1}\left(\mathbb{R}^{d}\right)$, and $\nabla f=F$.

3.3 Application of Sobolev Embedding

Recall the Hydrogen energy functional

$$
\mathcal{E}(u)=\int_{\mathbb{R}^{3}}|\nabla u|^{2}-\int_{\mathbb{R}^{3}} \frac{|u(x)|}{|x|} \mathrm{d} x
$$

for $u \in H^{1}\left(\mathbb{R}^{3}\right),\|u\|_{L^{2}}=1$.

Theorem 3.29. There exists a minimiser for $\mathcal{E}(u)$ in $H^{1}\left(\mathbb{R}^{3}\right)$.

Proof. Recall that

$$
\mathcal{E}(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+\underbrace{\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}-\int_{\mathbb{R}^{3}} \frac{|u(x)|}{|x|} \mathrm{d} x}_{\geqslant-C} \geqslant \frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}-C
$$

Thus $\mathcal{E}(u)$ is bounded from below, and if $\left(u_{n}\right)_{n}$ is a minimising sequence

$$
\mathcal{E}\left(u_{n}\right) \xrightarrow{n \rightarrow \infty} E:=\inf \left\{\mathcal{E}(u) \mid u \in H^{1}\left(\mathbb{R}^{3}\right),\|u\|_{L^{2}}=1\right\}
$$

then $\left(u_{n}\right)_{n}$ is bounded in $H^{1}\left(\mathbb{R}^{3}\right)$. By the Sobolev embedding theorem we can pass to a subsequence and assume that $u_{n} \rightharpoonup u_{0}$ in $H^{1}\left(\mathbb{R}^{3}\right)$ and $\mathbf{1}_{\Omega} u_{n} \rightarrow \mathbf{1}_{\Omega} u_{0}$ strongly in $L^{p}\left(\mathbb{R}^{3}\right)$ for all $2 \leqslant p<6$.
In particular we have $u_{n} \rightharpoonup u_{0}$ and $\nabla u_{n} \rightharpoonup \nabla u_{0}$, hence

$$
\liminf _{n \rightarrow \infty} \int\left|\nabla u_{n}\right|^{2} \geqslant \int\left|\nabla u_{0}\right|^{2}
$$

Using strong convergence on bounded sets we have

$$
\int \frac{\left|u_{n}(x)\right|^{2}}{|x|} \mathrm{d} x \xrightarrow{n \rightarrow \infty} \int \frac{|u(x)|^{2}}{|x|} \mathrm{d} x
$$

which is left as an exercise. Thus we have

$$
E=\liminf _{n \rightarrow \infty} \mathcal{E}\left(u_{n}\right) \geqslant \mathcal{E}\left(u_{0}\right) .
$$

To say that u_{0} is a minimiser for \mathcal{E} it is therefore enough to show that $\left\|u_{0}\right\|_{L^{2}}=1$. Here we
know that $u_{n} \rightharpoonup u_{0}$ in L^{2}, thus

$$
1=\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{2}} \geqslant\left\|u_{0}\right\|_{L^{2}}
$$

Assume that $\left\|u_{0}\right\|_{L^{2}}=\lambda<1$. Then we have $E \geqslant 0$ for
$(\lambda=0) \quad u_{0}=0$ and thus $E=\mathcal{E}\left(u_{0}\right)=0$
$(\lambda>0)$ Then

$$
E=\mathcal{E}\left(u_{0}\right)=\lambda^{2} \mathcal{E}\left(\frac{u_{0}}{\lambda}\right) \geqslant \lambda^{2} E \quad \therefore \quad E \geqslant 0
$$

for $0<\lambda^{2}<1$. However, we have $E<0$ which is a contradiction, i.e. $\left\|u_{0}\right\|_{L^{2}}=1$ and u_{0} is a minimiser for \mathcal{E}.

To see this, take $\varphi \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right),\|\varphi\|_{L^{2}}=1, \varphi_{\ell}(x)=\ell^{\frac{3}{2}} \varphi(\ell x),\left\|\varphi_{\ell}\right\|_{L^{2}}=1$ we have

$$
\mathcal{E}\left(\varphi_{\ell}\right)=\int\left(\left|\nabla \varphi_{\ell}(x)\right|^{2}-\frac{\left|\varphi_{\ell}(x)\right|^{2}}{|x|}\right) \mathrm{d} x=\ell^{2} \underbrace{\int|\nabla \varphi|^{2}}_{>0}-\ell \underbrace{\int \frac{|\varphi(x)|^{2}}{|x|} \mathrm{d} x}_{>0}<0
$$

if $\ell>0$ is small enough.

> q.e.d.

Remark 3.30. In general, if V is a "nice enough" potential such that

$$
E=\inf \left\{\int|\nabla u|^{2}+\int V(x)|u(x)|^{2} \mathrm{~d} x \mid u \in H^{1}\left(\mathbb{R}^{d}\right),\|u\|_{L^{2}}=1\right\}
$$

satisfies $-\infty<E<0$, then a minimiser of \mathcal{E} exists.

Chapter 4

Spectral Theorem

Let \mathscr{H} be a separable Hilbert space.

Definition 4.1. - A linear operator $A: \mathscr{H} \rightarrow \mathscr{H}$ is called bounded if for a bounded set $B \subset \mathscr{H}, A(B)$ is bounded.

- A linear operator $A: \mathscr{H} \rightarrow \mathscr{H}$ is called compact $\overline{A(B)}$ is compact in \mathscr{H}, if B is bounded in \mathscr{H}.

Example 4.2. The inclusion $H^{1}\left(\mathbb{R}^{d}\right) \subset L^{2}\left(\mathbb{R}^{d}\right)$ is trivial a bounded map.
For $\mathbf{1}_{\Omega} H^{1}\left(\mathbb{R}^{d}\right) \subset 1_{\Omega} L^{2}\left(\mathbb{R}^{d}\right)$ for a bounded Ω, then the inclusion map $H^{1} \rightarrow L^{2}$ is even compact.

Lemma 4.3. Let A be a linear operator $\mathscr{H} \rightarrow \mathscr{H}$. Then

1) A is bounded iff $x_{n} \xrightarrow{n \rightarrow \infty} x$ strongly implies that $A x_{n} \xrightarrow{n \rightarrow \infty} A x$ strongly.
2) A is compact iff $x_{n} \xrightarrow{n \rightarrow \infty} x$ weakly implies that $A x_{n} \xrightarrow{n \rightarrow \infty} A x$ strongly.

Proof. 1) Exercise.
2) Assume that A is a compact operator. If $x \rightharpoonup x$ weakly, then we know that $\left(x_{n}\right)_{n}$ is bounded in \mathscr{H} by the uniform boundedness principle. By definition $\overline{\left(A x_{n}\right)_{n}}$ is compact
in \mathscr{H}. This means that there is a subsequence $\left(A x_{n_{k}}\right)_{k}$ converging to some y in \mathscr{H}. We need to show that $y=A x$. In fact, as A is bounded it follows that $A x_{n} \xrightarrow{n \rightarrow \infty} A x^{1}$. hence it follows that $y=A x$ and therefore $A x_{n_{k}} \xrightarrow{k \rightarrow \infty} A x$ strongly.

The convergence holds actually for the whole sequence. To see this suppose that $A x_{n} \nrightarrow A x$ for the whole sequence. Then there exists a subsequence $\left(A x_{n_{\ell}}\right)_{\ell}$ such that for some $\varepsilon>0$ for all $\ell \in \mathbb{N}$

$$
\left\|A x_{n_{\ell}}-A x\right\| \geqslant \varepsilon>0
$$

But by the same argument we may find a subsequence of this subsequence that converges to $A x$ which is a contradiction.

The converse is trivial.
q.e.d.

Definition 4.4. Let A be a bounded operator then

$$
\|A\|=\sup _{\|x\| \leqslant 1}\|A x\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}<\infty .
$$

and there exists a bounded operator $A^{*}: \mathscr{H} \rightarrow \mathscr{H}$ such that for all $x, y \in \mathscr{H}$

$$
\langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle .
$$

A^{*} is called the adjoint of A. We call A self-adjoint $A=A^{*}$

Remark 4.5. The existence of A^{*} follows from the Riesz representation theorem. Since

$$
y \longmapsto\langle x, A y\rangle
$$

is a bounded linear functional there exists a unique z such that $\langle z, y\rangle=\langle x, A y\rangle$ for all $y \in \mathscr{H}$. We define $A^{*} x=: z$.
From $\langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle$ for all $x, y \in \mathscr{H}$ we see that A^{*} is linear. Moreover, A^{*} is

[^1]bounded, in fact
$$
\left\|A^{*}\right\|=\sup _{\|x\| \leqslant 1}\left\|A^{*} x\right\|=\sup _{\|x\| \leqslant 1} \sup _{\|y\| \leqslant 1}\left|\left\langle x, A^{*} y\right\rangle\right|=\sup _{\|y\| \leqslant 1} \sup _{\|x\| \leqslant 1}|\langle x, A y\rangle|=\sup _{\|y\| \leqslant 1}\|A y\|=\|A\| .
$$

Proposition 4.6. Let $A: \mathscr{H} \rightarrow \mathscr{H}$ be a bounded operator. Then

$$
A=A^{*} \Longleftrightarrow \forall x \in \mathscr{H}:\langle x, A x\rangle \in \mathbb{R}
$$

Theorem 4.7 (Spectral Theorem for Compact Operator). Let $A: \mathscr{H} \rightarrow \mathscr{H}$ be a compact operator.

1) If $A=A^{*}$, then there exist a sequence of eigenvalues $\left(\lambda_{n}\right)_{n} \subset \mathbb{R}$ and an orthonormal basis of eigenvectors $\left(u_{n}\right)_{n} \subset \mathscr{H}$ of A such that

$$
A=\sum_{n=1}^{\infty} \lambda_{n}\left|u_{n}\right\rangle\left\langle u_{n}\right|
$$

where $\left|\lambda_{n}\right| \geqslant\left|\lambda_{n+1}\right|$ and $\lambda_{n} \xrightarrow{n \rightarrow \infty} 0$.
2) In general, if A is not self-adjoint, then there exists a sequence of eigenvalues $\left(\lambda_{n}\right)_{n} \subset \mathbb{C}$ and orthonormal bases $\left(u_{n}\right)_{n},\left(v_{n}\right)_{n} \subset \mathscr{H}$ such that

$$
A=\sum_{n=1}^{\infty} \lambda_{n}\left|u_{n}\right\rangle\left\langle v_{n}\right|
$$

In both cases the convergence of the series of operators is taken w.r.t. the operator norm.

Remark 4.8. If $A=A^{*}$ is compact, then all non-zero eigenvalues are of finite multiplicity.
If \mathscr{H} is finite dimensional, then A can be regarded as a (finite) matrix. For matrices
we know that if $A^{*}=A$, then there exists a unitary matrix U such that

$$
U^{*} A U=\text { diagonal matrix }=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & & \\
\vdots & & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right)
$$

with $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ being the eigenvalues of A with "eigenfunctions"

$$
U^{*}\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right) .
$$

Proof. 1) Assume that $A=A^{*}$.
Step 1 Consider

$$
\sup _{\|u\|=1}|\langle u, A u\rangle| .
$$

We claim that there exists an optimiser for this supremum. To prove this take an optimising sequence $\left(\varphi_{n}\right)_{n}$ such that $\left\|\varphi_{n}\right\|=1$ and

$$
\left|\left\langle\varphi_{n}, A \varphi_{n}\right\rangle\right| \xrightarrow{n \rightarrow \infty} \sup _{\|u\|=1}|\langle u, A u\rangle|
$$

Because $\left\|\varphi_{n}\right\|=1$ this sequence is bounded, we can descend to a subsequence and assume that $\varphi_{n} \xrightarrow{n \rightarrow \infty} u_{1}$ weakly. Because A is compact, it follows that $A \varphi_{n} \rightarrow A u_{1}$ strongly. Thus

$$
\left\langle\varphi_{n}, A \varphi_{n}\right\rangle \xrightarrow{n \rightarrow \infty}\left\langle u_{1}, A u_{1}\right\rangle .
$$

This holds because, if $x_{n} \rightharpoonup x$ weakly and $y_{n} \rightarrow y$ strongly, then

$$
\left\langle x_{n}, y_{n}\right\rangle \longrightarrow\langle x, y\rangle .
$$

The proof of this is left as an exercise.

Thus $\left|\left\langle u_{1}, A u_{1}\right\rangle\right|=\sup _{\|u\|=1}|\langle u, A u\rangle|$. We only know that $\left\|u_{1}\right\| \leqslant \liminf _{n \rightarrow \infty}\left\|\varphi_{n}\right\|=$ 1. To prove that $\left\|u_{1}\right\|=1$ assume that $\left\|u_{1}\right\|<1$. This would imply that $\langle u, A u\rangle=0$ for all $u \in \mathscr{H}$. Hence $A u=0$ for all $u \in \mathscr{H}$, i.e. $A \equiv q^{2}$. In particular this would mean that any $u \in \mathscr{H}$ is an optimiser.

This means that there exists a $u_{1} \in \mathscr{H}$ such that $\left\|u_{1}\right\|=1$ and

$$
\left|\left\langle u_{1}, A u_{1}\right\rangle\right|=\sup _{\|u\|=1}|\langle u, A u\rangle|
$$

Since $\left\langle u_{1}, A u_{1}\right\rangle$ may either be positive or negative we have the two cases

$$
\left\{\begin{array}{l}
\left\langle u_{1}, A u_{1}\right\rangle=\inf _{\|u\|=1}\langle u, A u\rangle \\
\left\langle u_{1}, A u_{1}\right\rangle=\sup _{\|u\|=1}\langle u, A u\rangle
\end{array}\right.
$$

Thus u_{1} is an eigenvector of A, i.e.

$$
A u_{1}=\lambda u_{1}, \quad \lambda_{1}=\left\langle u_{1}, A u_{1}\right\rangle
$$

which is left as an exercise.

Step 2 Define $V_{1}=\overline{\operatorname{span}\left\{u_{1}\right\}}=\left\{\lambda u_{1} \mid \lambda \in \mathbb{C}\right\}$ and write $\mathscr{H}=V_{1} \oplus V_{1}^{\perp}$.
Because $A u_{1}=\lambda u_{1}$ it follows that $A: V_{1} \rightarrow V_{1}$ and $A: V_{1}^{\perp} \rightarrow V_{1}^{\perp}$. In fact, if $\varphi \in V_{1}^{\perp}$ then $\left\langle\varphi, u_{1}\right\rangle=0$ and thus

$$
\left\langle A \varphi, u_{1}\right\rangle=\left\langle\varphi, A u_{1}\right\rangle=\lambda_{1}\left\langle\varphi, u_{1}\right\rangle=0 \quad \therefore \quad A \varphi \in V_{1}^{\perp} .
$$

Now consider the restricted operator $A: V_{1}^{\perp} \rightarrow V_{1}^{\perp}$. Using the previous step with \mathscr{H} replaced by V_{1}^{\perp}, we can find a $u_{2} \in V_{1}^{\perp}$ such that $\left\|u_{2}\right\|=1$ and

$$
\left|\left\langle u_{2}, A u_{2}\right\rangle\right|=\sup _{\substack{u \in V_{1}^{\perp} \\\|u\|=1}}|\langle u, A u\rangle|
$$

and $A u_{2}=\lambda_{2} u_{2}, \lambda_{2}=\left\langle u_{2}, A u_{2}\right\rangle$. Further we also have $\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right|$.
Next, define $V_{2}=\overline{\operatorname{span}\left\{u_{1}, u_{2}\right\}}$ and write $\mathscr{H}=V_{2} \oplus V_{2}^{\perp}$. Then we have $A: V_{2}^{\perp} \rightarrow$

[^2]V_{2}^{\perp} and we can repeat the argument to find a $u_{3} \in V_{2}^{\perp},\left\|u_{3}\right\|=1$ such that
$$
\left|\left\langle u_{3}, A u_{3}\right\rangle\right|=\sup _{\substack{u \in V^{\perp} \\\|u\|=1}}|\langle u, A u\rangle|
$$
and $A u_{3}=\lambda_{3} u_{3}, \lambda_{3}=\left\langle u_{3}, A u_{3}\right\rangle$ and $\left|\lambda_{2}\right| \geqslant\left|\lambda_{3}\right|$.
Then by induction there exists a sequence $\left(u_{n}\right)_{n} \subset \mathscr{H}$ of orthonormal vectors and $\left(\lambda_{n}\right)_{n} \subset \mathbb{R}$ such that for all $n \in \mathbb{N}, A u_{n}=\lambda_{n} u_{n}$ and
$$
\left|\lambda_{n}\right|=\left|\left\langle u_{n}, A u_{n}\right\rangle\right|=\sup _{\substack{u \perp u_{1}, \ldots, u_{n-1} \\\|u\|=1}}|\langle u, A u\rangle| .
$$

The sequence $\lambda_{n} \xrightarrow{n \rightarrow \infty} 0$ and as $\left(u_{n}\right)_{n}$ is an orthonormal family and thus converges weakly to 0 . Therefore $A u_{n} \rightarrow 0$ strongly and therefore

$$
\lim _{n \rightarrow \infty}\left|\lambda_{n}\right|=\lim _{n \rightarrow \infty}\left|\left\langle u_{n}, A u_{n}\right\rangle\right|=0
$$

Step 3 We have to prove that $\left(u_{n}\right)_{n}$ can be extended to be a basis of \mathscr{H}. Suppose that $\varphi \perp\left(u_{n}\right)_{n \in \mathbb{N}}$, then $\varphi \in \operatorname{ker} A$, i.e. $A \varphi=0$. Indeed, for all $n \in \mathbb{N}$

$$
|\langle\varphi, A \varphi\rangle| \leqslant\left|\left\langle u_{n}, A u_{n}\right\rangle\right|=\left|\lambda_{n}\right| \xrightarrow{n \rightarrow \infty} 0 .
$$

This means that $\langle\varphi, A \varphi\rangle=0$ for all $\varphi \in V_{\infty}^{\perp}$, where $V_{\infty}:=\overline{\operatorname{span}\left(u_{n}\right)_{n}}$. Thus $A \varphi=0$ hence $V_{\infty}^{\perp} \subset \operatorname{ker} A$.

Taking an orthonormal basis $\left(v_{n}\right)_{n}$ of V_{∞}^{\perp}, then we can write

$$
A=\sum_{n=1}^{\infty} \lambda_{n}\left|u_{n}\right\rangle\left\langle u_{n}\right|+\sum_{k} 0\left|v_{k}\right\rangle\left\langle v_{k}\right| .
$$

and $\left(u_{n}\right)_{n} \cup\left(v_{n}\right)_{n}$ form an orthonormal basis for \mathscr{H}.
2) Now consider a general compact operator A. Then $A A^{*}$ is compact and self-adjoint. Thus

$$
A A^{*}=\sum_{n=1}^{\infty} \lambda_{n}^{2}\left|u_{n}\right\rangle\left\langle u_{n}\right|
$$

where $\lambda_{n} \rightarrow 0$ and $\left(u_{n}\right)_{n}$ is an orthonormal basis.

Here $\lambda_{n}^{2} \geqslant 0$ as

$$
\lambda_{n}^{2}=\left\langle u_{n}, A A^{*} u_{n}\right\rangle=\left\langle A^{*} u_{n}, A^{*} u_{n}\right\rangle=\left\|A^{*} u_{n}\right\| \geqslant 0
$$

Defining $v_{n}=\frac{A^{*} v_{n}}{\lambda_{n}}$ for $\lambda_{n} \neq 0$, then $\left\|v_{n}\right\|=1$ and

$$
A v_{n}=A \frac{A^{*} v_{n}}{\lambda_{n}}=\frac{\lambda_{n}^{2} u_{n}}{\lambda_{n}}=\lambda_{n} u_{n}
$$

Moreover,

$$
\left\langle v_{n}, v_{m}\right\rangle=\frac{\left\langle A^{*} u_{n}, A^{*} u_{m}\right\rangle}{\lambda_{n} \lambda_{m}}=\frac{\left\langle u_{n}, A A^{*} u_{m}\right\rangle}{\lambda_{n} \lambda_{m}}=\frac{\left\langle u_{n}, \lambda_{m}^{2} u_{m}\right\rangle}{\lambda_{n} \lambda_{m}}=\delta_{n m}
$$

Thus $\left(v_{n}\right)_{n}$ is an orthonormal family and therefore $A v_{n} \lambda_{n} u_{n}$ for all $n \in \mathbb{N}$ where $\left(v_{n}\right)_{n}$ is an orthonormal family and $\left(u_{n}\right)_{n}$ is an orthonormal basis. Thus

$$
A=\sum \lambda_{n}\left|u_{n}\right\rangle\left\langle v_{n}\right|
$$

Here we can compliment $\left(v_{n}\right)_{n}$ by the basis of ker A and thus make $\left(v_{n}\right)_{n}$ an orthonormal basis.
q.e.d.

Remark 4.9 (Motivation). We want to be able to define a "functional calculus", i.e. we are interested in how to define for $A, f(A)$ where f is some function. E.g. if $f(t)=t^{2}$, then $f(A)=A^{2}$. But for $f(t)=\sqrt{t}$ how do we define \sqrt{A} ?

Definition 4.10 (Spectrum). Let A be a bounded operator in a Hilbert space \mathscr{H}, then

- Resolvent of A

$$
\rho(A):=\left\{\lambda \in \mathbb{C} \mid(\lambda-A)^{-1} \text { is a bounded operator on } \mathscr{H}\right\}
$$

- Spectrum of A

$$
\sigma(A):=\mathbb{C} \backslash \rho(A)
$$

Example 4.11. If λ is an eigenvalue of A, then $A u=\lambda u$ for some $u \in \mathscr{H}$. Thus

$$
\operatorname{ker}(\lambda-A) \supset \overline{\operatorname{span}\{u\}} \neq\{0\}
$$

Thus $(\lambda-A)^{-1}$ does not exist and $\lambda \in \sigma(A)$.

Theorem 4.12 (Basic Properties of the Spectrum). Let A be a self-adjoint bounded operator, then

- $\sigma(A)$ is a compact subset of \mathbb{R}
- $\sup |\sigma(A)|=\max |\sigma(A)|=\|A\|$. Here $\sup |\sigma(A)|=\sup _{\lambda \in \sigma(A)}|\lambda|$.

Proof. 1) Take $\lambda \in \mathbb{C}$ and $|\lambda|>\|A\|$. Then $\lambda \in \rho(A)$. To see this note that $\lambda-A=$ $\lambda\left(1-\lambda^{-1} A\right)$, thus it is enough to prove that $1-\lambda^{-1} A$ has a bounded inverse. This follows by the first lemma below. This means that $\sigma(A) \subset \overline{B(0,\|A\|)}$ in \mathbb{C}.
2) We now prove that $\sigma(A) \subset \mathbb{R}$. Take $\lambda=a+i b, a, b \in \mathbb{R}$ and $b \neq 0$. We want to show that $\lambda \in \rho(A)$. Consider $\lambda-A=(a-A)+i b$. Then for all $u \in \mathscr{H}$

$$
\|(\lambda-A) u\|^{2}=\|(a-A) u\|^{2}+|b|^{2}\|u\|^{2}+2 \underbrace{\Re\langle(a-A) u, i b u\rangle}_{=0} \geqslant|b|^{2}\|u\|^{2} .
$$

This implies that $\lambda-A$ is invertible with bounded inverse by the second lemma below.
3) We prove that $\sigma(A)$ is closed which is equivalent to showing that $\rho(A)$ is open.

Take $\lambda \in \rho(A)$, then we show that $\lambda^{\prime} \in \rho(A)$ for $\left|\lambda-\lambda^{\prime}\right|$ sufficiently small.

$$
\lambda^{\prime}-A=\lambda^{\prime}-\lambda+\lambda-A=\left(\left(\lambda^{\prime}-\lambda\right)(\lambda-A)^{-1}+1\right)(\lambda-A) .
$$

Since $(\lambda-A)^{-1}$ is bounded $\left(\lambda^{\prime}-A\right)^{-1}$ is as well if $\left(\left(\lambda^{\prime}-\lambda\right)(\lambda-A)^{-1}+1\right)^{-1}$ is. This is the case as $B=\left(\lambda^{\prime}-\lambda\right)(\lambda-A)^{-1}$ satisfies

$$
\|B\|=\left|\lambda^{\prime}-\lambda\right|\left\|(\lambda-A)^{-1}\right\|<1
$$

if $\left|\lambda^{\prime}-\lambda\right|$ is small enough. Thus $(1+B)^{-1}$ is bounded.
4) Now we prove that $\|A\|=\max |\sigma(A)|$. We know already that $\sup |\sigma(A)| \leqslant\|A\|$. The other inequality is non-trivial. By third lemma below we have to prove that

$$
\sup |\sigma(A)| \geqslant \sup _{\|u\|=1}|\langle u, A u\rangle| .
$$

Denote $E:=\sup |\sigma(A)|$. We shall prove that $E \geqslant\langle u, A u\rangle$ for all unit vectors u. By the definition of $E, E+t \in \rho(A)$ for all $t>0$. Thus $(A-E-t)^{-1}$ is bounded. Define $f(t)=\left\langle u,(A-E-t)^{-1} u\right\rangle$ for $t>0$. Then we have by the boundedness of the operators

$$
f^{\prime}(t)=\left\langle u,(A-E-t)^{-2} u\right\rangle=\left\|(A-E-t)^{-1} u\right\|^{2} \geqslant 0 .
$$

Thus we know that $f(t)$ is an increasing function. Moreover,

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{t \rightarrow \infty}\left\langle u,(A-E-t)^{-1} u\right\rangle=0
$$

This is left as an exercise. Thus $f(t) \leqslant 0$ for $t>0$, i.e. for all $t>0$

$$
\left\langle u,(A-E-t)^{-1} u\right\rangle \leqslant 0
$$

and thus replacing u by $(A-E-t) u$

$$
\langle u,(A-E-t) u\rangle \leqslant 0
$$

which implies that

$$
\langle u, A u\rangle \leqslant E+t
$$

for all unit vectors u and $t>0$. Taking the limit $t \rightarrow 0$ yields the result.
Thus $\sup |\sigma(A)| \geqslant \sup _{\|u\|=1}\langle u, A u\rangle$. By the same argument,

$$
\sup |\sigma(A)| \geqslant \sup _{\|u\|=1}(-\langle u, A u\rangle)=-\inf _{\|u\|=1}\langle u, A u\rangle
$$

hence

$$
\sup |\sigma(A)| \geqslant \sup _{\|u\|=1}|\langle u, A u\rangle|=\|A\|
$$

Lemma 4.13. If B is a bounded operator and $\|B\|<1$. Then $(1-B)^{-1}$ is a bounded operator and $\left\|(1-B)^{-1}\right\| \leqslant(1-\|B\|)^{-1}$.

Proof. Note we can define

$$
(1-B)^{-1}:=\sum_{k=0}^{\infty} B^{k}:=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} B^{k}=: \lim _{n \rightarrow \infty} A_{n}
$$

Since $\|B\| \leqslant 1$ the right-hand side is well defined as for $n<m$

$$
\left\|A_{n}-A_{m}\right\|=\left\|\sum_{k=n+1}^{m} B^{k}\right\| \leqslant \sum_{k=n+1}^{m}\left\|B^{k}\right\| \leqslant \sum_{k=n+1}^{m}\|B\|^{k} \xrightarrow{n, m \rightarrow \infty} 0 .
$$

Thus $(1-B)^{-1}:=\lim _{n \rightarrow \infty} A_{n}$ is well-defined and it is a bounded operator. Moreover,

$$
\left\|(1-B)^{-1}\right\| \leqslant \sum_{k=0}^{\infty}\|B\|^{k}=(1-\|B\|)^{-1}
$$

The fact that $(1-B)^{-1}$ is indeed the inverse follows as usual via

$$
(1-B)(1-B)^{-1}=(1-B) \sum_{k=0}^{\infty} B^{k}=1+\sum_{k=1}^{\infty} B^{k}-\sum_{k=1}^{\infty} B^{k}=0
$$

Remark 4.14. Here we used the fact that the set $B(\mathscr{H})$ of bounded operators on \mathscr{H} with the operator norm is a Banach space.

Lemma 4.15. If B is a bounded operator and $\|B u\| \geqslant b\|u\|$ and $\left\|B^{*} u\right\| \geqslant b\|u\|$ for all $u \in \mathscr{H}$ then B^{-1} is a bounded operator.

Lemma 4.16. If $A=A^{*}$ is a bounded operator, then

$$
\|A\|=\sup _{\|u\|=1}|\langle u, A u\rangle| .
$$

Theorem 4.17 (Continuous Functional Calculus for Bounded Operators). Let $A=A^{*}$ be a bounded operator. Then there exists a unique continuous linear map

$$
\mathscr{L}: \begin{aligned}
\mathscr{C}(\sigma(A)) & \longrightarrow B(\mathscr{H}) \\
f & \longmapsto f(A)
\end{aligned}
$$

such that the following properties hold

1) If f is a polynomial $f(t)=\sum_{j} a_{j} t^{j}$, then

$$
f(A)=\sum_{j} a_{j} A^{j}
$$

2) $\|f(A)\|=\|f\|_{L^{\infty}}$.

Moreover, we also have $f(A) g(A)=(f g)(A)$ for all $f, g \in \mathscr{C}(\sigma(A))$.
This means that \mathscr{L} is an isometry of C^{*}-algebra $\mathscr{C}(\sigma(A))$.

Proof. If f is a a polynomial, $f(A)$ is well-defined. We need to prove that $\|f(A)\|=\|f\|_{L^{\infty}}$ for all polynomials f. To do this, we show that $\sigma(f(A))=f(\sigma(A))$. We know that $\|f(A)\|=$ $\sup |\sigma(f(A))|$. For every $\lambda \in \mathbb{C}$ we can write

$$
f(t)-\lambda=C \prod_{j}\left(t-t_{j}\right)
$$

for $t_{j} \in \mathbb{C}$, then

$$
f(A)-\lambda=C \prod_{j}\left(A-t_{j}\right)
$$

and

$$
\begin{aligned}
\lambda \notin \sigma(f(A)) & \Longleftrightarrow(f(A)-\lambda)^{-1} \text { is bounded } \\
& \Longleftrightarrow\left(A-t_{j}\right)^{-1} \text { is bounded for all } j \\
& \Longleftrightarrow t_{j} \notin \sigma(A) \text { for all } j \\
& \Longleftrightarrow\left(t-t_{j}\right)^{-1} \text { is bounded for all } j \text { on } \sigma(A) \\
& \Longleftrightarrow(f(t)-\lambda)^{-1} \text { is bounded on } \sigma(A) \\
& \Longleftrightarrow \lambda \notin f(\sigma(A))
\end{aligned}
$$

Furthermore, we thus have

$$
\|f(A)\|=\sup \mid \sigma\left(f(A)|=\sup | f(\sigma(A)) \mid=\|f\|_{\infty}\right.
$$

By the Weierstrass theorem, we know that for any $\sigma(A) \subset \mathbb{R}$ compact, the polynomials on $\sigma(A)$ are dense in $\mathscr{C}(\sigma(A))$, i.e. for all $f \in \mathscr{C}(\sigma(A))$ there exists a sequence of polynomials $\left(f_{n}\right)_{n}$ such that $\left\|f_{n}-f\right\|_{L^{\infty}} \rightarrow 0$.
Then $\left\|f_{n}(A)-f_{m}(A)\right\|=\left\|f_{n}-f_{m}\right\|_{L^{\infty}} \rightarrow \infty$ as $n, m \rightarrow \infty$. Hence there exists a unique $f(A)=\lim _{n \rightarrow \infty} f_{n}(A)$ and $\|f(A)\|=\|f\|_{L^{\infty}}$.
Moreover $f(A) g(A)=(f g)(A)$ for all polynomials and thus the same holds for all continuous functions by the same density argument.
q.e.d.

We now want to extend the functional calculus to a larger class of function f.
Theorem 4.18 (Spectral Measure). Let $A=A^{*}$ be a bounded operator on \mathscr{H}. Then for all $u \in \mathscr{H}$ there exists a unique Borel measure μ_{u} on $\sigma(A)$ such that

$$
\langle u, f(A) u\rangle=\int_{\sigma(A)} f(x) \mathrm{d} \mu_{u}(x)
$$

for all $f \in \mathscr{C}(\sigma(A))$. Consequently $\|f(A) u\|=\|f\|_{L^{2}\left(\sigma(A), \mathrm{d} \mu_{u}\right)}$ for all $f \in \mathscr{C}(\sigma(A))$ and we can extend $f \mapsto f(A)$ for any $f \in L^{2}\left(\sigma(A), \mathrm{d} \mu_{u}\right)$.

Proof. Define the mapping

$$
\mathscr{L}: \begin{aligned}
\mathscr{C}(\sigma(A)) & \longrightarrow \mathbb{C} \\
f & \longmapsto \mathscr{L}(f)=\langle u, f(A) u\rangle
\end{aligned}
$$

Then \mathscr{L} is linear, continuous, positive, i.e. $\mathscr{L}(f) \geqslant 0$ for all $f \geqslant 0$. Here the positivity follows as $f \geqslant 0$ implies that $f=\bar{g} g$ for some $g \in \mathscr{C}(\sigma(A))$.

Then

$$
\mathscr{L}(f)=\langle u, f(A) u\rangle=\langle u, \bar{g}(A) g(A) u\rangle=\left\langle u, g(A)^{*} g(A) u\right\rangle=\|g(A) u\|^{2} \geqslant 0
$$

as the continuous functional calculus is a C^{*} algebra homomorphism. Then the result follows from the following theorem.

Theorem 4.19 (Riesz-Markov Thorem). Let Ω be a Borel set in \mathbb{R}^{d} and let \mathscr{L} : $\mathscr{C}_{c}(\Omega) \rightarrow \mathbb{C}$ be a linear and positive functional. Then there exists a unique Borel regular measure μ in Ω such that

$$
\mathscr{L}(\rho)=\int_{\Omega} f(x) \mathrm{d} \mu(x)
$$

for all $f \in \mathscr{C}_{c}(\Omega)$

Remark 4.20 (Recall). A Borel measure μ on Ω is regular if

1) $\mu(K)<\infty$ for all compact $K \subset \Omega$.
2)

$$
\mu(E)=\inf \{\mu(U \cap \Omega) \mid U \text { open, } E \subset U\}=\sup \{\mu(K \cap \Omega) \mid U \text { open, } K \subset E\}
$$

Sketch of Proof. For simplicity assume that $\Omega=\mathbb{R}^{d}$. Then the measure μ is defined as follows:

For all U open let

$$
\mu(U)=\sup \{\mathscr{L}(f) \mid f \text { continuous, } 0 \leqslant f \leqslant 1, \operatorname{supp} f \subset U\}
$$

Then if K is compact define

$$
\mu(K)=\inf \{\mathscr{L}(f) \mid f \text { continuous, } 0 \leqslant f \leqslant 1, f \equiv 1 \text { on } K\} .
$$

Then μ can be extended to a Borel regular measure on \mathbb{R}^{d}. We can prove

$$
\mathscr{L}(f)=\int f(x) \mathrm{d} \mu(x)
$$

for all continuous f by approximation.
Continuation of Proof of Theorem 4.18. By the Riesz-Markov theorem, there exists a unique regular Borel measure μ_{u} on $\sigma(A)$ such that

$$
\langle u, f(A) u\rangle=\mathscr{L}(f)=\int_{\sigma(A)} f(x) \mathrm{d} \mu_{u}(x)
$$

for all $f \in \mathscr{C}(\sigma(A))$. Moreover,

$$
\left.\|f(A) u\|^{2}=\left\langle u, f(A)^{*} f(A) u\right\rangle=\left.\langle u,| f\right|^{2}(A) u\right\rangle=\int_{\sigma(A)}|f|^{2}(x) \mathrm{d} \mu_{u}(x)=\|f\|_{L^{2}\left(\sigma(A), \mathrm{d} \mu_{u}\right)}^{2}
$$

Thus $\|f(A) u\|=\|f\|_{L^{2}\left(\sigma(A), \mathrm{d} \mu_{u}\right)}$ for all $f \in \mathscr{C}(\sigma(A))$. This allows us to extend the map $f \mapsto f(A) u$, for any $f \in L^{2}\left(\sigma(A), \mathrm{d} \mu_{u}\right)$, i.e. if $f \in L^{2}\left(\sigma(A), \mathrm{d} \mu_{u}\right)$, then take a sequence $\left(f_{n}\right)_{n}$ of continuous functions converging to f in $L^{2}\left(\sigma(A), \mathrm{d} \mu_{u}\right)$ and define

$$
f(A) u=\lim _{n \rightarrow \infty} f_{n}(A) u
$$

Remark 4.21. Here we did not define $f(A)$ but only $f(A) u$ which is simpler.

Theorem 4.22 (Spectral Theorem for Bounded Self-Adjoint Operators). Let $A=A^{*}$ be a bounded operator on \mathscr{H}. Then there exists a Borel measurable set $\Omega \subset \mathbb{R}^{d}$, and a Borel measure μ such that there exists a unitary mapping

$$
U: \begin{aligned}
\mathscr{H} & \longrightarrow L^{2}(\Omega, \mathrm{~d} \mu) \\
& A \longmapsto M_{a}
\end{aligned}
$$

i.e. $U A U^{*}=M_{a}$ with M_{a} being the multiplication operator on $L^{2}(\Omega, \mathrm{~d} \mu)$ with a function
a, i.e.

$$
\left(M_{a} f\right)(x)=a(x) f(x)
$$

for all $f \in L^{2}(\Omega, \mathrm{~d} \mu)$. Moreover, a is a bounded, real-valued function on Ω. We can take $\Omega=\sigma(A) \times \mathbb{N} \subset \mathbb{R}^{2}$ and $a(\lambda, n)=\lambda$.

Remark 4.23. An easy way to remember this theorem is to note

$$
A \longleftrightarrow M_{a}
$$

i.e. A up to a unitary transformation is equivalent to a multiplication operator.

Example 4.24. The Fourier transform

$$
f \longmapsto \hat{f}(k)=\int_{\mathbb{R}^{d}} e^{-2 \pi i k \cdot x} f(x) \mathrm{d} x
$$

defined on $L^{2}\left(\mathbb{R}^{d}\right)$ is a unitary operator by Placherl's Theorem 1.33 .

Proof.

Step 1 Recall that for all $u \in \mathscr{H}$, there exists a unique μ_{u} on $\sigma(A)$ such that

$$
\langle u, f(A) u\rangle=\int_{\sigma(A)} f(x) \mathrm{d} \mu_{u}(x)
$$

for all $f \in L^{2}\left(\sigma(A), \mathrm{d} \mu_{u}\right)$ by the theorem on the Spectral measure.
In particular, there exists a unitary mapping

$$
\begin{aligned}
\left.U_{u}^{*}: \begin{array}{rl}
L^{2}\left(\sigma(A), \mathrm{d} \mu_{u}\right) & \longrightarrow \mathscr{H}_{u} \\
f & \longmapsto f(A)
\end{array}, \begin{array}{rl}
\\
\end{array}\right)
\end{aligned}
$$

where

$$
\mathscr{H}_{u}=\left\{f(A) u \mid f \in L^{2}\left(\sigma(A), \mathrm{d} \mu_{u}\right)\right\} \subset \mathscr{H}
$$

which is a closed subspace, i.e. itself a Hilbert space, of the Hilbert space \mathscr{H}. It is left as an exercise to show that

$$
\mathscr{H}_{u}=\overline{\operatorname{span}\left\{A^{k} u \mid k \in \mathbb{N}_{0}\right\}} \subset \mathscr{H}
$$

If $\mathscr{H}_{u}=\mathscr{H}$ we are done. In this case $\Omega=\sigma(A)$ and $a(\lambda)=\lambda$ and we call u a cyclic vector.

In general, if there is no cyclic vector, then we need the lemma below.
Noting that $A: \mathscr{H}_{u} \rightarrow \mathscr{H}_{u}$ (why?) we can write

$$
A=\bigoplus_{n=1}^{\infty} A_{u_{n}}
$$

Define the unitary operator

$$
U: \bigoplus_{n \in \mathbb{N}} \mathscr{H}_{u_{n}}=\mathscr{H} \longrightarrow L^{2}(\sigma(A) \times \mathbb{N})=\bigoplus_{n \in \mathbb{N}} L^{2}\left(\sigma(A), \mathrm{d} \mu_{u_{n}}\right)
$$

via

$$
U:=\bigoplus_{n \in \mathbb{N}} U_{u_{n}}
$$

Then we see that

$$
U A U^{*}=\bigoplus_{n \in \mathbb{N}}\left(\left.U_{u_{n}} A\right|_{\mathscr{H _ { u n }}} U_{u_{n}}^{*}\right)=\bigoplus_{n} M_{a(\lambda, n)}
$$

where $a(\lambda, n)=\lambda$. This is because

$$
\begin{aligned}
\left.U_{u_{n}} A\right|_{\mathscr{H} u_{n}} U_{u_{n}}^{*}: L^{2}\left(\sigma(A), \mathrm{d} \mu_{u_{n}}\right) & \longrightarrow L^{2}\left(\sigma(A), \mathrm{d} \mu_{u_{n}}\right) \\
f & \longmapsto U_{u_{n}}(A f(A))=x f(x)
\end{aligned}
$$

q.e.d.

Lemma 4.25. For any bounded self-adjoint operator A on \mathscr{H}, there exists an at most countable orthonormal family $\left(u_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\mathscr{H}=\oplus_{n=1}^{\infty} \mathscr{H}_{u_{n}}
$$

Axiom 4.26 (Zorn's Lemma). Let P be a partially ordered set, with order \prec, i.e. it satisfies

1) $\forall a \in P: a \prec a$
2) $\forall a, b \in P: a \prec b \wedge b \prec a \Longrightarrow a=b$
3) $\forall a, b, c \in P: a \prec b \wedge b \prec c \Longrightarrow a \prec c$

Note that there may be elements that are not comparable, i.e. $a \nprec b$ and $b \nprec a$.
If for all totally ordered subsets $I \subset P$ (any pair (a, b) in I is comparable) there exists a maximal element a_{I}, i.e. $a \prec a_{I}$ for all $a \in I$. Then there exists a maximal element in P, i.e.

$$
\exists p \in P \forall a \in P: p \prec a \Longrightarrow p=a
$$

Proof. Let $P=\left\{\left(u_{n}\right)_{n} \mid\left(u_{n}\right)_{n}\right.$ is an ONF of $\left.\mathscr{H}\right\}$ and

$$
\left(u_{n}\right)_{n} \prec\left(v_{n}\right)_{n}: \Longleftrightarrow \bigoplus \mathscr{H}_{u_{n}} \subset \bigoplus \mathscr{H}_{v_{n}}
$$

Then Zorn's Lemma tells us that there exists a maximal $\left(u_{n}\right)_{n}$. We claim that $\mathscr{H}=$ $\bigoplus_{n \in \mathbb{N}} \mathscr{H}_{u_{n}}$.
Assume that $\mathscr{H} \supsetneq \bigoplus_{n \in \mathbb{N}} \mathscr{H}_{u_{n}}$. Then there exists a $u \in H, u \neq 0$ and $u \perp \mathscr{H}_{u_{n}}$ for all $n \in \mathbb{N}$. Because $A: \mathscr{H}_{u_{n}} \rightarrow \mathscr{H}_{u_{n}}$ it follows that $A:\left(\bigoplus \mathscr{H}_{u_{n}}\right)^{\perp} \rightarrow\left(\bigoplus \mathscr{H}_{u_{n}}\right)^{\perp}$. Then we can define \mathscr{H}_{u} in the usual way. Then $\left(u_{n}\right)_{n} \prec\left(u_{n}\right)_{n} \cup\{u\}$ because

$$
\bigoplus \mathscr{H}_{u_{n}} \subsetneq \bigoplus \mathscr{H}_{u_{n}} \oplus \mathscr{H}_{u}
$$

which is a contradiction to the maximality of $\left(u_{n}\right)_{n}$. q.e.d.

Corollary 4.27 (Functional Calculus). Let $A=A^{*}$ be a bounded operator on \mathscr{H}. Then
there exists a unique linear map

$$
\begin{aligned}
B(\sigma(A), \mathbb{C}) & \longrightarrow B(\mathscr{H}) \\
f & \longmapsto f(A)
\end{aligned}
$$

from the set of measurable, bounded functions $\sigma(A) \rightarrow \mathbb{C}$ to the bounded operators on \mathscr{H}, such that

1) If $f(x)=\sum t_{j} z^{j}$ then $f(A)=\sum t_{j} A^{j}$.
2) $\|f(A)\|=\|f\|_{L^{2}}$
3) $f(A) g(A)=(f g)(A)$
4) $f(A)^{*}=\bar{f}(A)$
5) $f(\sigma(A))=\sigma(f(A))$, in particular if $f \geqslant 0$ then $f(A) \geqslant 0$, i.e. $\langle u, f(A) u\rangle \geqslant 0$ for all $u \in \mathscr{H}$.
6) (Monotone Convergence) If $f_{n} \uparrow f$ pointwise, then $f_{n}(A) \rightarrow f(A)$ strongly, i.e. for all $u \in \mathscr{H}, f_{n}(A) u \rightarrow f(A) u$ strongly.

Proof. By the spectral theorem, there exists a unitary transformation $U: \mathscr{H} \rightarrow L^{2}(\Omega, \mathrm{~d} \mu)$, $U A U^{*}=M_{a}$ is a multiplication operator. Then we can define $f(A)$ by

$$
U f(A) U^{*}=M_{f(a)}
$$

i.e.

$$
\left(M_{f(a)} g\right)(x)=f(a(x)) g(x)
$$

for all $g \in L^{2}(\Omega, \mathrm{~d} \mu)$. Monotone convergence now follows from the usual monotone convergence for functions.
q.e.d.

Theorem 4.28 (Spectral Theorem for Normal Operators). Let A be a bounded normal operator on \mathscr{H}, i.e. $A A^{*}=A^{*} A$. Then there exists a unitary operator $U: \mathscr{H} \rightarrow$ $L^{2}(\Omega, \mathrm{~d} \mu)$, such that $U A U^{*}=M_{a}$ is a multiplication operator with a function a. Here a is a bounded function Ω, however we do not know if a is real-valued

Remark 4.29. The proof is more complicated, e.g. in general $f(A)^{*} \neq \bar{f}(A)$ for a normal operator.
To prove the spectral theorem for normal operators we define the two self-adjoint operators

$$
X_{1}=\frac{A+A^{*}}{2}, \quad X_{2}=i \frac{A-A^{*}}{2}
$$

which commute $X_{1} X_{2}=X_{2} X_{1}$. We can apply the spectral theorem to X_{1}, X_{2} and since they commute we can simultaneously diagonalise them. We can recover $A=$ $X_{1}-i X_{2}$

4.1 Unbounded Self-Adjoint Operators

Definition 4.30. Let $A: D(A) \rightarrow \mathscr{H}$ be a linear, unbounded operator, where $D(A) \subset$ $\mathscr{H}, \overline{D(A)} \rightarrow \mathscr{H}$.

Definition 4.31 (Extension). An operator B is called a extension of $A, A \subset B$, iff $D(A) \subset D(B)$ and $\left.B\right|_{D(A)}=A$.

Definition 4.32 (Adjoint Operator). We want to define A^{*} such that $\left\langle A^{*} x, y\right\rangle=$ $\langle x, A y\rangle$ for all $y \in D(A)$ and all $x \in D\left(A^{*}\right)$. Here

$$
\begin{aligned}
D\left(A^{*}\right) & :=\{x \in \mathscr{H} \mid \exists z \in \mathscr{H} \forall y \in D(A):\langle z, y\rangle=\langle x, y\rangle\}= \\
& =\left\{x \in \mathscr{H}\left|\sup _{y \in D(A)}\right|\langle x, A y\rangle \mid<\infty\right\}
\end{aligned}
$$

and we define $A^{*} x:=z$.

Remark 4.33. In general, it might happen that $D\left(A^{*}\right)$ is very small and $\overline{D\left(A^{*}\right)} \neq$ \mathscr{H}.

Definition 4.34 (Symmetric Operator). An operator A such that for all $x, y \in D(A)$

$$
\langle A x, y\rangle=\langle x, A y\rangle
$$

is called symmetric.

Remark 4.35. It is left as an exercise to show that A is symmetric iff $\langle x, A x\rangle \in \mathbb{R}$ for all $x \in D(A)$ which in turn is equivalent to $A \subset A^{*}$.

Definition 4.36 (Self-Adjoint Operator). An operator A is called self-adjoint iff $A=A^{*}$ (in particular $D(A)=D\left(A^{*}\right)$).

Remark 4.37. Find example of symmetric but not self-adjoint operators.

Definition 4.38. Let $A: D(A) \rightarrow \mathscr{H}$ be a (densely defined) unbounded operator. The resolvent set

$$
\rho(A):=\left\{z \in \mathbb{C} \mid(z-A)^{-1} \text { is well-defined as a bounded operator }\right\}
$$

and the spectrum is $\sigma(A):=\mathbb{C} \backslash \rho(A)$

Example 4.39 (Multiplication Operator). Let (Ω, μ) be a measure space. Let $f: \Omega \rightarrow$ \mathbb{C} be a measurable function. Define

$$
\begin{aligned}
& M_{f}: D\left(M_{f}\right) \longrightarrow L^{2}(\Omega, \mathrm{~d} \mu) \\
& u \longmapsto\left(M_{f} u\right)(x)=f(x) u(x)
\end{aligned}
$$

where $D\left(M_{f}\right)=\left\{u \in L^{2}(\Omega, \mu) \mid f u \in L^{2}(\Omega, \mu)\right\}$. Note that $D\left(M_{f}\right)$ is indeed dense in $L^{2}(\Omega, \mu)$. (Exercise!)
This operator has the following properties

1) $\left\|M_{f}\right\|=\sup _{\|u\|_{L^{2}} \leqslant 1}\left\|M_{f} u\right\|_{L^{2}}=\|f\|_{L^{\infty}}$. In particular, M_{f} is a bounded operator iff f is bounded.
2) $\left(M_{f}\right)^{*}=M_{\bar{f}}$. To see this note that

$$
\left\langle M_{\bar{f}} u, v\right\rangle=\int_{\Omega} \overline{\bar{f}} u v \mathrm{~d} \mu=\int_{\Omega} \bar{u} f v \mathrm{~d} \mu=\left\langle u, M_{f} v\right\rangle
$$

and $D\left(M_{\bar{f}}\right)=D\left(M_{f}\right)$ as $f u \in L^{2}$ iff $\bar{f} u \in L^{2}$ iff $|f||u| \in L^{2}$.
3) M_{f} is self-adjoint iff $\left(M_{f}\right)^{*}=M_{f}$ iff $f=\bar{f}$ iff f is real-valued.
4)

$$
\begin{aligned}
\sigma\left(M_{f}\right) & =\operatorname{ess} \operatorname{ran}(f)=\left\{z \in \mathbb{C} \mid \forall \varepsilon>0: \mu\left(f^{-1}\left(B_{\mathbb{C}}(z, \varepsilon)\right)\right)>0\right\}= \\
& =\{z \in \mathbb{C} \mid \forall \varepsilon>0: \mu(\{x \in \Omega| | f(x)-z \mid<\varepsilon\})>0\}
\end{aligned}
$$

To see this note that $z-M_{f}=M_{z-f}$ and thus $\left(z-M_{f}\right)^{-1}=M_{(z-f)^{-1}}$. This is a bounded operator iff $(z-f)$ is bounded, i.e. $\left\|(z-f)^{-1}\right\|_{L^{\infty}}<\infty$.

Example 4.40. If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f(x)=|x|^{2}$. Then M_{f} is a self-adjoint multiplication operator on $L^{2}\left(\mathbb{R}^{d}\right)$ and

$$
\sigma\left(M_{f}\right)=\operatorname{ess} \operatorname{ran}\left(x \mapsto|x|^{2}\right)=[0, \infty)
$$

Theorem 4.41 (Basic Properties of the Spectrum). Let $A: D(A) \rightarrow \mathscr{H}$ be a (densely defined) unbounded operator on a Hilbert space \mathscr{H}.

1) $\sigma(A)$ is a closed set in \mathbb{C}.
2) If A is self-adjoint $\left(A=A^{*}\right)$ then $\sigma(A) \subset \mathbb{R}$.
3) If A is symmetric and $\sigma(A) \subset \mathbb{R}$ then A is self-adjoint.

Proof. 1) We proof that $\rho(A)$ is open. Take $z_{0} \in \rho(A)$, then we prove that $z \in \rho(A)$ if $\left|z-z_{0}\right|$ is small enough. We have

$$
\begin{aligned}
(z-A)^{-1} & =\left(z-z_{0}+z_{0}-A\right)^{-1}=\left(\left(\left(z-z_{0}\right)\left(z_{0}-A\right)^{-1}+\mathbb{I}\right)\left(z_{0}-A\right)\right)^{-1}= \\
& =\left(z_{0}-A\right)^{-1}\left(\mathbb{I}+\left(z-z_{0}\right)\left(z_{0}-A\right)^{-1}\right)^{-1}
\end{aligned}
$$

where we used that $\left(z_{0}-A\right)^{-1}$ is a well-defined, bounded operator. Then if $\left|z-z_{0}\right|$ is small enough $\left\|\left(z-z_{0}\right)\left(z_{0}-A\right)^{-1}\right\|<1$ and thus $\left(\mathbb{I}+\left(z-z_{0}\right)\left(z_{0}-A\right)^{-1}\right)^{-1}$ is bounded by Lemma 4.13 .
2) Assume that $A=A^{*}$. We prove that $\sigma(A) \subset \mathbb{R}$. Take $z \in \mathbb{C} \backslash \mathbb{R}$, then we prove that $(z-A)^{-1}$ is bounded. Consider $z= \pm i$. We see that

$$
\|(A+i) x\|^{2}=\langle(A+i) x,(A+i x)\rangle=\|A x\|^{2}+\|x\|^{2} .
$$

This implies that $A \pm i$ is injective and, together with the self-adjointness of A, that $\operatorname{ran}(A \pm i)=\mathscr{H}$.

- $\operatorname{ran}(A+i)$ is dense in \mathscr{H}, because if $y \perp \operatorname{ran}(A+i)$ then $y \in \operatorname{ker}(A+i)^{*}=$ $\operatorname{ker}(A-i)=\{0\}$.
- $\operatorname{ran}(A+i)$ is closed. Take $(A+i) x_{n} \rightarrow a$, we need to prove that $a \in \operatorname{ran}(A+i)$. Because $(A+i) x_{n}$ is Cauchy sequence it follows by the above inequality that

$$
\left\|(A+i) x_{n}-(A+i) x_{m}\right\|^{2} \geqslant\left\|A x_{n}-A x_{m}\right\|^{2}+\left\|x_{n}-x_{m}\right\|^{2}
$$

and thus $\left(A x_{n}\right)_{n}$ and $\left(x_{n}\right)_{n}$ are both Cauchy sequences. Thus $A x_{n} \rightarrow y$ and $x_{n} \rightarrow x$ in \mathscr{H}.

We need to prove that $x \in D(A)$ and $A x=y$. We know that A is self-adjoint, $A=A^{*}$, thus it is sufficient to prove that $x \in D\left(A^{*}\right)$. We need to show that

$$
\sup _{\substack{\varphi \in D(A) \\\|\varphi\| \leqslant 1}}|\langle x, A \varphi\rangle|<\infty
$$

We have for all $\varphi \in D(A)$.

$$
\langle x, A \varphi\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, A \varphi\right\rangle=\lim _{n \rightarrow \infty}\left\langle A x_{n}, \varphi\right\rangle=\langle y, \varphi\rangle .
$$

Thus by definition, $x \in D\left(A^{*}\right)=D(A)$ and $A x=y$, as $D(A)$ is dense.
Thus

$$
a=\lim _{n \rightarrow \infty}(A+i) x_{n}=(A+i) x
$$

with $x \in D(A)$, i.e. $a \in \operatorname{ran}(A+i)$. Thus $\operatorname{ran}(A+i)$ is closed.

The same analysis also holds true for $A-i$.

This means that $A \pm i$ is surjective and thus $(A \pm i)^{-1}$ is well-defined. Moreover, $\|(A \pm i) x\| \geqslant\|x\|$ thus $\left\|(A \pm i)^{-1}\right\| \leqslant 1$.

This proves that $z= \pm i \in \rho(A)$. In general, if $z \in \mathbb{C} \backslash \mathbb{R}$, then $z=\mathfrak{R} z+i \Im z, \Im z \neq 0$. Then

$$
z-A=\mathfrak{R} z+\Im z-A=\left(i+\frac{\mathfrak{R} z-A}{\Im z}\right) \Im z
$$

Since $\frac{\Re z-A}{\Im z}$ is still a self-adjoint operator and we may apply the previous result thus $(z-A)^{-1}$ is bounded.

This concludes

$$
A=A^{*} \Longrightarrow \sigma(A) \subset \mathbb{R}
$$

3) Assume that $\sigma(A) \subset \mathbb{R}$ and that A is symmetric.

Then $\pm i \in \rho(A)$. (The same prove as above holds since symmetric operators are closed.) Thus $(A \pm i)^{-1}$ is bounded.

We prove that $D\left(A^{*}\right)=D(A)$. Take $x \in D\left(A^{*}\right)$, then there exists $y \in D(A)$ such that

$$
(A+i) y=\left(A^{*}+i\right) x
$$

this implies that for all $z \in D(A)$

$$
\langle y,(A-i) z\rangle=\langle(A+i) y, z\rangle=\left\langle\left(A^{*}+i\right) x, z\right\rangle=\langle x,(A-i) z\rangle
$$

as A is symmetric. Thus $y=x$ because $\operatorname{ran}(A-i)=\mathscr{H}$ and hence $x \in D(A)$.
q.e.d.

Theorem 4.42 (Spectral Theorem for Unbounded Self-Adjoint Operators). Let A: $D(A) \rightarrow \mathscr{H}$ be a self-adjoint operator on a Hilbert space. Then there exists a measure space (Ω, μ) such that Ω is a Borel subset of \mathbb{R}^{d}, μ is a regular Borel measure and there exists a unitary operator $U: \mathscr{H} \rightarrow L^{2}(\Omega, \mu)$ such that

$$
U A U^{*}=M_{a}
$$

for some measurable function $a: \Omega \rightarrow \mathbb{R}$.

Moreover $U D(A)=D\left(M_{a}\right)=\left\{u \in L^{2} \mid a u \in L^{2}\right\}$.
We can take $\Omega=\sigma(A) \times \mathbb{N} \subset \mathbb{R}^{2}$ and $a(\lambda, n)=\lambda$.

Proof. We know that $S=(A+i)^{-1}$ is a bounded operator as $i \in \rho(A)$. Further $S^{*}=(A-i)^{-1}$ and $S^{*} S=S S^{*}$. Thus S is a normal operator.
Applying the spectral theorem for the bounded normal operator S we find a measure space (Ω, μ) and a unitary operator

$$
U: \mathscr{H} \longrightarrow L^{2}(\Omega, \mu)
$$

such that $U S U^{*}=M_{f}$ for some bounded function $f: \Omega \rightarrow \mathbb{C}$.
Now we want to find a function $a: \Omega \rightarrow \mathbb{R}$ such that $U A U^{*}=M_{a}$. Using $S=(A+i)^{-1}$ it follows that $A=S^{-1}-i$ thus we might guess that $a=f^{-1}-i$.
We now have to prove that this choice makes sense. Here $f \neq 0$ a.e. because from $U S U^{*}=$ M_{f} we know that $\sigma(S)=\sigma\left(M_{f}\right)=$ ess $\operatorname{ran}(f)$, however we know that $0 \in \rho(S)$ and thus $0 \notin \operatorname{ess} \operatorname{ran}(f)$. To see this suppose that $f \equiv 0$ on $B \subset \Omega$ with $\mu(B)>0$. Then $u=\mathbf{1}_{B}$ is a non-zero function with $M_{f} u=0$, which means that 0 is an eigenvalue of M_{f}. Since $U S U^{*}=M_{f}$ this means that 0 is also an eigenvalue of S. Thus there exists a $\varphi \neq 0$ such that $S \varphi=0$, however we then have

$$
0=(A+i) S \varphi=(A+i)(A+i)^{-1} \varphi=\varphi
$$

which is a contradiction.
Note that f^{-1} might have singularities and hence a might not be bounded.
Thus we can define $a=f^{-1}-i$ and we have

$$
U A U^{*}=U\left(S^{-1}-i\right) U^{*}=U S^{-1} U-i=\left(U S U^{*}\right)^{-1}-i=M_{f}^{-1}-i=M_{f^{-1}}-i=M_{a}
$$

Here a is a real-valued function because $U A U^{*}=M_{a}$ is self-adjoint. It is easy to check that $U D(A)=D\left(M_{a}\right)$.
q.e.d.

Theorem 4.43 (Functional Calculus of Self-Adjoint Operators). Let $A: D(A) \rightarrow \mathscr{H}$ be a self-adjoint operator on a Hilbert space \mathscr{H}.

Then there exists a unique linear map

$$
\Phi: \begin{aligned}
B(\sigma(A), \mathbb{C}) & \longrightarrow B(\mathscr{H}) \\
f & \longmapsto f(A)
\end{aligned}
$$

such that

1) If $f=1$ (i.e. $f(x)=1$ for all $x \in \sigma(A))$ then $f(A)=\mathbb{I}$ (the identity on \mathscr{H}).
2) $\|f(A)\|=\|f\|_{L^{\infty}}$
3) $f(A)^{*}=\bar{f}(A)$
4) $f(A) g(A)=(f g)(A)$
5) $f(\sigma(A))=\sigma(f(A))$
6) Monotone Convergence: Let $f_{n} \uparrow f$ pointwise, then $f_{n}(A) \rightarrow f(A)$ strongly, i.e. for all $u \in \mathscr{H}, f_{n}(A) u \rightarrow f(A) u$.

Dominated Convergence: Let $f_{n} \rightarrow f$ pointwise, and $\sup _{n}\left\|f_{n}\right\|_{L^{\infty}}<\infty$ then $f_{n}(A) \rightarrow f(A)$ strongly.
7) If $A B=B A$ is well-defined, then $f(A) B=B f(A)$ for all bounded functions f.

Proof. By the spectral theorem we have $U A U^{*}=M_{a}$. Define $f(A)$ by $U f(A) U^{*}=M_{f(a)}$, i.e. $\left(M_{f(a)} u\right)(x)=f(a(x)) u(x)$. q.e.d.

Remark 4.44. We used the seventh property to prove the Spectral theorem for normal operators.

Example 4.45. Let $A=(-\Delta)$ on $L^{2}\left(\mathbb{R}^{d}\right)$. We that Fourier transform \mathcal{F} is a unitary operator and

$$
\widetilde{A f}(k)=|2 \pi k|^{2} \hat{f}(k),
$$

i.e.

$$
\mathcal{F}(-\Delta) \mathcal{F}^{*}=M_{|2 \pi k|^{2}}
$$

Consequently $\sigma(-\Delta)=[0, \infty)$ and

$$
D(-\Delta)=\left\{\left.u \in L^{2}\left(\mathbb{R}^{d}\right)| | 2 \pi k\right|^{2} \hat{u}(k) \in L^{2}\right\}=H^{2}\left(\mathbb{R}^{d}\right)
$$

$-\Delta$ is only self-adjoint on $D(-\Delta)$.

Algebras of Observables

Classical Mechanics

An experiment is represented by a function $A(\boldsymbol{r}, \boldsymbol{p})$ on phase space Γ. Further it is physically reasonable to assume that A is a bounded function, as any experiment has only a finite range of possible results.
We can give this observable the supremum norm

$$
\|A\|_{\infty}:=\sup _{(\boldsymbol{r}, \boldsymbol{p}) \in \Gamma}|A(\boldsymbol{r}, \boldsymbol{p})|<\infty
$$

A state is given by a certain reproducible procedure of preparing the system. Then

$$
\underline{\omega}:\langle A\rangle_{\omega}=\frac{1}{N} \sum_{n=1}^{N} a_{i}^{(\omega)} \in \mathbb{R}
$$

is called the result of the measurement A for the state ω.
To a high precision we have $\left\langle A^{m}\right\rangle_{\omega}=\langle A\rangle_{\omega}^{m}$.
The properties of ω are

- normalised: $\omega(\mathbf{1})=1$
- it is a linear functional: $\mathscr{A} \rightarrow \mathbb{C}(\mathbb{R})$ where \mathscr{A} denotes the algebra of observables
- positivity: for $A(x, p) \geqslant 0, \omega(A) \geqslant 0$.

$$
\omega(A)=\int_{\Gamma} \rho(x, p) A(x, p) \mathrm{d} x \mathrm{~d} p
$$

6
C^{*} Algebra

The experiments A are elements of a $\left(C^{*}\right)$ algebra \mathscr{A}.
A state is a linear, positive functional on \mathscr{A}, i.e. for $A, B \in \mathscr{A}$ and $\lambda \in \mathbb{C}$

$$
\omega(\lambda A)=\lambda \omega(A), \quad \omega(A+B)=\omega(A)+\omega(B)
$$

Further we assume that

- Normalisation: $\omega(\mathbf{1})=1$
- Positivity: A is positive, i.e. if $A=B^{*} B$ then $\omega(A) \geqslant 0$.

Two observables are called equal

$$
A=B: \Longleftrightarrow \forall \omega: \omega(A)=\omega(B)
$$

Note that these definitions apply that if $A+B=C$

$$
\omega(C)=\omega(A)+\omega(B) .
$$

However, it is very much unclear what it means to take the sum of experiments.
We define a norm on \mathscr{A} by taking

$$
\|A\|=\sup _{\omega}|\omega(A)| .
$$

Definition 4.46 (Algebra). An algebra \mathscr{A} is

1. \mathscr{A} is a complex vector space
2. \mathscr{A} has an associative multiplication operation.
3. the multiplication is distributive with respect to the addition in \mathscr{A} and the multiplication by scalars
4. \mathscr{A} contains a unit for the multiplication operation

Definition 4.47 (*-Algebra). \mathscr{A} is an algebra equipped with a complex conjugation or adjoint operation ${ }^{*}: \mathscr{A} \rightarrow \mathscr{A}$ satisfying

$$
\begin{aligned}
(P Q)^{*} & =Q^{*} P^{*}, & (P+Q)^{*} & =P^{*}+Q^{*} \\
(\alpha Q)^{*} & =\bar{\alpha} Q^{*}, & \left(Q^{*}\right)^{*} & =Q
\end{aligned}
$$

Definition 4.48 (C_{-}- Algebra). A C_{-}-algebra is a C^{*}-algebra equipped with a norm which further satisfies

- $\|P Q\| \leqslant\|P\|\|Q\|$
- $\left\|Q^{*}\right\|=\|Q\|$
- $\left\|Q Q^{*}\right\|=\|Q\|\left\|Q^{*}\right\|$
- $\|\mathbf{1}\|=1$

Definition 4.49 (Classes of Elements on a C^{*}-Algebra).

1. Self-Adjoint or Hermitea

$$
Q^{*}=Q
$$

2. Unitary: $Q^{*} Q=Q Q^{*}=\mathbf{1}$
3. Normality: $Q Q^{*}=Q^{*} Q$
4. Projector: $Q^{2}=Q=Q^{*}$
5. Positive: there exists $C \in \mathscr{A}: Q=C^{*} C$

Definition 4.50 (Resolvent Set and Spectrum). The resolvent set of $A \in \mathscr{A}$ is

$$
\rho(A)=\left\{z \in \mathbb{C} \mid(A-z)^{-1} \in \mathscr{A}\right\}
$$

The spectrum is the compliment of the resolvent.

Remark 4.51. Using the same argument as in the case of operators on Hilbert spaces we may conclude that the resolvent set is open.

Proposition 4.52 (Spectral Properties). - Hermitean: $\sigma(A) \subset \mathbb{R}$

- Unitary: $\sigma(U) \subset S^{1}$
- Projector: $\sigma(P)=\{0,1\}$
- Positive: $\sigma(Q) \subset[0, \infty)$

Remark 4.53. A state is a positive linear functional, i.e. $\omega\left(A^{*} A\right) \geqslant 0$.

Example 4.54. 1) Classical: A state is a function ρ on phase space satisfying $\rho(x, p) \geqslant 0, \int \rho=1$ and the action being given by

$$
\int_{\Gamma} \rho(x, p) A(x, p) \mathrm{d} x \mathrm{~d} p
$$

2) Quantum 1: For the bounded operators $B(\mathscr{H})$ of a Hilbert space \mathscr{H} the observables are unit vectors $\psi \in \mathscr{H}$ with the action being given by

$$
\langle\psi, A \psi\rangle .
$$

3) Quantum 2: We can alternatively form the density operator $\rho_{\psi}=|\psi\rangle\langle\psi|$, where ρ is a positive operator of trace 1 . The state action is given by

Proposition 4.55. For a positive linear functional ω on \mathscr{A} we have the following "Cauchy-Schwartz" inequality

$$
\left|\omega\left(A^{*} B\right)\right|^{2} \leqslant \omega\left(A^{*} A\right) \omega\left(B^{*} B\right)
$$

In particular this implies that ω is bounded and thus continuou.

States form a convex space, i.e. let ω_{1}, ω_{2} be two states then the for all $\lambda \in[0,1], \omega=$ $\lambda \omega_{1}+(1-\lambda) \omega_{2}$ is again a state.

Definition 4.56 (Pure and Mixed States). A state is called pure if cannot be represented as a non-trivial convex combination of two states.
Otherwise a state is called mixed.

Proposition 4.57. Any state ω can be written as a convex combination of pure states $\left(\alpha_{i}\right)_{i \in \mathbb{N}}$ such that

$$
\omega=\sum_{i} \lambda_{i} \alpha_{i}, \quad \sum_{i} \lambda_{i}=1, \quad \lambda_{i} \geqslant 0
$$

Definition 4.58 (Abelian Algebra). An algebra is Abelian if all elements commute.

Definition 4.59 (Algebraic *-Homomorphism). A map $\pi: \mathscr{A} \rightarrow \mathscr{B}$ between *-algebras is called a *-homomorphism if

- $\pi(A B)=\pi(A) \pi(B)$
- $\pi(\alpha A+\beta B)=\alpha \pi(A)+\beta \pi(B)$
- $\pi\left(A^{*}\right)=\pi(A)^{*}$

Definition 4.60. A character χ is a *-homomorphism of $\mathcal{A} \rightarrow \mathbb{C}$ such that
(1) If exists $(\chi(A)-z)^{-1}$ if $z \in \sigma(A)$ then $\chi(A) \in \sigma(A)$.
(2) χ is positive, i.e. $\chi\left(A^{*} A\right)=\chi\left(A^{*}\right) \chi(A)=\chi(A)^{*} \chi(A) \geqslant 0$
(3) Any χ is a state: $\chi(A \mathbf{1})=\chi(A) \chi(\mathbf{1})$, hence $\chi(\mathbf{1})=1$
(4) Cauchy-Schwartz $\left|\chi\left(A^{*} B\right)\right|^{2} \leqslant \chi\left(A^{*} A\right) \chi\left(B^{*} B\right)$.
(5) Characters are pure states.
(6) There exist a character such that $\chi(A)=\|A\|$

Definition 4.61. The weak *-topology V, V^{*} define

$$
\left.B_{v, \varepsilon}\left(W^{*}\right)=\left\{U^{*} \in V^{*}| | W^{(} v\right)-U^{*}(v) \mid<\varepsilon\right\}
$$

for $W^{*} \in V^{*}, v \in V$.

Definition 4.62. $X(A)$ is set of all characters, the set of all continuous functions $f: X(A) \rightarrow \mathbb{C} \sim A$ for any $A \in \mathcal{A}$????

Theorem 4.63 (Gel'fand Isomorphism). An Abelian C^{*} algebra is isomorphic to the weak ${ }^{*}$-continuous function $\mathscr{C}(X)$ on the character set $X=X(\mathcal{A})$. Norm on $\mathscr{C}(X)$ is given by the supremum norm

$$
\|f\|=\sup _{\chi \in X}|f(\chi)| .
$$

Furthermore it is an isometry w.r.t. to this norm, i.e. $\|A\|=\left\|f_{A}\right\|$.

Proof. (1) We define $A \mapsto f_{A}$, via the natural inclusion into the double dual, i.e. $f_{A}(\chi)=$ $\chi(A)$. This is a ${ }^{*}$-homomorphism, as χ is one, e.g.

$$
f_{A B}(\chi)=\chi(A B)=\chi(A) \chi(B)=f_{A}(\chi) f_{B}(\chi)
$$

This inclusion map is naturally injective, as continuous linear functionals separate points.
(2) The Gel'fand map preserves the norm as

$$
\|A\|=\sup _{\chi \in X}|\chi(A)|=\|f\|
$$

To see the first equality note that for all states we have per definitionem $|\chi(A)| \leqslant\|A\|$ and there exists a pure state such that $|\omega(A)|=\|A\|$.
(3) The main problem is to prove surjectivity: For any $f \in \mathscr{C}(X)$ there exist A_{f} such that $f_{A_{f}}=f$ for any polynomial.

This obviouslyholds for polynomials. Thus by the "Weierstrass" theorem: any continuous function on a compact set on X can be arbitrarily well-approximated by polynomials. Compact is taken here w.r.t. ${ }^{*}$-topology.

Holes: Existence of ω such that $\omega(A)=\|A\|$, GNS construction, compactness and the StoneWeierstrass theorem.
q.e.d.

Let \mathcal{A}_{A} be the algebra generated by $\mathbf{1}, A, A^{*}$, i.e. all polynomial expressions of the form $\sum a_{m n} A^{n}\left(A^{*}\right)^{m}$ and the closure under the norm of the algebra.
\mathcal{A}_{A} is commutative hence it follows that is isomorphic to $\mathscr{C}\left(X_{\mathcal{A}}\right)$.
Definition 4.64 (Representation on \mathcal{A} on $B(\mathscr{H})$). A representation π of the C^{*}-algebra \mathcal{A} is a *-homomorphism of \mathcal{A} into $\mathcal{B}(\mathscr{H})$.
If π is injective, then the representation is called faithful. Two representation are called equivalent, if there exists an isomorphism $U: \mathscr{H}_{1} \rightarrow \mathscr{H}_{2}$ if for all $A \in \mathcal{A}$

$$
\pi_{2}(A)=U \pi_{1}(A) U^{-1}
$$

Definition 4.65 (Invariant Subspace). Let $V \in \mathscr{H}$ be a subspace of $\mathscr{H} . V$ is called an invariant subspace of $\pi(\mathcal{A})$ iff

$$
\forall A \in \mathcal{A}: v \in V \Longrightarrow \pi(A) v \in V
$$

Definition 4.66. A vector $c \in \mathscr{H}$ is called cyclic for a representation π if

$$
\mathcal{C}:=\{\pi(A) c \mid A \in \mathcal{A}\}
$$

is dense in \mathscr{H}, i.e. $\overline{\mathcal{C}}=\mathscr{H}$.

Definition 4.67 (Irreducible Representation). A representation is called irreducible on of the two equivalent properties holds
(1) The only closed invariant subspaces $V \subset \mathscr{H}$ are $\{0\}$ and \mathscr{H}.
(2) Any vector $\varphi \in \mathscr{H}$ is cyclic.

Definition 4.68 (GNS - Construction (Gel'fand, Naimark, Segal)). A C^{*}-algebra \mathcal{A} induces a Hilbert space using a state ω.
We define a scalar product $A, B \in \mathscr{A}$ via $\langle A, B\rangle:=\omega\left(A^{*} B\right)$. This hermitean, however, it is not necessarily strictly positive.
To remedy this define

$$
\mathcal{N}_{\omega}=\left\{A \in \mid \omega\left(A^{*} A\right)=0\right\} .
$$

and then the induced scalar product on $\mathcal{A} / \mathcal{N}_{\omega}$ is strictly positive. The completion of $\mathcal{A} / \mathcal{N}_{\omega}$ is a Hilbert space.

Remark 4.69. Irreducible representations of a commutative algebra are one-dimensional.

Definition 4.70 (GNS - Representation). Let $\bar{B} \in \mathscr{H}_{\text {GNS }}$ with $B \in \mathcal{A}$, then define the
representation $\pi: \mathcal{A} \rightarrow B\left(\mathscr{H}_{\mathrm{GNS}}\right)$ via

$$
\pi(A) \bar{B}=\overline{A B}
$$

Remark 4.71. - The GNS representation for a pure state is irreducible.

- For any given representation of \mathcal{A} on \mathscr{H}, an element $\psi \in \mathscr{H}$ defines a pure state via

$$
\omega_{\psi}(A)=\langle\psi, A \psi\rangle
$$

The corresponding subspace $\{\pi(A) \psi \mid A \in \mathcal{A}\}$, is invariant and isomorphic to the GNS Hilbert space.

Chapter 5

Self-Adjoint Extensions

Remark 5.1 (Question). Given a symmetric operator A, can we find a self-adjoint extension B of A., i.e. $D(B) \supset D(A),\left.B\right|_{D(A)}=a$ and $B=B^{*}$. Thus $A \subset B=B^{*} \subset$ A^{*}.

It is left as an exercise to show that if $A: D(A) \rightarrow \mathscr{H}$ and $B: D(B) \rightarrow \mathscr{H}$ are symmetric operators and $A \subset B$ then $B^{*} \subset A^{*}$, i.e.

$$
A \subset B \subset B^{*} \subset A^{*}
$$

Method 1 (Closure) Given $A: D(A) \rightarrow \mathscr{H}$ symmetric. Define its closure $\bar{A}: D(\bar{A}) \rightarrow \mathscr{H}$ as follows:

Let $\|x\|_{A}:=\|A x\|+\|x\|$ for all $x \in D(A)$

$$
\begin{aligned}
D(\bar{A}) & :=\overline{D(A)}{ }^{\|\cdot\|_{A}}= \\
& =\left\{x \in \mathscr{H} \mid \exists\left(x_{n}\right)_{n} \subset D(A),\left(x_{n}\right)_{n} \text { Cauchy w.r.t. }\|\cdot\|_{A}: x=\lim _{n \rightarrow \infty} x_{n} \text { in } \mathscr{H}\right\}= \\
& =\left\{x \in \mathscr{H} \mid \exists\left(x_{n}\right)_{n} \subset D(A):\left\|x_{n}-x_{m}\right\|_{A} \xrightarrow{n, m \rightarrow \infty} 0: x=\lim _{n \rightarrow \infty} x_{n} \text { in } \mathscr{H}\right\}
\end{aligned}
$$

This is well-defined because A is a symmetric operator. More precisely, if $\left(x_{n}\right)_{n}$ is a Cauchy sequence in $\|\cdot\|_{A}$, then $\left(A x_{n}\right)_{n}$ and $\left(x_{n}\right)_{n}$ are Cauchy sequences in \mathscr{H}. Thus we have in \mathscr{H}

$$
A x_{n} \xrightarrow{n \rightarrow \infty} y, \quad x_{n} \xrightarrow{n \rightarrow \infty} x
$$

Here the limit $y=\lim A x_{n}$ is independent of the choice of $\left(x_{n}\right)_{n}$. Indeed if $\left(x_{n}^{\prime}\right)_{n}$ is another sequence in $D(A)$ such that

$$
A x_{n}^{\prime} \xrightarrow{n \rightarrow \infty} y^{\prime}, \quad x_{n}^{\prime} \xrightarrow{n \rightarrow \infty} x
$$

Then $y=y^{\prime}$ because for all $\varphi \in D(a)$

$$
\langle y, \varphi\rangle=\lim _{n \rightarrow \infty}\left\langle A x_{n}, \varphi\right\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, A \varphi\right\rangle=\langle x, A \varphi\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}^{\prime}, A \varphi\right\rangle=\lim _{n \rightarrow \infty}\left\langle A x_{n}^{\prime}, \varphi\right\rangle=\left\langle y^{\prime}, \varphi\right\rangle
$$

and thus $y=y^{\prime}$ as $D(A)$ is dense in \mathscr{H}.

Definition 5.2. We define the closure of symmetric operator $A: D(A) \rightarrow \mathscr{H}$ to be the operator defined on $D(\bar{A})$ via $\bar{A} x:=\lim _{n \rightarrow \infty} A x_{n}$, where $\left(x_{n}\right)_{n} \subset D(A)$ is a Cauchy sequence w.r.t. $\|\cdot\|_{A}$ and $x_{n} \rightarrow x$ in \mathscr{H}.
By the above this well-defined for all $x \in D(\bar{A})$.

Remark 5.3. Often \bar{A} is already a self-adjoint operator, in which case we are done. For example let $A=-\Delta$ on $D(A)=\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right) \subset \mathscr{H}=L^{2}\left(\mathbb{R}^{d}\right)$. Then since $\|\cdot\|_{\Delta}=$ $\|-\Delta(\cdot)\|+\|\cdot\|$ is equivalent to $\|\cdot\|_{H^{2}}$ we find that

$$
D(\bar{A})={\overline{\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)}}^{\|\cdot\|_{A}}={\overline{\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)}}^{\|\cdot\|_{H^{2}}}=H^{2}\left(\mathbb{R}^{d}\right)
$$

and as we have already proven $-\Delta u$ for $u \in H^{2}\left(\mathbb{R}^{d}\right)$ is just the extension of $-\Delta$ on $\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. Since $-\Delta$ on $H^{2}\left(\mathbb{R}^{d}\right)$ is self-adjoint \bar{A} is as well.

Example 5.4. Let $A=-\Delta-\frac{1}{|x|}$ on $\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{\Downarrow *}\right)$ be the Hydrogen atom Hamiltonian. Then $D(\bar{A})=H^{2}\left(\mathbb{R}^{3}\right)$ and $\bar{A} u=\left(-\Delta-\frac{1}{|x|}\right) u$ for all $u \in H^{2}\left(\mathbb{R}^{3}\right)$.
Here the proof is not trivial! For all $u \in H^{2}\left(\mathbb{R}^{d}\right),-\Delta u \in L^{2}$ per definitionem and $-\frac{u(x)}{|x|} \in L^{2}$ by the Hardy-Littlewood-Sobolev inequality Theorem 1.30.
But the inverse is more difficult: Does $\left(-\Delta-\frac{1}{|x|}\right) u \in L^{2}$ for $u \in L^{2}$ imply that $u \in H^{2}\left(\mathbb{R}^{3}\right)$?
In particular does $-\Delta u-\frac{u(x)}{|x|} \in L^{2}$ imply that $-\Delta u$ and $\frac{u(x)}{|x|} \in L^{2}$?

Example 5.5 (Counter Example to Closure Being Self-Adjoint). Let $A=-i \frac{d}{d x}$ on $D(A)=\mathscr{C}_{c}^{\infty}(0,1) \subset \mathscr{H}=L^{2}(0,1)$.
Then A is symmetric (which can be checked easily via integration by parts). But

$$
D(\bar{A})=\overline{\mathscr{C}}_{c}^{\infty}(0,1)|\cdot|\left\|_{A}=\overline{\mathscr{C}}_{c}^{\infty}(0,1) \quad\right\| \cdot \|_{H^{1}}=H_{0}^{1}(0,1):=\left\{u \in H^{1}(0,1) \mid u(0)=u(1)=0\right\} .
$$

However,

$$
D\left(\bar{A}^{*}\right)=\left\{u \in L^{2}\left|\sup _{\substack{v \in D(\bar{A}) \\\|v\|_{L^{2}} \leqslant 1}}\right|\langle u, \bar{A} v\rangle_{L^{2}} \mid<\infty\right\}=H^{1}(0,1)
$$

where checking the last equality is left as an exercise. Hence \bar{A} is not self-adjoint.

Definition 5.6. If $A=\bar{A}$, i.e. $D(A)$ is closed w.r.t. $\|\cdot\|_{A}=\|A \cdot\|+\|\cdot\|$, then we call A a closed operator.

Proposition 5.7. Assume that $A: D(A) \rightarrow \mathscr{H}$ is symmetric, $A \subset B$ and B is closed and symmetric. Then $\bar{A} \subset B \subset A^{*}$.
This means that \bar{A} is the smallest closed extension of A and A^{*} is the largest closed extension of A. In particular A^{*} is closed.

Proof. Exercise!

q.e.d.

Definition 5.8. Let $A: D(A) \rightarrow \mathscr{H}$ be a symmetric operator. If \bar{A} is self-adjoint then we call A essentially self-adjoint.

Theorem 5.9. Let $A: D(A) \rightarrow \mathscr{H}$ by symmetric. Then the following are equivalent
(1) A is self-adjoint.
(2) $\sigma(A) \subset \mathbb{R}$
(3) $\operatorname{ran}(A \pm i)=\mathscr{H}$

Proof. The first two items are just a reformulation of Theorem 4.41 and third follows from their proof. q.e.d.

In fact we have the even stronger result

Proposition 5.10. Let $A: D(A) \rightarrow \mathscr{H}$ be a symmetric operator. If $\sigma(A) \neq \mathbb{C}$, then A is closed.

Proof. Exercise!

Theorem 5.11. Let $A: D(A) \rightarrow \mathscr{H}$ be symmetric. Then the following are equivalent.
(1) A is essentially self-adjoint.
(2) $\operatorname{ran}(A \pm i)$ is dense in \mathscr{H}.

Proof. Easy once one has proven that $\operatorname{ran}(\bar{A} \pm i)=\overline{\operatorname{ran}(A \pm i)}$ which is left as exercise.
q.e.d.

Method 2 (Kato-Rellich Method) Assume that $A: D(A) \rightarrow \mathscr{H}$ is self-adjoint. When is $A+B: D(A) \rightarrow \mathscr{H}$ is self-adjoint, if B is a small "perturbation" of A ?

Theorem 5.12 (Kato-Rellich). Let $A: D(A) \rightarrow \mathscr{H}$ be self-adjoint, $B: D(A) \rightarrow \mathscr{H}$ symmetric. If for some $\varepsilon<1$ and some $C_{\varepsilon} v$

$$
\|B x\| \leqslant \varepsilon\|A x\|+C_{\varepsilon}\|x\|
$$

holds for all $x \in D(A)$, we say that ε is an A-bound for B, then $A+B$ is self-adjoint on $D(A+B)=D(A)$, i.e. "small perturbations" do not destroy self-adjointness.

Lemma 5.13. Let A and B be as above. Then for all $\mu>0, B(A+i \mu)^{-1}$ is a bounded operator and

$$
\limsup _{\mu \rightarrow \infty}\left\|B(A \pm i \mu)^{-1}\right\| \leqslant \varepsilon
$$

where ε is the A-bound of B.
Proof. Because A is self-adjoint, $i \mu \in \rho(A)$ for all $\mu>0$ thus $(A \pm i \mu)^{-1}$ is a bounded operator with

$$
(A \pm i \mu)^{-1}: \mathscr{H} \longrightarrow D(A)
$$

thus $B(A \pm i \mu)^{-1}$ is well-defined on \mathscr{H}. We have

$$
\begin{aligned}
\left\|B(A \pm i \mu)^{-1}\right\| & =\sup _{\substack{x \in \mathscr{H} \\
x \neq 0}} \frac{\left\|B(A \pm i \mu)^{-1} x\right\|}{\|x\|}=\sup _{\substack{y \in D(A) \\
y \neq 0}} \frac{\|B y\|}{\|(A \pm i \mu) y\|} \leqslant \sup _{\substack{y \in D(A) \\
y \neq 0}} \frac{\varepsilon\|A y\|+C_{\varepsilon}\|y\|}{\|(A \pm i \mu) y\|}= \\
& =\sup _{\substack{y \in D(A) \\
y \neq 0}} \frac{\varepsilon\|A y\|+C_{\varepsilon}\|y\|}{\sqrt{\|A y\|^{2}+\mu^{2}\|y\|^{2}}} \leqslant \sup _{\substack{y \in D(A) \\
y \neq 0}} \frac{\varepsilon\|A y\|+C_{\varepsilon}\|y\|}{\max \{\|A y\|, \mu\|y\|\}} \leqslant \varepsilon+\frac{C_{\varepsilon}}{\mu}
\end{aligned}
$$

where the penultimate inequality follows from $\sqrt{a^{2}+b^{2}} \geqslant \max \{|a|,|b|\}$. q.e.d.
Proof of Theorem 5.12. To show that $A+B$ is self-adjoint in on $D(A)$, we need to prove that $\operatorname{ran}(A+B \pm i \mu)=\mathscr{H}$ for some $\mu>0$.
We have $A+B+i \mu=\left(1+B(A+i \mu)^{-1}\right)(A+i \mu)$. Here $(A+i \mu)^{-1}$ is well-defined because A is self-adjoint. Then

$$
(A+B+i \mu)(D(A))=\left(1+B(A+i \mu)^{-1}\right)(A+i \mu)(D(A))=\left(1+B(A+i \mu)^{-1}\right)(\mathscr{H})
$$

Then this is equal to \mathscr{H} if $1+B(A+i \mu)^{-1}$ has an inverse. This holds true when $\| B(A+$ $i \mu)^{-1} \|<1$ by Lemma 4.13 . Then we can apply the lemma which in particular states that

$$
\left\|B(A+i \mu)^{-1}\right\| \leqslant \varepsilon+\frac{C_{\varepsilon}}{\mu} .
$$

Since $\varepsilon<1$ for μ large enough this is indeed smaller than 1 .
q.e.d.

Theorem 5.14 (Kato-Rellich for Schrödinger Operators). Consider the operator $A=$ $-\Delta+V$ on $D(A)=H^{2}\left(\mathbb{R}^{d}\right)$, where V is some real-valued potential function. This is self-adjoint if $V \in L^{p}\left(\mathbb{R}^{d}\right)+L^{q}\left(\mathbb{R}^{d}\right)$ for $2 \leqslant p, q \leqslant \infty$, for $d=1,2,3$.

Remark 5.15. If $f \in L^{p}\left(\mathbb{R}^{d}\right)$ for some $1 \leqslant r \leqslant p \leqslant \infty$, then we can write $f=f_{1}+f_{2}$ with $f_{1} \in L^{r}\left(\mathbb{R}^{d}\right)$ and $f_{2} \in L^{\infty}\left(\mathbb{R}^{d}\right)$.
Moreover, we can take f_{1} such that $\left\|f_{1}\right\|_{L^{r}} \leqslant \delta$ for any $\delta>0$.

This statement can be proven using dominated convergence and its proof is left as an exercise.

Proof. Because V is real valued, $A=-\Delta+V$ is symmetric and we only need to verify that

$$
\|V u\|_{L^{2}} \leqslant \varepsilon\|-\Delta u\|_{L^{2}}+C_{\varepsilon}\|u\|_{L^{2}}
$$

for some $\varepsilon<1$. In particular this also shows that $M_{V}: D(A) \rightarrow \mathscr{H}$ is well-defined. This is equivalent to

$$
\|V u\|_{L^{2}} \leqslant \varepsilon\|u\|_{H^{2}}+C_{\varepsilon}\|u\|_{L^{2}}
$$

and we shall prove that this holds for all $\varepsilon>0$.
By assumption we can write $V=V_{1}+V_{2} \in L^{2}+L^{\infty}$ with $\left\|V_{1}\right\|_{L^{2}} \leqslant \delta$.
By the Sobolev inequality Theorem 3.23 we have for $d=1,2,3, L^{\infty}\left(\mathbb{R}^{d}\right) \subset H^{2}\left(\mathbb{R}^{d}\right)$ and thus

$$
\|V u\|_{L^{2}} \leqslant\left\|V_{1} u\right\|_{L^{2}}+\left\|V_{2} u\right\|_{L^{2}} \leqslant\left\|V_{1}\right\|_{L^{2}}\|u\|_{L^{\infty}}+\left\|V_{2}\right\|_{L^{\infty}}\|u\|_{L^{2}} \leqslant \delta C_{d}\|u\|_{H^{2}\left(\mathbb{R}^{d}\right)}+C_{\delta}\|u\|_{L^{2}}
$$

Choosing $C_{d} \delta=\varepsilon$ yields the result. q.e.d.

Example 5.16. $A=-\Delta-\frac{1}{|x|}$ is self-adjoint on $D(A)=H^{2}\left(\mathbb{R}^{d}\right)$, on $L^{2}\left(\mathbb{R}^{3}\right)$. This is the case by Kato-Rellich as

$$
V(x)=-\frac{1}{|x|}=-\frac{1}{|x|} \mathbf{1}_{\{|x| \leqslant 1\}}-\frac{1}{|x|} \mathbf{1}_{\{|x|>1\}} \in L^{p}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)
$$

for any $p<3$.
In particular, since for all $u \in L^{2}(\mathbb{R})^{3}$ such that $A u=\left(-\Delta u-\frac{1}{|x|}\right) u \in L^{2}$ then $u \in H^{2}\left(\mathbb{R}^{3}\right)$ and $-\Delta u,-\frac{u(x)}{|x|} \in L^{2}$
In fact, $A=-\Delta-\frac{1}{|x|^{s}}$ is self-adjoint on $D(A)=H^{2}\left(\mathbb{R}^{3}\right)$ for all $s<\frac{3}{2}$ by the same proof.
But $A=-\Delta-\frac{1}{|x|^{s}}$ with $s \geqslant \frac{3}{2}$ cannot be extended to a self-adjoint operator on $H^{2}\left(\mathbb{R}^{3}\right)$. For this the Kato-Rellich theorem is not enough.

5.1 Quadratic Forms

Let $A: D(A) \rightarrow \mathscr{H}$ be self-adjoint operator. Assume that $A \geqslant 1$, i.e. that $\langle u, A u\rangle \geqslant\|u\|^{2}$ for all $u \in D(A)$.

Then $D(A)$ is a Hilbert space with $\|x\|_{A}=\|A x\|,\langle x, y\rangle_{A}=\langle A x, A y\rangle$.

Definition 5.17 (Quadratic From Domain). Let $Q(A)=\overline{D(A)}\|\cdot\|_{Q(A)}$, where $\|x\|_{Q(A)}^{2}=$ $\langle x, A x\rangle$ for all $x \in D(A)$.
Equivalently
$Q(A)=\left\{x \in \mathscr{H} \mid x=\lim _{n \rightarrow \infty} x_{n}\right.$ in \mathscr{H} and $\left(x_{n}\right)_{n} \subset D(A)$ is a $\|\cdot\|_{Q(A)}$-Cauchy sequence. $\}$

Remark 5.18. Note that this also implies that $x_{n} \xrightarrow{n \rightarrow \infty} x$ in $\left(Q(A),\|\cdot\|_{Q(A)}\right)$. Thus $Q(A)$ is a Hilbert space with norm $\|\cdot\|_{Q(A)}$.
Conversely, $Q(A)$ contains the information of $(A, D(A))$ in the sense that $x \in D(A)$ iff $x \in Q(A)$ and

$$
\sup _{\substack{y \in Q(A) \\\|y\| \leqslant 1}}\left|\langle x, y\rangle_{Q(A)}\right|<\infty .
$$

- Indeed, if $x \in D(A)$ then for all $y \in D(A)$ then $\langle x, y\rangle_{Q(A)}=\langle x, A y\rangle=\langle A x, y\rangle$.

By denseness it follows that $\langle x, y\rangle_{Q(A)}=\langle A x, y\rangle$ for all $y \in Q(a)$.
Thus $\sup _{\substack{y \in Q(A) \\\|y\| \leqslant 1}}\left|\langle x, y\rangle_{Q(A)}\right| \leqslant\|A x\|<\infty$.

- If $x \in Q(A)$ and $\sup _{\substack{y \in Q(A) \\\|y\| \leqslant 1}}\left|\langle x, y\rangle_{Q(A)}\right|<\infty$. Then

$$
y \longmapsto\langle x, y\rangle_{Q}
$$

is a continuous, linear functional on $\left(Q(A),\|\cdot\|_{Q}\right)$ (trivially from the Schwartz inequality), but also a continuous linear functional on $(Q(A),\|\cdot\|)$ and by denseness also on the whole Hilbert space \mathscr{H}. Thus by the Riesz representation theorem there exists a unique $z \in \mathscr{H}$ such that $\langle x, y\rangle_{Q}=\langle z, y\rangle$ for all $y \in Q(A)$ and in particular also $\langle x, A y\rangle=\langle z, y\rangle$ for all $y \in D(A)$. Thus $x \in D\left(A^{*}\right)=D(A)$ as $A^{*}=A$.

Example 5.19. Take $A=1-\Delta$ on $L^{2}\left(\mathbb{R}^{d}\right)$. $D(A)=H^{2}\left(\mathbb{R}^{d}\right)$ and $Q(A)=\overline{H^{2}\left(\mathbb{R}^{d}\right)}\left\|^{\|}\right\|_{Q(A)}$ where $\|u\|_{Q(A)}=\sqrt{\langle u,(1-\Delta) u\rangle_{L^{2}}}=\|u\|_{H^{1}\left(\mathbb{R}^{d}\right)}$, i.e. $Q(A)=H^{1}\left(\mathbb{R}^{d}\right)$.

Example 5.20. Take $A=M_{a}$ on $L^{2}(\Omega, \mu)$ for $a \geqslant 1$, then

$$
\begin{aligned}
& D(A)=\left\{u \in L^{2} \mid a u \in L^{2}\right\} \\
& Q(A)=\left\{u \in L^{2} \mid \sqrt{a} u \in L^{2}\right\}
\end{aligned}
$$

because

$$
\|u\|_{Q(A)}=\sqrt{\langle u, A u\rangle_{L^{2}}}=\sqrt{\langle u, a u\rangle_{L^{2}}}=\|\sqrt{a} u\|_{L^{2}} .
$$

Remark 5.21. If A is self-adjoint and $A \geqslant 1$ then $Q(A)=D(\sqrt{A})$. Here \sqrt{A} is defined via Spectral theorem and functional calculus. It satisfies

$$
\sqrt{A} \geqslant 0, \quad(\sqrt{A})^{2}=A
$$

Remark 5.22 (Friedrich Self-Adjoint Extension). Take a symmetric $A: D(A) \rightarrow \mathscr{H}$ with $A \geqslant 1$. Then proceeding as follows

$$
(A, D(A)) \longrightarrow\left(\langle\cdot, \cdot\rangle_{Q(A)}, Q(A)\right) \xrightarrow{\text { closing }}\left(\langle\cdot, \cdot\rangle_{Q(\widetilde{A})}, Q(\widetilde{A})\right) \longrightarrow(\widetilde{A}, D(\widetilde{A}))
$$

we get a self-adjoint extension \widetilde{A} of A. In general only $\bar{A} \subset \widetilde{A}$ holds.

Theorem 5.23 (Friedrich's Extension). Take $A: D(A) \rightarrow \mathscr{H}, A \geqslant 1$. Define $\|u\|_{Q}=$ $\sqrt{\langle u, A u\rangle}$ for $u \in D(A)$ and $Q(A)=\overline{D(A)}{ }^{\|\cdot\|_{Q(A)}}$ as above.

Define $A_{F}: D\left(A_{F}\right) \rightarrow \mathscr{H}$ as

$$
\begin{aligned}
D\left(A_{F}\right) & =\left\{x \in Q(A)\left|\sup _{\substack{y \in Q \\
\|y\| \leqslant 1}}\right|\langle x, y\rangle_{Q} \mid<\infty\right\}= \\
& =\left\{x \in Q(A) \mid \exists z \in \mathscr{H} \forall y \in Q(A):\langle x, y\rangle_{Q}=\langle z, y\rangle\right\}
\end{aligned}
$$

and $A_{F} x=z$ for all $x \in D\left(A_{F}\right)$.
Then A_{F} is a self-adjoint operator and $Q\left(A_{F}\right)=Q,\left.A_{F}\right|_{D(A)}=A$.
Proof. 1) $D(A) \subset D\left(A_{F}\right)$ because if $x \in D(A)$, then for all $y \in D(A)$

$$
\langle x, y\rangle_{Q}=\langle A x, y\rangle
$$

and thus by denseness $\sup _{\substack{y \in Q(A) \\\|y\| \leqslant 1}}\left|\langle x, y\rangle_{Q}\right|<\infty$ and therefore $x \in D\left(A_{F}\right)$.
In particular, $D\left(A_{F}\right)$ is dense in $\left(\mathscr{H},\|\cdot\|_{\mathscr{H}}\right)$ and it is also dense in $\left(Q(A),\|\cdot\|_{Q}\right)$.
2) We prove that A_{F} is a symmetric operator. Take $x, y \in D\left(A_{F}\right) \subset Q(A)$. Then

$$
\left\langle A_{F} x, y\right\rangle=\langle x, y\rangle_{Q}=\overline{\langle y, x\rangle_{Q}}=\overline{\left\langle A_{F} y, x\right\rangle}=\left\langle x, A_{F} y\right\rangle .
$$

3) We prove that $D\left(A_{F}\right)=D\left(A_{F}^{*}\right)$. Assume that $x \in D\left(A_{F}^{*}\right)$ then

$$
\sup _{\substack{y \in D\left(A_{F}\right) \\\|y\| \leqslant 1}}\left|\left\langle x, A_{F} y\right\rangle\right|<\infty
$$

Then by the lemma below $x \in Q$ and thus $\left\langle x, A_{F} y\right\rangle=\langle x, y\rangle_{Q}$ and therefore

$$
\sup _{\substack{y \in D\left(A_{F}\right) \\\|y\| \leqslant 1}}\left|\langle x, y\rangle_{Q}\right|<\infty
$$

holds. Since $D\left(A_{F}\right)$ is dense in $\left(Q(A),\|\cdot\|_{Q}\right)$ we have

$$
\sup _{\substack{y \in Q(A) \\\|y\| \leqslant 1}}\left|\langle x, y\rangle_{Q}\right|<\infty \quad \therefore \quad x \in D\left(A_{F}\right) .
$$

Thus $D\left(A_{F}\right)$ is self-adjoint, $\left.A_{F}\right|_{D(A)}=A,\|x\|_{Q\left(A_{F}\right)}=\|x\|_{Q(A)}$ and therefore $Q\left(A_{F}\right)=$ $Q(A)$.
q.e.d.

Lemma 5.24. If $x \in \mathscr{H}$, and $\sup _{\substack{y \in D(A) \\\|y\| \leqslant 1}}|\langle x, A y\rangle|<\infty$, then $x \in Q$.

Proof. Because $D(A)$ is dense in \mathscr{H}, there exists a sequence $\left(x_{n}\right)_{n} \subset D(A)$ such that $x_{n} \xrightarrow{n \rightarrow \infty}$ x in \mathscr{H}. Then for all $y \in D(A)$

$$
\langle x, A y\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, A y\right\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, y\right\rangle_{Q}
$$

Then for all $n \in \mathbb{N}, y \mapsto\left\langle x_{n}, y\right\rangle_{Q}$ is a linear, continuous functional $\left(Q,\|\cdot\|_{Q}\right) \rightarrow \mathbb{C}$ and $\left\|\mathscr{L}_{n}\right\|=\left\|x_{n}\right\|_{Q}$.
The assumption that

$$
\sup _{\substack{y \in D(A) \\\|y\| \leqslant 1}}\left|\lim _{n \rightarrow \infty}\left\langle x_{n}, A y\right\rangle\right|<\infty
$$

implies by the uniform boundedness principle that $\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|_{Q}<\infty$.
Descending to a subsequence we may assume that $x_{n} \rightharpoonup z$ in Q by the Banach-Alaoglu Theorem 1.20 and therefore also $x_{n} \rightharpoonup z$ in \mathscr{H} and since $x_{n} \rightarrow x$ strongly in \mathscr{H} it follows that $x=z \in Q$.
q.e.d.

Remark 5.25. If A is a bounded from below, i.e. $A \geqslant-C$ for some constant C, then we can define the Friedrichs extension of A by

$$
A_{F}=(A+C+1)_{F}-C-1 .
$$

Example 5.26. Let $A=-\Delta-\frac{1}{|x|^{s}}$ in $L^{2}\left(\mathbb{R}^{3}\right)$. If $s<\frac{3}{2}$, then A is self-adjoint on $D(A)=H^{2}\left(\mathbb{R}^{3}\right)$ by Kato-Rellich. If $\frac{3}{2} \leqslant s<2$, then

$$
\langle u, A u\rangle=\int|\nabla u|^{2}-\int \frac{|u(x)|^{2}}{|x|^{s}} \mathrm{~d} s
$$

is well-defined on $H^{1}\left(\mathbb{R}^{d}\right)$. Then we can define a self-adjoint operator $A_{F}: D\left(A_{F}\right) \rightarrow$ $\mathscr{H}=L^{2}\left(\mathbb{R}^{3}\right)$ by the Friedrichs extension.
Note that $D\left(A_{F}\right) \neq H^{2}\left(\mathbb{R}^{3}\right)$ but $Q\left(A_{F}\right)=H^{1}\left(\mathbb{R}^{3}\right)$.

Remark 5.27. If $A: D(A) \rightarrow \mathscr{H}, A \geqslant-C$ then there exist self-adjoint extensions $A_{\text {min }}, A_{\text {max }}$ such that if B is a self-adjoint extension of A, then

$$
A_{\min } \leqslant B \leqslant A_{\max }
$$

in the sense that

$$
\left\langle u, A_{\min } u\right\rangle \leqslant\langle u, B u\rangle \leqslant\left\langle u, A_{\max } u\right\rangle .
$$

In fact, $A_{\max }=A_{F}$ and $A_{\min }$ is the so-called Krein extension.

Chapter 6

Quantum Dynamics

Given $A: D(A) \rightarrow \mathscr{H}$. We want to solve

$$
\left\{\begin{array}{l}
i \frac{d}{d t} x(t)=A x(t), \quad \text { for } t \in \mathbb{R} \\
x(0)=x_{0}
\end{array}\right.
$$

If A is a bounded, self-adjoint operator, then this equation has a unique solution

$$
x(t)=e^{-i t A} x_{0}
$$

for all $x_{0} \in \mathscr{H}$. Here

$$
e^{-i t A}=\sum_{n=0}^{\infty} \frac{(-i t A)^{n}}{n!}
$$

is well-defined, bounded operator, as A is. Since A is self-adjoint $e^{-i t A}$ is a unitary operator on \mathscr{H}, i.e. $\left\|e^{-i t A} x_{0}\right\|=\left\|x_{0}\right\|$.

Theorem 6.1 (Stone's Theorem). Let $A: D(A) \rightarrow \mathscr{H}$ be a self-adjoint operator. Then the equation

$$
\left\{\begin{array}{l}
i \frac{d}{d t} x(t)=A x(t), \quad \text { for } t \in \mathbb{R} \\
x(0)=x_{0}
\end{array}\right.
$$

has a unique solution for all $x_{0} \in D(A)$. In fact

$$
x(t)=e^{-i t A} x_{0}
$$

where $e^{-i t A}$ is defined via the Spectral theorem. Here the derivative means that for all t

$$
\lim _{s \rightarrow 0} \frac{x(t+s)-x(t)}{s}=A x(t)
$$

strongly in \mathscr{H}.
Proof. 1) Assume that $A=M_{a}$ on $\mathscr{H}=L^{2}(\Omega, \mu)$ and $D(A)=\left\{x \mid a x \in L^{2}\right\}$. Then

$$
x(t)(\xi)=e^{-i t a(\xi)} x_{0}(\xi) \in L^{2}
$$

Moreover, $x_{0} \in D(A)$ implies that $a x_{0} \in L^{2}$, thus also $a x(t) \in L^{2}$ and therefore $x(t) \in D(A)$.

The key-point here is that $\left|e^{-i t a(\xi)}\right|=1$.
2) Generally, for $A: D(A) \rightarrow \mathscr{H}$ self-adjoint, we have by the Spectral theorem a unitary operator $U: \mathscr{H} \rightarrow L^{2}(\Omega, \mu)$ such that $U A U^{*}=M_{a}$. Then you define

$$
e^{-i t A}=U^{*} M_{e^{-i t a}} U
$$

and then $x(t)=e^{-i t A} x_{0}$ is well-defined.
3) The differential equation holds as

$$
i \frac{d}{d t} e^{-i t a(\xi)}=a(\xi) e^{-i t a(\xi)}
$$

4) Concerning the conservation of the norm note that

$$
\begin{aligned}
\frac{d}{d t}\|x(t)\|^{2} & =\frac{d}{d t}\langle x(t), x(t)\rangle=\left\langle\frac{d}{d t} x(t), x(t)\right\rangle+\left\langle x(t), \frac{d}{d t} x(t)\right\rangle= \\
& =\langle-i A x(t), x(t)\rangle+\langle x(t),-i A x(t)\rangle=0
\end{aligned}
$$

Thus $\|x(t)\|=\left\|x_{0}\right\|$ for all $t \in \mathbb{R}$.
5) Concerning uniqueness assume that $x(t)$ and $y(t)$ are two solutions of differential equation, then $z(t)=x(t)-y(t)$ solves

$$
\left\{\begin{array}{l}
i \frac{d}{d t} z(t)=A z(t), \quad \text { for } t \in \mathbb{R} \\
z(0)=0
\end{array}\right.
$$

then by conservation of norm $\|z(t)\|=\|z(0)\|=0$, i.e. $x(t)=y(t)$ for all $t \in \mathbb{R}$.
q.e.d.

Theorem 6.2 (Stone's Theorem, Weak Solution). Let $A: D(A) \rightarrow \mathscr{H}$ be self-adjoint.
Then the equation

$$
\left\{\begin{aligned}
i \frac{d}{d t} x(t) & =A x(t) \\
x(0) & =x_{0} \in \mathscr{H}
\end{aligned}\right.
$$

has a unique weak solution $x(t) \in \mathscr{H}$, i.e. for all $\varphi \in D(A)$

$$
\left\{\begin{array}{l}
\frac{d}{d t}\langle i x(t), \varphi\rangle=\langle x(t), A \varphi\rangle \\
x(t) \xrightarrow{t \rightarrow 0} x_{0} \text { strongly in } \mathscr{H}
\end{array}\right.
$$

Moreover, the unique weak solution is $x(t)=e^{-i t A} x_{0}$.

Proof. 1) Take $x(t)=e^{-i t A} x_{0} \in \mathscr{H}$. Then $x(t) \xrightarrow{t \rightarrow 0} x_{0}$ strongly as follows from the Spectral theorem and dominated convergence.

Take $\varphi \in D(A)$. We prove that

$$
\frac{d}{d t}\langle i x(t), \varphi\rangle=\langle x(t), A \varphi\rangle
$$

By the Spectral theorem, we can assume that $A=M_{a}$ on $L^{2}(\Omega, \mu)$.
Then the above equation becomes

$$
\frac{d}{d t} \int \overline{i e^{-i t a(\xi)} x_{0}(\xi)} \varphi(\xi) \mathrm{d} \xi=\int \overline{i e^{-i t a(\xi)} x_{0}(\xi)} a(\xi) \varphi(\xi) \mathrm{d} \xi
$$

which is equivalent to

$$
\lim _{s \rightarrow t} \int(-i) \frac{e^{i t a(\xi)}-e^{i s a(\xi)}}{t-s} \overline{x_{0}(\xi)} \varphi(\xi) \mathrm{d} \xi=\int \overline{i e^{-i t a(\xi)} x_{0}(\xi)} a(\xi) \varphi(\xi) \mathrm{d} \xi
$$

This is correct by dominated convergence as for all $\xi \in \Omega$

$$
\lim _{s \rightarrow t} \frac{e^{i t a(\xi)}-e^{i s a(\xi)}}{t-s}=i a(\xi) e^{i t a(\xi)}
$$

and we have the majorant

$$
\begin{aligned}
\left|\frac{e^{i t a(\xi)}-e^{i s a(\xi)}}{t-s}\right| & =\left|\frac{e^{i(t-s) a(\xi)}-1}{t-s}\right|=\frac{\sqrt{(\cos ((t-s) \xi) a(\xi)-1)^{2}+\sin ((t-s) a(\xi))^{2}}}{|t-s|} \leqslant \\
& \leqslant 2|a(\xi)|
\end{aligned}
$$

Here $\varphi \in D(A)$ implies that $a(\xi) \varphi(\xi) \in L^{2}$ and thus that $\overline{x_{0}(\xi)} a(\xi) \varphi(\xi) \in L^{1}$. We conclude that $x(t)=e^{-i t A} x_{0}$ is a weak solution.
2) Assume that $x(t)$ is a weak solution. We need to prove that $x(t)=e^{-i t A} x_{0}$. The difficulty is that

$$
\frac{d}{d t}\langle x(t), x(t)\rangle=2 \mathfrak{R}\left\langle\frac{d}{d t} x(t), x(t)\right\rangle=-2 \mathfrak{R}\langle i A x(t), x(t)\rangle
$$

does not make sense as we only know that $x(t) \in \mathscr{H}$.

Indeed, take any $\varphi \in D(A)$, then

$$
\begin{aligned}
\frac{d}{d t}\left\langle x(t), e^{-i t A} \varphi\right\rangle & =\left\langle\frac{d}{d t} x(t), e^{-i t A} \varphi\right\rangle+\left\langle x(t), \frac{d}{d t} e^{-i t A} \varphi\right\rangle= \\
& =\left\langle x(t), i A e^{-i t A} \varphi\right\rangle+\left\langle x(t),(-i) A e^{-i t A} \varphi\right\rangle=0
\end{aligned}
$$

where we have to justify the first equality. Indeed,

$$
\begin{aligned}
\frac{d}{d t}\left\langle x(t), e^{-i t A} \varphi\right\rangle & =\lim _{s \rightarrow t} \frac{\left\langle x(t), e^{-i t A} \varphi\right\rangle-\left\langle x(s), e^{-i s A} \varphi\right\rangle}{t-s}= \\
& =\lim _{s \rightarrow t}\left\langle\frac{x(t)-x(s)}{t-s}, e^{-i t A} \varphi\right\rangle+\lim _{s \rightarrow t}\left\langle x(t), \frac{e^{-i t A} \varphi-e^{-i s A} \varphi}{t-s}\right\rangle= \\
& =\left\langle x(t), i A e^{-i t A} \varphi\right\rangle+\left\langle x(t),(-i) e^{-i t A} \varphi\right\rangle=0
\end{aligned}
$$

We may conclude that, if $x(t)$ is a weak solution, then for all $\varphi \in D(A)$ and all $t \in \mathbb{R}$

$$
\left\langle x(t), e^{-i t A} \varphi\right\rangle=\left\langle x_{0}, \varphi\right\rangle
$$

Consequently, since $e^{-i t A} x_{0}$ is another weak solution then

$$
\left\langle e^{-i t A} x_{0}, e^{-i t A} \varphi\right\rangle=\left\langle x_{0}, \varphi\right\rangle
$$

thus for all $\varphi \in D(A)$ and all $t \in \mathbb{R}$

$$
\left\langle x(t)-e^{-i t A} x_{0}, e^{-i t A} \varphi\right\rangle=0
$$

choosing $\varphi=e^{i t A} \varphi_{0}$ for some $\varphi_{0} \in D(A)$ yields that for all $\varphi_{0} \in D(A)$

$$
\left\langle x(t)-e^{-i t A} x_{0}, \varphi_{0}\right\rangle=0
$$

hence by the denseness of $D(A)$ in \mathscr{H}

$$
x(t)=e^{-i t A} x_{0}
$$

for all $t \in \mathbb{R}$.
q.e.d.

Remark 6.3. If $x(t)$ is a weak solution, then $\|x(t)\|=\left\|x_{0}\right\|$ for all $t \in \mathbb{R}$.

Definition 6.4. A family of unitary operators $\{U(t) \mid t \in \mathbb{R}\}$ on Hilbert space \mathscr{H} is called a strongly continuous one-parameter unitary group if

- $U(t+s)=U(t) U(s)=U(s) U(t)$
- $\lim _{s \rightarrow t} U(s) x=U(t) x$ strongly in \mathscr{H} for all $x \in \mathscr{H}$.

Theorem 6.5 (Stone's Theorem, Strongly Continuous One-Parameter Unitary Group).

1) If $A: D(A) \rightarrow \mathscr{H}$ is self-adjoint, then $U(t)=e^{-i t A}$ for $t \in \mathbb{R}$ forms a strongly continuous one-parameter unitary group.
2) If $\{U(t) \mid t \in \mathbb{R}\}$ is a strongly continuous one-parameter unitary group, then there exists a unique self-adjoint operator $A: D(A) \rightarrow \mathscr{H}$ such that $U(t)=e^{-i t A}$.

Moreover,

$$
D(A)=\left\{x \in \mathscr{H} \left\lvert\, \lim _{t \rightarrow 0} \frac{U(t) x-x}{t}\right. \text { exists strongly in } \mathscr{H}\right\}
$$

and for all $x \in D(A)$

$$
A x:=i \lim _{t \rightarrow 0} \frac{(U(t)-1) x}{t} .
$$

A is called the infinitesimal generator of $\{U(t) \mid t \in \mathbb{R}\}$.

Proof. 1) Trivial by the above!

2) Define the operator $A: D(A) \rightarrow \mathscr{H}$ via

$$
\begin{aligned}
D(A) & =\left\{x \in \mathscr{H} \left\lvert\, \lim _{t \rightarrow 0} \frac{U(t) x-x}{t}\right. \text { exists weakly in } \mathscr{H}\right\}= \\
& =\left\{x \in \mathscr{H} \mid \exists z \in \mathscr{H} \forall \varphi \in \mathscr{H}: \lim _{t \rightarrow \infty}\left\langle\frac{(U(t)-1) x}{t}, \varphi\right\rangle=\langle z, \varphi\rangle\right\}
\end{aligned}
$$

and for all $x \in D(A)$

$$
A x:=i \underset{t \rightarrow 0}{\mathrm{w}-\lim _{t \rightarrow 0}} \frac{(U(t)-1) x}{t} .
$$

Step 1 We prove hat $D(A)$ is dense in \mathscr{H}. For all $x \in \mathscr{H}$ and $f \in \mathscr{C}_{c}^{\infty}(\mathbb{R})$, define

$$
x_{f}=\int_{\mathbb{R}} f(t) U(t) x \mathrm{~d} t
$$

where $t \mapsto U(t) x$ is continuous. We prove that $x_{f} \in D(A)$. Indeed,

$$
\begin{aligned}
\frac{U(t)-1}{t} x_{f} & =\int_{\mathbb{R}} \frac{U(t)-1}{t} f(s) U(s) x \mathrm{~d} s=\int_{\mathbb{R}} f(x) \frac{U(t+s)-U(s)}{t} x \mathrm{~d} s= \\
& =\int_{\mathbb{R}} \frac{f(s-t)-f(s)}{t} U(t) x \mathrm{~d} s
\end{aligned}
$$

Now interchange the limit $t \rightarrow 0$ by using the dominated convergence theorem for Bochner integrals as for all $t \in \mathbb{R}$ there is some $\xi \in(s-t, t)$ such that

$$
\left|\frac{f(s-t)-f(s)}{t}\right|=\left|f^{\prime}(\xi)\right| \leqslant\left\|f^{\prime}\right\|_{L^{\infty}}<\infty
$$

where the last estimate follows from the compact support of f and thus f^{\prime}. Thus

$$
\lim _{t \rightarrow \infty} \frac{U(t)-1}{t} x_{f}=\lim _{t \rightarrow 0} \int_{\mathbb{R}} \frac{f(s-t)-f(t)}{t} U(s) x \mathrm{~d} s=-\int_{\mathbb{R}} f^{\prime}(s) U(s) x \mathrm{~d} s=-x_{f^{\prime}}
$$

Thus for all $x \in \mathscr{H}$ and all $f \in \mathscr{C}_{c}^{\infty}(\mathbb{R})$

$$
\lim _{t \rightarrow \infty} \frac{U(t)-1}{t} x_{f}=-x_{f^{\prime}}
$$

strongly in \mathscr{H}. This means that $x_{f} \in D(A)$ for all $x \in \mathscr{H}$ and all $f \in \mathscr{C}_{c}^{\infty}(\mathbb{R})$.

Now we need to prove that for all $x \in \mathscr{H}$ there exists a sequence $\left(f_{n}\right)_{n} \subset \mathscr{C}_{c}^{\infty}(\mathbb{R})$ such that $x_{f_{n}} \xrightarrow{n \rightarrow \infty} x$ strongly in \mathscr{H}.

Take any $f \in \mathscr{C}_{c}^{\infty}$ with $\int f=1$ and define $f_{n}(t)=n f(n t)$. Then

$$
x_{f_{n}}=\int_{\mathbb{R}} f_{n}(s) U(s) x \mathrm{~d} s=\int_{\mathbb{R}} n f(n s) U(s) x \mathrm{~d} s=\int_{\mathbb{R}} f(t) \underbrace{U\left(\frac{t}{n}\right)}_{\xrightarrow[R]{n \rightarrow \infty} x} x \mathrm{~d} t \xrightarrow{n \rightarrow \infty} \int_{\mathbb{R}} f(t) x=x
$$

strongly in \mathscr{H}. Thus $D(A)$ is dense in \mathscr{H}. We may again interchange the limit $n \rightarrow \infty$ and the integral by the dominated convergence theorem for Bochner integrals as

$$
\left\|f(t) U\left(\frac{t}{n}\right) x\right\|=|f(t)|\left\|U\left(\frac{t}{n}\right) x\right\|=|f(t)|\|x\|
$$

which is an integrable majorant.

Step 2 We need to prove that A is symmetric. For $x, y \in D(A)$ we have by the assumed weak convergence

$$
\begin{aligned}
\langle x, A y\rangle & =\lim _{t \rightarrow 0}\left\langle x, i \frac{U(t)-1}{t} y\right\rangle=\lim _{t \rightarrow 0}\left\langle-i \frac{U(t)^{*}-1}{t} x, y\right\rangle=\lim _{t \rightarrow 0}\left\langle i \frac{U(-t)-1}{-t} x, y\right\rangle= \\
& =\langle A x, y\rangle
\end{aligned}
$$

where we used that for a unitary operator $U(t)^{*}=U(t)^{-1}=U(-t)$ as

$$
U(t) U(-t)=U(-t) U(t)=U(0)=\mathbb{I}
$$

Step 3 We need to prove that A is self-adjoint, i.e. $D\left(A^{*}\right)=D(A)$. Take $x \in D\left(A^{*}\right)$, i.e.

$$
\sup _{\substack{y \in D(A) \\\|y\| \leqslant 1}}|\langle x, A y\rangle|<\infty \quad \therefore \sup _{\substack{y \in D(A) \\\|y\| \leqslant 1}}\left|\lim _{t \rightarrow 0}\left\langle x, i \frac{U(t)-1}{t} y\right\rangle\right|<\infty
$$

Since

$$
\lim _{t \rightarrow 0}\left\langle x, i \frac{U(t)-1}{t} y\right\rangle=\lim _{t \rightarrow 0}\left\langle i \frac{U(-t)-1}{-t} x, y\right\rangle=\lim _{t \rightarrow 0}\left\langle i \frac{U(t)-1}{t} x, y\right\rangle
$$

it follows that

$$
\sup _{\substack{y \in D(A) \\\|y\| \leqslant 1}}\left|\lim _{t \rightarrow 0}\left\langle i \frac{U(t)-1}{t} x, y\right\rangle\right|<\infty
$$

If we define for all $y \in D(A)$

$$
\mathscr{L}_{t}(y):=\left\langle i \frac{U(t)-1}{t} x, y\right\rangle
$$

then \mathscr{L}_{t} can be extended to be a bounded functional on \mathscr{H} and since $\lim _{t \rightarrow 0} \mathscr{L}_{t}(y)$ is finite it follows that for every $y \in \mathscr{H}$

$$
\sup _{t \in \mathbb{R}}\left|\mathscr{L}_{t}(y)\right|
$$

is bounded. Note that $\left\|\mathscr{L}_{t}\right\| \leqslant \frac{2}{t}\|x\|$ which is bounded for $|t| \rightarrow \infty$.

Thus by the uniform bounded principle, $\sup _{t}\left\|\mathscr{L}_{t}\right\| \leqslant C<\infty$, i.e. for all t

$$
\left\|\frac{U(t)-1}{t} x\right\| \leqslant C
$$

Take any sequence $t_{n} \xrightarrow{n \rightarrow \infty} 0$, then the sequence

$$
\left(\frac{U\left(t_{n}\right)-1}{t_{n}} x\right)_{n}
$$

is bounded in \mathscr{H} and thus by the Banach-Alaoglu Theorem 1.20 we can assume by descending to a subsequence that

$$
\frac{U\left(t_{n}\right)-1}{t_{n}} x \xrightarrow{n \rightarrow \infty} z \in \mathscr{H}
$$

weakly. Here the limit z is independent of the choice of $\left(t_{n}\right)_{n}$ as for all $\varphi \in D(A)$

$$
\langle z, \varphi\rangle=\lim _{n \rightarrow \infty}\left\langle\frac{U\left(t_{n}\right)-1}{t_{n}} x, \varphi\right\rangle=\lim _{n \rightarrow \infty},\left\langle\frac{U\left(-t_{n}\right)-1}{t_{n}} x \varphi\right\rangle=\langle x,-i A \varphi\rangle
$$

Then because the limit z is unique we can conclude that

$$
\frac{U(t)-1}{t} x \stackrel{t \rightarrow 0}{ } z
$$

Thus for all $x \in D\left(A^{*}\right)$ there limit $\mathrm{w}-\lim _{t \rightarrow} \frac{U(t)-1}{t} x$ exists and thus $x \in D(A)$.
Therefore $A=A^{*}$.
Step 4 We show that $U(t)=e^{-i t A}$. We can easily check that $U(t) A=A U(t)$ on $D(A)$. We know that for all $x \in D(A)$ that $i \frac{U(t)-1}{t} x \rightharpoonup A x$, thus $x(t)=U(t) x$ is a weak solution to

$$
\left\{\begin{array}{l}
i \frac{d}{d t} x(t)=A x(t) \\
x(0)=x
\end{array}\right.
$$

i.e. for all $\varphi \in D(A)$

$$
\frac{d}{d t}\langle i x(t), \varphi\rangle=\langle x(t), A \varphi\rangle
$$

Thus $x(t)=U(t) x$ and $e^{-i t A} x$ are two weak solutions thus $U(t) x=e^{-i t A} x$ for all $x \in \mathscr{H}$ by the uniqueness of weak solutions. Hence $U(t)=e^{-i t A}$

Step 5

$$
\begin{aligned}
D(A) & =\left\{x \in \mathscr{H} \left\lvert\, \operatorname{w}_{t \rightarrow 0}-\lim _{t \rightarrow 0} \frac{U(t)-1}{t} x\right. \text { exists }\right\}= \\
& =\left\{x \in \mathscr{H} \left\lvert\, \lim _{t \rightarrow 0} \frac{U(t)-1}{t} x\right. \text { exists }\right\}
\end{aligned}
$$

Remark 6.6. In Mathematical Quantum Mechanics we are generally interested in the following three questions

- Is A self-adjoint?
- $\sigma(A)$ spectral properties
- What is the behaviour of $e^{-i t A}$ as $t \rightarrow \infty$. Scattering Theory.

Chapter 7

Bound States

Remark 7.1. Consider the spectrum of the Hydrogen atom Schrödinger operator $A=$ $-\Delta+V(x), V(x)=-\frac{1}{|x|}$. This potential goes to 0 at infinity and its spectrum consists of two parts: $\{\lambda \in \sigma(A) \mid \lambda<0\}$ which is discrete, i.e. its is made up of disjoint points, and $\{\lambda \in \sigma(A) \mid \lambda \geqslant 0\}$ which is continuous.

Definition 7.2. Let $A: D(A) \rightarrow \mathscr{H}$ be a self-adjoint operator.
The discrete spectrum is defined to be

$$
\sigma_{\text {disc }}(A):=\{\lambda \in \sigma(A) \mid \lambda \text { is an eigenvalue with finite multiplicity }\} .
$$

The essential spectrum is its compliment

$$
\sigma_{\mathrm{ess}}(A):=\sigma(A) \backslash \sigma_{\mathrm{disc}}(A)
$$

$\lambda \in \sigma_{\text {ess }}(A)$ iff λ is not an eigenvalue or it has infinite multiplicity.

Remark 7.3. Recall that λ is an eigenvalue of A iff there exists a non-zero vector in $D(A)$ such that

$$
A v=\lambda v
$$

Theorem 7.4 (Weyl Sequences). Let $A: D(A) \rightarrow \mathscr{H}$ be a self-adjoint operator and $\lambda \in \mathbb{C}$. Then

1) $\lambda \in \sigma(A)$ iff there exists a of unit-vectors sequence $\left(u_{n}\right)_{n} \subset D(A)$ such that

$$
\left\|(A-\lambda) u_{n}\right\| \xrightarrow{n \rightarrow \infty} 0
$$

The sequence $\left(u_{n}\right)_{n}$ is called a singular sequence, or Weyl sequence for λ.
2) $\lambda \in \sigma_{\text {disc }}(A)$ iff $\lambda \in \sigma(A)$ and any Weyl sequence $\left(u_{n}\right)_{n}$ for λ is pre-compact, i.e. it contains a subsequence $\left(u_{n_{k}}\right)_{k}$ converging strongly in \mathscr{H}.
3) $\lambda \in \sigma_{\text {ess }}(A)$ iff there exists a Weyl sequence $\left(u_{n}\right)_{n}$ converging weakly to 0 in \mathscr{H} or equivalently iff there exists an orthonormal Weyl sequence $\left(u_{n}\right)_{n}$ for λ.

Proof. By the spectral theorem we may assume w.l.o.g. that $A=M_{a}$ on $L^{2}(\Omega, \mu)$ and $\sigma(A)=\operatorname{ess} \operatorname{ran}(a)$.

1) Let $\lambda \in \sigma(A)$. We have to find a Weyl sequence $\left(u_{n}\right)_{n}$, i.e. a sequence of function satisfying $\left\|u_{n}\right\|_{L^{2}}=1,\left\|a u_{n}\right\|_{L^{2}}<\infty$ and $\left\|(a-\lambda) u_{n}\right\| \xrightarrow{n \rightarrow \infty} 0$, i.e.

$$
\lim _{n \rightarrow \infty} \int_{\Omega}|a(\xi)-\lambda|^{2}\left|u_{n}(\xi)\right|^{2} \mathrm{~d} \mu(\xi)=0
$$

By assumption we have $\lambda \in \sigma(A)=\operatorname{ess} \operatorname{ran}(a)$, i.e. for all $\varepsilon>0$

$$
\mu(\{\xi||a(\xi)-\lambda|<\varepsilon\})>0
$$

We choose

$$
u_{n}=\frac{\mathbf{1}_{\left\{|a(\xi)-\lambda|<\frac{1}{n}\right\}}}{\mu\left(\left\{|a(\xi)-\lambda|<\frac{1}{n}\right\}\right)}
$$

for which $\left\|u_{n}\right\|_{L^{2}}=1$ holds. Then

$$
\int_{\Omega}|a(\xi)-\lambda|^{2}\left|u_{n}(\xi)\right|^{2} \mathrm{~d} \mu(\xi) \leqslant \int_{\Omega} \frac{1}{n^{2}}\left|u_{n}(\xi)\right|^{2} \mathrm{~d} \mu(\xi)=\frac{\left\|u_{n}\right\|_{L^{2}}^{2}}{n^{2}}=\frac{1}{n^{2}} \xrightarrow{n \rightarrow \infty} 0
$$

Conversely, assume that there exists a Weyl sequence $\left(u_{n}\right)_{n}$ for λ. We have to prove
that $\lambda \in \sigma(A)=\operatorname{ess} \operatorname{ran}(a)$. Assume that $\lambda \notin \operatorname{ess} \operatorname{ran}(a)$ then there exists a $\varepsilon>0$ such that

$$
\mu(\{|a-\lambda|<\varepsilon\})=0
$$

Then $|a(\xi)-\lambda| \geqslant \varepsilon$ for almost every $\xi \in \Omega$. It follows that

$$
0 \stackrel{\infty \leftarrow n}{\longleftarrow} \int_{\Omega}|a(\xi)-\lambda|^{2}\left|u_{n}(\xi)\right|^{2} \mathrm{~d} \mu(\xi) \geqslant \varepsilon^{2} \int_{\Omega}\left|u_{n}(\xi)\right|^{2} \mathrm{~d} \mu(\xi) \geqslant \varepsilon^{2}
$$

where the leftmost convergence from the fact that $\left(u_{n}\right)_{n}$ is a Weyl sequence. This is a contradiction. z
2) Assume that $\lambda \in \sigma_{\text {disc }}(A)$ and let $\left(u_{n}\right)_{n}$ be a Weyl sequence for λ. We have to prove that $\left(u_{n}\right)_{n}$ is pre-compact. By the lemma below it follows from $\lambda \in \sigma_{\text {disc }}(A)$ that there exists an $\varepsilon>0$ such that

$$
\mu\left(a^{-1}((\lambda-\varepsilon, \lambda+\varepsilon) \backslash\{\lambda\})\right)=0
$$

Then since $\left(u_{n}\right)_{n}$ is Weyl sequence

$$
0 \stackrel{\infty \leftarrow n}{\longleftarrow} \int_{\Omega}|a(\xi)-\lambda|^{2}\left|u_{n}(\xi)\right|^{2} \mathrm{~d} \mu(\xi)=\int_{a^{-1}(\lambda)} \cdots+\int_{\Omega \backslash a^{-1}(\lambda)} \cdots \geqslant \int_{a^{-1}(\lambda)} \varepsilon^{2}\left|u_{n}(\xi)\right|^{2} \mathrm{~d} \mu(\xi)
$$

thus

$$
\int_{a^{-1}(\lambda)}\left|u_{n}(\xi)\right|^{2} \mathrm{~d} \mu(\xi) \xrightarrow{n \rightarrow \infty} 0
$$

It therefore suffices to show that

$$
\left(\mathbf{1}_{a^{-1}(\lambda)} u_{n}(\xi)\right)_{n}
$$

is pre-compact in L^{2}. However, as $\lambda \in \sigma_{\text {disc }}(A)$ iff λ is an eigenvalue of M_{a} with finite multiplicity which in turn is equivalent to $\mathbf{1}_{a^{-1}(\lambda)} L^{2}$ being a non-empty, finitedimensional subspace of $L^{2}(\Omega, \mu)$.

Thus since $\left(u_{n}\right)_{n}$ is bounded, $\left(\mathbf{1}_{a^{-1}(\lambda)} u_{n}(\xi)\right)_{n}$ is a bounded subset of a finite-dimensional Hilbert space and is thus pre-compact.

Note here that u is an eigenfunction of M_{a} with eigenvalue of λ, iff

$$
\begin{aligned}
M_{a} u=\lambda u & \Longleftrightarrow a(\xi) u(\xi)=\lambda u(\xi) \text { for a.e. } \xi \Longleftrightarrow \\
& \Longleftrightarrow a(\xi)=\lambda \text { for a.e. } \xi \in \operatorname{supp}(u) \Longleftrightarrow \\
& \Longleftrightarrow u \text { is supported on } a^{-1}(\lambda) \Longleftrightarrow \\
& \Longleftrightarrow u \in \mathbf{1}_{a^{-1}(\lambda)} L^{2}(\Omega, \mu) \text { the eigenspace of } M_{a} \text { with eigenvalue } \lambda
\end{aligned}
$$

Conversely, assume that $\lambda \in \sigma(A)$ and that for every Weyl sequence $\left(u_{n}\right)_{n}$, there exists a subsequence converging strongly. We have to prove that $\lambda \in \sigma_{\text {disc }}(A)$.

We shall fist prove that λ is an isolated point in $\sigma(A)=$ ess $\operatorname{ran}(a)$. Assume that λ is not an isolated point. The for all $\varepsilon>0$

$$
\mu\left(a^{-1}((\lambda-\varepsilon, \lambda+\varepsilon) \backslash\{\lambda\})\right)>0 .
$$

Choose a positive, monotonously decreasing sequence $\left(\varepsilon_{n}\right)_{n}$ converging to 0 such that the following sequence of sets have positive measure

$$
B_{n}:=\left(a^{-1}\left(\left(\lambda-\varepsilon_{n}, \lambda-\varepsilon_{n+1}\right) \cup\left(\lambda+\varepsilon_{n+1}, \lambda+\varepsilon_{n}\right)\right)\right)
$$

Define $u_{n}:=\frac{\mathbf{1}_{B_{n}}}{\mu\left(B_{n}\right)}$, then $\left(u_{n}\right)_{n}$ is a Weyl sequence, as $\left\|u_{n}\right\|_{L^{2}}=1$, and

$$
\int_{\Omega}|a(\xi)-\lambda|^{2}\left|u_{n}(\xi)\right|^{2} \mathrm{~d} \mu(\xi) \leqslant \int_{\Omega} \varepsilon_{n}^{2}\left|u_{n}(\xi)\right| \mathrm{d} \mu(\xi)=\varepsilon_{n}^{2} \xrightarrow{n \rightarrow \infty} 0
$$

But $\left(u_{n}\right)_{n}$ is an orthonormal family because $\operatorname{supp} u_{n} \cap \operatorname{supp} u_{m}=\emptyset$ if $n \neq m$. Thus $u_{n} \xrightarrow{n \rightarrow \infty} 0$ weakly. Thus u_{n} cannot have any strongly convergent subsequence since any possible limit would need to have norm 1 which is a contradiction to the above. $\&$ If λ is an isolated point of ess $\operatorname{ran}(a)$ then $a^{-1}(\lambda)$ has to have positive measure (why?). Thus λ is an eigenvalue with eigenvector

$$
u=\frac{\mathbf{1}_{a^{-1}(\lambda)}}{\mu\left(a^{-1}(\lambda)\right)} .
$$

Moreover, the eigenspace of λ has to finite-dimension, for otherwise we could choose an infinite sequence $\left(u_{n}\right)_{n}$ of orthonormal vectors within it. This would form a Weyl sequence weakly converging to zero contradicting its pre-compactness.
3) Let $\lambda \in \sigma_{\text {ess }}(A)$. We need to find a Weyl sequence $\left(u_{n}\right)_{n}$ that is an orthonormal family. If λ possesses an infinite-dimensional eigenspace, then we can choose an orthonormal basis $\left(u_{n}\right)_{n}$ of that eigenspace which would also be a Weyl sequence.

If λ is not an isolated point in ess $\operatorname{ran}(a)$, then for all $\varepsilon>0$

$$
\mu\left(a^{-1}((\lambda-\varepsilon, \lambda+\varepsilon) \backslash\{\lambda\})\right)>0
$$

Then we can define a Weyl sequence $\left(u_{n}\right)_{n}$ as above, with $\operatorname{supp} u_{n} \cap \operatorname{supp} u_{m}=\emptyset$ for $n \neq m$ thus forming an orthonormal basis.

Conversely, if there exists a Weyl sequence $\left(u_{n}\right)_{n}$, such that $u_{n} \xrightarrow{n \rightarrow \infty} 0$ weakly. Then $\lambda \notin \sigma_{\text {disc }}(A)$ and thus $\lambda \in \sigma_{\text {ess }}(A)$.

Lemma 7.5. $\lambda \in \sigma_{\text {disc }}(A)$ implies that λ is an isolated point in the spectrum of A, i.e. there exists an $\varepsilon>0$ such that

$$
\mu\left(a^{-1}((\lambda-\varepsilon, \lambda+\varepsilon) \backslash\{\lambda\})\right)=0
$$

7.1 Weyl Theory

Definition 7.6. Let $A: D(A) \rightarrow \mathscr{H}$ be a self-adjoint operator and $B: D(A) \rightarrow$ \mathscr{H}. We say that B is A-relatively compact iff $B(A+i)^{-1}$ is a compact operator on \mathscr{H}, or equivalently for every bounded sequence $\left(u_{n}\right)_{n}$ in $\left(D(A),\|\cdot\|_{A}\right)$, there exists a subsequence $\left(u_{n_{k}}\right)_{k}$ such that $B u_{n_{k}}$ converges strongly in \mathscr{H} (why?).

Theorem 7.7 (Weyl). Let $A: D(A) \rightarrow \mathscr{H}$ be a self-adjoint operator and $B: D(A) \rightarrow$ \mathscr{H} symmetric and A-relatively compact. Then

1) B is A-relatively bounded with arbitrarily small bound ε, i.e. for all $\varepsilon>0$, there
exists a constant C_{ε} such that for all $u \in D(A)$

$$
\|B u\| \leqslant \varepsilon\|A u\|+C_{\varepsilon}\|u\| .
$$

Consequently, $A+B$ is self-adjoint on $D(A)$ by the Kato-Rellich Theorem 5.12.
2) $\sigma_{e s s}(A+B)=\sigma_{e s s}(A)$.

Proof. 1) We shall prove this by showing that for any $\varepsilon>0$

$$
\lim _{\mu \rightarrow \infty}\left\|B(A+i \mu)^{-1}\right\|<\varepsilon
$$

or equivalently

$$
\lim _{\mu \rightarrow \infty}\left\|B(A+i \mu)^{-1}\right\|=0
$$

For $\mu>0$ write

$$
B(A+i \mu)^{-1}=\underbrace{B(A+i)^{-1}}_{\text {compact }} \underbrace{(A+i)(A+i \mu)^{-1}}_{\text {bounded }}
$$

The result now directly follows from the lemma below.
2) Let $\lambda \in \sigma(A)$ then there exists a Weyl sequence of unit vectors $\left(u_{n}\right)_{n} \subset D(A)$, such that $(A-\lambda) u_{n} \xrightarrow{n \rightarrow \infty} 0$ and $u_{n} \xrightarrow{n \rightarrow \infty} 0$. Then to prove that $\left(u_{n}\right)_{n}$ is a Weyl sequence for $A+B$ it suffices to show that $B u_{n} \xrightarrow{n \rightarrow \infty} 0$ strongly in \mathscr{H}.

To see this note that
strongly.

The converse follows by replacing A with $A+B$ and B with $-B$ as B, and thus $-B$ are relatively $A+B$-compact. To see this note that

$$
B(A+B+i)^{-1}=B\left(\left(1+B(A+i)^{-1}\right)(A+i)\right)^{-1}=\underbrace{B(A+i)^{-1}}_{\text {compact }}\left(1+B(A+i)^{-1}\right)^{-1}
$$

The rightmost operator is bounded. To see this note that as $B(A+i)^{-1}$ is compact

$$
B(A+i)^{-1}=\sum_{n} \lambda_{n}\left|v_{n}\right\rangle\left\langle v_{n}\right| .
$$

Then $1+B(A+i)^{-1}$ has a bounded inverse iff there is an open neighbourhood of -1 not disjoint from $\left(\lambda_{n}\right)_{n}$. This is the case since $-1 \in \rho\left(B(A+i)^{-1}\right)$. Suppose that $-1 \in \sigma\left(B(A+i)^{-1}\right)$ then it must be an eigenvalue and therefore there must exist some $u \in \mathscr{H}$ such that

$$
B(A+i)^{-1} u=-u \Longleftrightarrow B v=-(A+i) v \Longleftrightarrow(A+B) v=-i v
$$

where $v \in D(A)$ such that $(A+i) v=u$, which exists since A is self-adjoint. Now the rightmost equality is a contradiction since $A+B$ is self-adjoint.
q.e.d.

Lemma 7.8. (i) Let A be a self-adjoint operator. Then for all $u \in \mathscr{H}$

$$
\lim _{\mu \rightarrow \infty}\left\|(A+i)(A+i \mu)^{-1} u\right\|=0
$$

(ii) Let B be a compact operator, and $\left(A_{n}\right)_{n}$ a sequence of bounded operator such that for all $u \in \mathscr{H},\left\|A_{n} u\right\| \xrightarrow{n \rightarrow \infty} 0$, then $\left\|B A_{n}\right\| \xrightarrow{n \rightarrow \infty} 0$.

Proof. Exercise! q.e.d.

Example 7.9. Let $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a potential with $V \in L^{2}\left(\mathbb{R}^{d}\right)+L^{p}\left(\mathbb{R}^{d}\right), 2 \leqslant p<\infty$.
Then $V(-\Delta)$-relatively compact (Exercise!), and thus

$$
\sigma_{\mathrm{ess}}(-\Delta+V)=\sigma_{\mathrm{ess}}(-\Delta)=[0, \infty)
$$

For example this holds for $V(x)=-\frac{1}{|x|}$ in \mathbb{R}^{3}.

7.2 Bound States

Definition 7.10. Let A be a self-adjoint operator. If u is an eigenfunction of A with eigenvalue λ outside the essential spectrum, then u is called a bound state.

We shall now investigate two questions concerning bound states:

1) How many bound states are there?
2) What are the basic properties of bound states.

Theorem 7.11 (Min-Max Principle). Let $A: D(A) \rightarrow \mathscr{H}$ be a self-adjoint operator and bound from below. Define the $n^{\text {th }}$ min-max value or singular value for $n \in \mathbb{N}$ to be

$$
\mu_{n}=\inf _{\substack{M \subset D(A) \\ \operatorname{dim} M=n \\ u \in u \|=1}} \max _{\substack{ \\\operatorname{dim}}}\langle u, A u\rangle
$$

1) μ_{n} is increasing, i.e. $\mu_{1} \leqslant \mu_{2} \leqslant \cdots$ with $\mu_{n} \xrightarrow{n \rightarrow \infty} \mu_{\infty}$ where $\mu_{\infty}=\inf \sigma_{\text {ess }}(A)$.
2) If $\mu_{n}<\mu_{\infty}$, then μ_{n} is the $n^{\text {th }}$ lowest eigenvalue of A.

Proof. Look at

$$
\mu_{1}=\inf _{\substack{u \in D(A) \\\|u\|=1}}\langle u, A u\rangle=\inf \sigma(A) \in \sigma(A)
$$

There are two possibilities.

1) If $\mu_{1}=\mu_{\infty}$, we need to prove that $\mu_{\infty}=\inf \sigma_{\text {ess }}(A)$. We know that

$$
\mu_{\infty}=\mu_{1}=\inf \sigma(A) \leqslant \inf \sigma_{\text {ess }}(A)
$$

so it is enough to prove that $\mu_{\infty} \in \sigma_{\text {ess }}(A)$.
2) If $\mu_{1}<\mu_{\infty}$, we need to prove that μ_{1} is an eigenvalue.

Then we proceed by an induction argument: Split $H=W \oplus W^{\perp}, W=\operatorname{span}\left\{u_{1}\right\}$, where $A u_{1}=\mu_{1} u_{1}$ then $A: W \rightarrow W$ and thus $A: W^{\perp} \rightarrow W^{\perp}$. Thus we consider $\left.A\right|_{W^{\perp}}$ instead for which we have

$$
\mu_{n}\left(\left.A\right|_{W^{\perp}}\right)=\mu_{n+1}(A)
$$

Let us check the details. By the spectral theorem, we may assume w.l.o.g. that $A=M_{a}$ on $L^{2}(\Omega, \nu)$. Consider

$$
\mu_{1}=\inf _{\|u\|=1}\langle u, A u\rangle=\inf \sigma(A) .
$$

- If μ_{1} is an isolated point of $\sigma(A)$ or if $\nu\left(a^{-1}\left(\mu_{1}\right)\right)>0$, then μ_{1} is an eigenvalue of A (the proof of this is similar to that of Weyl theory) and we can proceed by the induction argument.

If μ_{1} has infinite multiplicity then trivially $\mu_{n}=\mu_{1}$ for all $n \in \mathbb{N}$.

- If μ_{1} is not an isolated point of $\sigma(A)$, and $\nu\left(a^{-1}\left(\mu_{1}\right)\right)=0$ (i.e. $\left.\mu_{1} \in \sigma_{\text {ess }}(A)\right)$ then we have $\mu_{1}=\mu_{\infty}$. Indeed, we will prove that $\mu_{n}=\mu_{1}$ for all $n \in \mathbb{N}$.

Since $\mu_{1} \in \sigma(A)$ we have for all $\varepsilon>0$

$$
\nu\left(a^{-1}\left(\mu_{1}-\varepsilon, \mu_{1}+\varepsilon\right)\right)>0
$$

but for any positive, monotonous zero sequence $\left(\varepsilon_{n}\right)_{n}$

$$
\lim _{n \rightarrow \infty} \nu\left(a^{-1}\left(\mu_{1}-\varepsilon_{n}, \mu_{1}+\varepsilon_{n}\right)\right)=\nu\left(a^{-1}\left(\mu_{1}\right)\right)=0
$$

Furthermore, we can choose the sequence in such a way that

$$
\nu\left(a^{-1}\left(\mu_{1}-\varepsilon_{n}, \mu_{1}+\varepsilon_{n}\right)\right)>\nu\left(a^{-1}\left(\mu_{1}-\varepsilon_{n+1}, \mu_{1}+\varepsilon_{n+1}\right)\right)
$$

Then define $\varphi_{n}=\frac{\mathbf{1}_{\Omega_{n}}}{\sqrt{\nu\left(\Omega_{n}\right)}}$ where

$$
\Omega_{n}=a^{-1}\left(\left(\mu_{1}-\varepsilon_{n}, \mu_{1}+\varepsilon_{n}\right) \backslash\left(\mu_{1}-\varepsilon_{n+1}, \mu_{1}+\varepsilon_{n+1}\right)\right)
$$

which is an orthonormal family in $L^{2}(\Omega)$. Define $M_{m, n}:=\operatorname{span}\left\{\varphi_{m}, \varphi_{m+1}, \ldots, \varphi_{m+n-1}\right)$, $\operatorname{dim} M_{m, n}=n$. Then for all $u \in M_{n}$ with $\|u\|=1$

$$
\langle u, A u\rangle=\int_{\Omega} a(\xi)|u(\xi)| \mathrm{d} \nu(\xi) \leqslant \max _{k=m, \ldots, m+n-1}\left\langle\varphi_{k}, A \varphi_{k}\right\rangle \leqslant \mu_{1}+\varepsilon_{m}
$$

Thus for all $m \in \mathbb{N}$

$$
\mu_{n}(A) \leqslant \max _{\substack{u \in M_{m, n} \\\|u\|=1}}\langle u, A u\rangle \leqslant \mu_{1}+\varepsilon_{m}
$$

taking m to infinity we thus find that

$$
\mu_{n}(A) \leqslant \mu_{1}
$$

which proves the claim that $\mu_{1}=\mu_{\infty}$ and together with the case of an eigenfunction of infinite multiplicity, then if $\mu_{1} \in \sigma_{\text {ess }}(a)$ then $\mu_{\infty}=\inf \sigma_{\text {ess }}(A)$ and $\mu_{\infty}=\inf \sigma_{\text {ess }}(A)$.
q.e.d.

Remark 7.12.1) (Max-Min Principle) We also have

$$
\mu_{n}(A)=\sup _{\substack{M_{n-1} \subset D(A) 8 \\ \operatorname{dim} M_{n-1}=n-1}} \inf _{\substack{\perp M_{n-1} \\\|u\|=1}}\langle u, A u\rangle .
$$

In particular if μ, \ldots, μ_{n-1} are eigenvalues with eigenfunctions u_{1}, \ldots, u_{n-1} then

$$
\mu_{n}(A)=\inf _{\substack{u \perp\left\{u_{1}, \ldots, u_{n-1}\right\} \\\|u\|=1}}\langle u, A u\rangle
$$

2) $\mu_{n}(A)$ is determined by the quadratic form of A, i.e.

$$
\mu_{n}(A)=\inf _{\substack{M \subset Q(A) \\ \operatorname{dim} M=n \\ u \in M \\ u}} \max _{n=1} Q(u)
$$

where $Q(u)=\langle u, A u\rangle$ if $u \in D(A)$. If B is a symmetric operator bounded from below let B_{F} be its Friedrichs extension then

$$
\mu_{n}(B)=\mu_{n}\left(B_{F}\right)
$$

3) The mapping $A \mapsto \mu_{n}(A)$ is monotone

$$
A \geqslant B \quad \Longrightarrow \quad \mu_{n}(A) \geqslant \mu_{n}(B)
$$

and thus for $B \geqslant 0$

$$
\mu_{n}(A+B) \geqslant \mu_{n}(A)
$$

Theorem 7.13. Consider $A=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{3}\right)$ with $V \in L^{2}+L^{p}, \infty>p>2$. Then A is self-adjoint on $D(A)=H^{2}$ and $\sigma_{\text {ess }}(A)=[0, \infty)$.

1) If $V(x) \leqslant-\frac{1}{|x|^{a}}$ for $|x|$ large enough and $0<a<2$, then A infinitely many negative eigenvalues.
2) If $V(x) \geqslant-\frac{1}{|x|^{a}}$ for $|x|$ large and $a>2$, then A has finitely many negative eigenvalues.

Sketch of Proof. 1) From the min-max principle, we need to show that $\mu_{n}(A)<0=$ $\inf \sigma_{\text {ess }}(A)=\mu_{\infty}$ for all $n \geqslant 1$. We have to find an orthonormal family $\left(\varphi_{n}\right)_{n}$ with disjoint support such that $\left\langle\varphi_{n}, A \varphi_{n}\right\rangle<0$ for all $n \geqslant 1$.
2) Again by the min-max principle we have to prove that fro some $\mu_{n}(A) \geqslant 0$ for n large enough. Note that

$$
A=-\Delta+V=-\frac{\Delta}{2}+V \mathbf{1}_{|x| \leqslant R}+\underbrace{\left(-\frac{\Delta}{2}\right)}_{\geqslant \frac{1}{8|x|^{2}}}+\underbrace{V \mathbf{1}_{|x| \geqslant R}}_{\geqslant-\frac{1}{|x|}} \geqslant-\frac{\Delta}{2}+V \mathbf{1}_{|x| \leqslant R}=: B
$$

for R large enough since $a>2$. So $\mu_{n}(A) \geqslant \mu_{n}(B)$ and it suffice to prove that $\mu_{n}(B) \geqslant 0$ if n is large. This step allows us to assume that V has compact support. Assume that B infinitely many eigenvalues below 0 , i.e. there exists an orthonormal family $\left(u_{n}\right)_{n}$ of eigenfunctions such that

$$
-\frac{1}{2} \Delta u_{n}+V u_{n}=\mu_{n} u_{n}
$$

We can check that u_{n} is bound in $H^{2}\left(\mathbb{R}^{3}\right)$ thus by the Sobolev embedding theorem $u_{n} \xrightarrow{n \rightarrow \infty} u$ strongly in $L_{\text {loc }}^{\infty}$. On the other hand, $\left(u_{n}\right)_{n}$ is an orthonormal family and thus weakly converges to 0 in L^{2}. Hence $u_{n} \rightarrow 0$ in $L_{\text {loc }}^{\infty}$.
$V u_{n} \rightarrow 0$ strongly in L^{2} because $V \in L^{2}$ and V has compact support. Thus

$$
-\Delta u_{n}=-V u_{n}+\mu_{n} u_{n} \xrightarrow{n \rightarrow \infty} 0
$$

strongly in L^{2}. However, $\left(-\Delta-\mu_{n}\right) u_{n}=-V u_{n}$ hence $\left\|u_{n}\right\|=1$ and

$$
u_{n}=-\underbrace{\left(-\Delta-\mu_{n}\right)^{-1}} \rightarrow(-\Delta)^{-1} \underbrace{V u_{n}}_{\rightarrow 0}
$$

which is a contradiction (why?).
Another way of seeing this is by proving that

$$
\sqrt{|V|} u_{n}=-\operatorname{sgn}(V) \sqrt{|V|}\left(-\Delta-\mu_{n}\right)^{-1} \sqrt{|V|} \sqrt{|V|} u_{n}
$$

where $\sqrt{|V|}\left(-\Delta-\mu_{n}\right)^{-1} \sqrt{|V|}$ is a compact operator.
q.e.d.

Theorem 7.14 (Schrödinger Operator with Trapping Potential). Consider $A=-\Delta+$ V on $L^{2}\left(\mathbb{R}^{3}\right), V \in L_{\text {loc }}^{3 / 2}, V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. Then: A is bounded from below and can be extended to be a self-adjoint operator by Friedrichs extension. Moreover, A has a compact resolvent, i.e. $(A+z)^{-1}$ is compact for all $z \in \rho(A)$.
Consequently, there exists an orthonormal basis $\left(u_{n}\right)_{n}$ and $\mu_{n} \uparrow \infty$ such that $A u_{n}=$ $\mu_{n} u_{n}$.

Proof. By the min-max principle we need to show that $\mu_{n} \uparrow \infty$. Assume by contradiction that $\mu_{n} \xrightarrow{n \rightarrow \infty} \mu_{\infty}<\infty$. Thus $\mu_{\infty} \in \sigma_{\text {ess }}(A)$. Consequently there exists a singular Weyl sequence $\left(\varphi_{n}\right)_{n}$ of orthonormal vectors, converging weakly to 0 , such that

$$
\left\|\left(A-\mu_{\infty}\right) \varphi_{n}\right\|_{L^{2}} \xrightarrow{n \rightarrow \infty} 0
$$

Then we can show that φ_{n} is bounded in H^{1} and thus by descending to a subsequence we have that $\varphi_{n} \rightarrow 0$ in $L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{3}\right)$ for $p<6$.
Then

$$
\left\langle\varphi_{n}, A \varphi_{n}\right\rangle=\int\left|\nabla \varphi_{n}\right|^{2}+\int V\left|\varphi_{n}\right|^{2} \geqslant \int V\left|\varphi_{n}\right|^{2}=\int_{|x| \leqslant R} V\left|\varphi_{n}\right|^{2}+\int_{|x| \geqslant R} V\left|\varphi_{n}\right|^{2}
$$

and

$$
\int_{|x| \geqslant R} V\left|\varphi_{n}\right|^{2} \geqslant \underbrace{\inf _{|x| \geqslant R} V(x)}_{\xrightarrow{R \rightarrow \infty} 0} \underbrace{\int_{x \mid \geqslant R}\left|\varphi_{n}\right|^{2}}_{\xrightarrow[n \rightarrow \infty]{\longrightarrow} 1} \longrightarrow+\infty
$$

as $n \rightarrow \infty$ and then $R \rightarrow \infty$.
Thus $\left\langle\varphi_{n}, A \varphi_{n}\right\rangle \xrightarrow{n \rightarrow \infty} 0$. But this contradicts $\left\langle\varphi_{n}, A \varphi_{n}\right\rangle \xrightarrow{n \rightarrow \infty} \mu_{\infty}<\infty$.
q.e.d.

Theorem 7.15 (Exponential Decay of Bound States). Consider $A=-\Delta+V$ with $V \in L^{2}\left(\mathbb{R}^{3}\right)+L^{p}\left(\mathbb{R}^{3}\right)$ and $2<p<\infty$. Assume that $V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$.
If u is an eigenfunction of A with eigenvalue $E<0$, then

$$
\int_{\mathbb{R}^{3}}|u(x)|^{2} e^{2 \alpha|x|} \mathrm{d} x<\infty
$$

for all $0<\alpha<\sqrt{|E|}$.

Lemma 7.16 (IMS Localisation). If $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is smooth, then as quadratic forms in L^{2}

$$
\frac{\varphi^{2}(-\Delta)+(-\Delta) \varphi^{2}}{2}=\varphi(-\Delta) \varphi-|\nabla \varphi|^{2}
$$

Consequently, if $\left(\varphi_{i}\right)_{i}$ with

$$
\sum_{i \in I} \varphi_{i}^{2}=1
$$

then

$$
-\Delta=\sum_{i \in I} \varphi_{i}(-\Delta) \varphi_{i}-\sum_{i}\left|\nabla \varphi_{i}\right|^{2},
$$

i.e.

$$
\int|\nabla u|^{2}=\sum_{i \in I} \int\left|\nabla\left(\varphi_{i} u\right)\right|^{2}-\sum_{i} \int\left|\nabla \varphi_{i}\right|^{2}|u|^{2}
$$

Proof. This follows from a simple integration by parts.
Proof of Theorem. Let $-\Delta u+V u=E u$. Then for a real-valued, smooth φ

$$
\left\langle\varphi^{2} u,(-\Delta+V-E) u\right\rangle=0
$$

Thus

$$
\left\langle u, \frac{\varphi^{2}(-\Delta+V-E)+(-\Delta+V-E) \varphi^{2}}{2} u\right\rangle=0
$$

By IMS localisation

$$
\int|\nabla(\varphi u)|^{2}+\int V \varphi^{2}|u|^{2}-E \int \varphi^{2}|u|^{2}-\int|\nabla \varphi|^{2}|u|^{2}=0
$$

Since $V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$, if $\operatorname{supp} \varphi \subset\{|x| \geqslant R\}$ with R large, then

$$
\left.\left.\left|\int V \varphi^{2}\right| u\right|^{2}\left|\leqslant \varepsilon \int \varphi^{2}\right| u\right|^{2}
$$

for $\varepsilon>0$ small. Thus

$$
\int|\nabla(\varphi u)|^{2} \geqslant(E-\varepsilon) \int \varphi^{2}|u|^{2}
$$

To conclude we need to show φ appropriately

$$
0=\underbrace{\int|\nabla(\varphi u)|^{2}}_{\geqslant 0}+\underbrace{\int V \varphi^{2}|u|^{2}}_{\geqslant-\varepsilon \int \varphi^{2}|u|^{2}}-E \int \varphi^{2}|u|^{2}-\int|\nabla \varphi|^{2}|u|^{2}
$$

thus

$$
(|E|-\varepsilon) \int \varphi^{2}|u|^{2} \leqslant \int|\nabla \varphi|^{2}|u|^{2}
$$

A good choice of φ is $\operatorname{supp} \varphi \subset\{|x| \geqslant R\}$ for R large and $|\nabla \varphi| \sim \varphi$. Thus we can choose $\varphi=e^{f}$ on $|x| \geqslant R$ for some function f such that $|\nabla f| \leqslant \kappa$ and $f \sim \kappa|x|$ where $\kappa<\sqrt{|E|-\varepsilon}$ This tells us that

$$
\int e^{2 f} u^{2}<\infty
$$

q.e.d.

Theorem 7.17 (CLR - Cwikel-Lieb-Rozenblum). If $d \geqslant 3, V \in L^{\frac{d}{2}}\left(\mathbb{R}^{d}\right)$, then

$$
\mid\left.\{\text { negative eigenvalues of }-\Delta+V\}\left|\leqslant C \int_{\mathbb{R}^{d}}\right| V_{-}\right|^{\frac{d}{2}}
$$

for a universal constant C that only depends on the dimension, and

$$
V_{-}= \begin{cases}-V, & \text { if } V \leqslant 0 \\ 0, & \text { if } V \geqslant 0\end{cases}
$$

Remark 7.18. 1) Semi-Classical Analysis: We have the approximate principle that one quantum bound state of $-\Delta+V \quad \longleftrightarrow \quad$ one unit volume in phase space in $\mathbb{R}^{d} \times \mathbb{R}^{d}$ in particular

$$
\operatorname{dim} \mathbf{1}_{(-\Delta+V)<0} \leadsto \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \mathbf{1}_{\left\{|2 \pi k|^{2}+V(x)<0\right\}} \mathrm{d} k \mathrm{~d} x=C_{\mathrm{cl}} \int_{\mathbb{R}^{d}} V_{-}^{\frac{d}{2}}
$$

Note that $\left\{|2 \pi k|^{2}+V(x)<0\right\}$ is the region in phase space where the particular has energy less than 0 .
2) The assumption $d \geqslant 3$ is crucial! If $d=1,2$ and if $V \leqslant 0, V \not \equiv 0$, then $-\Delta+V$ has at least one negative eigenvalue (exercise!).

Proof. Let

$$
W=\overline{\operatorname{span}\{\text { eigenfunctions of }-\Delta+V \text { with negative eigenvalue }\}}=\operatorname{ran} \mathbf{1}_{\{-\Delta+V<0\}} .
$$

We have to prove that $\operatorname{dim} W \leqslant C \int V_{-}^{\frac{d}{2}}$. Assume that $\operatorname{dim} W \geqslant N$, then $\operatorname{dim}(\sqrt{-\Delta} W) \geqslant N$ (why?).

Then there exists an orthonormal family $\left(\sqrt{-\Delta} u_{j}\right)_{j}$ in $L^{2}\left(\mathbb{R}^{d}\right)$, i.e. $\left\langle\sqrt{-\Delta} u_{j}, \sqrt{-\Delta} u_{k}\right\rangle=\delta_{j k}$ and $u_{j} \in W$.

Then per assumption for all $j=1, \ldots, N$

$$
\left\langle u_{j},(-\Delta+V) u_{j}\right\rangle \leqslant 0
$$

since $u_{j} \in W$. Thus

$$
1+\int V\left|u_{j}\right|^{2} \leqslant 0
$$

and therefore taking the sum over j yields

$$
N+\int V \rho \leqslant 0
$$

where

$$
\rho(x)=\sum_{j=1}^{N}\left|u_{j}(x)\right|^{2} .
$$

It follows that

$$
N \leqslant-\int V \rho \leqslant V_{-} \rho
$$

On the other hand:

$$
N=\sum_{j=1}^{N}\left\langle u_{j},-\Delta u_{j}\right\rangle=\sum_{j=1}^{N} \int_{\mathbb{R}^{d}}|2 \pi k|^{2}\left|\widehat{u}_{j}(k)\right|^{2} \mathrm{~d} k=\sum_{j=1}^{N} \int_{\mathbb{R}^{d}} \int_{0}^{\infty} \mathbf{1}_{\left\{|2 \pi k|^{2}>e\right\}}\left|\widehat{u}_{j}(k)\right|^{2} \mathrm{~d} e \mathrm{~d} k=
$$

Define u_{j}^{e} via its Fourier transform

$$
\widehat{u}_{j}^{e}(k)=\mathbf{1}_{|2 \pi k|^{2}>e} \widehat{u}_{j}(k)
$$

then

$$
\begin{aligned}
N & =\sum_{j=1}^{N} \int_{\mathbb{R}^{d}} \int_{0}^{\infty}\left|\widehat{u}_{j}^{e}(k)\right|^{2} \mathrm{~d} e \mathrm{~d} k=\sum_{j=1}^{N} \int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left|\widehat{u}_{j}^{e}(k)\right|^{2} \mathrm{~d} e \mathrm{~d} k=\sum_{j=1}^{N} \int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left|u_{j}^{e}(k)\right|^{2} \mathrm{~d} e \mathrm{~d} k= \\
& =\sum_{j=1}^{N} \int_{\mathbb{R}^{d}} \int_{0}^{\infty}\left|u_{j}^{e}(k)\right|^{2} \mathrm{~d} e \mathrm{~d} k
\end{aligned}
$$

where the exchange of integrations is allowed by Tonelli's theorem as the integrand is always positive.

By the triangle inequality

$$
\sqrt{\sum_{j=1}^{N}\left|u_{j}^{e}(x)\right|^{2}} \geqslant \sqrt{\sum_{j=1}^{N}\left|u_{j}(x)\right|^{2}}-\sqrt{\sum_{j=1}^{N}\left|u_{j}(x)-u_{j}^{e}(x)\right|^{2}}
$$

and thus

$$
\sum_{j=1}\left|u_{j}^{e}(x)\right|^{2} \geqslant\left[\sqrt{\rho}-\sqrt{\sum_{j=1}^{N}\left|u_{j}(x)-u_{j}^{e}(x)\right|^{2}}\right]_{+}^{2}
$$

Note that

$$
\begin{aligned}
\sum_{j=1}^{N}\left|u_{j}(x)-u_{j}^{e}(x)\right|^{2} & =\sum_{j=1}^{N}\left|\int e^{2 \pi i k \cdot x} \widehat{u_{j}-u_{j}^{e}}(k) \mathrm{d} k\right|^{2}=\sum_{j=1}^{N}\left|\int e^{2 \pi i k \cdot x} \mathbf{1}_{\left\{|2 \pi k|^{2} \leqslant e\right\}} \hat{u}_{j}(k) \mathrm{d} k\right|^{2}= \\
& =\sum_{j=1}^{N}\left|\int e^{2 \pi i k \cdot x} \frac{\mathbf{1}_{\left\{|2 \pi k|^{2} \leqslant e\right\}}}{|2 \pi k|}\right| 2 \pi k\left|\hat{u}_{j}(k) \mathrm{d} k\right|^{2} \leqslant \\
& \leqslant \sum_{j=1}^{N}\left|\int e^{2 \pi i k \cdot x} \frac{\mathbf{1}_{\left\{|2 \pi k|^{2} \leqslant e\right\}}}{|2 \pi k|}\right|^{2} \mathrm{~d} k=K_{d} e^{\frac{d}{2}-1} .
\end{aligned}
$$

where the inequality follows from Bessel's inequality as the $|2 \pi k| \hat{u}_{j}(k)$ form an orthonormal family in $L^{2}\left(\mathbb{R}^{d}\right)$.
Thus

$$
\sum_{j=1}^{N}\left|u_{j}^{e}(x)\right|^{2} \geqslant\left[\sqrt{\rho(x)}-\sqrt{K_{d} e^{\frac{d}{2}-1}}\right]_{+}^{2}
$$

and therefore

$$
N \geqslant \int_{\mathbb{R}^{d}} \int_{0}^{\infty}\left[\sqrt{\rho(x)}-\sqrt{K_{d} e^{\frac{d}{2}-1}}\right]_{+}^{2} \mathrm{~d} e \mathrm{~d} x=\widetilde{K}_{e} \int_{\mathbb{R}^{d}} \rho(x)^{\frac{d}{d-2}} \mathrm{~d} x .
$$

To conclude we now use Hölder's inequality to see that

$$
N \leqslant \int V_{-} \rho \leqslant\left(\int V_{-}^{\frac{d}{2}}\right)^{\frac{2}{d}}\left(\int \rho^{\frac{d}{d-2}}\right)^{\frac{d-2}{d}} \leqslant\left(\int V_{-}^{\frac{d}{2}}\right)^{\frac{2}{d}}\left(\frac{N}{\widetilde{K}_{d}}\right)^{\frac{d-2}{d}}
$$

and therefore

$$
N \leqslant C_{d} \int V_{-}^{\frac{d}{2}}
$$

and thus also $\operatorname{dim} W \leqslant C_{d} \int V_{-}^{\frac{d}{2}}$ since either there exists some $N \in \mathbb{N}$ such that $\operatorname{dim} W=N$ or $\operatorname{dim} W=\infty$ and thus the above inequality holds for all $N \in \mathbb{N}$ and therefore also

$$
C_{d} \int V_{-}^{\frac{d}{2}}=\infty
$$

Symmetries

Definition 7.19 (Strongly Continuous One-Parameter Unitary Group). A family of operators $\{U(t) \mid t \in \mathbb{R}\}$ such that for all $t_{1}, t_{2} \in \mathbb{R}$

$$
U\left(t_{1}\right) U\left(t_{2}\right)=U\left(t_{1}+t_{2}\right)
$$

and for $\left(t_{n}\right)_{n} \subset \mathbb{R}, t_{n} \xrightarrow{n \rightarrow \infty} t \in \mathbb{R}$

$$
U\left(t_{n}\right) \xrightarrow[s]{n \rightarrow \infty} U(t) .
$$

Theorem 7.20. Let A be a self-adjoint operator and $U(t)=\exp (-i t A)$. Then
(1) $U(t)$ is a strongly continuous unitary group.
(2) The limit for all $\psi \in D(A)$

$$
\lim _{t \rightarrow 0} \frac{1}{t}(U(t) \psi-\psi)=-i A \psi
$$

(3) $D(A)$ is left invariant under $U(t)$, i.e. $U(t) D(A) \subset D(A)$.

Theorem 7.21 (Stone). Let $U(t)$ be a strongly continuous one-parameter unitary group. Then there exists the operator A on

$$
D(A)=\left\{\psi \in \mathscr{H} \left\lvert\, \lim _{t \rightarrow 0} \frac{1}{t}(U(t) \psi-\psi)\right. \text { exists }\right\}
$$

defined via

$$
A \psi=\lim _{t \rightarrow 0} \frac{i}{t}(U(t) \psi-\psi) .
$$

is self-adjoint. In particular $U(t)=\exp (-i t A)$.

Definition 7.22 (Symmetry Transformation). A map $T: \mathscr{H} \rightarrow \mathscr{H}, \widehat{T}: \mathscr{L}(\mathscr{H}, \mathscr{H}) \rightarrow$ $\mathscr{L}(\mathscr{H}, \mathscr{H})$ (a map from a suitable class of linear operators of the Hilbert space to itself) such that for all $\psi \in \mathscr{H}$ and all suitable operators $A \in \mathscr{L}(\mathscr{H}, \mathscr{H})$

$$
\langle T \psi, \widehat{T}(A) T \psi\rangle=\langle\psi, A \psi\rangle
$$

If $A=\sum_{a}|a\rangle\langle a|$, then if $a^{\prime}=T a$ and $A^{\prime}=\widehat{T} A$ we

$$
A^{\prime}=\sum_{a} T|a\rangle T^{*}\langle a|=\sum_{a}\left|a^{\prime}\right\rangle\left\langle a^{\prime}\right|
$$

and the symmetry condition translates to

$$
\left\langle T \psi, a^{\prime}\right\rangle\left\langle a^{\prime}, T \psi\right\rangle=\left|\left\langle a^{\prime}, T \psi\right\rangle\right|^{2} \stackrel{!}{-}|\langle a, \psi\rangle|
$$

for all $\psi \in \mathscr{H}$.

Theorem 7.23 (Wigner). Let T be a bounded linear operator on \mathscr{H} such that for all $u, v \in \mathscr{H}$

$$
\left|\left\langle u^{\prime}, v^{\prime}\right\rangle\right|=|\langle u, v\rangle|
$$

then T has the form $T u=\varphi(u) V u$ where $\varphi: \mathscr{H} \rightarrow S^{1} \subset \mathbb{C}$ is some phase factor and V is either unitary or anti-unitary, i.e.

$$
\langle V u, V v\rangle=\langle v, u\rangle
$$

Proof. Let $\left(e_{j}\right)_{j}$ be an orthonormal basis of \mathscr{H}, and define $e_{j}^{\prime}=T e_{j}$.
For $j \geqslant 2$ define $f_{j}=e_{1}+e_{j}$, the per our assumption

$$
\left|\left\langle e_{2}^{\prime}, f_{j}^{\prime}\right\rangle\right|=\left|\left\langle e_{1}, f_{j}\right\rangle\right|=1, \quad\left|\left\langle e_{j}^{\prime}, f_{k}^{\prime}\right\rangle\right|=\left|\left\langle e_{j}, f_{k}\right\rangle\right|=\delta_{j k}
$$

thus $f_{j}^{\prime}=x_{j} e_{1}^{\prime}+y_{j} e_{j}^{\prime}$ with $\left|x_{j}\right|=\left|y_{j}\right|=1$.
Redefine \widetilde{T} such that

$$
\widetilde{f_{j}^{\prime}}=\widetilde{T} f_{j}=\frac{f_{j}^{\prime}}{x_{j}}, \quad \widehat{e}_{j}^{\prime}=\frac{y_{j}}{x_{j}} e_{j}^{\prime}
$$

then $\widetilde{f}_{j}^{\prime}=\widetilde{e}_{1}+\widetilde{e}_{j}$. We shall now drop the tilde and simply consider \widetilde{T} as the transition form T to \widetilde{T} is simply a multiplication with a unitary operator.
Now let $T u=\sum_{i} a_{i}^{\prime} e_{i}^{\prime}$. Then

$$
\left|a_{j}^{\prime}\right|=\left|\left\langle e_{j}^{\prime}, u^{\prime}\right\rangle\right|=\left|\left\langle e_{j}, u\right\rangle\right|=\left|a_{j}\right|
$$

and

$$
\left|a_{1}+a_{j}\right|=\left|\left\langle e_{1}+e_{j}, u\right\rangle\right|=\left|\left\langle e_{1}^{\prime}+e_{j}^{\prime}, u^{\prime}\right\rangle\right|=\left|a_{1}^{\prime}+a_{j}^{\prime}\right|
$$

which implies

$$
\left|a_{1}\right|^{2}+2 \Re \overline{a_{1}} a_{j}+\left|a_{j}\right|^{2}=\left|a_{1}^{\prime}\right|^{2}+2 \mathfrak{R} \overline{a_{1}^{\prime}} a_{j}^{\prime}+\left|a_{j}^{\prime}\right|^{2} \Longleftrightarrow \Re \overline{a_{1}} a_{j}=\Re \overline{a_{1}^{\prime}} a_{j}^{\prime}
$$

If ϑ and ϑ^{\prime} are the phases of $\overline{a_{1}} a_{j}$ and $\overline{a_{1}^{\prime}} a_{j}^{\prime}$ respectively, then this implies that $\cos (\vartheta)=\cos \left(\vartheta^{\prime}\right)$ since the norms of $\overline{a_{1}} a_{j}$ and $\overline{a_{1}^{\prime}} a_{j}^{\prime}$ are equal by the above.
Therefore $\vartheta= \pm \vartheta^{\prime}$. If $\vartheta=\vartheta^{\prime}$ then we can redefine T such that $a_{1}^{\prime}=a_{1}$ and if $\vartheta=-\vartheta^{\prime}$ such that $a_{1}^{\prime}=\overline{a_{1}}$. In the first case this means that the symmetry is T is unitary and in the second anti-unitary.

Remark 7.24. A symmetry continuous connected to the identity must always be unitary by connectedness.

Definition 7.25. A density matrix ρ is a positive operator on the Hilbert space \mathscr{H} of trace 1. This means that there exists an orthonormal basis $\left(u_{i}\right)_{i}$ of \mathscr{H} such that

$$
\rho=\sum_{i} p_{i}\left|u_{i}\right\rangle\left\langle u_{i}\right|, \quad \sum_{i} p_{i}=1
$$

p_{i} can be interpreted as the probability that a particle described by ρ is in the state $\left|u_{i}\right\rangle$.

Remark 7.26. ρ is the most general form of a "state" (as introduced with C^{*}-algebras) together with normality.

Definition 7.27. The (von Neumann) entropy of ρ is defined to be

$$
S(\rho)=-\operatorname{Tr}(\rho \log (\rho))=-\sum_{i} p_{i} \log p_{i}
$$

Remark 7.28. Entropy is a measure for the "fuzzyness" of our knowledge of the state of a particle described by ρ. If ρ is a pure state, i.e. $\rho=|u\rangle\langle u|$, then $S(\rho)=0$.

The time-evolution of ρ is given by

$$
\rho(t)=U(t) \rho U(t)^{\dagger}
$$

7.3 Argument for Unitary Evolution

Suppose that we have some general time evolution $v(t), u(t)$ for some initial states u, v. Then the density matrix

$$
\rho=\frac{1}{2}|u\rangle\langle u|+\frac{1}{2}|v\rangle\langle v|
$$

would generically evolve as

$$
\rho(t) \frac{1}{2}|u(t)\rangle\langle u(t)|+\frac{1}{2}|v(t)\rangle\langle v(t)|
$$

Then for $\psi(t)=c_{u} u(t)+c_{v} v(t)$ the density matrix would be

$$
\rho_{\psi}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2}\langle u(t), v(t)\rangle \\
\frac{1}{2}\langle v(t), u(t)\rangle & \frac{1}{2}
\end{array}\right)
$$

Suppose that $\langle u, v\rangle=0$ but for some $t>0\langle u(t), v(t)\rangle \neq 0$. Then

$$
S(\rho(0))=\log (2), \quad S(\rho(t))=w_{+} \log \left(w_{+}\right)+w_{-} \log \left(w_{-}\right)
$$

where $w_{ \pm}=\frac{1}{2}(1 \pm|\langle u, v\rangle|)$. Then since $S(\rho(0))$ is maximal entropy would decrease.
This gives one argument for why time evolution must behave as a symmetry and thus be unitary.

7.4 Trace Out of Density Matrix

Suppose that $\mathscr{H}=\mathscr{H}_{S} \otimes \mathscr{H}_{0}$ and suppose that only make an observation on \mathscr{H}_{S}, i.e. our observable decomposes as $A=A_{S} \otimes \mathbb{I}$. Then for a state

$$
\psi_{\rho}=\sum_{i} \sqrt{p_{i}} \varphi_{i S} \otimes x_{i 0}
$$

we have

$$
\left\langle\psi_{\rho}, A \psi_{\rho}\right\rangle=\sum_{i j} \sqrt{p_{i} p_{j}}\left\langle\varphi_{i}, A \varphi_{j}\right\rangle \underbrace{\left\langle x_{i}, \mathbb{I} x_{j}\right\rangle}_{=\delta_{i j}}=\sum_{i} p_{i}\left\langle\varphi_{i}, A \varphi_{i}\right\rangle=\operatorname{Tr}(\rho A)
$$

where $\rho=\sum_{i} p_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|$.

Chapter 8

Scattering Theory

Let us start with $u(t)=e^{-i t A} u_{0}$, where $A=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$. We are interested in the asymptotic behaviour of $u(t)$ as $t \rightarrow \pm \infty$.

- If u_{0} is a bound state, then $u(t)$ remains localised as $t \rightarrow \pm \infty$.
- If u_{0} is orthogonal to all bound states, then $u(t)$ escapes to infinity as $t \rightarrow \pm \infty$.

Theorem 8.1. Let A be a self-adjoint operator on $L^{2}\left(\mathbb{R}^{d}\right)$ and $u(t)=e^{-i t A} u_{0}$ with $u_{0} \in \overline{\operatorname{span}\{\text { eigenfunctions of } A\}}$.
Then for all $\varepsilon>0$ there exists a $R=R_{\varepsilon}$ such that

$$
\inf _{t \in \mathbb{R}} \int_{|x| \leqslant R}|u(t, x)|^{2} \mathrm{~d} x \geqslant \int_{\mathbb{R}^{d}}\left|u_{0}(x)\right|^{2} \mathrm{~d} x-\varepsilon .
$$

Note that

$$
\int_{\mathbb{R}^{d}}|u(t, x)|^{2} \mathrm{~d} x=\int_{\mathbb{R}^{d}}\left|u_{0}(x)\right|^{2}
$$

thus

$$
\sup _{t \in \mathbb{R}} \int_{|x|>R}|u(t, x)|^{2} \mathrm{~d} x \leqslant \varepsilon .
$$

Next we show that if u_{0} is orthogonal to all eigenfunctions of A, then $u(t)=e^{-i t A} u_{0}$ escapes to infinity in the sense that for all $R>0$

$$
\lim _{t \rightarrow \pm \infty} \int_{|x| \leqslant R}|u(t, x)|^{2} \mathrm{~d} x=0
$$

which is a particular case of the so-called RAGE theorem.
Our goal in studying scattering theory is as follows: if $A=-\Delta+V, V \rightarrow 0$ as $|x| \rightarrow \infty$ then for u_{0} orthogonal to the bounds states there exist some $v_{0}^{ \pm} \in L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
\lim _{t \rightarrow \pm \infty}\left\|e^{-i t A} u_{0}-e^{i t \Delta} v_{0}^{ \pm}\right\|_{L^{2}}=0
$$

Theorem 8.2 (RAGE for the free Schrödinger Operator). For all $f \in L^{2}\left(\mathbb{R}^{d}\right)$, then for all $R>0$

$$
\int_{|x| \leqslant R}\left|\left(e^{i t \Delta} f\right)(x)\right|^{2} \mathrm{~d} x \xrightarrow{t \rightarrow \pm \infty} 0
$$

Lemma 8.3. If $f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right)$, then

$$
\left(e^{i t \Delta} f\right)(x)=\frac{1}{(4 \pi i t)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{4 t}} f(y) \mathrm{d} y
$$

for a.e. $x \in \mathbb{R}^{d}$.

Remark 8.4. Recall the heat kernel

$$
\left(e^{t \Delta} f\right)(x)=\frac{1}{(4 \pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{4 t}} f(y) \mathrm{d} y
$$

Proof. For all $\varepsilon>0$ and

$$
\left(e^{\widehat{i t+\varepsilon) \Delta}} f\right)(k)=e^{-(i t+\varepsilon)|2 \pi k|^{2}} \hat{f}(k)=: \widehat{G}_{\varepsilon}(k) \hat{f}(k)=\widehat{G_{\varepsilon} * f}(k)
$$

where

$$
G(x)=\frac{1}{(4 \pi(i t+\varepsilon))^{\frac{d}{2}}} e^{-\frac{|x|^{2}}{4(i t+\varepsilon)}}
$$

by the formula for the Fourier transform of a Gaussian. Thus

$$
\left(e^{(i t+\varepsilon) \Delta} f\right)(x)=\frac{1}{(4 \pi(i t+\varepsilon))^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{4(i t+\varepsilon)}} f(y) \mathrm{d} y
$$

for all $\varepsilon>0$. The left-hand side converges to $e^{i t \Delta} f$ as $\varepsilon \downarrow 0$ since $e^{-(i t+\varepsilon) x}$ is bounded for all $\varepsilon \geqslant 0$ and converges pointwise and thus $e^{(i t+\varepsilon) \Delta}$ converges strongly by functional calculus. The right-hand side on the other hand also converges pointwise and is dominated by $|f(y)| \in$ L^{1} and therefore by dominated convergence

$$
\left(e^{i t \Delta} f\right)(x)=\frac{1}{(4 \pi i t)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{4 i t}} f(y) \mathrm{d} y .
$$

q.e.d.

Consequently if $f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right)$, then

$$
\left|e^{i t \Delta} f(x)\right|=\left|\frac{1}{(4 \pi i t)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{4 t}} f(y) \mathrm{d} y\right| \leqslant \frac{1}{(4 \pi|t|)^{\frac{d}{2}}}\|f\|_{L^{1}}
$$

for a.e. x and thus

$$
\left\|e^{i t \Delta} f\right\|_{\infty} \leqslant \frac{\|f\|_{1}}{(4 \pi|t|)^{\frac{d}{2}}} \xrightarrow{t \rightarrow \pm \infty} 0
$$

and for all $R>0$

$$
\int_{\|x\| \leqslant R}\left|e^{i t \Delta} f(x)\right|^{2} \mathrm{~d} x \leqslant\left\|e^{i t \Delta} f\right\|_{\infty}^{2}\left|B_{R}(0)\right| \xrightarrow{t \rightarrow \pm \infty} 0
$$

Proof of Theorem 8.2. If $f \in L^{1} \cap L^{2}$ we are done by the above. Now take any $f \in L^{2}\left(\mathbb{R}^{d}\right)$. We claim that for all $\varepsilon>0$ there exist $f_{1} \in L^{1} \cap L^{2}$ and $f_{2} \in L^{2}$ such that $f=f_{1}+f_{2}$ and $\left\|f_{2}\right\|_{L^{2}}<\varepsilon$.

Indeed, if we take $f_{1}=f \mathbf{1}_{\{|f|>\lambda\}}$ then

$$
\int\left|f_{1}\right|=\int|f| \mathbf{1}_{\{|f|>\lambda\}} \leqslant \int \frac{|f|^{2}}{\lambda}=\frac{\|f\|^{2}}{\lambda}<\infty
$$

and $f_{2}=f \mathbf{1}_{\{|f| \leqslant \lambda\}}$ where

$$
\left\|f_{2}\right\|=\int|f|^{2} \mathbf{1}_{\{|f| \leqslant \lambda\}} \xrightarrow{\lambda \rightarrow 0} 0
$$

by dominated convergence. We can also take $f_{1}=f \mathbf{1}_{\{|x| \leqslant L\}}$ which is $L^{1} \cap L^{2}$ as $\{|x| \leqslant L\}$ has finite measure and for a set of finite measure $L^{p} \subset L^{q}$ for $p>q$. Then $f_{2}=f \mathbf{1}_{\{|x|>L\}}$ which also converges to 0 as $L \rightarrow \infty$.

Thus

$$
\begin{aligned}
\int_{|x| \leqslant R}\left|e^{i t \Delta} f(x)\right|^{2} \mathrm{~d} x & =\int_{|x| \leqslant R}\left|e^{i t \Delta} f_{1}(x)+e^{i t \Delta} f_{2}(x)\right|^{2} \mathrm{~d} x \leqslant 2 \int_{|x| \leqslant R}\left|e^{i t \Delta} f_{1}(x)\right|^{2} \mathrm{~d} x+2 \int_{|x| \leqslant R}\left|e^{i t \Delta} f_{2}(x)\right|^{2} \mathrm{~d} x \leqslant \\
& \leqslant 2 \int_{|x| \leqslant R}\left|e^{i t \Delta} f_{1}(x)\right|^{2} \mathrm{~d} x+2 \varepsilon^{2}
\end{aligned}
$$

and therefore

$$
\limsup _{t \rightarrow \pm \infty} \int_{|x| \leqslant R}\left|e^{i t \Delta} f(x)\right|^{2} \mathrm{~d} x \leqslant 2 \varepsilon^{2} \xrightarrow{\varepsilon \downarrow 0} 0
$$

q.e.d.

8.1 General RAGE

Let A be a self-adjoint operator on \mathscr{H}.
Theorem 8.5. For $u_{0} \in D(A)$ orthogonal to all eigenfunctions of A

$$
e^{i t A} u_{0} \xrightarrow[\text { ergodic }]{t \rightarrow \pm \infty} 0
$$

weakly in \mathscr{H}. Equivalently, for all compact operators $K, K e^{i t A} u_{0} \xrightarrow[\text { ergodic }]{t \rightarrow \pm \infty} 0$ strongly in \mathscr{H}, i.e.

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\|K e^{i t A} u_{0}\right\|_{\mathscr{H}}^{2}=0
$$

Remark 8.6 (Spectral Decomposition).

$$
\mathscr{H}=\mathscr{H}_{\mathrm{pp}} \oplus \mathscr{H}_{\mathrm{ac}} \oplus \mathscr{H}_{\mathrm{sc}}
$$

which is the quantum version of the Lebesgue decomposition of a measure

$$
\mu=\mu_{\mathrm{pp}}+\mu_{\mathrm{ac}}+\mu_{\mathrm{sc}}
$$

where $\mu-\mu_{\mathrm{pp}}$ does not have any support on single points, $d \mu_{\mathrm{ac}}=g \mathrm{~d} x$ for some $g \in$ $L^{1}\left(\mathbb{R}^{d}\right)$ and μ_{sc} is singular to the Lebesgue measure.
Which however, only consider the simpler decomposition

$$
\mathscr{H}_{p}=\overline{\operatorname{span}\{\text { eigenfunctions of } A\}}
$$

point spectrum and $\mathscr{H}_{c}=\mathscr{H}_{p}^{\perp}$.

Theorem 8.7 (Ruelle). Let A be a self-adjoint operator on \mathscr{H}. Then for all $u_{0} \in \mathscr{H}$ and all K compact operators

$$
\frac{1}{T} \int_{0}^{T}\left\|K e^{-i t A} u_{0}\right\|^{2} \mathrm{~d} t \xrightarrow{T \rightarrow \pm \infty} 0
$$

Remark 8.8. If K is a compact operator on a Hilbert space, then we can write K as

$$
K=\sum_{n=1}^{\infty} \lambda_{n}\left|u_{n}\right\rangle\left\langle v_{n}\right|
$$

where $\left(u_{n}\right)_{n},\left(v_{n}\right)_{n}$ are orthonormal bases. By definition K is trace-class if

$$
\operatorname{Tr}|K|=\sum_{n}\left|\lambda_{n}\right|<\infty
$$

where $|K|=\sqrt{K^{*} K}$. In this case

$$
\operatorname{Tr} K=\sum_{n=1}^{\infty}\left\langle\varphi_{n}, K \varphi_{n}\right\rangle
$$

for any orthonormal basis $\left(\varphi_{n}\right)_{n}$ (Exercise!).

By definition, K is Hilbert-Schmidt if

$$
\|K\|_{\mathrm{HS}}^{2}=\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{2}<\infty .
$$

In this case

$$
\|K\|_{\mathrm{HS}}^{2}=\sum_{n=1}^{\infty}\left\|K \varphi_{n}\right\|^{2}
$$

for any orthonormal basis $\left(\varphi_{n}\right)_{n}$.
In fact we have
$B(\mathscr{H}) \supset$ compact operators \supset Hilbert-Schmidt operators $\sigma^{2} \supset$ Trace-Class operators σ^{1}
or equivalently

$$
\|K\| \leqslant\|K\|_{\mathrm{HS}} \leqslant \operatorname{Tr}|K|=\operatorname{Tr} \sqrt{K^{*} K}
$$

If K is compact and $K=\sum \lambda_{n}\left|u_{n}\right\rangle\left\langle v_{n}\right|$ then

$$
\|K\|=\sup _{n}\left|\lambda_{n}\right|, \quad\|K\|_{\mathrm{HS}}=\sqrt{\sum\left|\lambda_{n}\right|^{2}}, \quad \operatorname{Tr}|K|=\sum\left|\lambda_{n}\right|
$$

In particular, if K is Hilbert-Schmidt then $K^{*} K$ is trace class. In fact, σ^{2} is a Hilbert space with inner product

$$
\left\langle K_{1}, K_{2}\right\rangle_{\mathrm{HS}}=\operatorname{Tr}\left(K_{1}^{*} K_{2}\right)
$$

if K_{1}, K_{2} are Hilbert-Schmidt.
In fact one can relate that any Hilbert-Schmidt operator K to an L^{2} integral kernel.
Recall that the kernel $K(x, y)$ of an operator K on $L^{2}(\Omega)$ is defined via

$$
(K f)(x)=\int_{\Omega} K(x, y) f(y) \mathrm{d} y
$$

for all $f \in L^{2}(\Omega)$ and a.e. $x \in \Omega$.
Then an operator K is Hilbert-Schmidt on $L^{2}(\Omega)$ iff $K(x, y) \in L^{2}(\Omega \times \Omega)$ and $\|K\|_{H S}=$ $\|K(\cdot, \cdot)\|_{L^{2}(\Omega \times \Omega)}$.
This proven by using $K=\sum_{n} \lambda_{n}\left|u_{n}\right\rangle\left\langle v_{n}\right|$ and accordingly defining

$$
K(x, y)=\sum_{n} \lambda_{n} u_{n}(x) \overline{v_{n}(y)}
$$

Proof.

Step 1 Consider the sequence of operators

$$
M_{T}=\frac{1}{T} \int_{0}^{T}\left|e^{-i t A} u_{0}\right\rangle\left\langle e^{-i t A} u_{0}\right| \mathrm{d} t
$$

Then $M_{T} \geqslant 0$ and

$$
\operatorname{Tr} M_{T}=\frac{1}{T} \int_{0}^{T} \operatorname{Tr}\left(\left|e^{-i t A} u_{0}\right\rangle\left\langle e^{-i t A} u_{0}\right|\right) \mathrm{d} t=\frac{1}{T} \int_{0}^{T} 1 \mathrm{~d} t=1
$$

Thus $\left(M_{T}\right)_{T}$ is a bounded set of trace-class operators. Thus $\left(M_{T}\right)_{T}$ is bounded in the Hilbert-Schmidt norm, and σ^{2} is a Hilbert space. By the Banach-AlaogluTheorem 1.20, there exists a sequence $T_{n} \xrightarrow{n \rightarrow \infty}$ and $M_{\infty} \in \sigma^{2}$ such that

$$
M_{T_{n}} \xrightarrow{n \rightarrow \infty} M_{\infty}
$$

weakly in the Hilbert-Schmidt space, i.e. for all Hilbert-Schmidt operators D

$$
\lim _{n \rightarrow \infty} \operatorname{Tr}\left[M_{T_{n}} D\right]=\operatorname{Tr}\left[M_{\infty} D\right]
$$

Step 2 We prove that $M_{\infty}=0$. We first show that

$$
e^{-i t A} M_{\infty} e^{i t A}=M_{\infty}
$$

for all $t \in \mathbb{R}$. We have for all $T \in[0, \infty)$

$$
\begin{aligned}
e^{-i t A} M_{T} e^{i t A} & =e^{-i t A}\left(\frac{1}{T} \int_{0}^{T}\left|e^{-i s A} u_{0}\right\rangle\left\langle e^{-i s A} u_{0}\right| \mathrm{d} s\right) e^{i t A}= \\
& =\frac{1}{T} \int_{0}^{T}\left|e^{-i(t+s) A} u_{0}\right\rangle\left\langle e^{-i(t+s) A} u_{0}\right| \mathrm{d} s= \\
& =\frac{1}{T} \int_{t}^{T+t}\left|e^{-i s A} u_{0}\right\rangle\left\langle e^{-i s A} u_{0}\right| \mathrm{d} s= \\
& =\frac{1}{T}\left(\int_{0}^{T}-\int_{0}^{t}+\int_{T}^{T+t}\right)\left|e^{-i s A} u_{0}\right\rangle\left\langle e^{-i(s) A} u_{0}\right| \mathrm{d} s= \\
& =M_{T}+\frac{1}{T}\left(-\int_{0}^{t}+\int_{T}^{T+t}\right)\left|e^{-i s A} u_{0}\right\rangle\left\langle e^{-i s A} u_{0}\right| \mathrm{d} s=
\end{aligned}
$$

However,

$$
\left.\operatorname{Tr}\left|e^{-i t A} M_{T} e^{i t A}-M_{T}\right| \leqslant \frac{1}{T}\left(\int_{0}^{t}+\int_{T}^{T+t}\right) \underbrace{\operatorname{Tr}\left|e^{-i s A} u_{0}\right\rangle\left\langle e^{-i s A} u_{0}\right.}_{=1} \right\rvert\, \mathrm{d} s=\frac{1}{T} 2 t \xrightarrow{T \rightarrow \infty} 0
$$

On the other hand, $M_{T} \rightharpoonup M_{\infty}$, thus $e^{-i t A} M_{T} e^{i t A}-M_{T} \rightharpoonup e^{-i t A} M_{\infty} e^{i t A}-M_{\infty}$ weakly in the Hilbert-Schmidt space. Thus $e^{-i t A} M_{\infty} e^{i t A} M_{\infty}$.

Taking the t-derivative we find

$$
0=\frac{d}{d t}\left(e^{-i t A} M_{\infty} e^{i t A}\right)=-i e^{-i t A}\left(A M_{\infty}-M_{\infty} A\right) e^{i t A}
$$

hence $A M_{\infty}=M_{\infty} A$, i.e. M_{∞} commutes with A.
Because M_{T}, and $M_{T} \rightharpoonup M_{\infty}$ weakly in Hilbert-Schmidt space it follows that $M_{\infty} \geqslant 0$, and that M_{∞} is Hilbert-Schmidt operator.

Thus we can write $M_{\infty}=\sum_{n} \lambda_{n}\left|u_{n}\right\rangle\left\langle u_{n}\right|$. In particular if λ is an eigenvalue of M_{∞} and $\lambda \neq 0$, then the eigenspace W_{λ} of λ has finite dimension.

Since A commutes with M_{∞} it follows that $A: W_{\lambda} \rightarrow W_{\lambda}$ and A is a self-adjoint operator on W_{λ} there exists an orthonormal basis of eigenfunctions of A in W_{λ}. In summary there exists an orthonormal basis $\left(\varphi_{n}\right)_{n}$ of \mathscr{H} such that φ_{n} are both
eigenfunctions of M_{∞} and A and

$$
M_{\infty}=\sum_{n=1}^{\infty} \lambda_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|
$$

To conclude that $M_{\infty}=0$, we need to use $u_{0} \in \mathscr{H}_{c}$, i.e. u_{0} is orthogonal to all eigenfunctions of A. From weak-convergence $M_{T} \rightharpoonup M_{\infty}$ in the Hilbert-Schmidt topology we know that

$$
\begin{aligned}
\lambda_{n} & =\left\langle\varphi_{n}, M_{\infty} \varphi_{n}\right\rangle=\lim _{T \rightarrow \infty}\left\langle\varphi_{n}, M_{T} \varphi_{n}\right\rangle=\lim _{T \rightarrow \infty}\left\langle\varphi_{n}, \left.\frac{1}{T} \int_{0}^{T} \right\rvert\, e^{-i t A}\right\rangle\left\langle e^{-i t A} \mid \mathrm{d} t \varphi_{n}\right\rangle= \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\left\langle\varphi_{n}, e^{-i t A} \varphi_{n}\right\rangle\right|^{2} \mathrm{~d} t=0
\end{aligned}
$$

Here

$$
\left\langle\varphi_{n}, e^{-i t A} u_{0}\right\rangle=\left\langle e^{i t A} \varphi_{n}, u_{0}\right\rangle=\left\langle e^{i t \xi_{n}} \varphi_{n}, u_{0}\right\rangle=0
$$

where $A \varphi_{n}=\xi_{n} \varphi_{n}$.

Thus $M_{\infty}=0$, i.e.

$$
\frac{1}{T} \int_{0}^{T}\left|e^{-i t A} u_{0}\right\rangle\left\langle e^{-i t A} u_{0}\right| \mathrm{d} t \xrightarrow{T \rightarrow \infty} 0
$$

in the Hilbert-Schmidt topology. Strictly speaking, we have only proven this for some sequence $T_{n} \xrightarrow{n \rightarrow \infty} 0$. However, since the limit is independent of the sequence the convergence $T \rightarrow \infty$ follows.

Step 3 Now take K to be any compact operator, then

$$
\frac{1}{T} \int_{0}^{T}\left\|K e^{-i t A} u_{0}\right\|^{2} \mathrm{~d} t=\operatorname{Tr}\left[M_{T} K^{*} K\right]
$$

since

$$
\left\|K e^{-i t A} u_{0}\right\|^{2}=\operatorname{Tr}\left[K\left|e^{-i t A u_{0}}\right\rangle\left\langle e^{-i t A} u_{0}\right| K^{*}\right]=\operatorname{Tr}\left[\left|e^{-i t A u_{0}}\right\rangle\left\langle e^{-i t A} u_{0}\right| K^{*} K\right]
$$

By the spectral theorem $K^{*} K \geqslant 0$ and compact, and thus we can write

$$
K^{*} K=\sum_{n=1}^{\infty} \ell_{n}\left|v_{n}\right\rangle\left\langle v_{n}\right|
$$

with $\ell_{n} \xrightarrow{n \rightarrow \infty} 0$.
Now

$$
\begin{aligned}
\operatorname{Tr}\left[M_{T} K^{*} K\right] & =\sum_{n=1}^{\infty} \ell_{n}\left\langle v_{n}, M_{T} v_{n}\right\rangle=\sum_{\ell_{n} \leqslant \varepsilon} \ell_{n}\left\langle v_{n}, M_{T} v_{n}\right\rangle+\sum_{\ell_{n}>\varepsilon} \ell_{n}\left\langle v_{n}, M_{T} v_{n}\right\rangle \leqslant \\
& \leqslant \varepsilon \underbrace{\sum_{n=1}^{\infty}\left\langle v_{n}, M_{T} v_{n}\right\rangle}_{=\operatorname{Tr} M_{T}=\left\|u_{0}\right\|^{2}}+\underbrace{\sum_{\ell_{n}>\varepsilon} \ell_{n}\left\langle v_{n}, M_{T} v_{n}\right\rangle}_{\text {finite sum }}
\end{aligned}
$$

Thus for all $\varepsilon>0$

$$
\limsup _{T \rightarrow \infty} \operatorname{Tr}\left[M_{T} K^{*} K\right] \leqslant \varepsilon\left\|u_{0}\right\|^{2}+0
$$

therefore

$$
\operatorname{Tr}\left[M_{T} K^{*} K\right] \xrightarrow{T \rightarrow \infty} 0
$$

q.e.d.

Corollary 8.9. Let A be self-adjoint and K relatively A-compact and bounded, then

$$
\frac{1}{T} \int_{0}^{T}\left\|K e^{-i t A} u_{0}\right\|^{2} \mathrm{~d} t \xrightarrow{T \rightarrow \infty} 0
$$

for $u_{0} \in \mathscr{H}_{c}$ and $u_{0} \in D(A) .0$

Proof. If $u_{0} \in \mathscr{H}_{c}$ and $u_{0} \in D(A)$, then

$$
\frac{1}{T} \int_{0}^{T}\left\|K e^{-i t A} u_{0}\right\|^{2} \mathrm{~d} t=\frac{1}{T} \int_{0}^{T}\|\underbrace{K(A+i)^{-1}}_{\text {compact }} e^{-i t A}(A+i) u_{0}\|^{2} \mathrm{~d} t \xrightarrow{T \rightarrow \infty} 0
$$

where we use that $A: \mathscr{H}_{c} \cap D(A) \rightarrow \mathscr{H}_{c}$ hence $(A+i) u_{0} \in \mathscr{H}_{c}$ and Ruelle's theorem.

If $u_{0} \in \mathscr{H}_{c}$ and $u_{0} \in D(A)$ then by Jensen's inequality

$$
\frac{1}{T} \int_{0}^{T}\left\|K e^{-i t A} u_{0}\right\| \mathrm{d} t \leqslant \sqrt{\frac{1}{T} \int_{0}^{T}\left\|K e^{-i t A} u_{0}\right\|^{2} \mathrm{~d} t} \xrightarrow{T \rightarrow \infty} 0
$$

If $u_{0} \in \mathscr{H}_{c}$ (not necessarily in $\left.D(A)\right)$, then there exists a sequence $\left(u_{n}\right)_{n} \subset \mathscr{H}_{c} \cap D(A)$ such that $u_{n} \xrightarrow{n \rightarrow \infty} u_{0}$ in \mathscr{H}.
Then

$$
\frac{1}{T} \int_{0}^{T}\left\|K e^{-i t A} u_{0}\right\| \mathrm{d} t \leqslant \frac{1}{T} \int_{0}^{T}\left\|K e^{-i t A} u_{n}\right\| \mathrm{d} t+\frac{1}{T} \int_{0}^{T}\left\|K e^{-i t A}\left(u_{n}-u_{0}\right)\right\| \mathrm{d} t
$$

The first term converges to 0 as $T \rightarrow \infty$ by the above and the second term can be estimated by

$$
\frac{1}{T} \int_{0}^{T}\left\|K e^{-i t A}\left(u_{n}-u_{0}\right)\right\| \mathrm{d} t \leqslant\|K\|\left\|u_{n}-u_{0}\right\| \frac{1}{T} \int_{0}^{T} \mathrm{~d} t=\|K\|\left\|u_{n}-u_{0}\right\|
$$

and thus be made arbitrarily small by taking $n \rightarrow \infty$. Now noting that

$$
\left\|K e^{-i t A} u_{0}\right\|^{2} \leqslant\left\|K e^{-i t A} u_{0}\right\|\|K\|\left\|u_{0}\right\|
$$

the convergence of the square follows as well.
q.e.d.

Theorem 8.10 (RAGE). Let A be self-adjoint $\left(K_{n}\right)_{n}$ a sequence of A-relatively compact bounder operator such that $K_{n} \xrightarrow{n \rightarrow \infty} 1$ strongly, i.e. for all $u \in \mathscr{H}$.

$$
\left\|K_{n} u-u\right\| \xrightarrow{n \rightarrow 0} 0
$$

Then

$$
\begin{aligned}
& \mathscr{H}_{p}=\left\{u_{0} \in \mathscr{H} \mid \lim _{n \rightarrow \infty} \sup _{t \in \mathbb{R}}\left\|\left(1-K_{n}\right) e^{-i t A} u_{0}\right\|=0\right\} \\
& \mathscr{H}_{c}=\left\{u_{0} \in \mathscr{H} \mid \forall n \in \mathbb{N}: \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\|K_{n} e^{-i t A} u_{0}\right\|=0\right\}
\end{aligned}
$$

Proof. If $u_{0} \in \mathscr{H}_{c}$, then

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\|K_{n} e^{-i t A} u_{0}\right\|=0
$$

by the corollary and by the assumption $K_{n} u \xrightarrow{n \rightarrow \infty} u$ strongly for all $u \in \mathscr{H}$, i.e. $\left\|K_{n}\right\| \leqslant C$ for all $n \in \mathbb{N}$ by the uniform boundedness principle.
If $u_{0} \in \mathscr{H}_{p}$

$$
\left(1-K_{n}\right) e^{-i t A} u_{0} \xrightarrow{t \rightarrow \pm \infty} 0
$$

strongly (Exercise!). Combining $\mathscr{H}=\mathscr{H} \oplus \mathscr{H}_{p}$ implies the conclusion. q.e.d.

Theorem 8.11. Assume that $A=-\Delta+V$ is a self-adjoint operator on $L^{2}\left(\mathbb{R}^{d}\right)$, as V is $(-\Delta)$-compact. Then

$$
\begin{aligned}
& \mathscr{H}_{c}=\left\{\left.u \in L^{2}\left(\mathbb{R}^{d}\right)\left|\forall \mathbb{R}^{+}: \frac{1}{T} \int_{0}^{T} \int_{|x| \leqslant R}\right|\left(e^{-i t A} u\right)(x) \right\rvert\, \mathrm{d} x \mathrm{~d} t \xrightarrow{T \rightarrow \infty} 0\right\} \\
& \mathscr{H}_{p}=\left\{u \in L^{2}\left(\mathbb{R}^{d}\right)\left|\lim _{R \rightarrow \infty} \inf _{t \in \mathbb{R}} \int_{|x| \leqslant R}\right|\left(e^{-i t A} u\right)(x) \mid \mathrm{d} x=\|u\|_{L^{2}}^{2}\right\}
\end{aligned}
$$

Proof. The first part follows from Exercise 11.4.
The second part uses that $\mathbf{1}_{\{|x| \leqslant R\}}$ is relatively compact w.r.t. A which is equivalent to $\mathbf{1}_{\{|x| \leqslant R\}}(A+i)^{-1}$ being compact which follows from $\mathbf{1}_{\{|x| \leqslant R\}}(-\Delta+i)^{-1}(-\Delta+i)(A+i)^{-1}$ being the product of a compact and a bounded operator.
q.e.d.

Remark 8.12. If we know that $u \in H_{c}(A)$, then $\int_{|x| \leqslant R}\left|\left(e^{-i t A} u\right)(x)\right|^{2} \rightarrow 0$ in the time average. Can we prove that pointwise convergence, i.e.

$$
\lim _{t \rightarrow \pm \infty} \int_{|x| \leqslant R}\left|\left(e^{-i t A} u\right)(x)\right|^{2} \longrightarrow 0
$$

This can proven for $A=-\Delta$ using

$$
\left\|e^{i t(-\Delta)} u\right\|_{L^{\infty}} \leqslant C \frac{\|u\|_{L^{1}}}{t^{3 / 2}}
$$

To prove this for a general potential we hope that we can approximate $e^{-i t A} u$ via free dynamics $e^{i t \Delta} v$.

8.2 Wave Operator

Let $A=-\Delta+V, A_{0}=-\Delta$ on $L^{2}(\mathbb{R})$. We aim at finding $u_{0} \in D(A)$ for each $v_{0} \in D(A-0)$ such that

$$
\lim _{t \rightarrow \infty}\left\|e^{-i t A} u_{0}-e^{-i t A_{0}} v_{0}\right\|_{L^{2}}=0 \Longleftrightarrow u_{0}=\lim _{t \rightarrow \pm \infty} e^{i t A} e^{-i t A_{0}} v_{0}
$$

Definition 8.13 (Wave Operator). If it exists we define the wave operator to be

$$
\Omega_{ \pm}:=\underset{t \rightarrow \pm \infty}{\mathrm{s}-\lim } e^{-i t A} e^{i t A_{0}}
$$

If the wave operator exists, then it is a unitary operator $L^{2}\left(\mathbb{R}^{3}\right) \rightarrow \operatorname{ran} \Omega_{ \pm}$. In fact $\operatorname{ran} \Omega_{ \pm} \subset \mathscr{H}_{c}$.

Definition 8.14. We say that A is asymptotically complete iff $\operatorname{ran} \Omega_{+}=\operatorname{ran} \Omega_{-}=\mathscr{H}_{c}$ which is equivalent to the existence of

Remark 8.15. When does $\Omega_{ \pm}$exist? The main in the following shall be that if $V(x) \xrightarrow{|x| \rightarrow \infty} 0$ "fast enough", i.e. if it is a so-called short range potential, then the wave operators exist.

Theorem 8.16. If $V \in L^{2}\left(\mathbb{R}^{3}\right)+L^{p}\left(\mathbb{R}^{3}\right)$, for $2 \leqslant p<3$, then $\Omega_{ \pm}$exist.

Remark 8.17. If $|V(x)| \leqslant \frac{1}{|x|^{1+\varepsilon}}$, for $\varepsilon>0$ and $|x|$ large, then $V \mathbf{1}_{|x| \geqslant R} \in L^{3-\delta}\left(\mathbb{R}^{3}\right)$, where $\delta=\delta_{\varepsilon}>0$. Then the wave operators exist.
But if $|V(x)| \geqslant \frac{1}{|x|}$ for $|x|$ large, then the wave operators do not exist. We need to modify the approximation $\lim _{t \rightarrow \pm \infty} e^{-i t A} e^{i t S}$ where $S \neq-\Delta$.

Theorem 8.18 (Cook's Method). If A and B are two self-adjoint operators on \mathscr{H} with the same domain and if for $\varphi \in \mathscr{H}$

$$
\int_{T}^{\infty}\left\|(A-B) e^{i t B} \varphi\right\| \mathrm{d} t<\infty
$$

for some $T>\infty$, then

$$
\Omega_{+} \varphi:=\lim _{t \rightarrow+\infty} e^{-i t A} e^{i t B} \varphi
$$

exists (as a limit in the norm topology.)

Proof. We need to check that $t \mapsto e^{-i t A} e^{i t B} \varphi$ is a Cauchy sequence/net then existence follows from the completeness of \mathscr{H}. This is equivalent to

$$
\left\|e^{-i t A} e^{i t B} \varphi-e^{-i s A} e^{i s B} \varphi\right\| \xrightarrow{t, s \rightarrow+\infty} 0 .
$$

In order to estimate this norm let us take the derivative

$$
\frac{d}{d t}\left(e^{-i t A} e^{i t B} \varphi\right)=e^{i t A}(-i A+i B) e^{i t B}
$$

where we used that $[f(C), C]=0$ for any self-adjoint operator C and bounded function f.

Then

$$
\begin{aligned}
\left\|e^{-i t_{2} A} e^{i t_{2} B} \varphi-e^{-i t_{1} A} e^{i t_{1} B} \varphi\right\| & =\left\|\int_{t_{1}}^{t_{2}}(-i) e^{-i t A}(A-B) e^{i t B} \varphi \mathrm{~d} t\right\| \leqslant \\
& \leqslant \int_{t_{1}}^{t_{2}}\left\|e^{-i t A}(A-B) e^{i t B} \varphi\right\| \mathrm{d} t= \\
& =\int_{t_{1}}^{t_{2}}\left\|(A-B) e^{i t B} \varphi\right\| \mathrm{d} t= \\
& =\int_{T}^{t_{2}}\left\|(A-B) e^{i t B} \varphi\right\| \mathrm{d} t-\int_{T}^{t_{1}}\left\|(A-B) e^{i t B} \varphi\right\| \mathrm{d} t \xrightarrow{t_{1}, t_{2} \rightarrow \infty} 0
\end{aligned}
$$

since

$$
\int_{T}^{+\infty}\left\|(A-B) e^{i t B} \varphi\right\| \mathrm{d} t<\infty
$$

q.e.d.

Proof of Theorem 8.16. From Cook's theorem, we need to check that

$$
\int_{T}^{\infty}\left\|V e^{i t(-\Delta)} \varphi\right\|<\infty
$$

if φ is "nice enough", i.e. $\varphi \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{2}\left(\mathbb{R}^{3}\right)$. We shall argue later that this is indeed enough.

Assume that $V \in L^{2}\left(\mathbb{R}^{3}\right)$. Then

$$
\left\|V e^{i t(-\Delta)} \varphi\right\|_{L^{2}} \leqslant\|V\|_{L^{2}}\left\|e^{i t(-\Delta)} \varphi\right\|_{L^{\infty}} \leqslant C\|V\|_{L^{2}} \frac{\|\varphi\|_{L^{1}}}{t^{3 / 2}}
$$

hence

$$
\int_{T}^{\infty}\left\|V e^{i t(-\Delta)} \varphi\right\| \leqslant C \frac{\|V\|_{L^{2}}\|\varphi\|_{L^{1}}}{\sqrt{T}}<\infty
$$

Assume that $V \in L^{p}\left(\mathbb{R}^{3}\right)$ with $2 \leqslant p<3$. Then by Hölder's inequality

$$
\left\|V e^{i t(-\Delta)} \varphi\right\|_{L^{2}} \leqslant\|V\|_{L^{p}}\left\|e^{i t(-\Delta)} \varphi\right\|_{L^{q}}
$$

with $\frac{1}{p}+\frac{1}{q}=\frac{1}{2}$. Here $\left\|e^{i t(-\Delta)} \varphi\right\|_{L^{q}}$ can be controlled by $\left\|e^{i t(-\Delta)} \varphi\right\|_{L^{\infty}}$ and $\left\|e^{i t(-\Delta)} \varphi\right\|_{L^{2}}=$ $\|\varphi\|_{L^{2}}$ for $q \in[2, \infty]$ by interpolation (Exercise 13.5)
Thus we have already proven that if $V \in L^{2}+L^{p}$ for $2 \leqslant p<3$, then

$$
\Omega_{+} \varphi:=\lim _{t \rightarrow \infty} e^{-i t(-\Delta+V)} e^{i t(-\Delta)} \varphi
$$

exists strongly in L^{2} for all $\varphi \in L^{1} \cap L^{2}$.
First note that Ω_{+}is an isometric operator on its domain which is dense hence it can be uniquely extend to all of L^{2}. More precisely let $\varphi \in L^{2}$ and $\left(\varphi_{n}\right)_{n} \subset L^{1} \cap L^{2}$ converging to φ. Define $M_{t}:=e^{-i t A} e^{i t(-\Delta)}$ then

$$
\begin{aligned}
\left\|M_{t_{2}} \varphi-M_{t_{1}} \varphi\right\| & \leqslant\left\|M_{t_{2}} \varphi_{n}-M_{t_{1}} \varphi_{n}\right\|+\left\|M_{t_{2}}\left(\varphi-\varphi_{n}\right)-M_{t_{1}}\left(\varphi-\varphi_{n}\right)\right\| \leqslant \\
& \leqslant\left\|M_{t_{2}} \varphi_{n}-M_{t_{1}} \varphi_{n}\right\|+\underbrace{\left(\left\|M_{t_{2}}\right\|+\left\|M_{t_{1}}\right\|\right)}_{=2}\left\|\varphi-\varphi_{n}\right\|= \\
& =\left\|M_{t_{2}} \varphi_{n}-M_{t_{1}} \varphi_{n}\right\|+2\left\|\varphi-\varphi_{n}\right\| \xrightarrow{t_{1}, t_{2} \rightarrow+\infty} 2\left\|\varphi-\varphi_{n}\right\| \xrightarrow{n \rightarrow \infty} 0
\end{aligned}
$$

q.e.d.

Remark 8.19 (Completeness). If V is nice enough, then

$$
\Omega_{+}:=\underset{t \rightarrow \infty}{\operatorname{s-lim}} e^{-i t(-\Delta) V} e^{i t(-\Delta)}
$$

is well-defined on $L^{2}\left(\mathbb{R}^{3}\right)$. However, by the RAGE theorem we only know that $\operatorname{ran}\left(\Omega_{+}\right) \subset$ $H_{c}(-\Delta+V)$. When does $\operatorname{ran}\left(\Omega_{+}\right)=H_{c}(-\Delta+V)$ hold.
If this is correct, then we say that Ω_{+}is complete. As a consequence, we can approximate every $u \in \mathscr{H}_{c}(-\Delta+V)$

$$
\left\|e^{i t(-\Delta+V)} u-e^{i t(-\Delta)} \varphi\right\|_{L^{2}} \xrightarrow{t \rightarrow+\infty} 0
$$

as a consequence

$$
\int_{|x| \leqslant R}\left|\left(e^{i t(-\Delta+V)} u\right)(x)\right| \mathrm{d} x \xrightarrow{t \rightarrow+\infty} 0
$$

Remark 8.20. Kato prove that Ω_{+}is complete iff

$$
\left(\Omega_{+}\right)^{-1} u:=\lim _{t \rightarrow \infty} e^{i t(-\Delta)} e^{-i t A} u
$$

exists for all $u \in \mathscr{H}_{c}(A)$.

Theorem 8.21. If V is short-range $V \in L^{1} \cap L^{\infty}$ and $\|V\|_{1}+\|V\|_{\infty}$ is small enough, then

$$
\left\|V e^{i t(-\Delta+V)} \varphi\right\|_{L^{2}} \leqslant \frac{C}{1+t^{3 / 2}}
$$

for all $t \in \mathbb{R}$ where $\varphi \in L^{1} \cap L^{\infty}$. C is independent of t but depends on φ. Consequently

$$
\int_{-\infty}^{\infty}\left\|V e^{i t(-\Delta+V)} \varphi\right\|_{L^{2}} \mathrm{~d} t<\infty
$$

and hence

$$
\left(\Omega_{+}\right)^{-1}:=\underset{t \rightarrow \infty}{\mathrm{~s}-\lim _{t \rightarrow}} e^{-i t(-\Delta)} e^{i t(-\Delta+V)}
$$

exists by Cook's method. This in turn then implies completeness.

Proof. If $|t| \leqslant 1$ then we have

$$
\left\|V e^{i t(-\Delta+V)} \varphi\right\|_{L^{2}} \leqslant\|V\|_{L^{\infty}}\left\|e^{i t(-\Delta+V)} \varphi\right\|_{L^{2}} \leqslant\|V\|_{L^{\infty}}\|\varphi\|_{L^{2}} \leqslant \frac{C}{2}
$$

Thus it suffices to consider $|t| \geqslant 1$ which we shall consider now.
We shall use Duhamel's formula: For $A=-\Delta+V, A_{0}=-\Delta$

$$
e^{-i t A} \varphi=e^{-i t A_{0}} \varphi+(-i) \int_{0}^{t} e^{-i(t-s) A_{0}} V e^{-i s A} \varphi \mathrm{~d} s
$$

Indeed

$$
e^{i t A_{0}} e^{-i t A} \varphi=e^{-i t A_{0}} \varphi+(-i) \int_{0}^{t} e^{i s A_{0}} V e^{-i s A} \varphi \mathrm{~d} s
$$

because

$$
\frac{d}{d t}\left(e^{i t A_{0}} e^{-i t A} \varphi\right)=e^{i t A_{0}} i\left(A_{0}-A\right) e^{-i t A} \varphi=-i e^{i t A_{0}} V e^{-i t A} \varphi
$$

Consider

$$
\begin{aligned}
\left\|V e^{-i t A} \varphi\right\|_{L^{2}} & \leqslant\left\|V e^{-i t A_{0}} \varphi+(-i) \int_{0}^{t} V e^{-i(t-s) A_{0}} V e^{-i s A} \varphi \mathrm{~d} s\right\|_{L^{2}} \leqslant \\
& \leqslant\left\|V e^{-i t A_{0}} \varphi\right\|_{L^{2}}+\int_{0}^{t}\left\|V e^{-i(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{2}} \mathrm{~d} s
\end{aligned}
$$

We know that

$$
\left\|V e^{-i t A_{0}} \varphi\right\|_{L^{2}} \leqslant\|V\|_{L^{2}}\left\|e^{-i t A_{0}} \varphi\right\|_{L^{\infty}} \leqslant \frac{C}{|t|^{3 / 2}}
$$

and

$$
\begin{aligned}
\left\|V e^{-i(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{2}} & \leqslant\|V\|_{L^{2}}\left\|e^{-i(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{\infty}} \leqslant \\
& \leqslant \frac{\|V\|_{L^{2}}}{|t-s|^{3 / 2}}\left\|V e^{-i s A} \varphi\right\|_{L^{1}}
\end{aligned}
$$

However, the integral over s diverges thus it is only useful for $|s-t|$ not too small. On the other hand

$$
\begin{aligned}
\left\|V e^{-i(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{2}} & \leqslant\|V\|_{L^{\infty}}\left\|e^{-i(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{2}}= \\
& =\|V\|_{L^{\infty}}\left\|V e^{-i s A} \varphi\right\|_{L^{2}} \leqslant\|V\|_{L^{\infty}}^{2}\left\|e^{-i s A} \varphi\right\|_{L^{2}}=\|V\|_{L^{\infty}}^{2}\|\varphi\|_{L^{2}}
\end{aligned}
$$

Define

$$
\begin{array}{r}
f_{t}:=\left(\left\|V e^{-i t A} \varphi\right\|_{L^{1}}+\left\|V e^{-i t A} \varphi\right\|_{L^{2}}\right) \\
M_{t}:=\sup _{s \in[0, t]} f(t)
\end{array}
$$

By Duhamel's formula we again have

$$
\left\|V e^{-i t A} \varphi\right\|_{L^{1}} \leqslant\left\|V e^{-i t A_{0}} \varphi\right\|_{L^{1}}+\int_{0}^{t}\left\|V e^{-i(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{1}} \mathrm{~d} s
$$

The two terms can be estimated via

$$
\begin{gathered}
\left\|V e^{-i t A_{0}} \varphi\right\|_{L^{1}} \leqslant\|V\|_{L^{1}}\left\|e^{-i t A_{0}} \varphi\right\|_{L^{\infty}} \leqslant C \frac{\|V\|_{L^{1}}\|\varphi\|_{L^{1}}}{t^{3 / 2}} \\
\left\|V e^{-i(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{1}} \leqslant\|V\|_{L^{1}}\left\|e^{-i(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{\infty}} \leqslant\|V\|_{L^{1}} \frac{\left\|V e^{-i s A} \varphi\right\|_{L^{1}}}{|t-s|^{3 / 2}} \\
\left\|V e^{-i(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{1}} \leqslant\|V\|_{L^{2}}\left\|e^{-i(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{2}}=\|V\|_{L^{2}}\left\|V e^{-i s A} \varphi\right\|_{L^{2}}
\end{gathered}
$$

In summary

$$
\begin{aligned}
f_{t} & \leqslant \frac{C}{t^{3 / 2}}+\int_{0}^{t}\left(\left\|V e^{-i t(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{2}}+\left\|V e^{-i t(t-s) A_{0}} V e^{-i s A} \varphi\right\|_{L^{1}}\right) \mathrm{d} s \leqslant \\
& \leqslant \frac{C}{t^{3 / 2}}+\int_{0}^{t} \min \left\{\frac{f_{s}}{|t-s|^{3 / 2}}, f_{s}\right\} \mathrm{d} s
\end{aligned}
$$

Thus

$$
M_{t} \leqslant \frac{C}{t^{\frac{3}{2}}}+M_{t} \underbrace{\int_{0}^{t} \min \left\{\frac{1}{|t-s|^{3 / 2}}, 1\right\} \mathrm{d} s}_{=: D<\infty}\left(\|V\|_{L^{\infty}}+\|V\|_{L^{1}}\right)=\frac{C}{t^{\frac{3}{2}}}+M_{t} D\left(\|V\|_{L^{\infty}}+\|V\|_{L^{1}}\right)
$$

If $D\left(\|V\|_{L^{\infty}}+\|V\|_{L^{1}}\right)<1$ then $M_{t} \leqslant \frac{C^{\prime}}{t^{3 / 2}}$, thus for all $t \in \mathbb{R}$

$$
\left\|V e^{-i t A} \varphi\right\|_{L^{2}}+\left\|V e^{-i t A} \varphi\right\|_{L^{1}} \leqslant \frac{C}{1+|t|^{\frac{3}{2}}}
$$

which ends the proof by Cook's theorem.
q.e.d.

Remark 8.22. In this case, i.e. $\left(\|V\|_{L^{1}}+\|V\|_{\infty}\right)$ being small, then for all $u \in L^{2}\left(\mathbb{R}^{3}\right)$

$$
\left\|e^{-i t(-\Delta+V)} u-e^{-i t(-\Delta)} \varphi\right\|_{L^{2}} \xrightarrow{t \rightarrow \infty} \infty
$$

for some $\varphi \in L^{2}$. Thus $u \in H_{c}(-\Delta+V)$. Consequently $H_{p}(-\Delta+V)=\{0\}$, i.e. $-\Delta+V$ has no eigenvalue.

Remark 8.23. Assume that the wave operators $\Omega_{ \pm}=\mathrm{s}-\lim _{t \rightarrow \infty} e^{-i t A} e^{i t A_{0}}$ exist, $A_{0}=$ $-\Delta$ on $L^{2}\left(\mathbb{R}^{d}\right)$. Then $A \Omega_{ \pm}=\Omega_{ \pm} A_{0}$ which is equivalent to $A_{0}=\Omega_{ \pm}^{-1} A \Omega_{ \pm} . \Omega_{ \pm}$: $L^{2}\left(\mathbb{R}^{d}\right) \rightarrow \operatorname{ran} \Omega_{ \pm}$is unitary.
Take $\Omega_{ \pm}(x, y)$ to be the kernel of $\Omega_{ \pm}$. Then for all f

$$
\begin{aligned}
\left(A \Omega_{ \pm} \bar{f}\right)(x) & =\left(\Omega_{ \pm} A_{0} \bar{f}\right)(x) \\
\Longrightarrow \int A_{x} \Omega_{ \pm}(x, y) \bar{f}(y) \mathrm{d} y & =\int \Omega_{ \pm}(x, y) \overline{-\Delta f}(y) \mathrm{d} y \\
\Longrightarrow \int A_{x} \widehat{\Omega_{ \pm}}(x, y) \overline{\hat{f}}(y) \mathrm{d} y & =\int \Omega_{ \pm}(x, k)|2 \pi k|^{2} \overline{\hat{f}}(k) \mathrm{d} k \\
\Longrightarrow A_{x} \widehat{\Omega_{ \pm}}(x, k) \overline{\hat{f}}(y) \mathrm{d} y & =|2 \pi k|^{2} \Omega_{ \pm}(x, k)
\end{aligned}
$$

for all x, k. Here $\hat{\Omega}_{ \pm}(x, k)$ is the Fourier transform of $y \mapsto \Omega_{ \pm}(x, y)$.
Thus for all $k \in \mathbb{R}^{d}, x \mapsto \widehat{\Omega}_{ \pm}(x, k)$ is "like" an eigenfunction of A w.r.t. to the eigenvalue $|2 \pi k|^{2}$. Here it might happen that $x \mapsto \Omega_{ \pm}(x, k) \notin L^{2}\left(\mathbb{R}^{d}\right)$.

Example 8.24. If $d=1$ and $A=-\Delta+V(x)$ where

$$
V(x)= \begin{cases}V_{0} & \text { if } x>0 \\ 0 & \text { if } x<0\end{cases}
$$

then for all k

$$
\Omega_{ \pm}(x, k)= \begin{cases}A e^{2 \pi i k x}+B e^{-2 \pi i k x}, & \text { if } x>0 \\ C e^{2 \pi i k x}+D e^{-2 \pi i k x}, & \text { if } x<0\end{cases}
$$

Remark 8.25 (Existence of Wave Operators). By Cook's method $\Omega_{ \pm}$exist if

$$
\int_{T_{0}}^{\infty}\left\|\left(A-A_{0}\right) e^{i t A_{0}} \varphi\right\|_{L^{2}}<\infty
$$

for φ in a dense set. Above we applied this to $A_{0}=-\Delta$ and $A=-\Delta+V$. We can also apply this to $A_{0}=-\Delta$ and $A=-\Delta+|v\rangle\langle v|$ or $A=-\Delta+B$ where B is trace class. One can also apply Kato's method: If $A-A_{0}$ is trace class, $\Omega_{ \pm}=\mathrm{s}-\lim _{t \rightarrow \pm \infty} e^{-i t A} e^{i t A_{0}}$ exists. There are many extensions, e.g. assuming that $(A+i)^{-1}-\left(A_{0}+i\right)^{-1}$ is trace
class.

Scattering

A scattering experiment is characterised by a set of ingoing particles with momenta and spins

$$
\left\{\boldsymbol{k}_{1}, s_{1}, \ldots, \boldsymbol{k}_{I}, s_{I}\right\}
$$

and and a set of outgoing particles

$$
\left\{\boldsymbol{q}_{1}, \sigma_{1}, \ldots, \boldsymbol{q}_{J}, \boldsymbol{\sigma}_{J}\right\}
$$

and the so-called scattering cross-section

$$
\sigma\left(\boldsymbol{k}_{1}, s_{1}, \ldots, \boldsymbol{k}_{I}, s_{I}, \boldsymbol{q}_{1}, \sigma_{1}, \ldots, \boldsymbol{q}_{J}, \sigma_{J}\right)=\frac{N_{e}}{F_{i}}
$$

where N_{e} is number of outgoing particles of a certain type and F_{i} is the ingoing flux, i.e. the number of particles coming in per unit time per unit area.

Lippmann-Schwinger Equation

We are looking for a scattering solution $\psi_{\boldsymbol{k}}^{ \pm}$. The \pmdenotes the in/outgoing boundary condition and \boldsymbol{k} the asymptotic momentum at large distances.

$$
\psi_{\boldsymbol{k}}^{ \pm}=\lim _{\varepsilon \downarrow 0} \varphi-\frac{1}{H_{0}-\left(\frac{k^{2}}{2} \pm i \varepsilon\right)}\left(V \psi_{\boldsymbol{k}}^{ \pm}\right)
$$

This will deliver solution such that

$$
H \psi_{\boldsymbol{k}}^{ \pm}=\frac{k^{2}}{2} \psi_{\boldsymbol{k}}^{ \pm}
$$

where $H=H_{0}+V$ and

$$
H_{0} \varphi=\frac{k^{2}}{2} \varphi .
$$

In position space with $H_{0}=-\frac{1}{2} \Delta$

$$
\psi_{\boldsymbol{k}}^{ \pm}(\boldsymbol{r})=e^{i \boldsymbol{k} \cdot \boldsymbol{r}}-\frac{1}{4 \pi} \int \frac{e^{\mp i|\boldsymbol{k}|\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} V\left(\boldsymbol{r}^{\prime}\right) \psi_{\boldsymbol{k}}^{ \pm}\left(\boldsymbol{r}^{\prime}\right) \mathrm{d} r^{\prime}
$$

Modelling a (Simple) Scattering Experiment

We prepare a particle in a "free" state, wave packet

$$
\varphi(\boldsymbol{r},-t)=\frac{1}{(2 \pi)^{3 / 2}} \int e^{i \boldsymbol{k} \cdot \boldsymbol{r}} \psi(\boldsymbol{k}) \mathrm{d} k
$$

such that $\varphi(\boldsymbol{r},-t)$ is outside the range of the potential.
Let $\varphi\left(\boldsymbol{r},-t\right.$) evolve by $e^{-i H t}$ (not H_{0}) to large times T and analyse $\varphi(\boldsymbol{r}, T)$ in terms of free wave packets.
(1) What does "prepare the wave packet" mean? Can we map any wave-packet of free mater $\left(H_{0}\right)$, onto a scattering state of the free problem (H) ? Is that mapping unique? (Existence and Uniqueness of Scattering Theory)
(2) What is the fate of the scattering state? Can the incoming packet en up as a bound state of H. (Asymptotic Completeness of Scattering Theory)

Point, Absolutely Continuous and Singular Spectrum

A Hilbert space is divided by a self-adjoint operator on it into the following spectral subspaces:

$$
\mathscr{H}_{p}=\overline{\operatorname{span}(\text { eigenvectors })}
$$

the subspace of the pure-point spectrum,

$$
\mathscr{H}_{c}=\mathscr{H}_{p}^{\perp}
$$

the essential (continuous) subspace. One can further distinguish \mathscr{H}_{c}

$$
\mathscr{H}_{c}=\mathscr{H}_{\mathrm{ac}} \oplus \mathscr{H}_{s}
$$

where measure μ_{u} associated with $u \in \mathscr{H}_{\text {ac }}$ is absolutely continuous w.r.t. the Lebesgue measure (i.e. there exists a measurable function f such that $\mu=f \lambda$, where λ is the Lebesgue
measure). The measure associated to the vectors in the complementary space is singular to λ but continuous (i.e. does not contain delta functions).
$\psi \in \mathscr{H}_{\text {ac }}$ behave like wave packets, i.e.

$$
\lim _{t \rightarrow \pm \infty}\left\langle e^{-i t H} \psi \mid \psi\right\rangle=0
$$

For $\psi \in \mathscr{H}_{s}$ only the corresponding time average decays.
A scattering experiment is composed of two dynamics: the free evolution H_{0} and the interacting evolution H.

Theorem 8.26. Let A be a self-adjoint operator and K relatively A-compact and denote by $P^{(c)} \mathscr{H}=\mathscr{H}_{c}$ and $P^{(a c)} \mathscr{H}=\mathscr{H}_{a c}$ the projection into the continuous and absolutely continuous subspaces respectively, ten

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\|K e^{-i t A} P^{(c)} \psi\right\|^{2} \mathrm{~d} t & =0 \\
\lim _{T \rightarrow \infty}\left\|K e^{-i t A} P^{(a c)} \psi\right\|^{2} & =0
\end{aligned}
$$

Remark 8.27 (Implications for Schrödinger Operators). Let χ_{R} be the characteristic function of a sphere of radius R. Then χ_{R} is $(-\Delta)$-relatively compact.
In particular for any function $\psi \in \mathscr{H}=\mathscr{H}^{\text {(ac), }, \Delta}$

$$
\lim _{t \rightarrow \infty}\left\|\chi_{R} e^{i t \Delta} \psi\right\|=0
$$

Theorem 8.28 (RAGE (Ruelle, Amrein, Georgescu, Enß) Theorem). Let A be a selfadjoint operator. Suppose there is a sequence of A-relatively compact operators $\left(K_{n}\right)_{n}$
which converges strongly to the identity. Then

$$
\begin{aligned}
& \mathscr{H}_{c}=\left\{\psi \in \mathscr{H} \left\lvert\, \lim _{n \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\|K_{n} e^{-i t A} \psi\right\| \mathrm{d} t=0\right.\right\} \\
& \mathscr{H}_{p}=\left\{\psi \in \mathscr{H} \mid \lim _{n \rightarrow \infty} \sup _{t \geqslant 0}\left\|\left(1-K_{n}\right) e^{-i t A} \psi\right\|=0\right\}
\end{aligned}
$$

Scattering Operators $\Omega_{ \pm}$(Møller)

Let $U_{0}(t)=e^{-i t H_{0}}$ and $U(t)=e^{-i t H}$. Then the scattering operators are defined on $\mathscr{H}^{\mathrm{ac}}\left(H_{0}\right)$ via

$$
\Omega_{ \pm}:=\operatorname{sil}_{t \rightarrow \pm \infty} U(t) U_{0}(-t)
$$

when they exist.

Definition 8.29 (Asymptotic Completeness). If $\Omega_{ \pm}$are bijections $\mathscr{H}^{\mathrm{ac}}(H) \leftrightarrow \mathscr{H}^{\mathrm{ac}}\left(H_{0}\right)$ the scattering problem is said to be asymptotically complete.

$\Omega_{ \pm}$exist and are complete for "short range potentials"

A potential V is called short ranged if

$$
\int_{0}^{\infty}\left\|V(-\Delta+1)^{-1} \mathbf{1}_{B_{r}^{C}}\right\| \mathrm{d} r<\infty
$$

and $V(-\Delta+1)^{-1}$ is relatively bounded. Here B_{r} denotes the ball of radius r. For all $\varepsilon>0$ the potentials $\frac{1}{r^{1+\varepsilon}}$ are short range, but the Coulomb potential is not.

Stationary Scattering Theory

$$
\lim _{\varepsilon \downarrow 0} \varepsilon \int_{0}^{\infty} e^{-\varepsilon t} f(t) \mathrm{d} t=\lim _{t \rightarrow \infty} f(t) .
$$

Representing H_{0} via its porjection valued measures

$$
H_{0}=\int_{0}^{\infty} \mathrm{d} P(E)
$$

Then

$$
e^{i t H} e^{-i t H_{0}}=e^{i t H} \int_{0}^{\infty} e^{-i t E} \mathrm{~d} P(E) e^{i t H}=\int_{0}^{\infty} e^{i t(H-E)} \mathrm{d} P(E)
$$

Then

$$
\Omega_{ \pm}=\lim _{\varepsilon \downarrow 0} \varepsilon \int_{0}^{\infty} e^{-\varepsilon t} \int_{0}^{\infty} e^{ \pm i t(H-E)} \mathrm{d} P(E) \mathrm{d} t=1-\lim _{\varepsilon \downarrow 0} \int_{0}^{\infty}(H-E \pm i \varepsilon)^{-1} V \mathrm{~d} P(E)
$$

which yields the Lippmann-Schwinger equation.

Asymptotic Completeness

A potential is called asymptotically complete if

$$
\Omega_{ \pm} P_{\mathrm{ac}}\left(H_{0}\right) \mathscr{H}=P_{\mathrm{ac}}(H) \mathscr{H}
$$

This is the case when the potential is short-range, i.e.

$$
\int_{0}^{\infty}\left\|V(-\Delta+1)^{-1} \mathbf{1}_{B_{r}^{C}}\right\| \mathrm{d} r<\infty
$$

or when Cook's criterion holds

$$
\int_{t_{0}}^{\infty}\left\|V e^{ \pm i t H_{0}} \varphi\right\| \mathrm{d} t<\infty
$$

Consider the self-adjoint dilation operator

$$
D=\frac{1}{2}(\boldsymbol{x} \cdot \boldsymbol{p}+\boldsymbol{p} \cdot \boldsymbol{x})
$$

which generates the dilations

$$
U_{\lambda} \psi(x)=\left(e^{\lambda}\right)^{\frac{3}{2}} \psi\left(e^{\lambda} x\right)=e^{i \lambda D} \psi(x)
$$

Define the projectors onto the in- and out-going subspaces via

$$
P_{ \pm}:=P_{D}(0, \pm \infty)
$$

We also have Perry's estimate for any $n \in \mathbb{N}$

$$
\left\|\mathbf{1}_{B_{2 v|t|}} e^{-i t H_{0}} f\left(h_{0}\right) P_{D}((\pm R, \pm \infty))\right\| \leqslant \frac{C}{1+|t|^{n}} f
$$

where f is differentiable function with support in $\left[v_{0}^{2}, v_{1}^{2}\right]$ where $v<v_{0}$.
Functions of the type

$$
\psi=f\left(H_{0}\right) P_{D}((\pm R, \pm \infty)) \varphi
$$

are dense in \mathscr{H}.

By Cook's criterion $\Omega_{ \pm}$exists and thus $\Omega_{ \pm} P_{\mathrm{ac}} \mathscr{H} \subset P_{\mathrm{ac}} \mathscr{H}$. The short range property enters as $\left(\Omega_{ \pm}-1\right) f\left(H_{0}\right) P_{ \pm}$being compact.

Final steps of the proof: Take $\psi(t)=e^{-i t H} \psi$ from $P_{\text {ac }} \mathscr{H}$. We need to show that $\psi \in \operatorname{ran} \Omega_{ \pm}$. At large $t>0 \psi(t)$ can be meaningfully decomposed into $\varphi_{-}(t)+\varphi_{+}(t)$ where $\varphi_{ \pm}(t) \in P_{D, \pm}$.

In this step short range-ness is essential, i.e.e $f\left(H_{0}\right)-f(H)$ is compact.
Next we see that

$$
\|\psi\|^{2}=\cdots=\lim _{t \rightarrow \pm \infty}\left\langle\psi(t), \Omega_{+} \varphi_{+}(t)+\Omega_{-} \varphi_{-}(t)\right\rangle
$$

Assume there exists ψ_{\perp} which is orthogonal to $\operatorname{ran} \Omega_{+}$.

Teschl 12.43

$$
\lim _{t \rightarrow+\infty}\left\langle P_{\mp} f\left(H_{0}\right)^{*} e^{-i t H_{0}} \Omega_{\mp}^{*} \psi(t), \psi(t)\right\rangle=0
$$

Intertwining property: (bijective map between the dynamics of H_{0} and the scattering dynamics of H)

$$
\Omega_{ \pm} f\left(H_{0}\right)=f(H) \Omega_{ \pm}
$$

at large $t: \varphi_{+}(t)$ is completely in $P_{\mathrm{ac}} \mathscr{H}$. At all times scattering wave packets are in $P_{\mathrm{ac}}(\mathscr{H})$.

Coulomb Scattering

Wave operators for $H_{0}=-\Delta, H=-\Delta \mp \frac{1}{r}$ do not exists. Why? The classical trajectory of a particle moving classically, radially away then

$$
r(t)=c t+d \log (t)+O(1)
$$

never $\sim c t$.
There are three ways out:
(1) Exact solutions and eigenfunctions are known for $H=-\Delta \pm \frac{1}{r}$; hypergeometric functions
(1b) Cross-section formulae are known but they only contain information concerning the asymptotic momenta $\boldsymbol{p}_{ \pm}$(Rutherford formula).
(2) The Dollard Hamiltonian

$$
H_{D}(t)=-\Delta-\frac{1}{2|t| \sqrt{-\Delta}} \vartheta(-4|t| \Delta-1)
$$

Then

$$
\Omega_{ \pm}^{D}=\sin _{t \rightarrow \pm \infty} e^{i t\left(-\Delta-\frac{1}{r}\right)} e^{-i \int_{0}^{t} H_{D}(s) \mathrm{ds}}
$$

exists.

S-Matrix

We are interested in the transition probabilities

$$
\left|\left\langle\Omega_{+} \varphi_{i}, \Omega_{-} \varphi_{e}\right\rangle\right|^{2}
$$

or in other words

$$
S:=\Omega_{-}^{\dagger} \Omega_{+}
$$

This is a unitary operator

$$
S: P_{\mathrm{ac}} \mathscr{H} \longrightarrow P_{\mathrm{ac}} \mathscr{H}
$$

S inherits all symmetries of H and H_{0}. In particular

$$
\left[H_{0}, S\right]=0
$$

via the intertwining property. This means that "free" energy is conserved by S.

$$
S=\lim _{\varepsilon \downarrow 0} \int\left(1-2 \pi i \delta\left(H_{0}-E\right)\left(V-V(H-E+i \varepsilon)^{-1} V\right) \delta\left(H_{0}-E\right)\right) \mathrm{d} E
$$

Abel limit.
For a rotationally symmetric potential the S matrix must commute with the angular momentum operators, i.e.

$$
S|E, \ell, m\rangle=e^{i \delta_{\ell}(k)}|E, \ell, m\rangle
$$

here $k^{2}=2 E . \delta_{\ell}(k)$ is called the scattering phase.
Note that the 1 in the S-matrix formula above induces a singularity for transitions of the type $\langle\varphi, S \varphi\rangle$.
Thus we restrict our attention to the so-called T-matrix.

$$
T(z)=V-V(H-z)^{-1} V .
$$

We define the "on-shell" matrix element

$$
t\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right)=\lim _{\varepsilon \downarrow 0}\langle\boldsymbol{k}| V-V(H-E-i \varepsilon)^{-1} V|\boldsymbol{k}\rangle
$$

where

$$
|\boldsymbol{k}\rangle=(2 \pi)^{-\frac{3}{2}} e^{i \boldsymbol{k} \cdot \boldsymbol{x}}, \quad\left\langle\boldsymbol{k}, \boldsymbol{k}^{\prime}\right\rangle=\delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
$$

Note that

$$
\langle\boldsymbol{k}| V \Omega_{-}\left|\boldsymbol{k}^{\prime}\right\rangle=\langle\boldsymbol{k}| \Omega_{+}^{*} V\left|\boldsymbol{k}^{\prime}\right\rangle
$$

Now defining for two unit vectors $\boldsymbol{n}, \boldsymbol{n}^{\prime} \in \mathbb{R}^{3}$.

$$
f\left(k, \boldsymbol{n}, \boldsymbol{n}^{\prime}\right):=-(2 \pi)^{2} t\left(k \boldsymbol{n}, t \boldsymbol{n}^{\prime}\right)
$$

then

$$
\sigma\left(k \boldsymbol{n}, k \boldsymbol{n}^{\prime}\right)=\left|f\left(k, \boldsymbol{n}, \boldsymbol{n}^{\prime}\right)\right|^{2}
$$

Chapter 9

Many-Body Quantum Theory

Our Hilbert space in the following shall be $\mathscr{H}=L^{2}\left(\left(\mathbb{R}^{3}\right)^{N}\right)=L^{2}\left(\mathbb{R}^{3 N}\right)=\bigotimes^{N} L^{2}\left(\mathbb{R}^{3}\right)$.

Remark 9.1. In general we have for finite dimensional vector space H_{1}, H_{2}

$$
L^{2}\left(H_{1} \oplus H_{2}\right) \simeq L^{2}\left(H_{1}\right) \otimes L^{2}\left(H_{2}\right)
$$

given by

$$
u_{i} \otimes v_{j} \longmapsto u_{i} \otimes v_{j}
$$

where $\left(u_{i}\right)_{i}$ is a basis for $L^{2}\left(H_{1}\right)$ and $\left(v_{j}\right)_{j}$ is one for $L^{2}\left(H_{2}\right)$ and

$$
(u \otimes v)(x, y)=u(x) v(y)
$$

Note that $L^{2}\left(H_{1}\right) \times L^{2}\left(H_{2}\right) \rightarrow L^{2}\left(H_{1} \oplus H_{2}\right),(u, v) \mapsto u \otimes v$ is bilinear and thus has a unique lifting to $L^{2}\left(H_{1}\right) \otimes L^{2}\left(H_{2}\right)$.

The typical many-body Hamiltonian for N-particles is

$$
H_{N}=\sum_{i=1}^{N}\left(-\Delta_{x_{i}}+V\left(x_{i}\right)\right)+\sum_{1 \leqslant i<j \leqslant N} W\left(x_{i}-x_{j}\right)
$$

where $x_{i} \in \mathbb{R}^{3}$ is interpreted as the position $i^{\text {th }}$ particle.

Example 9.2. A molecule with M nuclei at $\left(R_{j}\right)_{j=1}^{N}$ with charges $Z_{j}>0$ then the

Hamiltonian of N-electrons is

$$
H_{N}=\sum_{i=1}^{N} j\left(-\Delta_{x_{i}}-\sum_{j=1}^{M} \frac{Z_{j}}{x_{i}-R_{j}}\right)+\sum_{1 \leqslant i<j \leqslant N} \frac{1}{\left|x_{i}-x_{j}\right|}+\underbrace{\sum_{1 \leqslant j<k<\leqslant M} \frac{Z_{j} Z_{k}}{\left|R_{j}-R_{k}\right|}}_{\text {constant }} .
$$

Remark 9.3 (Fundamental Questions). 1) When is H_{N} self-adjoint?
2) What does $\sigma\left(H_{N}\right)$ look like?
3) Dynamics (existence of wave operator, asymptotic completeness)

Remark 9.4. In one-body theory, $-\Delta+V(x)$, if $V(x) \xrightarrow{|x| \rightarrow \infty} 0$ "fast", then V is $(-\Delta)$ compact and thus $-\Delta+V$ is self-adjoint with domain $H^{2}\left(\mathbb{R}^{d}\right)$ and $\sigma_{\text {ess }}(-\Delta+V)=$ $\sigma_{\text {ess }}(-\Delta)=[0, \infty)$.
In N-Body theory the interaction potential $W\left(x_{1}-x_{2}\right)$ is never a compact perturbation of $(-\Delta)$ even if $W(x) \xrightarrow{|x| \rightarrow \infty} 0$ "fast". This is the case as $W\left(x_{1}-x_{2}\right) \nrightarrow 0$ as $\left|x_{1}\right|,\left|x_{2}\right| \rightarrow$ ∞, i.e. by taking $x_{2}=x_{1}+k$ where k is some constant vector.

Theorem 9.5 (Kato). Let

$$
H_{N}=\sum_{i=1}^{N}\left(-\Delta_{x_{i}}+V\left(x_{i}\right)\right)+\sum_{1 \leqslant i<j \leqslant N} W\left(x_{i}-x_{j}\right)
$$

with $x_{i} \in \mathbb{R}^{3}$. Then this operator is self-adjoint on $L^{2}\left(\mathbb{R}^{3 N}\right)$ with domain $H^{2}\left(\mathbb{R}^{3 N}\right)$ provided that $V, W \in L^{2}\left(\mathbb{R}^{3}\right)+L^{p}\left(\mathbb{R}^{3}\right)$ for $2 \leqslant p \leqslant \infty$.

Proof. This follows from Theorem 5.12, i.e. we have to prove that $V\left(x_{i}\right) m W\left(x_{i}-x_{j}\right)$ are bounded w.r.t. $-\sum_{i=1}^{N} \Delta_{x_{i}}=-\Delta_{\mathbb{R}^{3 N}}$ with relative bound smaller than ε for any $\varepsilon>0$, i.e.

$$
\begin{array}{r}
\left\|V\left(x_{i}\right) \Psi\right\|_{L^{2}} \leqslant \varepsilon\|\psi\|_{H^{2}\left(\mathbb{R}^{3 N}\right)}+C_{\varepsilon}\|\psi\|_{L^{2}} \\
\left\|W\left(x_{i}-x_{j}\right) \Psi\right\|_{L^{2}} \leqslant \varepsilon\|\psi\|_{H^{2}\left(\mathbb{R}^{3 N}\right)}+C_{\varepsilon}\|\psi\|_{L^{2}}
\end{array}
$$

The first case follows as in the one-body theory. Concerning the second suppose that $W \in L^{2}$, then

$$
\begin{aligned}
\|W(x-y) \Psi\|_{L^{2}}^{2} & =\int\left|W\left(x_{i}-x_{j}\right)\right|^{2}\left|\Psi\left(x_{1}, \ldots, x_{N}\right)\right|^{2} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{N} \leqslant \\
& \leqslant \int\left(\int\left|W\left(x_{i}-x_{j}\right)\right|^{2}\left(\sup _{x_{i}}\left|\Psi\left(x_{1}, \ldots, x_{N}\right)\right|^{2}\right) \mathrm{d} x_{i}\right) \prod_{j \neq i} \mathrm{~d} x_{j}
\end{aligned}
$$

Here

$$
\sup _{x_{i}}\left|\Psi\left(x_{1}, \ldots, x_{N}\right)\right|^{2} \leqslant C\left\|\Psi\left(x_{1}, \ldots, x_{N}\right)\right\|_{H_{x_{i}}^{2}\left(\mathbb{R}^{3}\right)}^{2}
$$

thus

$$
\begin{aligned}
\|W(x-y) \Psi\|_{L^{2}}^{2} & \leqslant C \int\left(\int\left|W\left(x_{i}-x_{j}\right)\right|^{2}\left\|\Psi\left(x_{1}, \ldots, x_{N}\right)\right\|_{H_{x_{i}}^{2}\left(\mathbb{R}^{3}\right)}^{2} \mathrm{~d} x_{i}\right) \prod_{j \neq i} \mathrm{~d} x_{j}= \\
& =C \int\left(\int\|W\|_{L^{2}}^{2}\left\|\Psi\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{N}\right)\right\|_{H_{x_{i}}^{2}\left(\mathbb{R}^{3}\right)}^{2}\right) \prod_{j \neq i} \mathrm{~d} x_{j} \leqslant \\
& \leqslant\|W\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}\|\Psi\|_{H^{2}\left(\mathbb{R}^{3}\right)}^{2}
\end{aligned}
$$

Note that if $W \in L^{2}\left(\mathbb{R}^{3}\right)+L^{p}\left(\mathbb{R}^{3}\right)$ then we can write it as $W=W_{1}+W_{2}$ with $W_{1} \in L^{2}, W_{2} \in$ L^{∞} and $\left\|W_{1}\right\|_{L^{2}} \leqslant \varepsilon$. Thus
$\left\|W\left(x_{i}-x_{j}\right) \Psi\right\|_{L^{2}} \leqslant\left\|W_{1}\left(x_{i}-x_{j}\right) \Psi\right\|_{L^{2}}+\left\|W_{2}\left(x_{i}-x_{j}\right) \Psi\right\|_{L^{2}} \leqslant C \varepsilon\|\Psi\|_{H^{2}\left(\mathbb{R}^{3 N}\right)}+\left\|W_{2}\right\|_{\infty}\|\Psi\|_{L^{2}}$
for all $\varepsilon>0$.
q.e.d.

Remark 9.6. There is a nice story behind the proof of this theorem which can be found in the paper "Tosio Kato's Work on Non-Relativistic Quantum Mechanics" by Barry Simon https://arxiv.org/pdf/1711.00528.pdf.

Now we shall consider what $\sigma\left(H_{N}\right)$ looks like. Note that $\sigma_{\text {ess }}\left(H_{N}\right) \neq \sigma_{\text {ess }}\left(-\Delta_{\mathbb{R}^{3 N}}\right)=[0, \infty)$ except when $N=1$ or $W \equiv 0$.
Assume that

$$
H_{N}=\sum_{i=1}^{N}\left(-\Delta_{x_{i}}+V\left(x_{i}\right)\right)+\sum_{1 \leqslant i<j \leqslant N} W\left(x_{i}-x_{j}\right)
$$

and $V, W \in L^{2}\left(\mathbb{R}^{3}\right)+L^{p}\left(\mathbb{R}^{3}\right)$ with $2 \leqslant p<\infty$. We know that H_{N} is self-adjoint and bounded
from below, i.e.

$$
E_{N}:=\inf \sigma\left(H_{N}\right)>-\infty
$$

Theorem 9.7 (Humitzer, Van Winter, Zhislin (HVZ)). Under these two assumptions and $W \geqslant 0$, then $\sigma_{\text {ess }}\left(H_{N}\right)=\left[E_{N-1}, \infty\right)$.

Example 9.8. Consider the Helium Hamiltonian

$$
H_{2}=-\Delta_{x_{1}}-\Delta_{x_{2}}-\frac{Z}{\left|x_{1}\right|}-\frac{Z}{\left|x_{2}\right|}+\frac{1}{\left|x_{1}-x_{2}\right|}
$$

with $Z>0$. Then

$$
\sigma_{\mathrm{ess}}\left(H_{2}\right)=\left[\inf \sigma\left(-\Delta-\frac{Z}{|x|}\right), \infty\right)=\left[-\frac{Z^{2}}{4}, \infty\right)
$$

since the spectrum of H_{1} is given by

$$
\sigma\left(H_{1}\right)=\left(-\frac{Z^{2}}{4 n^{2}}\right)_{n=1}^{\infty} \cup[0, \infty)
$$

where each eigenvalue has multiplicity n^{2}.

Proof. (ゝ) The key point is that

$$
H_{N}=H_{N-1}+\left(-\Delta_{x_{N}}\right)+V\left(x_{N}\right)+\sum_{i=1}^{N-1} V\left(x_{i}-x_{N}\right) .
$$

Take $\lambda \geqslant E_{N-1}$. We prove that $\lambda \in \sigma_{\text {ess }}\left(H_{N}\right)$ by constructing a singular Weyl sequence $\left(\psi^{(k)}\right)_{k} \subset L^{2}\left(\mathbb{R}^{3 N}\right)$ of unit vectors converging weakly to L^{2} and

$$
\left\|\left(H_{N}-\lambda\right) \psi_{N}^{(k)}\right\|_{L^{2}} \xrightarrow{k \rightarrow \infty} 0
$$

We chose $\psi^{(k)}=\psi_{N-1}^{(k)} \otimes \varphi^{(k)}$, where $\psi_{N-1}^{(k)}$ is a Weyl sequence for $E_{N-1}=\inf \sigma\left(H_{N-1}\right) \in$ $\sigma\left(H_{N-1}\right)$, i.e. $\left\|\psi_{N-1}^{(k)}\right\|_{L^{2}}=1$ and

$$
\left\|\left(H_{N}-\lambda\right) \psi_{N-1}^{(k)}\right\|_{L^{2}} \xrightarrow{k \rightarrow \infty} 0
$$

By a density argument, we can take $\psi_{N-1}^{(k)}$ such that $\operatorname{supp} \psi_{N-1}^{(k)} \subset B_{\mathbb{R}^{3(N-1)}}\left(0, R_{k}\right)$ with
$R_{k} \xrightarrow{k \rightarrow \infty}+\infty$
On the other hand, $\lambda-E_{N-1} \in \sigma_{\text {ess }}(-\Delta+V)=\sigma_{\text {ess }}(-\Delta)=[0, \infty)$. I.e. we can choose a Weyl sequence φ_{k} such that $\left\|\varphi^{(k)}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}=1, \varphi^{(k)} \rightharpoonup 0$ in $L^{2}\left(\mathbb{R}^{3}\right)$ and

$$
\left\|\left(-\Delta_{x_{N}}+V\left(x_{N}\right)-\left(\lambda-E_{N-1}\right)\right) \varphi^{(k)}\right\|_{L^{2}} \xrightarrow{k \rightarrow \infty} .
$$

In face wan choose φ^{k} such that $\operatorname{supp} \varphi^{(k)} \subset\left\{x \in \mathbb{R}^{3}| | x \mid \geqslant 2 R_{k}\right\}$.
With the choice $\psi_{N}^{(k)}=\psi_{N-1}^{(k)} \otimes \varphi^{(k)}$ then

$$
\begin{aligned}
\left\|\left(H_{N}-\lambda\right) \psi_{N}^{(k)}\right\| \leqslant \| & \left(H_{N-1}-E_{N-1}\right) \psi_{N-1}^{(k)} \otimes \varphi^{(k)} \|+ \\
& +\left\|\left(-\Delta_{x_{N}}+V\left(x_{N}\right)-\left(\lambda-E_{N-1}\right)\right) \psi_{N-1}^{(k)} \otimes \varphi^{(k)}\right\|+ \\
& +\left\|\sum_{i=1}^{N-1} W\left(x_{i}-x_{N}\right) \psi_{N-1}^{(k)} \otimes \varphi^{(k)}\right\|
\end{aligned}
$$

We have

$$
\begin{gathered}
\left\|\left(H_{N-1}-E_{N-1}\right) \psi_{N-1}^{(k)} \otimes \varphi^{(k)}\right\|=\left\|\left(H_{N-1}-E_{N-1}\right) \psi_{N-1}^{(k)}\right\| \underbrace{\left\|\varphi^{(k)}\right\|}_{=1} \xrightarrow{k \rightarrow \infty} 0 \\
\left\|\left(-\Delta_{x_{N}}+V\left(x_{N}\right)-\left(\lambda-E_{N-1}\right)\right) \psi_{N-1}^{(k)} \otimes \varphi^{(k)}\right\|=\underbrace{\left\|\psi_{N-1}^{(k)}\right\|}_{=1}\left\|\left(-\Delta_{x_{N}}+V\left(x_{N}\right)-\left(\lambda-E_{N-1}\right)\right) \varphi^{(k)}\right\| \xrightarrow{k \rightarrow \infty} 0 \\
\left\|\sum_{i=1}^{N-1} W\left(x_{i}-x_{N}\right) \psi_{N-1}^{(k)} \otimes \varphi^{(k)}\right\|=\|\underbrace{\mathbf{1}^{k}}_{\underbrace{R_{k} \rightarrow \infty}_{\left\{\left|x_{i}-x_{N}\right| \geqslant R_{k}\right\}} 0} W\left(x_{i}-x_{N}\right) \psi_{N-1}^{(k)} \otimes \varphi^{(k)}\|_{L^{2}} \xrightarrow{k \rightarrow \infty} 0
\end{gathered}
$$

since $\left|x_{i}\right| \leqslant R_{k},\left|x_{N}\right| \geqslant 2 R_{k}$.
(\subset) Here $W \geqslant 0$ is important. Take $\lambda \in \sigma_{\text {ess }}\left(H_{N}\right)$. Then we can find a Weyl sequence $\psi_{N}^{(k)}$ such that $\left\|\psi_{N}^{(k)}\right\|_{L^{2}}=1, \psi_{N}^{(k)} \xrightarrow{k \rightarrow \infty} 0$ and

$$
\left\|\left(H_{N}-\lambda\right) \psi_{N}^{(k)}\right\| \xrightarrow{k \rightarrow \infty} 0
$$

Using the Lemma below we may choose a partition of unity as described therein and apply the IMS localisation formula

$$
-\Delta=\sum_{i=0}^{N}\left(\varphi_{i}(-\Delta) \varphi_{i}-\left|\nabla \varphi_{i}\right|^{2}\right)
$$

Now we have $\lambda=\lim _{k \rightarrow \infty}\left\langle\psi_{N}^{(k)}, H_{N} \psi_{N}^{(k)}\right\rangle$ and

$$
\left\langle\psi_{N}^{(k)}, H_{N} \psi_{N}^{(k)}\right\rangle=\sum_{j=0}^{N}\left\langle\psi_{N}^{(k)}, \varphi_{j} H_{N} \varphi_{j} \psi_{N}^{(k)}\right\rangle-\sum_{j=0}^{N}\langle\psi_{N}^{(k)}, \underbrace{\left|\nabla \varphi_{j}\right|^{2}}_{\frac{C^{2}}{R^{2}}} \psi_{N}^{(k)}\rangle
$$

The right-most term converges uniformly in k to 0 as $R \rightarrow \infty$.
Further

$$
\left\langle\psi_{N}^{(k)}, \varphi_{0} H_{N} \varphi_{0} \psi_{N}^{(k)}\right\rangle \geqslant \underbrace{E_{N}}_{\leqslant 0} \int_{\mathbb{R}^{3 N}}\left|\varphi_{0}\right|^{2}\left|\psi_{N}^{(k))}\right| \xrightarrow{k \rightarrow \infty} 0
$$

for fixed R since supp φ_{0} is bounded and $\psi_{N}^{(k)}$ converges strongly to 0 on bounded sets by the Sobolev embedding as $\psi_{N}^{(k)}$ is bounded in $H^{1}\left(\mathbb{R}^{3 N}\right)$ and converges weakly to 0 . If $j=1, \ldots, N$

$$
\begin{aligned}
\left\langle\psi_{N}^{(k)}, \varphi_{j} H_{N} \varphi_{j} \psi_{N}^{(k)}\right\rangle & =\langle\psi_{N}^{(k)}, \varphi_{j}(\underbrace{H_{N-1}}_{\geqslant E_{N-1}}+\left(-\Delta_{x_{N}}\right)+V\left(x_{N}\right)+ \\
& +\sum_{i=1}^{N} \underbrace{W\left(x_{i}-x_{N}\right)}_{\geqslant 0}) \varphi_{j} \psi_{N}^{(k)}\rangle \geqslant \\
& \geqslant\langle\psi_{N}^{(k)}, \varphi_{j}(E_{N-1}+\underbrace{\left(-\Delta_{x_{N}}\right)+V\left(x_{N}\right)}_{\text {as }}) \varphi_{j} \psi_{N}^{(k)}\rangle \geqslant \\
& \geqslant E_{N-1} \int\left|\varphi_{j}\right|^{2}\left|\psi_{N}^{(k)}\right|^{2}+o(1)_{R \rightarrow \infty}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{j=1}^{N}\left\langle\psi_{N}^{(k)}, \varphi_{j} H_{N} \varphi_{j} \psi_{N}^{(k)}\right\rangle & \geqslant E_{N-1}\left(1-\left\langle\psi_{N}^{(k)}, \varphi_{0} H_{N} \varphi_{0} \psi_{N}^{(k)}\right\rangle\right) \geqslant \\
& \geqslant E_{N-1}\left(1+o(1)_{k \rightarrow \infty}\right)+o(1)_{R \rightarrow \infty}
\end{aligned}
$$

Altogether we may conclude

$$
\lambda=\lim _{k \rightarrow \infty}\left\langle\psi_{N}^{(k)}, H_{N} \psi_{N}^{(k)}\right\rangle \geqslant E_{N-1}
$$

thus $\sigma_{\text {ess }}\left(H_{N}\right) \subset\left[E_{N}, \infty\right)$.

Remark 9.9. Indeed, without the assumption $W \geqslant 0$, we still have $\sigma_{\text {ess }}\left(H_{N}\right) \supset$ $\left[E_{N-1}, \infty\right)$.

Lemma 9.10. There exists a partition of unity in $\mathbb{R}^{3 N}$ such that $1=\sum_{j=0}^{N} \varphi_{j}^{2}, \varphi_{j} \geqslant 0$ smooth such that

1) $\operatorname{supp} \varphi_{0} \subset\left\{x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{3 N}|\max | x_{i} \mid \leqslant 2 R\right\}$
2) $\operatorname{supp} \varphi_{j} \subset\left\{x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{3 N}| | x_{j} \mid \geqslant R\right\}$
3) $\left|\nabla \varphi_{0}\right|,\left|\nabla \varphi_{j}\right| \leqslant \frac{C}{R}$ where C is independent of R.

Theorem 9.11 (Zhislin). Consider the Hamiltonian

$$
H_{N, Z}=\sum_{i=1}^{N}\left(\Delta_{x_{i}}-\frac{Z}{\left|x_{i}\right|}\right)+\sum_{1 \leqslant i<j \leqslant N} \frac{1}{\left|x_{i}-x_{j}\right|}
$$

with $x_{i} \in \mathbb{R}^{3}$. This describes an atom with Z protons at the origin and N electrons. We know that $H_{N, Z}$ is self-adjoint on $L^{2}\left(\mathbb{R}^{3 N}\right)$ with domain $H^{2}\left(\mathbb{R}^{3 N}\right)$ and $\sigma_{\text {ess }}\left(H_{N, Z}\right)=$ $\left[E_{N-1, Z}, \infty\right)$.
If $N<Z+1$, then $E_{N, Z}<E_{N-1, Z}$ and $H_{N, Z}$ has infinitely many bound states below its essential spectrum.

Remark 9.12. The condition $N<Z+1$ follows also on physical grounds as at large distance a nucleus with charge Z and $N-1$ electrons appears as a single charged particle with charge $Z-(N-1)$. A further electron will be attracted to this particle if the charge of the particle is positive, i.e. $Z-(N-1)>0$.
However, it is an open conjecture, called the Ionisation Conjecture, that if $N>$ $Z+1$, then $E_{N, Z}=E_{N-1, Z}$ and $H_{N, Z}$ has no bound states below the essential spectrum. In fact we know that it fails for bosons, i.e. an atom has bound states for bosonic
electrons even for $N>Z+1$, but it is an open problem fro fermionic electrons.

Proof. We shall proceed by induction.
$(N=1) H_{1, Z}=-\Delta-\frac{Z}{|x|}$ on $L^{2}\left(\mathbb{R}^{3}\right)$ has eigenvalues $-\frac{Z^{2}}{4 n^{2}}$ with multiplicity n^{2} for every $n=$ $1,2, \ldots$.

IS Assume that the theorem holds for $N-1$ and consider N. We know that $H_{N-1, Z}$ has a ground state $E_{N-1, Z}$, i.e. $E_{N-1, Z}$ is an eigenvalue

$$
H_{N-1, Z} \Psi_{N-1}=E_{N-1, Z} \Psi_{N}
$$

We wish to construct a sequence $\Psi_{n}^{(k)}$ of normalised functions with disjoint support and

$$
\left\langle\Psi_{N}^{(k)}, H_{N, Z} \Psi_{N}^{(k)}\right\rangle<E_{N-1, Z}
$$

for all $k=1,2$, dots. By the min-max principle then

$$
\mu_{k}\left(H_{N-1, Z}\right) \leqslant \max _{1 \leqslant i \leqslant k}\left\langle\Psi_{N}^{(i)}, H_{N, Z} \Psi_{N}^{(i)}\right\rangle<E_{N-1, Z}=\inf \sigma_{\mathrm{ess}}\left(H_{N, Z}\right)
$$

Thus all $\mu_{k}\left(H_{N, Z}\right)$ are eigenvalues and $\mu_{1}\left(H_{N, Z}\right)=E_{N, Z}<E_{N-1, Z}$.
We shall begin with a trial wave function $\Psi_{N}^{(k)}=\Psi_{N-1} \otimes \varphi^{(k)}$, i.e. $\Psi_{N}^{(k)}\left(x_{1}, \ldots, x_{N}\right)=$ $\Psi_{N-1}\left(x_{1}, \ldots, x_{N-1}\right) \varphi^{(k)}\left(x_{N}\right)$.

Then

$$
\begin{aligned}
\left\langle\Psi_{N}^{(k)}, H_{N} \Psi_{N}^{(k)}\right\rangle-E_{N-1, Z}= & \left\langle\Psi_{n}^{(k)},\left(\left(H_{N-1}-E_{N-1, Z}\right)+\right.\right. \\
& \left.\left.+\left(-\Delta-\frac{Z}{\left|x_{N}\right|} \sum_{i=1}^{N-1} \frac{1}{\left|x_{i}-x_{N}\right|}\right)\right) \Psi_{N}^{(k)}\right\rangle= \\
=0 & +\int_{\mathbb{R}^{3}}\left|\nabla \varphi^{(k)}\left(x_{N}\right)\right|^{2}-\int_{\mathbb{R}^{3}} \frac{Z}{\left|x_{N}\right|}\left|\varphi^{(k)}\left(x_{N}\right)\right|^{2}+ \\
& +\sum_{i=1}^{N-1} \int_{\mathbb{R}^{3 N}} \frac{\left|\Psi_{N-1}\left(x_{1}, \ldots, x_{N-1}\right)\right|^{2}\left|\varphi^{(k)}\left(x_{N}\right)\right|}{\left|x_{i}-x_{N}\right|} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{N}
\end{aligned}
$$

We will take $\varphi^{(k)}$ to be a radial function for in that case we may apply Newton's
theorem to see

$$
\int_{\mathbb{R}^{3}} \frac{\left|\varphi^{(k)}\left(x_{N}\right)\right|^{2}}{\left|x_{i}-x_{N}\right|} \mathrm{d} x_{N}=\int_{\mathbb{R}^{3}} \frac{\left|\varphi^{(k)}\left(x_{N}\right)\right|^{2}}{\max \left\{\left|x_{i}\right|,\left|x_{N}\right|\right\}} \mathrm{d} x_{N} \leqslant \int_{\mathbb{R}^{3}} \frac{\left|\varphi^{(k)}\left(x_{N}\right)\right|^{2}}{\left|x_{N}\right|} \mathrm{d} x_{N}
$$

Thus we find

$$
\sum_{i=1}^{N-1} \int_{\mathbb{R}^{3 N}} \frac{\left|\Psi_{N-1}\left(x_{1}, \ldots, x_{N-1}\right)\right|^{2}\left|\varphi^{(k)}\left(x_{N}\right)\right|}{\left|x_{i}-x_{N}\right|} \mathrm{d} x_{1} \cdot \mathrm{~d} x_{N} \leqslant(N-1) \int_{\mathbb{R}^{3}} \frac{\varphi^{(k)}(x)}{|x|} \mathrm{d} x
$$

We conclude that

$$
\left\langle\Psi_{N}^{(k)}, H_{N} \Psi_{N}^{(k)}\right\rangle-E_{N-1, Z} \leqslant \int_{\mathbb{R}^{3}}\left|\nabla \varphi^{(k)}\right|^{2}-\int_{\mathbb{R}^{3}} \frac{Z_{0}}{|x|}\left|\varphi^{(k)}(x)\right|^{2} \mathrm{~d} x
$$

where $Z_{0}=Z-(N-1)>0$.
Here we can chose $\varphi^{(k)}(x)=R_{k}^{-\frac{3}{2}} \varphi_{0}\left(\frac{x}{R_{k}}\right)$ for some $\varphi_{0} \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$, radial, $\left\|\varphi_{0}\right\|_{L^{2}}=1$. Then

$$
\int_{\mathbb{R}^{3}}\left|\nabla \varphi^{(k)}\right|^{2}-\int_{\mathbb{R}^{3}} \frac{Z_{0}}{|x|}|\varphi(x)|^{2} \mathrm{~d} x=\frac{1}{R_{k}^{2}} \int_{\mathbb{R}^{3}}\left|\nabla \varphi^{(0)}\right|^{2}-\frac{1}{R_{k}} \int_{\mathbb{R}^{3}} \frac{Z_{0}}{|x|}\left|\varphi^{(0)}(x)\right|^{2} \mathrm{~d} x<0
$$

If R_{k} large enough. We have to prove that $\left(\Psi_{N}^{(k)}\right)_{k}$ have disjoint support for which it is enough to establish that $\varphi^{(k)}$ have disjoint support, which we can do by choosing $\operatorname{supp} \varphi^{(0)} \subset\{1<|x|<2\}$ and $R_{k}=4^{k}$.

9.1 Particle Statistics

If we have a system of N identical particles with wave function $\Psi_{N} \in L^{2}\left(\mathbb{R}^{3 N}\right)$, then it has to satisfy one of the following two conditions

- Bosons: for all $\sigma \in \mathfrak{S}(N)$

$$
\Psi_{N}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\Psi_{N}\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(N)}\right)
$$

- Fermions: for all $\sigma \in \mathfrak{S}(N)$

$$
\Psi_{N}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\operatorname{sgn}(\sigma) \Psi_{N}\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(N)}\right)
$$

Example 9.13. - Bosons: $\Psi_{N}\left(x_{1}, \ldots, x_{N}\right)=\left(u^{\otimes N}\right)\left(x_{1}, \ldots, x_{N}\right)=u\left(x_{1}\right) \cdots u\left(x_{N}\right)$

- Fermions:

$$
\begin{aligned}
\Psi_{N}\left(x_{1}, \ldots, x_{N}\right) & =\left(u_{1} \wedge \cdots \wedge u_{N}\right)\left(x_{1}, \ldots, x_{N}\right)= \\
& =\frac{1}{\sqrt{N!}} \operatorname{det}\left(\begin{array}{cccc}
u_{1}\left(x_{1}\right) & u_{2}\left(x_{1}\right) & \cdots & u_{N}\left(x_{1}\right) \\
u_{1}\left(x_{2}\right) & u_{2}\left(x_{2}\right) & \cdots & u_{N}\left(x_{2}\right) \\
\vdots & & & \vdots \\
u_{1}\left(x_{N}\right) & u_{2}\left(x_{N}\right) & \cdots & u_{N}\left(x_{N}\right)
\end{array}\right)
\end{aligned}
$$

where $\left(u_{i}\right)_{i=1}^{N}$ is an orthonormal family in $L^{2}\left(\mathbb{R}^{3}\right)$. This is called the Slatter determinant.

Theorem 9.14. The Kato theorem, HVZ theorem and Zhislin's theorem hold both for bosons and fermions, i.e. for

$$
H_{N}=\sum_{i=1}^{N}\left(-\Delta_{x_{i}}+V\left(x_{i}\right)\right)+\sum_{1 \leqslant i<j \leqslant N} W\left(x_{i}-x_{j}\right)
$$

on $L_{s}^{2}\left(\mathbb{R}^{3}\right)$ and $L_{a}^{2}\left(\mathbb{R}^{3}\right)$.

Theorem 9.15 (Ground State Energy of Non-Interacting System). Consider the Hamiltonian

$$
H_{N}=\sum_{i=1}^{N} h_{x_{i}}
$$

on $L_{s}^{2}\left(\mathbb{R}^{3}\right)$ or $L_{a}^{2}\left(\mathbb{R}^{3}\right)$ where h is a self-adjoint operator on $L^{2}\left(\mathbb{R}^{3}\right)$ and h is bounded from below. Then

1) For bosons, $\mu_{1}\left(H_{N}\right)=N \mu_{1}(h)$,
2) For fermions, $\mu_{1}\left(H_{N}\right)=\sum_{i=1}^{N} \mu_{i}(h)$.

Proof.
Bosons Lower bound: $h \geqslant \mu_{1}(h) \mathbb{I}_{L^{2}\left(\mathbb{R}^{3}\right)}$. Then

$$
H_{N}=\sum_{i=1}^{N} h_{x_{i}} \geqslant N \mu_{1}(h) \mathbb{I}_{L^{2}\left(\mathbb{R}^{3 N}\right)}
$$

here

$$
h_{x_{i}}=\mathbb{I}_{L^{2}\left(\mathbb{R}^{3}\right)} \otimes \cdots \otimes \underset{\substack{\uparrow \\ i^{\text {th }} \text { variable }}}{\boldsymbol{h}} \otimes \cdots \otimes \mathbb{I}_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

and

$$
\mathbb{I}_{L^{2}\left(\mathbb{R}^{3 N}\right)}=\mathbb{I}_{L^{2}\left(\mathbb{R}^{3}\right)} \otimes \cdots \otimes \mathbb{I}_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

Thus $\mu_{1}\left(H_{N}\right) \geqslant N \mu_{1}(h)$. For the upper bound, per definitioenm $\mu_{1}(h)=\inf _{\|u\|_{L^{2}}=1}\langle u, h u\rangle$, $\mu_{1}\left(H_{N}\right)=\inf _{\left\|\Psi_{N}\right\|_{L^{2}}}\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle$.

If we choose $\Psi_{N}=u^{\otimes N}$, then

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle=\left\langle u^{\otimes N}, \sum_{i=1}^{N} h_{x_{i}} u^{\otimes N}\right\rangle=\sum_{i=1}^{N}\|u\|_{L^{2}}^{N-1}\langle u, h u\rangle=N\|u\|_{L^{2}}^{N-1}\langle u, h u\rangle
$$

thus

$$
\mu_{1}\left(H_{N}\right) \leqslant \inf _{\|u\|_{L^{2}}=1}\left\langle u^{\otimes N}, h u^{\otimes N}\right\rangle=N \mu_{1}(h)
$$

Fermions For this we need the two lemmas below. For the lower bound we have for a wave function Ψ_{N}, its density matrix $0 \leqslant$ $g a m m a_{\Psi_{N}} \leqslant 1, \operatorname{Tr} \gamma_{\Psi_{N}}=N$ and

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle=\operatorname{Tr}\left[h \gamma_{\Psi_{N}}\right] \geqslant \sum_{i=1}^{N} \mu_{i}(h)
$$

For the upper bound choose $\Psi_{N}=u_{1} \wedge \cdots \wedge u_{N}$ with $\left(u_{i}\right)_{i}$ being an orthonormal family. Then

$$
\gamma_{\Psi_{N}}=\sum_{i=1}^{N}\left|u_{i}\right\rangle\left\langle u_{i}\right|
$$

Then

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle=\operatorname{Tr}\left(h \gamma_{\Psi_{N}}\right)=\sum_{i=1}^{N}\left\langle u_{i}, h u_{i}\right\rangle
$$

Minimising over all orthonormal families yields

$$
\mu_{1}\left(H_{N}\right) \leqslant \sum_{i=1}^{N} \mu_{i}(h)
$$

Lemma 9.16 (Pauli-Exclusion Principle). Take Ψ_{N} be an anti-symmetric wave function on $L^{2}\left(\mathbb{R}^{3 N}\right)$. Define the density matrix (one-body reduced density matrix) to be the positive, trace-class operator with trace $N, \gamma_{\Psi_{N}}: L^{2}\left(\mathbb{R}^{3}\right) \rightarrow L^{2}\left(\mathbb{R}^{3}\right)$ given by the kernel

$$
\gamma_{\Psi_{N}}(x ; y)=N \int_{\mathbb{R}^{3(N-1)}} \Psi_{N}\left(x, x_{2}, \ldots, x_{N}\right) \overline{\Psi_{N}\left(y, x_{2}, \ldots, x_{N}\right)} \mathrm{d} x_{2} \cdots \mathrm{~d} x_{N}
$$

Indeed $\Psi_{N} \mapsto\left|\Psi_{N}\right\rangle\left\langle\Psi_{N}\right|$ is a projection on $L_{a}^{2}\left(\mathbb{R}^{3 N}\right)$ with kernel

$$
\left(\left|\Psi_{N}\right\rangle\left\langle\Psi_{N}\right|\right)(X ; Y)=\Psi_{N}(X) \overline{\Psi_{N}(Y)}
$$

with $X, Y \in \mathbb{R}^{3 N}$. Thus $\gamma_{\Psi_{N}}=N \operatorname{Tr}_{2 \rightarrow N}\left|\Psi_{N}\right\rangle\left\langle\Psi_{N}\right|$.
Then $0 \leqslant \gamma_{\Psi_{N}} \leqslant \mathbb{I}_{L^{2}\left(\mathbb{R}^{3}\right)}$ as quadratic forms.

Proof. It is easy to see that $\gamma_{\psi_{N}} \geqslant 0$ because $\left|\Psi_{N}\right\rangle\left\langle\Psi_{N}\right|$ and

$$
\operatorname{Tr} \gamma_{\Psi_{N}}=\int_{\mathbb{R}^{3}} \gamma_{\Psi_{N}}(x ; x) \mathrm{d} x=N \int_{\mathbb{R}^{3 N}}\left|\Psi_{N}\left(x, x_{2}, \ldots, x_{N}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{N}=N 0
$$

It is trivial that $0 \leqslant \gamma_{\Psi_{N}} \leqslant N$, but in fact $\gamma_{\Psi_{N}} \leqslant 1$.
From QFT we have $\left\langle f, \gamma_{\Psi_{N}} f\right\rangle=\left\langle\Psi_{N}, a^{\dagger}(f) a(f) \Psi_{N}\right\rangle$. By the CCR (canonical commutation relations)

$$
\|f\|_{L^{2}}^{2}=\left\{a^{\dagger}(f), a(f)\right\} \geqslant a^{\dagger}(f) a(f)+a(f) a^{\dagger}(f) \geqslant a^{\dagger}(f) a(f)
$$

Thus

$$
\left\langle f, \gamma_{\Psi_{N}} f\right\rangle \leqslant\left\langle\Psi_{N},\|f\|_{L^{2}}^{2} \Psi_{N}\right\rangle=\|f\|_{L^{2}}^{2}
$$

for all $f \in L^{2}\left(\mathbb{R}^{3}\right)$. Thus $\gamma_{\Psi_{N}} \leqslant 1$.
A second proof of $\gamma_{\Psi_{N}} \leqslant 1$: We know that

$$
\gamma_{\Psi_{N}}=\sum_{i=1}^{\infty} \lambda_{i}\left|f_{i}\right\rangle\left\langle f_{i}\right|
$$

where λ_{i} are eigenvalues and $\left(f_{i}\right)_{i}$ is an orthonormal basis of $L^{2}\left(\mathbb{R}^{3}\right)$.
The inequality $\gamma_{\Psi_{N}} \leqslant 1$ is equivalent to $\lambda_{i} \leqslant 1$ for all i. Let us prove that $\lambda_{1} \leqslant 1$. We know that $L^{2}\left(\mathbb{R}^{3 N}\right)=L^{2}\left(\mathbb{R}^{3}\right) \otimes \cdots \otimes L^{2}\left(\mathbb{R}^{3}\right)$ has an orthonormal basis of the form

$$
\left\{f_{i_{1}} \otimes \cdots \otimes f_{i_{N}}\right\}_{i_{1}, \ldots, i_{N} \geqslant}
$$

Thus we can write

$$
\Psi_{N}=\sum_{i_{1}, \ldots, i_{N}} c_{i_{1}, \ldots, i_{N}} f_{i_{1}} \otimes \cdots \otimes f_{i_{N}}
$$

Because Ψ_{N} is anti-symmetric it follows that $c_{i_{1}, \ldots, i_{N}}$ if some $i_{j}=i_{k}$ for $j \neq k$. Then we compute that

$$
1=\left\|\Psi_{N}\right\|_{L^{2}}^{2}=\sum_{i_{1}, \ldots, i_{N}}\left|c_{i_{1}, \ldots, i_{N}}\right|^{2}
$$

and

$$
\begin{aligned}
&\left\langle f, \gamma_{\Psi_{N}} f\right\rangle=\int_{\mathbb{R}^{3 N}} \overline{f(x)} \Psi_{N}\left(x, x_{2}, \ldots, x_{N}\right) \overline{\Psi_{N}\left(y, x_{2}, \ldots, x_{N}\right)} f(y) \mathrm{d} x \mathrm{~d} y \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{N}= \\
&=\sum_{i_{1}, \ldots, i_{N}} \sum_{j_{1}, \ldots, j_{N}} \int \overline{f(x)} f_{i_{1}}(x) \cdots f_{i_{N}}\left(x_{N}\right) \\
& \overline{f_{j_{1}}(y) \cdots f_{j_{N}}\left(x_{N}\right)} f(y) \mathrm{d} x \mathrm{~d} y \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{N} c_{i_{1}, \ldots, i_{N}} \overline{c_{j_{1}, \ldots, j_{N}}}= \\
&=\sum_{i_{1}, \ldots, i_{N}} \sum_{j_{1}, \ldots, j_{N}} \overline{c_{j_{1}, \ldots, j_{N}}}\left\langle f, f_{i_{1}}\right\rangle\left\langle f_{j_{1}}, f\right\rangle \prod_{k=2}^{N} \overline{\left\langle f_{i_{k}}, f_{j_{k}}\right\rangle_{L_{x_{k}}^{2}}}
\end{aligned}
$$

$\prod_{k=2}^{N} \overline{\left\langle f_{i_{k}}, f_{j_{k}}\right\rangle_{L_{x_{k}}^{2}}} \neq 0$ iff $i_{k}=j_{k}$ for all $k=2, \ldots, N$ and this equal 1 in this case. Thus

$$
\left\langle f, \gamma_{\Psi_{N}} f\right\rangle=\sum_{i_{1}, \ldots, i_{N}, j_{1}} \overline{c_{j_{1}, i_{2}, \ldots, i_{N}}}\left\langle f, f_{i_{1}}\right\rangle\left\langle f_{j_{1}}, f\right\rangle
$$

Then by the Young inequality we have

$$
\left|\left\langle f, \gamma_{\Psi_{N}} f\right\rangle\right| \leqslant \sum_{i_{1}, \ldots, i_{N}, j_{1}} \frac{\left|c_{i_{1}, \ldots, i_{N}}\right|^{2}\left|\left\langle f_{i_{1}}, f\right\rangle\right|^{2}+\left|c_{j_{1}, i_{2}, \ldots, i_{N}}\right|^{2}\left|\left\langle f_{j_{1}}, f\right\rangle\right|^{2}}{2} \leqslant\|f\|_{L^{2}}^{2}
$$

Lemma 9.17. If h is a self-adjoint operator on $L^{2}\left(\mathbb{R}^{3}\right)$, and $0 \leqslant \gamma \leqslant 1, \operatorname{Tr} \gamma=N$.

Then

$$
\inf _{\substack{0 \leqslant \gamma \leqslant 1 \\ \operatorname{Tr} \gamma=N}} \operatorname{Tr}[h \gamma]=\inf _{\left(\varphi_{i}\right)_{i=1}^{N} \text { ONF }} \sum_{i=1}^{N}\left\langle\varphi_{i}, h \varphi_{i}\right\rangle=\sum_{i=1}^{N} \mu_{i}(h)
$$

Proof. First suppose that

$$
h=\sum_{i=1}^{\infty} \mu_{i}\left|u_{i}\right\rangle\left\langle u_{i}\right|
$$

Then

$$
\operatorname{Tr}(h \gamma)=\sum_{i=1}^{\infty} \mu_{i} \underbrace{\left\langle u_{i}, \gamma u_{i}\right\rangle}_{=: \alpha_{i}}
$$

with $0 \leqslant \alpha_{i} \leqslant 1, \sum_{i=1}^{\infty} \alpha_{i}=\operatorname{Tr} \gamma=N$.
The result follows from

$$
\inf \left\{\sum_{i=1}^{N} \mu_{i} \alpha_{i} \mid \sum_{i=1}^{\infty} \alpha_{i}=N\right\}=\mu_{1}+\cdots+\mu_{N}
$$

The general case is left as an exercise.
q.e.d.

Remark 9.18 (Real Calculations). "Interaction" problem, use Density functional theory

$$
\inf _{\left\|\Psi_{N}\right\|_{L^{2}}}\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle=\inf _{\substack{0 \leqslant \gamma \leqslant 1 \\ \operatorname{Tr} \gamma=N}} \inf _{\Psi_{N} \mapsto \gamma_{\Psi_{N}}=\gamma}\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle
$$

If we know that $\mathcal{E}(\gamma):=\inf _{\Psi_{N} \mapsto \gamma_{\Psi_{N}}=\gamma}\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle$ then the problem

$$
\inf _{\substack{0 \leqslant \gamma \leqslant 1 \\ \operatorname{Tr} \gamma=N}} \mathcal{E}(\gamma)
$$

can be solved practically. However, computing $\mathcal{E}(\gamma)$ is impossible even by Quantum Computers.
However, we can approximate $\mathcal{E}(\gamma)$.

Definition 9.19 (Hartree-Fock Approximation). For fermions (electrons). Let $\Psi_{N}=$
$u_{1} \wedge \cdots \wedge u_{N}$ and

$$
H_{N}=\sum_{i=1}^{N}\left(-\Delta_{x_{i}}+V\left(x_{i}\right)\right)+\sum_{i<j}^{N} W\left(x_{i}-x_{j}\right) .
$$

Then

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle=\operatorname{Tr}[(-\Delta+V) \gamma]+\frac{1}{2} \iint W(x-y)\left(\gamma(x, x) \gamma(y, y)-|\gamma(x, y)|^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

with $\gamma=\gamma_{\Psi_{N}}=\sum_{i=1}^{N}\left|u_{i}\right\rangle\left\langle u_{i}\right|$. This is called the Hartree-Fock functional.
For bosons one takes $\Psi_{N}=u^{\otimes n}$ and

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle=N\langle u,(-\Delta+V) u\rangle+\frac{N(N-1)}{2} \iint W(x-y)|u(x)|^{2}|u(y)|^{2}
$$

the Hartree functional.

Remark 9.20. In the case of Bose-Einstein Condensation with very-short range potentials this can be further simplified to the Gross-Pitaevski functional

$$
\mathcal{E}^{\mathrm{GP}}(u)=\langle u,(-\Delta+V) u\rangle+4 \pi a \int_{\mathbb{R}^{3}}|u(x)|^{4} \mathrm{~d} x
$$

here

$$
\frac{4 \pi a}{N}:=\inf \left\{\left.\int|\nabla f|^{2}+\frac{1}{2} \int W(x)|f(x)|^{2} \mathrm{~d} x \right\rvert\, f(x) \xrightarrow{|x| \rightarrow \infty} 1\right\}
$$

In the exercises we consider the case

$$
W= \begin{cases}+\infty, & \text { if }|x|<a \\ 0, & \text { if }|x|>a\end{cases}
$$

Chapter 10

Entropy

Recall that for a mixed state γ in a Hilbert space, then $\gamma \geqslant 0$ and $\operatorname{Tr}[\gamma]=1$. Thus $\gamma=\sum_{i} \lambda_{i}\left|u_{i}\right\rangle\left\langle u_{i}\right|$ and thus for any function defined on the spectrum

$$
f(\gamma)=\sum_{i} f\left(\lambda_{i}\right)\left|u_{i}\right\rangle\left\langle u_{i}\right| .
$$

Definition 10.1 (Von Neumann Entropy). For a mixed state γ we define

$$
S(\gamma):=-\operatorname{Tr}[\gamma \log (\gamma)]=-\sum_{i} \lambda_{i} \log \lambda_{i}
$$

Proposition 10.2. 1) $S(\gamma) \geqslant 0, \lambda_{i} \in[0,1], S(\gamma)=0$ iff γ is a pure state.
2) If $\operatorname{dim} \mathscr{H}=N<\infty$, then $\max _{\gamma} S(\gamma)=\log N$, with optimiser $\gamma=\frac{1}{N} \sum_{i=1}^{N}\left|u_{i}\right\rangle\left\langle u_{i}\right|$
3) Gibbs Variational Principle: The ground state energy E_{0} of a self-adjoint Hamiltonian A is given by

$$
E_{0}=\inf _{\substack{\gamma \geqslant 0 \\ \operatorname{Tr} \gamma=1}} \operatorname{Tr}[A \gamma]=\mu_{1}(A)
$$

(this is at zero temperature).

Proof. 1) For $t \in(0,1)$ the function $t \mapsto-t \log t$ is positive and equal to 0 at $t=0,1$.
2) The function $f: t \mapsto t \log t$ is convex in $[0, \infty)$ as $f^{\prime \prime}(t)=\frac{1}{t}>0$. Thus

$$
-S(\gamma)=\sum_{i=1}^{N} f\left(\lambda_{i}\right)=N \sum_{i=1}^{N} \frac{f\left(\lambda_{i}\right)}{N} \geqslant N f\left(\sum_{i=1}^{N} \frac{\lambda_{i}}{N}\right)=N f\left(\frac{1}{N}\right)=-\log (N)
$$

q.e.d.

If we are in positive temperature $T>0$, then
Theorem 10.3 (Gibbs Variational Principal). The free energy F is given by

$$
F=\inf _{\substack{\gamma \geqslant 0 \\ \operatorname{Tr} \gamma=1}}(\operatorname{Tr}[A \gamma]-T S(\gamma))=:-\log \operatorname{Tr}\left(e^{-A / T}\right)
$$

and there exists a minimiser $\gamma_{A}=\frac{e^{-A / T}}{Z_{A}}$ where $Z_{A}=\operatorname{Tr}\left[e^{-A / T}\right]$ provided that $e^{-A / T}$ is a trace class operator.

Theorem 10.4 (Klein Inequality). Given a function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of the form

$$
F(x, y)=\sum_{i=1}^{N} f_{i}(x) g_{i}(y) \geqslant 0
$$

Then for any self-adjoint trace class operator A, B (we do not require $A, B \geqslant 0, \operatorname{Tr}[A]=$ $1=\operatorname{Tr}[B]$ then

$$
\operatorname{Tr}[F(A, B)] \geqslant 0
$$

Remark 10.5. If we know that $A, B \geqslant 0$, then it suffices to assume $F(x, y) \geqslant 0$ for $x, y \geqslant 0$. More generally, all we need here is $F(x, y) \geqslant 0$ for $x \in \sigma(A), y \in \sigma(B)$.

Proof. By the spectral theorem, $A=\sum_{\alpha} a_{\alpha}\left|u_{\alpha}\right\rangle\left\langle u_{\alpha}\right|$ and $B=\sum_{\alpha} b_{\beta}\left|v_{\beta}\right\rangle\left\langle v_{\beta}\right|$. Thus

$$
\begin{aligned}
F(A, B) & =\sum_{i} f_{i}(A) g_{i}(B)=\sum_{i, \alpha, \beta} f_{i}\left(a_{\alpha}\right) g_{i}\left(b_{\beta}\right)\left|u_{\alpha}\right\rangle\left\langle u_{\alpha}\right|\left|v_{\beta}\right\rangle\left\langle v_{\beta}\right| \\
\operatorname{Tr}[F(A, B)] & =\sum_{i, \alpha, \beta} f_{i}\left(a_{\alpha}\right) g_{i}\left(b_{\beta}\right)\left|\left\langle u_{\alpha}, v_{\beta}\right\rangle\right|^{2}=\sum_{\alpha, \beta}\left|\left\langle u_{\alpha}, v_{\beta}\right\rangle\right|^{2} \underbrace{\sum_{i} f_{i}\left(a_{\alpha}\right) g_{i}\left(b_{\beta}\right)}_{\geqslant 0} \geqslant 0
\end{aligned}
$$

Corollary 10.6. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function and A, B are self-adjoint trace-class operators, then

$$
\operatorname{Tr}\left[f(A)-f(B)-f^{\prime}(B)(A-B)\right] \geqslant 0
$$

Moreover, if $A, B \geqslant 0$, we only need $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be convex.

Proof. Let $F(x, y)=f(x)-f(y)-f^{\prime}(y)(x-y)$. Then $F(x, y) \geqslant 0$ by convexity and the claim follows from Klein's inequality. (Note that $F(x, y)=\frac{1}{2} f(\vartheta)(x-y)^{2}$ for some ϑ in between x and y by Taylor's theorem if f is suitably differentiable). q.e.d.

Remark 10.7. In Klein's inequality

$$
F(x, y)=\sum_{i} f_{i}(x) g_{i}(x)=\sum_{i} g_{i}(x) f_{i}(x)
$$

but in general

$$
\sum_{i} f_{i}(A) g_{i}(B) \neq \sum_{i} g_{i}(B) f_{i}(A)
$$

However, by cyclicity of the trace

$$
\operatorname{Tr}\left[\sum_{i} f_{i}(A) g_{i}(B)\right]=\operatorname{Tr}\left[\sum_{i} g_{i}(B) f_{i}(A)\right]
$$

As consequence if $f(t)=t \log (t)$ and $A, B \geqslant 0$

$$
\operatorname{Tr}[A \log A-B \log B-(1+\log B)(A-B)] \geqslant 0
$$

Thus

$$
\operatorname{Tr}[A \log A-A \log B] \geqslant \operatorname{Tr}(A-B)=1-1=0
$$

for the penultimate equality holds for density matrices.

Definition 10.8 (Relative Entropy).

$$
S(A \mid B)=\operatorname{Tr}[A \log A-A \log B] .
$$

Theorem 10.9 (Improved Klein Inequality for Relative Entropy). If A, B are mixed states, then

$$
S(A \mid B) \geqslant \frac{1}{2} \operatorname{Tr}\left[|A-B|^{2}\right]
$$

In particular, $S(A \mid B)=0$ iff $A=B$. Thus $S(A \mid B)$ can be understood as a sort of distance between A and B.

Proof. Using Klein's inequality for $f(t)=t \log (t)$ for

$$
F(x, y)=f(x)-f(y)-f^{\prime}(y)(x-y)-\frac{1}{2}(x-y)^{2} .
$$

the result follows if we can prove that $F(x, y) \geqslant 0$ for all $x, y \in[0,1]$.
This follows from $F(x, y)=\left(\frac{1}{2} f^{\prime \prime}(\vartheta)-\frac{1}{2}\right)(x-y)^{2}$, for some ϑ in between x, y. Here $f^{\prime \prime}(\vartheta)=$ $\frac{1}{\vartheta} \geqslant 1$. q.e.d.

Remark 10.10. We can check

$$
\begin{aligned}
F(x, y) & =x \log x-y \log y-(1+\log y)(x-y)-\frac{1}{2}(x-y)^{2}= \\
& =x \log x-y \log y-(x-y)-\frac{1}{2}(x-y)^{2} \geqslant 0
\end{aligned}
$$

for all $x, y \in[0,1]$ and

$$
\begin{aligned}
\frac{d}{d y} F(x, y) & =-\frac{x}{y}+1+x-y=\left(1-\frac{x}{y}\right)(1-y) \\
\frac{d^{2}}{d y^{2}} F(x, y) & =\left(1+\frac{x}{y^{2}}\right)(1-y)-\left(1-\frac{x}{y}\right)
\end{aligned}
$$

Thus $y \mapsto F(x, y)$ has a minimum at $x=y$ for which $F(x, x)=0$, i.e. $F(x, y) \geqslant 0$.

Proof of Theorem 10.3. Take A self-adjoint such that $e^{-\frac{A}{T}}$ is trace class. Let consider $T=1$, otherwise rescale A. We check that

$$
\begin{aligned}
\operatorname{Tr}\left[A \gamma_{A}\right]-S\left(\gamma_{A}\right) & =\operatorname{Tr}\left(A \gamma_{A}\right)+\operatorname{Tr}\left[\gamma_{A} \log \gamma_{A}\right]=\operatorname{Tr}\left(A \gamma_{A}\right)-\operatorname{Tr}\left(\gamma_{A} \log Z_{A}\right)-\operatorname{Tr}\left(\gamma_{A} A\right)= \\
& =-\log Z_{A} \operatorname{Tr}\left(\gamma_{A}\right)=-\log Z_{A}
\end{aligned}
$$

It remains to prove that for all mixed states γ

$$
\operatorname{Tr}(A \gamma)-S(\gamma) \geqslant \operatorname{Tr}\left(A \gamma_{A}\right)-S\left(\gamma_{A}\right)
$$

and equality only holds for $\gamma=\gamma_{A}$. Note that

$$
\begin{aligned}
S\left(\gamma \mid \gamma_{A}\right) & =\operatorname{Tr}\left[\gamma \log \gamma-\gamma \log \left(\gamma_{A}\right)\right]=\operatorname{Tr}[\gamma \log \gamma]+\operatorname{Tr}\left[\gamma\left(\log Z_{A}+A\right)\right]= \\
& =-S(\gamma)+\operatorname{Tr}(A \gamma)+\log Z_{A}=\operatorname{Tr}(A \gamma)-S(\gamma)-\operatorname{Tr}\left(A \gamma_{A}\right)+S\left(\gamma_{A}\right)
\end{aligned}
$$

and we know that $S\left(\gamma \mid \gamma_{A}\right) \geqslant 0$ and 0 iff $\gamma=\gamma_{A}$. q.e.d.
This implies that $\operatorname{Tr}(A \gamma)-S(\gamma) \geqslant-\log \left(\operatorname{Tr} e^{-A}\right)$ and thus $S(\gamma) \leqslant \operatorname{Tr}(A \gamma)-\log \operatorname{Tr} e^{-A}$. Indeed $S(\gamma)=\max _{A}\left(\operatorname{Tr}(A \gamma)-\log \operatorname{Tr}\left(e^{-A}\right)\right)$. This expression tells us that $\gamma \mapsto S(\gamma)$ is concave. Because $\gamma \mapsto \operatorname{Tr}(A \gamma)$ is linear in γ (as the "maximum over linear/concave functions" is a concave function).

Definition 10.11 (Partial Trace). Given a Hilbert space $\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2}$. Let ρ be a density matrix on \mathscr{H}. Then $\rho_{1}=\operatorname{Tr}_{2} \rho$ is a density matrix on \mathscr{H}_{1} and $\rho_{2}=\operatorname{Tr}_{1} \rho$ is a density matrix on \mathscr{H}_{2}.
Here the partial trace Tr_{i} is defined as follows. We can write $\rho=\sum_{i} \rho_{i}^{(1)} \otimes \rho_{i}^{(2)}$ where $\rho_{i}^{(j)}: \mathscr{H}_{j} \rightarrow \mathscr{H}_{j}$. Then

$$
\operatorname{Tr}_{1}(\rho)=\sum_{i} \operatorname{Tr}\left[\rho_{i}^{(1)}\right] \rho_{i}^{(2)}
$$

and similarly for $\operatorname{Tr}_{2} \rho$.

Remark 10.12. It might happen that even if ρ is a pure state on $\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2}$ but ρ_{1}, ρ_{2} are mixed states.

Example 10.13. Let

$$
\begin{aligned}
\rho & =\left|\sum_{i} \lambda_{i} u_{i} \otimes v_{i}\right\rangle\left\langle\sum_{i} \lambda_{i} u_{i} \otimes v_{i}\right|=\sum_{i, j} \lambda_{i} \overline{\lambda_{j}}\left|u_{i} \otimes v_{i}\right\rangle\left\langle u_{j} \otimes v_{j}\right|= \\
& =\sum_{i, j} \lambda_{i} \overline{\lambda_{j}}\left|u_{i}\right\rangle\left\langle u_{j}\right| \otimes\left|v_{i}\right\rangle\left\langle v_{j}\right| .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \rho_{1}=\operatorname{Tr}_{2} \rho=\sum_{i j} \lambda_{i} \overline{\lambda_{j}}\left|u_{i}\right\rangle\left\langle u_{j}\right|\left\langle v_{i}, v_{j}\right\rangle=\sum_{i}\left|\lambda_{i}\right|^{2}\left|u_{i}\right\rangle\left\langle u_{i}\right| \\
& \rho_{2}=\operatorname{Tr}_{1} \rho=\sum_{i}\left|\lambda_{i}\right|^{2}\left|v_{i}\right\rangle\left\langle v_{i}\right|
\end{aligned}
$$

Remark 10.14. If ρ is a pure state in $\mathscr{H}_{1} \otimes \mathscr{H}_{2}$, then the eigenvalues of ρ_{1} and ρ_{2} are the same counting multiplicity (expect for 0).

Remark 10.15. Given a mixed state ρ_{1} on \mathscr{H}_{1}, then if $\operatorname{dim} \mathscr{H}_{2} \geqslant \operatorname{dim} \mathscr{H}_{1}$ there exists a pure state ρ on $\mathscr{H}_{1} \otimes \mathscr{H}_{2}$ such that $\rho_{1}=\operatorname{Tr}_{2} \rho$.

Proposition 10.16. 5) Sub-Additivity: Given a mixed state ρ on $\mathscr{H}_{1} \otimes \mathscr{H}_{2}$ with partial traces ρ_{1}, ρ_{2}. Then

$$
S(\rho) \leqslant S\left(\rho_{1}\right)+S\left(\rho_{2}\right)
$$

Proof. We claim that

$$
S\left(\rho_{1}\right)+S\left(\rho_{2}\right)-S(\rho)=S\left(\rho \mid \rho_{1} \otimes \rho_{2}\right) \geqslant 0
$$

from which the assertion follows. Noting that $\log (A B)=\log (A)+\log (B)$ for commuting operators A, B, in particular for

$$
\left(r h o_{1} \otimes \mathbf{1}_{\mathscr{H}_{2}}\right)\left(\mathbf{1}_{\mathscr{H}_{1}} \otimes \rho_{2}\right)=\rho_{1} \otimes \rho_{2}
$$

we have

$$
\begin{aligned}
S\left(\rho \mid \rho_{1} \otimes \rho_{2}\right) & =\operatorname{Tr}\left[\rho \log \rho-\rho \log \left(\rho_{1} \otimes \rho_{2}\right)\right]=\operatorname{Tr}\left[\rho \log \rho-\rho \log \left(\rho_{1} \otimes \mathbf{1}_{\mathscr{H}_{2}}\right)-\rho \log \left(\mathbf{1}_{\mathscr{H}} \otimes \rho_{2}\right)\right]= \\
& =\operatorname{Tr}_{12}(\rho \log \rho)-\operatorname{Tr}_{12}\left(\rho \log \rho_{1}\right)-\operatorname{Tr}_{12}\left(\rho \log \rho_{2}\right)= \\
& =\operatorname{Tr}_{12}(\rho \log \rho)-\operatorname{Tr}_{1}\left(\rho_{1} \log \rho_{1}\right)-\operatorname{Tr}_{2}\left(\rho \log \rho_{2}\right)=-S(\rho)+S\left(\rho_{1}\right)+S\left(\rho_{2}\right) .
\end{aligned}
$$

q.e.d.

Remark 10.17. In general there does not exist an inequality $S\left(\rho_{12}\right) \geqslant S\left(\rho_{1}\right)$, e.g. it might happen that ρ_{12} is pure, i.e. $S\left(\rho_{12}\right)=0$, but ρ_{1} is not pure, $S\left(\rho_{1}\right)>0$. In this case

$$
S\left(\rho_{12}\right) \leqslant S\left(\rho_{1}\right)+S\left(\rho_{2}\right)
$$

is trivial. What really happens here is the "cancelation of information"

Theorem 10.18 (Araki-Lieb).

$$
S\left(\rho_{12}\right) \geqslant\left|S\left(\rho_{1}\right)-S\left(\rho_{2}\right)\right|
$$

Proof. Using sub-additivity we have $S(\rho 12) \leqslant S\left(\rho_{1}\right)+S\left(\rho_{2}\right)$. By the purification lemma, there exists a pure state ρ_{123} on $\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \mathscr{H}_{3}$ such that $\rho_{12}=\operatorname{Tr}_{3} \rho_{123}$. Then $S\left(\rho_{1} 2\right)=S\left(\rho_{3}\right)$ and $S\left(\rho_{2}\right)=S\left(\rho_{13}\right)$ and thus

$$
S\left(\rho_{3}\right) \leqslant S\left(\rho_{1}\right)+S\left(\rho_{13}\right)
$$

which implies that $S\left(\rho_{13}\right) \geqslant S\left(\rho_{3}\right)-S\left(\rho_{1}\right)$ Similarly we find $S\left(\rho_{13}\right) \geqslant\left|S\left(\rho_{3}\right)-S\left(\rho_{1}\right)\right|$. q.e.d.

Theorem 10.19 (Strong Sub-Additivity - SSA). If ρ_{123} is a mixed state in $\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes$ \mathscr{H}_{3}, then

$$
S\left(\rho_{1}\right)+S\left(\rho_{123}\right) \leqslant S\left(\rho_{12}\right)+S\left(\rho_{13}\right)
$$

Remark 10.20 (Interpretation). We can interpret sub-addivity as

$$
S(A \cup B) \leqslant S(A)+S(B)
$$

but SSA as

$$
S(A \cup B)+S(A \cap B) \leqslant S(A)+S(B)
$$

This deep result was proven by Lieb-Ruskai in 1973.

SSA is equivalent to

Theorem 10.21 (Monotonicity of Relative Entropy). Let ρ_{12}, σ_{12} be density matrices on a Hilbert space $\mathscr{H}_{1} \otimes \mathscr{H}_{2}$.

$$
S\left(\rho_{12} \mid \sigma_{12}\right) \geqslant S\left(\rho_{1} \mid \sigma_{2}\right)
$$

Remark 10.22. This monotonicity implies SSA as follows:

$$
S\left(\rho_{13}\right)+S\left(\rho_{2}\right)-S\left(\rho_{123}\right)=S\left(\rho_{123} \mid \rho_{13} \otimes \rho_{2}\right) \geqslant S\left(\rho_{12} \mid \rho_{1} \otimes \rho_{2}\right)=S\left(\rho_{1}\right)+S\left(\rho_{2}\right)-S\left(\rho_{12}\right)
$$

Thus

$$
S\left(\rho_{12}\right)+S\left(\rho_{13}\right) \geqslant S\left(\rho_{1}\right)+S\left(\rho_{123}\right)
$$

Remark 10.23. This is related to "quantum channels". The partial trace is replaced by the "completed positive trace preserving maps".

Idea of Proof. The Golden-Thompsen inequality tells us that

$$
\operatorname{Tr}\left(e^{A+B}\right) \leqslant \operatorname{Tr}\left(e^{A} e^{B}\right)
$$

which is equivalent to

$$
\operatorname{Tr}\left(e^{\ln A+\ln B}\right) \leqslant \operatorname{Tr}(A B)
$$

Lieb's extension

$$
\operatorname{Tr} e^{\ln A+\ln B-\ln C} \leqslant \operatorname{Tr}\left(\int_{0}^{\infty} A \frac{1}{C+t} B \frac{1}{C+t} \mathrm{~d} t\right)
$$

q.e.d.

[^0]: ${ }^{1}$ Which is the case if the eigenbases of \hat{S} and \hat{C} are mutually unbiased.

[^1]: ${ }^{1}$ This is the case as for each $y \in \mathscr{H}\langle y, A \cdot\rangle$ is a bounded functional with norm smaller or equal to $\|y\|\|A\|$. Thus there exists a $\varphi \in \mathscr{H}$ such that $\langle\varphi, \cdot\rangle=\langle y, A \cdot\rangle$ and therefore as $\left\langle\varphi, x_{n}\right\rangle \rightarrow\langle\varphi, x\rangle$ the assertion follows.

[^2]: ${ }^{2}$ This is the case as otherwise $\frac{\left|\left\langle u_{1}, A u_{1}\right\rangle\right|}{\left\|u_{1}\right\|^{2}} \leqslant \sup _{\|u\|=1}|\langle u, A u\rangle|=\left|\left\langle u_{1}, A u_{1}\right\rangle\right|<\frac{\left\langle u_{1}, A u_{1}\right\rangle \mid}{\left\|u_{1}\right\|^{2}}$.

