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Problem 1 (10420410 points). Here is an alternative proof of the Lieb-Thirring
inequality in one dimension. Let {u,}’_; C C>°(R) be an orthonormal family in L?(R)
and denote

N
=Y lw@P, veyeR

y) =D un(@)ua(y)

(a) Prove that for all y, z € R we have

el < ( / |7(:L',y)|2dx) ([ oatebar).

Hint: You can use g(x f J'( f;o '(t)dt with a suitable function g.

(b) Use (a) to prove that

ZNj / ()2 > / pla)d.

Hint: You can use p(y) = [ [v(z,y)|*dz

(¢) Use (b) to prove that for every function 0 <V € C°(R) we have
Tr(-A—-V)_ >——/|V )32 da.

Here Tr(—A — V)_ is the sum of all negative eigenvalues of —A — V.

Solutions: (a) For any function g € C''(R) satisfying lim;| g(x) = 0 we have

oo = [ gta=— [~ g

—00

Consequently, by the triangle inequality

9()] g/x I (H)|dt  and  |g(z)] g/oo g’ (t)|dt.

—0o0

sl <5 [ ol [Cigwie =3 [ g

Thus we get the basic Sobolev inequality

Consequently

1
gl L@ < N9l w)



Replacing g by |g|? and using Holder’s inequality we obtain

1
19117 ) < 511(0%) i) = 199l ey < llgllze gl a-

Applying the latter bound to g(x) = v(x,y) we find that for all y,z € R

el < ([ hePe) " ([ oatwnPa) "

which is equivalent to the desired inequality.

(b) Applying (a) with z = y we have, for all y € R,

‘< (/IRW(I,y)de) (/R\aw(x,y)lzdw)-

Let us simplify the right side. We have

(@, )P = (@, y)v(z,y) = (

) (iunmu

Hence, using the fact that {u,}»_, are orthonormal, we get

/Iv z,y)|*dr = Z /um T )un(z (um(y)un(y)>

m,n=1

Z Omn <um U (y ) Z|un p(y).

m,n=1

p(y)* < ply) (/R |0ﬂ($7y)|2d17) :

? < [ ot

Integrating over y and using Fubini’s theorem we obtain

/Rp(y)?’dyz/R([Rlﬁxv(z,y)IQdm) dy:/R(/RWw(:v,y)lzdy)dx

Thus from (a) we get

which is equivalent to




Similarly to the above computation, we have

N

JCECRYE > WG ([ ity
_ miluw)u;(x)amn _ i ()

Thus we conclude that
[ otura < / Z (o
R

(c¢) By the min—max principle

N
Tr(—A—-V) = inf {Z(un, (=A = V)uy,) : {u,}_, € C>° and orthonormal in LZ(R)} :

n=1
For every family {u, })_, C C%° and orthonormal in L*(R) from (c) we have
N N
>l (-8-Vyua) = 3 [ o) [ Viohpla)ds = [ ot [ Viohpla)ds
with p(z) = 320 Jun(x)[?. Using the AM-GM inequality
a+b+c>3(abe)?, a,b,c>0

with a = p(2)3, b= c = (V(2)/3)*? we get

%V(ﬂc)g/2 > p(x)V(x), VzreR.

/ z)3dr — / z)de > — \/g/RV(x):de.

Hence, we conclude that

p(x)® +

Thus

2 7)3/2
Tr(—A — 1/)2—3\/g V(x)*2da.



Problem 2 (10+10+20 points). Consider the operator
A=—A—|z|7V?

on L*(R?) with domain H?*(R?). We know that A is self-adjoint and has infinitely many
eigenvalues.

(a) Let Ey be the sum of the first N eigenvalues of A. Prove that

. En e . 3. 9 2/3 5/3 f(z)
]\;lﬁmoo N7/9 BT = ngeanlmeM,, /]1%3 (5(677 ) () — |I|1/2>dx.
fRS fSl

Hint: A has the same spectrum with 4, = 2(—A) — ¢Y/2|z|~Y/2 for every ¢ > 0.
(b) Prove that ETF has a unique minimizer fy and compute fo.

(c) Denote py(z) = SoN | Jup ()])? with {u,})_, being the first N eigenfunctions of A.
Define the ‘half-radius’ Ry > 0 by

[ o= [ pxlaae =
lz| <Ry |z[>RN

Prove that the following limit exists

Solutions: (a) By changing the variables, namely by using the unitary operator f —
(32 f(£-), we see that A has the same spectrum with

AZ — gQ(_A) . 81/2|x|71/2 _ 61/2(83/2(—A> . |x|71/2)
for every ¢ > 0. In particular, taking
(32 =N — (=N

we find that
o(A) = N2Po(NB(=A) — |z 71/?).

Thus N?/°Ey is equal to the sum of the first N eigenvalues of N=2/3(—A) — |z|~/2. By
Pauli’s exclusion principle, N>?Ey is equal to the ground state energy of the Hamil-

tonian
N

Hy = S NBCAL) — | ), € B
i—1
on the anti-symmetric space L2(R3"). Note that we can write the potential —|z|~'/2

as
—Ja[72 = —J2[ 720 (J2] < 1) + oV 1(|e] > 1) € LY(R®) + L¥(R?)



where 4,8 € [1 + 3/2,00). Thus we can apply the convergence to the Thomas—Fermi
theory in the lecture notes (Section 8.4) and obtain

N2/°F
lim ——~ — gTF,
N—oo

(b) The existence of a minimizer py for E™" follows from Homework 8.3 (our situation
here is even simpler since there is no interaction potential). The minimizer is unique
since the Thomas—Fermi functional

e = [ (Gom s - L as

is strictly convex (the potential term is linear in f and the mapping f — f°/3 is strictly
convex).

It remains to compute fy. It is similar to Homework 7.3 but let us recall the argument
here. First, note that fy # 0 since E™" < 0. Indeed, by choose g, = (3g(fz) with a
fixed function 0 < g € L' N L% we obtain

5TF(9€) = 52/

RS

§(6W2)2/3g($)5/3d$ —61/2/ g(z) dr < 0

rs 2]/
if £ > 0 is small enough.

Next, arguing exactly as in Homework 7.3 (the details of the potential is not important
for this part), we obtain the Thomas—Fermi equation

1 1 1 3/2
(67r2)2/3f0(x)2/3 _ [mm — #L — fo(x) = 60 [’93\—1/2 — ,uL .

for a constant

i ol) [(67%)3 fol)® — || /) d
fRs fO '

0<pu=

If fR3 fo < 1, then we have

EM((L+1)fo) = € (fo), V€ (—e.e)
for some € > 0 small enough. Hence

a

0=
dt [t=0

STF((l + t)fo) = /R3 fo(:lf) [<6772)2/3f0(:1:)2/3 _ |$|71/2] de

which implies that 4 = 0. However, in this case the Thomas—Fermi equation implies

that
1 1

Jole) = G2 uprn



which is not integrable.

Thus fR3 fo = 1. Using the Thomas—Fermi equation we can compute p:

1 1 3/2 1 | 3/2 7
o 0004 = G /R 2 M T ”/0 R N

Thus

(c) Step 1. By the rescaling argument in (a), the functions {u,(f NN with

ul9(x) = 03Pu, (lz), €= N7

n

are the first N eigenfunctions of the operator N=%3(—A) — |z|~'. Hence, the Slater
determinant
u? Aus) A A

is a ground state for the Hamiltonian Hy. In particular,

N N
PN (@) =D (@) =" Cluy(lx)]? = Cpn ()
n=1 n=1

is the one—body density of this ground state. By the convergence to the Thomas—Fermi
theory in the lecture notes (Section 8.4) we find that

_ Y4
N = fo

weakly in L%/3(R?). Consequently, for every constant R > 0 we have

/ fo(z)dz = lim N~ P (z)de = lim N7! oy (tz)de.
|lz|<R

On the other hand, from the definition of Ry we have

1
5= Nt pn(z)dr = N~* pn(lx)dx.

|I‘<RN |1“<€RN

Step 2. Let us show that /Ry is bounded. Indeed, if /Ry is unbounded, then up to
a subsequence as N — oo we have /Ry — oco. This implies that for every R > 0, we
have /Ry > R for N large and hence

1
5= Nt pn(fz)dr > N1 pn(lx)dr — N o0 / fo(z)dz.

|z|<¢Rn |z|<R |z|<R



Since it holds for all R > 0, we can take R — oo and find that

> lim fo@)dr = | fo(z)dr =1
R3

1
which is a contradiction. Thus ¢Ry is bounded.

Step 3. Since /Ry — Ry is bounded, up to a subsequence we can assume that
{Ry — Ry. Let us show that

N | —

_ /| |, folaa

Indeed, for every € > 0 we have (Ry > (1 — €) Ry for N large, and hence

1
Ly o (lz)dz > N~ o (E5)dT = oo / folw)dz.
2 |z|<¢Ry lz|<(1—€)Ro lz|<(1—€)Ro
Since it holds for every € > 0 we obtain
1 .
— > lim fo(z)dz = fo(z)dz.
2 7 50t Jigj<(1-o)Ro |z|<Ro
Similarly,
1
—=N"! pn(lx)dr < N7t pn(lx)dr — N oo / fo(z)dx
2 |z|<¢Rx lz|<(14¢)Ro lz|<(142)Ro
and hencee .
— < lim fo(z)dz = fo(z)dz.
2 7 20" Jp)<(4o)Ro \e|<Ro

Thus 1 1 1 3/2
5= Jo(x)dz = _/ [ 12 “} dz
2 /nc|<R0 672 J\p1<po L[ 71/2 +

Finally, note that the function

1 1 3/2
R) = — [—— ] dz
9= /x|<R o172

is increasing on R € [0, c0); moreover, g(0) = 0,g(u~2) = 1 and g is strictly increasing
3/2
on R € (0,u"?) since |:‘$|_+/2 - ,u]+ > 0 for all |z] € (0,u™2). Thus there exists a

unique Ry such that g(Rg) = 1/2 (we can even compute Ry explicitly). Since the limit
Ry is unique, we have the convergence of the whole sequence Ry — Rj.



Problem 3 (10410410420 points). Let N > 2 and consider the operator

M-

Hy =) (=g —la[ %) + Z v — 2|72 x; € RS,

1 1<i<j<N

J

on the anti-symmetric space L2(R*") with the core domain Dy = L2(R3N)NC2(R3Y).
Let ¥ € Dy be a normalized function in L2(R3Y) and let py be its one-body density.

(a) Prove that for every R > 0 we have

1
O ) e S

1<i<j<N
with N = f\xISR pn(x)de.
Hint: You can use |z — y|™Y/2 > (2R)"Y*1p(o.r) (2) 1 po.r) (y)-

(b) Prove that for every R > r > 0 we have

(00,3~ ) 2 et - Ve Y
Vi VR

with a constant C' > 0 independent of N, R, .

Hint: You can split the potential —|z|~'/2 into three parts.

(c) Use (a) and (b) to prove that Hy > —CN'/?> with a constant C' > 0 independent
of N.

Note that N'*/?® <« N7/% when N — oo. Thus the interaction improves significantly
the ground state energy (c.f. Problem 2 for the non-interacting case).

(d) Can you prove that Hy > —CN® with a constant a < 14/257
Solutions: (a) For every R > 0, by the triangle inequality we have

|x_y|§2R7 V$,yEBR:B<O,R)

Hence,
o —y| 72 > (2R) "1, (2)1p,(y), Va,y € R,
Consequently,
o lmi—a TP = 2RV g ()1, ()
1<i<j<N 1<i<j<N

1 al T
L (Zﬂ()) 3ty



Taking the expectation against Wy and using the Cauchy—Schwarz inequality we find
that

<\I’N’ > ’xi—ivj\fl/Q‘I’N>

1<i<j<N

> (0 (D) ) — (. (St w)
> ﬁ (<\11N (;EBR(%)>@N>2 - <\1;N, (;]IBR(@))\I/N>> .

By the definition of the one-body density py we have
N
(0w (3 tmele)) U = [ pwla)tmg(a)ds = [ plo)de = N
i=1 R Br

Thus we conclude that

N

<\1/N S (-4, - Ix'|_1/2)\111v> > M_
- 2V2R

(b) For any R > r > 0 we can decompose
o2 = Vi+ Vo + Vs
with

Vi= a2 0(af < 7). Vo= 2P0 <ol < R), Vs = [2 21 (J2] > R).

Hence,
<‘I’N, ﬁ:(—Am - |93i|_1/2)\I’N>
= <‘IJN> i(—Axi - Vl(l’z))‘PN> - /R3 Va(z)pn (z)de — o Vs(x)pn (z)da.

Let us estimate the right side term by term.

For k =1, using Pauli’s exclusion principle and Lieb—Thirring inequality we have
N
<‘I’N’ D (A, - Vl(asi))\IfN> >Tr(—A—Vi)_ > —Lis | |Vi(@)]2de
=1 R3

1
z|<r

10



For k = 2, using V5, < =21 (|z| < R) and the definition of Ny we have

Ng
— Va(z r)de > —— x)der = ———=.
/RS 2(r)px |;U<R| VT

For k = 3, using V3 < R™/2 we have

- [ V@ > — [ oyl - -

Thus in summary,

<\I]N iv:(—Ax — |xi|_1/2)\IIN> > —07’7/4 _ & . i
= - Vi VR

The constant C' = 47 L, 3 is independent of N, R, r.

(c¢) From (a) and (b) we find that for every normalized wave function ¥y € Dy and
for every R >1r >0

Np N +N;§—NR
vV VR 2/2R

<\IJN7HN\DN> 2 —07'7/4 —

Since Np < N we have
Ng N

— > .
2V2R 2V2R

Moreover, by the Cauchy—Schwarz inequality

Ni _Ne_ R

W2R T Vo

Thus R N
> _ /AL
<\I’N,HN\IJN> = C(T’ + , + \/}_%>

with a constant C' independent of N, R,r. It remains to choose R and r to optimize
the right side. We can take them such that

. 1/(4+7+14)
/4 = R - N = [ (rT/H R N a _ N4/25
r VR r) \VR '

Thus we conclude that
(Uy, HyUy) > —CNW?,

Since it holds for every normalized function ¥y € Dy, we get the operator lower bound
HN > —CN14/25.

(d) We can improve the bound to Hy > —C.N°® for every € > 0. The idea is that we

11



|=/2 into several pieces. Introducing the parameters

can decompose V(z) = |z
r <rg<..<Tpy

we can write

M=

V() =22 = V(@)L(|lz] <)+ ) V(@) L(rm < |2] < ) + V(@)L(j| 2 7ar)

Il
)

m

1(|z| < rm) 1

2 T"m—1 \/TM'

Therefore, arguing as in (c¢) we obtain for every normalized wave function Uy € Dy

M=

<V(x)I(|x] <rp) —

3
Il

M

N
Uy, HyUn) > —Cr//* = — .
(n, AnWx) 2 =Cry m;m S

N,

Tm

Moreover, from (a) we can write, for every m = 1,2, ..., M,

N? — N, ) (N2 —1)
‘1’ P — A_1/2\I[ >>( Tm Tm+> Tm
(0 3 ool 2 e 2

1<i<j<N
since the left side is finite. Thus in summary,

M

N,
Uy, HyUy) > —Crl/* — - —y m
< N N N>_ 1 ;,/’f’m_l A/TMm Mm:2 2 27“m

We will choose all r,, > 1, so that

1
> —1.
20/ 27,

Moreover, by the Cauchy—Schwarz inequality

N N> Oy Wm=2,..M
M2 i M T T

Hence,

M
(U, Hy W) > —Cy <TI/4 + Z
m=2

— I'm

Tm n N L
-1 VIMm .

It remains to optimize the right side by choosing 1 < r; < ry < ... < ry. We can take

M . 14\ Y/ (@+T(M~1)+14)
N T N
74 T2 M - 7/4\4 m
1<r/"===..= = =1 (r") H
™ TMm—-1 Vali 'm—1 VaAli

m=2
— N14/(4+7(M—1)+14) )

12



Thus
HN 2 _CMN14/(4+7(M71)+14).

Since M can be arbitrarily large, we find that Hy > —C.N°® for every ¢ > 0.

13



