
Functional Analysis II Winter 2020–2021

Final exam
(12.2.2021)

Surname: Given name:

Birthday: Matriculation:

• There are 3 problems with total 40 + 40 + 50 = 130 points. You need 50 points
to pass and 85 points to get the grade 1.0.

• You have 5 hours from 9:00 to 14:00.

• You can use the lecture notes and solutions of homework sheets.

• Discussion with other people is not allowed.

• Please send your solutions to “nam@math.lmu.de”.
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Problem 1 (10+20+10 points). Here is an alternative proof of the Lieb–Thirring
inequality in one dimension. Let {un}Nn=1 ⊂ C∞c (R) be an orthonormal family in L2(R)
and denote

γ(x, y) =
N∑
n=1

un(x)un(y), ρ(x) =
N∑
n=1

|un(x)|2, ∀x, y ∈ R.

(a) Prove that for all y, z ∈ R we have

|γ(z, y)|4 ≤
(∫

R
|γ(x, y)|2dx

)(∫
R
|∂xγ(x, y)|2dx

)
.

Hint: You can use g(x) =
∫ x
−∞ g

′(t)dt = −
∫∞
x
g′(t)dt with a suitable function g.

(b) Use (a) to prove that

N∑
n=1

∫
R
|u′n(x)|2dx ≥

∫
R
ρ(x)3dx.

Hint: You can use ρ(y) =
∫
R |γ(x, y)|2dx

(c) Use (b) to prove that for every function 0 ≤ V ∈ C∞c (R) we have

Tr(−∆− V )− ≥ −
2

3
√

3

∫
R
|V (x)|3/2dx.

Here Tr(−∆− V )− is the sum of all negative eigenvalues of −∆− V .

Solutions: (a) For any function g ∈ C1(R) satisfying lim|x|→∞ g(x) = 0 we have

g(x) =

∫ x

−∞
g′(t)dt = −

∫ ∞
x

g′(t)dt.

Consequently, by the triangle inequality

|g(x)| ≤
∫ x

−∞
|g′(t)|dt and |g(x)| ≤

∫ ∞
x

|g′(t)|dt.

Consequently

|g(x)| ≤ 1

2

∫ x

−∞
|g′(t)|dt+

1

2

∫ ∞
x

|g′(t)|dt =
1

2

∫
R
|g′(t)|dt.

Thus we get the basic Sobolev inequality

‖g‖L∞(R) ≤
1

2
‖g′‖L1(R).
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Replacing g by |g|2 and using Hölder’s inequality we obtain

‖g‖2L∞(R) ≤
1

2
‖(g2)′‖L1(R) = ‖gg′‖L1(R) ≤ ‖g‖L2‖g′‖L2 .

Applying the latter bound to g(x) = γ(x, y) we find that for all y, z ∈ R

|γ(z, y)|2 ≤
(∫

R
|γ(x, y)|2dx

)1/2(∫
R
|∂xγ(x, y)|2dx

)1/2

which is equivalent to the desired inequality.

(b) Applying (a) with z = y we have, for all y ∈ R,

ρ(y)4 ≤
(∫

R
|γ(x, y)|2dx

)(∫
R
|∂xγ(x, y)|2dx

)
.

Let us simplify the right side. We have

|γ(x, y)|2 = γ(x, y)γ(x, y) =
( N∑

m

um(x)um(y)
)( N∑

n=1

un(x)un(y)
)

=
N∑

m,n=1

um(x)un(x)um(y)un(y).

Hence, using the fact that {un}Nn=1 are orthonormal, we get∫
R
|γ(x, y)|2dx =

N∑
m,n=1

∫
R
um(x)un(x)dx

(
um(y)un(y)

)
=

N∑
m,n=1

δmn

(
um(y)un(y)

)
=

N∑
n=1

|un(y)|2 = ρ(y).

Thus from (a) we get

ρ(y)4 ≤ ρ(y)

(∫
R
|∂xγ(x, y)|2dx

)
.

which is equivalent to

ρ(y)3 ≤
∫
R
|∂xγ(x, y)|2dx.

Integrating over y and using Fubini’s theorem we obtain∫
R
ρ(y)3dy =

∫
R

(∫
R
|∂xγ(x, y)|2dx

)
dy =

∫
R

(∫
R
|∂xγ(x, y)|2dy

)
dx.

3



Similarly to the above computation, we have∫
R
|∂xγ(x, y)|2dy =

N∑
m,n=1

u′m(x)u′n(x)

(∫
R
um(y)un(y)dy

)

=
N∑

m,n=1

u′m(x)u′n(x)δmn =
N∑
n=1

|u′n(x)|2.

Thus we conclude that ∫
R
ρ(y)3dy ≤

∫
R

N∑
n=1

|u′n(x)|2dx.

(c) By the min–max principle

Tr(−∆−V ) = inf

{
N∑
n=1

〈un, (−∆− V )un〉 : {un}Nn=1 ⊂ C∞c and orthonormal in L2(R)

}
.

For every family {un}Nn=1 ⊂ C∞c and orthonormal in L2(R) from (c) we have

N∑
n=1

〈un, (−∆−V )un〉 =
N∑
n=1

∫
R
|u′n(x)|2dx−

∫
R
V (x)ρ(x)dx ≥

∫
R
ρ(x)3dx−

∫
R
V (x)ρ(x)dx

with ρ(x) =
∑N

n=1 |un(x)|2. Using the AM-GM inequality

a+ b+ c ≥ 3(abc)1/3, a, b, c ≥ 0

with a = ρ(x)3, b = c = (V (x)/3)3/2 we get

ρ(x)3 +
2

3
√

3
V (x)3/2 ≥ ρ(x)V (x), ∀x ∈ R.

Thus ∫
R
ρ(x)3dx−

∫
R
V (x)ρ(x)dx ≥ − 2

3
√

3

∫
R
V (x)3/2dx.

Hence, we conclude that

Tr(−∆− V ) ≥ − 2

3
√

3

∫
R
V (x)3/2dx.
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Problem 2 (10+10+20 points). Consider the operator

A = −∆− |x|−1/2

on L2(R3) with domain H2(R3). We know that A is self–adjoint and has infinitely many
eigenvalues.

(a) Let EN be the sum of the first N eigenvalues of A. Prove that

lim
N→∞

EN
N7/9

= ETF := inf
0≤f∈L1∩L5/3∫

R3 f≤1

∫
R3

(3

5
(6π2)2/3f(x)5/3 − f(x)

|x|1/2
)

dx.

Hint: A has the same spectrum with A` = `2(−∆)− `1/2|x|−1/2 for every ` > 0.

(b) Prove that ETF has a unique minimizer f0 and compute f0.

(c) Denote ρN(x) =
∑N

i=1 |un(x)|2 with {un}Nn=1 being the first N eigenfunctions of A.
Define the ‘half–radius’ RN > 0 by∫

|x|<RN

ρN(x)dx =

∫
|x|>RN

ρN(x)dx =
N

2
.

Prove that the following limit exists

lim
N→∞

RN

N4/9
.

Solutions: (a) By changing the variables, namely by using the unitary operator f 7→
`3/2f(`·), we see that A has the same spectrum with

A` = `2(−∆)− `1/2|x|−1/2 = `1/2(`3/2(−∆)− |x|−1/2)

for every ` > 0. In particular, taking

`3/2 = N−2/3 ⇐⇒ ` = N−4/9

we find that
σ(A) = N−2/9σ(N−2/3(−∆)− |x|−1/2).

Thus N2/9EN is equal to the sum of the first N eigenvalues of N−2/3(−∆)−|x|−1/2. By
Pauli’s exclusion principle, N2/9EN is equal to the ground state energy of the Hamil-
tonian

HN =
N∑
i=1

(N−2/3(−∆xi)− |xi|−1/2), xn ∈ R3

on the anti–symmetric space L2
a(R3N). Note that we can write the potential −|x|−1/2

as
−|x|−1/2 = −|x|−1/21(|x| ≤ 1) +−|x|−1/21(|x| ≥ 1) ∈ L4(R3) + L8(R3)
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where 4, 8 ∈ [1 + 3/2,∞). Thus we can apply the convergence to the Thomas–Fermi
theory in the lecture notes (Section 8.4) and obtain

lim
N→∞

N2/9EN
N

= ETF.

(b) The existence of a minimizer ρ0 for ETF follows from Homework 8.3 (our situation
here is even simpler since there is no interaction potential). The minimizer is unique
since the Thomas–Fermi functional

ETF(f) =

∫
R3

(3

5
(6π2)2/3f(x)5/3 − f(x)

|x|1/2
)

dx

is strictly convex (the potential term is linear in f and the mapping f 7→ f 5/3 is strictly
convex).

It remains to compute f0. It is similar to Homework 7.3 but let us recall the argument
here. First, note that f0 6≡ 0 since ETF < 0. Indeed, by choose g` = `3g(`x) with a
fixed function 0 < g ∈ L1 ∩ L5/3 we obtain

ETF(g`) = `2
∫
R3

3

5
(6π2)2/3g(x)5/3dx− `1/2

∫
R3

g(x)

|x|1/2
dx < 0

if ` > 0 is small enough.

Next, arguing exactly as in Homework 7.3 (the details of the potential is not important
for this part), we obtain the Thomas–Fermi equation

(6π2)2/3f0(x)2/3 =
[ 1

|x|1/2
− µ

]
+
⇐⇒ f0(x) =

1

6π2

[ 1

|x|1/2
− µ

]3/2
+
.

for a constant

0 ≤ µ = −
∫
R3 f0(x)

[
(6π2)2/3f0(x)2/3 − |x|−1/2

]
dx∫

R3 f0
.

If
∫
R3 f0 < 1, then we have

ETF((1 + t)f0) ≥ ETF(f0), ∀t ∈ (−ε, ε)

for some ε > 0 small enough. Hence

0 =
d

dt |t=0
ETF((1 + t)f0) =

∫
R3

f0(x)
[
(6π2)2/3f0(x)2/3 − |x|−1/2

]
dx

which implies that µ = 0. However, in this case the Thomas–Fermi equation implies
that

f0(x) =
1

6π2

1

|x|3/4
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which is not integrable.

Thus
∫
R3 f0 = 1. Using the Thomas–Fermi equation we can compute µ:

1 =

∫
R3

f0(x)dx =
1

6π2

∫
R3

[ 1

|x|1/2
−µ
]3/2
+

dx =
1

6π2
4π

∫ µ−2

0

[ 1

r1/2
−µ
]3/2

r2dr =
7

768µ9/2
.

Thus

µ =

(
7

768

)2/9

.

(c) Step 1. By the rescaling argument in (a), the functions {u(`)n }Nn=1 with

u(`)n (x) = `3/2un(`x), ` = N−4/9

are the first N eigenfunctions of the operator N−2/3(−∆) − |x|−1. Hence, the Slater
determinant

u
(`)
1 ∧ u

(`)
2 ∧ ... ∧ u

(`)
N

is a ground state for the Hamiltonian HN . In particular,

ρ
(`)
N (x) =

N∑
n=1

|u(`)n (x)|2 =
N∑
n=1

`3|un(`x)|2 = `3ρN(`x)

is the one–body density of this ground state. By the convergence to the Thomas–Fermi
theory in the lecture notes (Section 8.4) we find that

N−1ρ
(`)
N ⇀ f0

weakly in L5/3(R3). Consequently, for every constant R > 0 we have∫
|x|<R

f0(x)dx = lim
N→∞

N−1
∫
|x|<R

ρ
(`)
N (x)dx = lim

N→∞
N−1

∫
|x|<R

`3ρN(`x)dx.

On the other hand, from the definition of RN we have

1

2
= N−1

∫
|x|<RN

ρN(x)dx = N−1
∫
|x|<`RN

ρN(`x)dx.

Step 2. Let us show that `RN is bounded. Indeed, if `RN is unbounded, then up to
a subsequence as N → ∞ we have `RN → ∞. This implies that for every R > 0, we
have `RN ≥ R for N large and hence

1

2
= N−1

∫
|x|<`RN

ρN(`x)dx ≥ N−1
∫
|x|<R

ρN(`x)dx→N→∞

∫
|x|<R

f0(x)dx.
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Since it holds for all R > 0, we can take R→∞ and find that

1

2
≥ lim

R→∞

∫
|x|<R

f0(x)dx =

∫
R3

f0(x)dx = 1

which is a contradiction. Thus `RN is bounded.

Step 3. Since `RN → R0 is bounded, up to a subsequence we can assume that
`RN → R0. Let us show that

1

2
=

∫
|x|<R0

f0(x)dx.

Indeed, for every ε > 0 we have `RN ≥ (1− ε)R0 for N large, and hence

1

2
= N−1

∫
|x|<`RN

ρN(`x)dx ≥ N−1
∫
|x|<(1−ε)R0

ρN(`x)dx→N→∞

∫
|x|<(1−ε)R0

f0(x)dx.

Since it holds for every ε > 0 we obtain

1

2
≥ lim

ε→0+

∫
|x|<(1−ε)R0

f0(x)dx =

∫
|x|<R0

f0(x)dx.

Similarly,

1

2
= N−1

∫
|x|<`RN

ρN(`x)dx ≤ N−1
∫
|x|<(1+ε)R0

ρN(`x)dx→N→∞

∫
|x|<(1+ε)R0

f0(x)dx

and hencee
1

2
≤ lim

ε→0+

∫
|x|<(1+ε)R0

f0(x)dx =

∫
|x|<R0

f0(x)dx.

Thus
1

2
=

∫
|x|<R0

f0(x)dx =
1

6π2

∫
|x|<R0

[ 1

|x|−1/2
− µ

]3/2
+

dx.

Finally, note that the function

g(R) :=
1

6π2

∫
|x|<R

[ 1

|x|−1/2
− µ

]3/2
+

dx

is increasing on R ∈ [0,∞); moreover, g(0) = 0, g(µ−2) = 1 and g is strictly increasing

on R ∈ (0, µ−2) since
[

1
|x|−1/2 − µ

]3/2
+

> 0 for all |x| ∈ (0, µ−2). Thus there exists a

unique R0 such that g(R0) = 1/2 (we can even compute R0 explicitly). Since the limit
R0 is unique, we have the convergence of the whole sequence `RN → R0.
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Problem 3 (10+10+10+20 points). Let N ≥ 2 and consider the operator

HN =
N∑
j=1

(
−∆xj − |xj|−1/2

)
+

∑
1≤i<j≤N

|xi − xj|−1/2, xj ∈ R3,

on the anti-symmetric space L2
a(R3N) with the core domain DN = L2

a(R3N)∩C∞c (R3N).
Let ΨN ∈ DN be a normalized function in L2

a(R3N) and let ρN be its one–body density.

(a) Prove that for every R > 0 we have〈
ΨN ,

∑
1≤i<j≤N

|xi − xj|−1/2ΨN

〉
≥ 1

2
√

2R
(N2

R −NR)

with NR =
∫
|x|≤R ρN(x)dx.

Hint: You can use |x− y|−1/2 ≥ (2R)−1/21B(0,R)(x)1B(0,R)(y).

(b) Prove that for every R > r > 0 we have

〈
ΨN ,

N∑
i=1

(−∆xi − |xi|−1/2)ΨN

〉
≥ −Cr7/4 − NR√

r
− N√

R

with a constant C > 0 independent of N,R, r.

Hint: You can split the potential −|x|−1/2 into three parts.

(c) Use (a) and (b) to prove that HN ≥ −CN14/25 with a constant C > 0 independent
of N .

Note that N14/25 � N7/9 when N → ∞. Thus the interaction improves significantly
the ground state energy (c.f. Problem 2 for the non–interacting case).

(d) Can you prove that HN ≥ −CNa with a constant a < 14/25?

Solutions: (a) For every R > 0, by the triangle inequality we have

|x− y| ≤ 2R, ∀x, y ∈ BR = B(0, R).

Hence,
|x− y|−1/2 ≥ (2R)−1/21BR

(x)1BR
(y), ∀x, y ∈ R3.

Consequently,∑
1≤i<j≤N

|xi − xj|−1/2 ≥ (2R)−1/2
∑

1≤i<j≤N

1BR
(xi)1BR

(xj)

=
1

2
√

2R

( N∑
i=1

1BR
(xi)

)2

−
N∑
i=1

1BR
(xi)

 .
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Taking the expectation against ΨN and using the Cauchy–Schwarz inequality we find
that 〈

ΨN ,
∑

1≤i<j≤N

|xi − xj|−1/2ΨN

〉
≥ 1

2
√

2R

(〈
ΨN ,

( N∑
i=1

1BR
(xi)

)2
ΨN

〉
−
〈

ΨN ,
( N∑
i=1

1BR
(xi)

)
ΨN

〉)

≥ 1

2
√

2R

(〈
ΨN ,

( N∑
i=1

1BR
(xi)

)
ΨN

〉2
−
〈

ΨN ,
( N∑
i=1

1BR
(xi)

)
ΨN

〉)
.

By the definition of the one–body density ρN we have

〈
ΨN ,

( N∑
i=1

1BR
(xi)

)
ΨN

〉
=

∫
R3

ρN(x)1BR
(x)dx =

∫
BR

ρN(x)dx = NR.

Thus we conclude that〈
ΨN ,

N∑
i=1

(−∆xi − |xi|−1/2)ΨN

〉
≥ N2

R −NR

2
√

2R
.

(b) For any R > r > 0 we can decompose

|x|−1/2 = V1 + V2 + V3

with

V1 = |x|−1/21(|x| ≤ r), V2 = |x|−1/21(r < |x| ≤ R), V3 = |x|−1/21(|x| > R).

Hence,

〈
ΨN ,

N∑
i=1

(−∆xi − |xi|−1/2)ΨN

〉
=
〈

ΨN ,

N∑
i=1

(−∆xi − V1(xi))ΨN

〉
−
∫
R3

V2(x)ρN(x)dx−
∫
R3

V3(x)ρN(x)dx.

Let us estimate the right side term by term.

For k = 1, using Pauli’s exclusion principle and Lieb–Thirring inequality we have

〈
ΨN ,

N∑
i=1

(−∆xi − V1(xi))ΨN

〉
≥ Tr(−∆− V1)− ≥ −L1,3

∫
R3

|V1(x)|5/2dx

= −L1,3

∫
|x|≤r

1

|x|5/4
dx = −L1,3(4π)r7/4.
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For k = 2, using V2 ≤ r−1/21(|x| ≤ R) and the definition of NR we have

−
∫
R3

V2(x)ρN(x)dx ≥ − 1√
r

∫
|x<R|

ρN(x)dx = −NR√
r
.

For k = 3, using V3 ≤ R−1/2 we have

−
∫
R3

V3(x)ρN(x)dx ≥ − 1√
R

∫
R3

ρN(x)dx = − N√
R
.

Thus in summary,

〈
ΨN ,

N∑
i=1

(−∆xi − |xi|−1/2)ΨN

〉
≥ −Cr7/4 − NR√

r
− N√

R
.

The constant C = 4πL1,3 is independent of N,R, r.

(c) From (a) and (b) we find that for every normalized wave function ΨN ∈ DN and
for every R > r > 0

〈ΨN , HNΨN〉 ≥ −Cr7/4 −
NR√
r
− N√

R
+
N2
R −NR

2
√

2R
.

Since NR ≤ N we have

− NR

2
√

2R
≥ − N

2
√

2R
.

Moreover, by the Cauchy–Schwarz inequality

N2
R

2
√

2R
− NR√

r
≥ − R√

2r
.

Thus

〈ΨN , HNΨN〉 ≥ −C
(
r7/4 +

R

r
+

N√
R

)
with a constant C independent of N,R, r. It remains to choose R and r to optimize
the right side. We can take them such that

r7/4 =
R

r
=

N√
R

=

(
(r7/4)4

(
R

r

)7(
N√
R

)14
)1/(4+7+14)

= N14/25.

Thus we conclude that
〈ΨN , HNΨN〉 ≥ −CN14/25.

Since it holds for every normalized function ΨN ∈ DN , we get the operator lower bound
HN ≥ −CN14/25.

(d) We can improve the bound to HN ≥ −CεN ε for every ε > 0. The idea is that we
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can decompose V (x) = |x|−1/2 into several pieces. Introducing the parameters

r1 < r2 < ... < rM

we can write

V (x) = |x|−1/2 = V (x)1(|x| < r1) +
M∑
m=2

V (x)1(rm−1 ≤ |x| < rm) + V (x)1(|x| ≥ rM)

≤ V (x)1(|x| < r1)−
M∑
m=2

1(|x| < rm)
√
rm−1

− 1
√
rM

.

Therefore, arguing as in (c) we obtain for every normalized wave function ΨN ∈ DN

〈ΨN , HNΨN〉 ≥ −Cr7/41 −
M∑
m=2

Nrm√
rm−1

− N
√
rM

.

Moreover, from (a) we can write, for every m = 1, 2, ...,M ,〈
ΨN ,

∑
1≤i<j≤N

|xi − xj|−1/2ΨN

〉
≥

(N2
rm −Nrm)+

2
√

2rm
≥

(N2
rm − 1)

2
√

2rm

since the left side is finite. Thus in summary,

〈ΨN , HNΨN〉 ≥ −Cr7/41 −
M∑
m=2

Nrm√
rm−1

− N
√
rM

+
1

M

M∑
m=2

(N2
rm − 1)

2
√

2rm
.

We will choose all rm ≥ 1, so that

− 1

2
√

2rm
≥ −1.

Moreover, by the Cauchy–Schwarz inequality

N2
rm

M2
√

2rm
− Nrm√

rm−1
≥ −CM

rm
rm−1

, ∀m = 2, ...,M.

Hence,

〈ΨN , HNΨN〉 ≥ −CM

(
r
7/4
1 +

M∑
m=2

rm
rm−1

+
N
√
rM

+ 1

)
.

It remains to optimize the right side by choosing 1 ≤ r1 ≤ r2 ≤ ... ≤ rM . We can take

1 ≤ r
7/4
1 =

r2
r1

= ... =
rM
rM−1

=
N
√
rM

=

(
(r

7/4
1 )4

M∏
m=2

(
rm
rm−1

)7(
N
√
rM

)14
)1/(4+7(M−1)+14)

= N14/(4+7(M−1)+14).
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Thus
HN ≥ −CMN14/(4+7(M−1)+14).

Since M can be arbitrarily large, we find that HN ≥ −CεN ε for every ε > 0.
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