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Problem 1. (54545410 points) Let .7 be a separable Hilbert space. Let u,v € J2,
|lu|| = ||v|| = 1 and |(u,v)| < 1. Consider

Uy = ey (u® + 0®N)
where cy > 0 is a normalization constant making ¥ a normalized vector in J#sV.

(a) Prove that

1
lim ey = —.

N—o0 \/5

(b) Let ”y\(l,l])v be the one-body density matrix of ¥y. Prove that

oL oy ] 2
Jim g ) = S (14 [(u, 0)f).

(c) Prove that

ol g 1 )
Jim 28 = 2 (Juul + )0l

strongly in trace class.

(d) Let ¥’y be another normalized vector in s#®+" such that its one-body density matrix is

7\(1!1/) = Nlu)(u|. Prove that ¥y = zu®" with some complex number z € C.
N

Hint: The transformation Uy (u) in Chapter 7.2 (the lecture notes) may be useful.



Problem 2. (5+5+10 points) Let J# be a separable Hilbert space. Let h be a self-adjoint
operator on . Let H = dI'(h) be the second quantization of h on the bosonic Fock space
F ().

(a) Prove that H is bounded from below if and only if A > 0.

(b) Use Weyl’s Criterion to prove that inf gegs(H) < inf oeg(h).

(c) Assume that A > 0. Prove that ps(H) = inf o (H) if and only if u1(h) = inf oes(h).
Here we denote by pu;(A) the i-th min-max value of A.



Problem 3. (5+10+45 points) Let J# be a separable Hilbert space. Let J : 3¢ — 7~
be the anti-linear map defined by J(f)(g) = (f, g) for all f,g € .

(a) Let & > 0 be a self-adjoint operator on . Consider the block operator on J @ J*
(& 0
B = ( 0 JEJ* )

O-ess(B) = Oess (5)

Prove that
(both sides can be empty).

(b) Let V € 4, namely V is a linear bounded operator on .7 & J¢* such that

U 1% i B . o (1 0 .
V_<JVJ JUJ*)’ VSV = VSV —S—(O _1>, Tr(VV™) < o0.

Prove that
Oess(V'BY) = 0ess(B).

e [ hk
VBV_(k* JhJ*)

with a self-adjoint operator h on ¢ and a compact operator k : 5* — 7. Prove that

Oess (h) = Oess (5) .

(c) Assume that



Problem 4. (5+10+10+5 points) Let 57 = L*(R?Y). Let ¥ be a normalized vector on the
bosonic Fock space F () with (¥, N¥) < co. Here N is the number operator on F(.5).

a) Assume that W = (A,W¥,, )2, wit n € s nll =1 an nl° = 1. Denote
(a) A hat U = (A, 0,)72 with U,, € %", ||[W,[| =1 and 3, ([ Aa|?=1. D

= alpu, ()

n>1

where py, () := ’yfp)(x, x) is the one-body density functional of ¥,,. Prove that

| puta)ds = wnw).

R4

(b) Consider the kinetic operator dT'(—A) on F (). Prove that
(U, dIr(— / Vol

(c) Let w : R — R be an even function such that 0 < @ € L*(R?). Consider the interaction

operator on F ()
—0@0@@( > wli— ).

n=2 1<i<j<n

(U, W) // (y)w(x —y)dzdy — C’w/ P
RdXRd Rd

(d) For any N € N, consider the energy

Prove that

1
Ey = inf {(\If,dF(—A)\If) + (O W) | € FE), U] = 1, (T, N'T) = N}.
Prove that when N — oo we have
EN = NBH + 0(1)

where

R4 Rded



Problem 5. (54541045 points) Let Z > 1. Consider the Hartree functional

E(u) = R3|Vu(x)|2dq;—Z/Rs |u|(+)|dx+%//ﬂ{3 . %dﬂiy.

Given that there exists a unique Hartree minimizer 0 < ug € H*(R?), ||uol|z2 = 1, and it is
the unique solution (up to a constant factor) to the equation hu = 0 where

7 2
hi=-A—— +/ [uo(v) dy — p,  for some p € (—o0,0).
[ Jrs |z =y

(a) Prove that h 4+ p has infinitely many negative eigenvalues.
(b) Let K be an operator on L?(R?) with kernel
K (z,y) = uo(x)|z — y| " uo(y).
Prove that K is a Hilbert-Schmidt operator and K > 0.
(c) Consider the quadratic Hamiltonian on the bosonic Fock space F(4,), 7. = {ug}*+ C

L*(R?),

1
Hpog 1= Z (U, (h + K)uy)ar,a, + B Z ((um, Kuy)a) ay + h.c.)

m,n>1 m,n>1

where a,, = a(u,) with {u,},>1 an orthonormal basis for J#.. Prove that Hp,, can be
diagonalized by a Bogoliubov transformation U, namely

EJ*IHIBog[U = dr(g) + €Bog
with egog € R and with a self-adjoint operator { > 0 on JZ; .

(d) What is 0ess(§)?



