Final exam

(12.2.2021)

Surname: \qquad Given name: \qquad

Birthday: \qquad Matriculation: \qquad

- There are 3 problems with total $40+40+50=130$ points. You need 50 points to pass and 85 points to get the grade 1.0.
- You have 5 hours from 9:00 to 14:00.
- You can use the lecture notes and solutions of homework sheets.
- Discussion with other people is not allowed.
- Please send your solutions to "nam@math.lmu.de".

Problem 1	Problem 2	Problem 3	\sum	GRADE

Problem $1(\mathbf{1 0}+\mathbf{2 0}+\mathbf{1 0}$ points). Here is an alternative proof of the Lieb-Thirring inequality in one dimension. Let $\left\{u_{n}\right\}_{n=1}^{N} \subset C_{c}^{\infty}(\mathbb{R})$ be an orthonormal family in $L^{2}(\mathbb{R})$ and denote

$$
\gamma(x, y)=\sum_{n=1}^{N} u_{n}(x) \overline{u_{n}(y)}, \quad \rho(x)=\sum_{n=1}^{N}\left|u_{n}(x)\right|^{2}, \quad \forall x, y \in \mathbb{R}
$$

(a) Prove that for all $y, z \in \mathbb{R}$ we have

$$
|\gamma(z, y)|^{4} \leq\left(\int_{\mathbb{R}}|\gamma(x, y)|^{2} \mathrm{~d} x\right)\left(\int_{\mathbb{R}}\left|\partial_{x} \gamma(x, y)\right|^{2} \mathrm{~d} x\right) .
$$

Hint: You can use $g(x)=\int_{-\infty}^{x} g^{\prime}(t) \mathrm{d} t=-\int_{x}^{\infty} g^{\prime}(t) \mathrm{d} t$ with a suitable function g.
(b) Use (a) to prove that

$$
\sum_{n=1}^{N} \int_{\mathbb{R}}\left|u_{n}^{\prime}(x)\right|^{2} \mathrm{~d} x \geq \int_{\mathbb{R}} \rho(x)^{3} \mathrm{~d} x
$$

Hint: You can use $\rho(y)=\int_{\mathbb{R}}|\gamma(x, y)|^{2} \mathrm{~d} x$
(c) Use (b) to prove that for every function $0 \leq V \in C_{c}^{\infty}(\mathbb{R})$ we have

$$
\operatorname{Tr}(-\Delta-V)_{-} \geq-\frac{2}{3 \sqrt{3}} \int_{\mathbb{R}}|V(x)|^{3 / 2} \mathrm{~d} x
$$

Here $\operatorname{Tr}(-\Delta-V)_{-}$is the sum of all negative eigenvalues of $-\Delta-V$.
Solutions: (a) For any function $g \in C^{1}(\mathbb{R})$ satisfying $\lim _{|x| \rightarrow \infty} g(x)=0$ we have

$$
g(x)=\int_{-\infty}^{x} g^{\prime}(t) \mathrm{d} t=-\int_{x}^{\infty} g^{\prime}(t) \mathrm{d} t .
$$

Consequently, by the triangle inequality

$$
|g(x)| \leq \int_{-\infty}^{x}\left|g^{\prime}(t)\right| \mathrm{d} t \quad \text { and } \quad|g(x)| \leq \int_{x}^{\infty}\left|g^{\prime}(t)\right| \mathrm{d} t
$$

Consequently

$$
|g(x)| \leq \frac{1}{2} \int_{-\infty}^{x}\left|g^{\prime}(t)\right| \mathrm{d} t+\frac{1}{2} \int_{x}^{\infty}\left|g^{\prime}(t)\right| \mathrm{d} t=\frac{1}{2} \int_{\mathbb{R}}\left|g^{\prime}(t)\right| \mathrm{d} t .
$$

Thus we get the basic Sobolev inequality

$$
\|g\|_{L^{\infty}(\mathbb{R})} \leq \frac{1}{2}\left\|g^{\prime}\right\|_{L^{1}(\mathbb{R})}
$$

Replacing g by $|g|^{2}$ and using Hölder's inequality we obtain

$$
\|g\|_{L^{\infty}(\mathbb{R})}^{2} \leq \frac{1}{2}\left\|\left(g^{2}\right)^{\prime}\right\|_{L^{1}(\mathbb{R})}=\left\|g g^{\prime}\right\|_{L^{1}(\mathbb{R})} \leq\|g\|_{L^{2}}\left\|g^{\prime}\right\|_{L^{2}}
$$

Applying the latter bound to $g(x)=\gamma(x, y)$ we find that for all $y, z \in \mathbb{R}$

$$
|\gamma(z, y)|^{2} \leq\left(\int_{\mathbb{R}}|\gamma(x, y)|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{\mathbb{R}}\left|\partial_{x} \gamma(x, y)\right|^{2} \mathrm{~d} x\right)^{1 / 2}
$$

which is equivalent to the desired inequality.
(b) Applying (a) with $z=y$ we have, for all $y \in \mathbb{R}$,

$$
\rho(y)^{4} \leq\left(\int_{\mathbb{R}}|\gamma(x, y)|^{2} \mathrm{~d} x\right)\left(\int_{\mathbb{R}}\left|\partial_{x} \gamma(x, y)\right|^{2} \mathrm{~d} x\right) .
$$

Let us simplify the right side. We have

$$
\begin{aligned}
|\gamma(x, y)|^{2}=\overline{\gamma(x, y)} \gamma(x, y) & =\left(\sum_{m}^{N} \overline{u_{m}(x)} u_{m}(y)\right)\left(\sum_{n=1}^{N} u_{n}(x) \overline{u_{n}(y)}\right) \\
& =\sum_{m, n=1}^{N} \overline{u_{m}(x)} u_{n}(x) u_{m}(y) \overline{u_{n}(y)}
\end{aligned}
$$

Hence, using the fact that $\left\{u_{n}\right\}_{n=1}^{N}$ are orthonormal, we get

$$
\begin{aligned}
\int_{\mathbb{R}}|\gamma(x, y)|^{2} \mathrm{~d} x & =\sum_{m, n=1}^{N} \int_{\mathbb{R}} \overline{u_{m}(x)} u_{n}(x) \mathrm{d} x\left(u_{m}(y) \overline{u_{n}(y)}\right) \\
& =\sum_{m, n=1}^{N} \delta_{m n}\left(u_{m}(y) \overline{u_{n}(y)}\right)=\sum_{n=1}^{N}\left|u_{n}(y)\right|^{2}=\rho(y) .
\end{aligned}
$$

Thus from (a) we get

$$
\rho(y)^{4} \leq \rho(y)\left(\int_{\mathbb{R}}\left|\partial_{x} \gamma(x, y)\right|^{2} \mathrm{~d} x\right)
$$

which is equivalent to

$$
\rho(y)^{3} \leq \int_{\mathbb{R}}\left|\partial_{x} \gamma(x, y)\right|^{2} \mathrm{~d} x
$$

Integrating over y and using Fubini's theorem we obtain

$$
\int_{\mathbb{R}} \rho(y)^{3} \mathrm{~d} y=\int_{\mathbb{R}}\left(\int_{\mathbb{R}}\left|\partial_{x} \gamma(x, y)\right|^{2} \mathrm{~d} x\right) \mathrm{d} y=\int_{\mathbb{R}}\left(\int_{\mathbb{R}}\left|\partial_{x} \gamma(x, y)\right|^{2} \mathrm{~d} y\right) \mathrm{d} x .
$$

Similarly to the above computation, we have

$$
\begin{aligned}
\int_{\mathbb{R}}\left|\partial_{x} \gamma(x, y)\right|^{2} \mathrm{~d} y & =\sum_{m, n=1}^{N} \overline{u_{m}^{\prime}(x)} u_{n}^{\prime}(x)\left(\int_{\mathbb{R}} u_{m}(y) \overline{u_{n}(y)} \mathrm{d} y\right) \\
& =\sum_{m, n=1}^{N} \overline{u_{m}^{\prime}(x)} u_{n}^{\prime}(x) \delta_{m n}=\sum_{n=1}^{N}\left|u_{n}^{\prime}(x)\right|^{2} .
\end{aligned}
$$

Thus we conclude that

$$
\int_{\mathbb{R}} \rho(y)^{3} \mathrm{~d} y \leq \int_{\mathbb{R}} \sum_{n=1}^{N}\left|u_{n}^{\prime}(x)\right|^{2} \mathrm{~d} x .
$$

(c) By the min-max principle
$\operatorname{Tr}(-\Delta-V)=\inf \left\{\sum_{n=1}^{N}\left\langle u_{n},(-\Delta-V) u_{n}\right\rangle:\left\{u_{n}\right\}_{n=1}^{N} \subset C_{c}^{\infty}\right.$ and orthonormal in $\left.L^{2}(\mathbb{R})\right\}$.
For every family $\left\{u_{n}\right\}_{n=1}^{N} \subset C_{c}^{\infty}$ and orthonormal in $L^{2}(\mathbb{R})$ from (c) we have

$$
\sum_{n=1}^{N}\left\langle u_{n},(-\Delta-V) u_{n}\right\rangle=\sum_{n=1}^{N} \int_{\mathbb{R}}\left|u_{n}^{\prime}(x)\right|^{2} \mathrm{~d} x-\int_{\mathbb{R}} V(x) \rho(x) \mathrm{d} x \geq \int_{\mathbb{R}} \rho(x)^{3} \mathrm{~d} x-\int_{\mathbb{R}} V(x) \rho(x) \mathrm{d} x
$$

with $\rho(x)=\sum_{n=1}^{N}\left|u_{n}(x)\right|^{2}$. Using the AM-GM inequality

$$
a+b+c \geq 3(a b c)^{1 / 3}, \quad a, b, c \geq 0
$$

with $a=\rho(x)^{3}, b=c=(V(x) / 3)^{3 / 2}$ we get

$$
\rho(x)^{3}+\frac{2}{3 \sqrt{3}} V(x)^{3 / 2} \geq \rho(x) V(x), \quad \forall x \in \mathbb{R} .
$$

Thus

$$
\int_{\mathbb{R}} \rho(x)^{3} \mathrm{~d} x-\int_{\mathbb{R}} V(x) \rho(x) \mathrm{d} x \geq-\frac{2}{3 \sqrt{3}} \int_{\mathbb{R}} V(x)^{3 / 2} \mathrm{~d} x .
$$

Hence, we conclude that

$$
\operatorname{Tr}(-\Delta-V) \geq-\frac{2}{3 \sqrt{3}} \int_{\mathbb{R}} V(x)^{3 / 2} \mathrm{~d} x
$$

Problem $2(10+10+20$ points $)$. Consider the operator

$$
A=-\Delta-|x|^{-1 / 2}
$$

on $L^{2}\left(\mathbb{R}^{3}\right)$ with domain $H^{2}\left(\mathbb{R}^{3}\right)$. We know that A is self-adjoint and has infinitely many eigenvalues.
(a) Let E_{N} be the sum of the first N eigenvalues of A. Prove that

$$
\lim _{N \rightarrow \infty} \frac{E_{N}}{N^{7 / 9}}=E^{\mathrm{TF}}:=\inf _{\substack{0 \leq f \in L^{\cap} \cap L^{5 / 3} \\ \int_{\mathbb{R}^{3} f \leq 1} f \leq}} \int_{\mathbb{R}^{3}}\left(\frac{3}{5}\left(6 \pi^{2}\right)^{2 / 3} f(x)^{5 / 3}-\frac{f(x)}{|x|^{1 / 2}}\right) \mathrm{d} x
$$

Hint: A has the same spectrum with $A_{\ell}=\ell^{2}(-\Delta)-\ell^{1 / 2}|x|^{-1 / 2}$ for every $\ell>0$.
(b) Prove that E^{TF} has a unique minimizer f_{0} and compute f_{0}.
(c) Denote $\rho_{N}(x)=\sum_{i=1}^{N}\left|u_{n}(x)\right|^{2}$ with $\left\{u_{n}\right\}_{n=1}^{N}$ being the first N eigenfunctions of A. Define the 'half-radius' $R_{N}>0$ by

$$
\int_{|x|<R_{N}} \rho_{N}(x) \mathrm{d} x=\int_{|x|>R_{N}} \rho_{N}(x) \mathrm{d} x=\frac{N}{2} .
$$

Prove that the following limit exists

$$
\lim _{N \rightarrow \infty} \frac{R_{N}}{N^{4 / 9}} .
$$

Solutions: (a) By changing the variables, namely by using the unitary operator $f \mapsto$ $\ell^{3 / 2} f(\ell \cdot)$, we see that A has the same spectrum with

$$
A_{\ell}=\ell^{2}(-\Delta)-\ell^{1 / 2}|x|^{-1 / 2}=\ell^{1 / 2}\left(\ell^{3 / 2}(-\Delta)-|x|^{-1 / 2}\right)
$$

for every $\ell>0$. In particular, taking

$$
\ell^{3 / 2}=N^{-2 / 3} \Longleftrightarrow \ell=N^{-4 / 9}
$$

we find that

$$
\sigma(A)=N^{-2 / 9} \sigma\left(N^{-2 / 3}(-\Delta)-|x|^{-1 / 2}\right)
$$

Thus $N^{2 / 9} E_{N}$ is equal to the sum of the first N eigenvalues of $N^{-2 / 3}(-\Delta)-|x|^{-1 / 2}$. By Pauli's exclusion principle, $N^{2 / 9} E_{N}$ is equal to the ground state energy of the Hamiltonian

$$
H_{N}=\sum_{i=1}^{N}\left(N^{-2 / 3}\left(-\Delta_{x_{i}}\right)-\left|x_{i}\right|^{-1 / 2}\right), \quad x_{n} \in \mathbb{R}^{3}
$$

on the anti-symmetric space $L_{a}^{2}\left(\mathbb{R}^{3 N}\right)$. Note that we can write the potential $-|x|^{-1 / 2}$ as

$$
-|x|^{-1 / 2}=-|x|^{-1 / 2} \mathbb{1}(|x| \leq 1)+-|x|^{-1 / 2} \mathbb{1}(|x| \geq 1) \in L^{4}\left(\mathbb{R}^{3}\right)+L^{8}\left(\mathbb{R}^{3}\right)
$$

where $4,8 \in[1+3 / 2, \infty)$. Thus we can apply the convergence to the Thomas-Fermi theory in the lecture notes (Section 8.4) and obtain

$$
\lim _{N \rightarrow \infty} \frac{N^{2 / 9} E_{N}}{N}=E^{\mathrm{TF}}
$$

(b) The existence of a minimizer ρ_{0} for E^{TF} follows from Homework 8.3 (our situation here is even simpler since there is no interaction potential). The minimizer is unique since the Thomas-Fermi functional

$$
\mathcal{E}^{\mathrm{TF}}(f)=\int_{\mathbb{R}^{3}}\left(\frac{3}{5}\left(6 \pi^{2}\right)^{2 / 3} f(x)^{5 / 3}-\frac{f(x)}{|x|^{1 / 2}}\right) \mathrm{d} x
$$

is strictly convex (the potential term is linear in f and the mapping $f \mapsto f^{5 / 3}$ is strictly convex).

It remains to compute f_{0}. It is similar to Homework 7.3 but let us recall the argument here. First, note that $f_{0} \not \equiv 0$ since $E^{\mathrm{TF}}<0$. Indeed, by choose $g_{\ell}=\ell^{3} g(\ell x)$ with a fixed function $0<g \in L^{1} \cap L^{5 / 3}$ we obtain

$$
\mathcal{E}^{\mathrm{TF}}\left(g_{\ell}\right)=\ell^{2} \int_{\mathbb{R}^{3}} \frac{3}{5}\left(6 \pi^{2}\right)^{2 / 3} g(x)^{5 / 3} \mathrm{~d} x-\ell^{1 / 2} \int_{\mathbb{R}^{3}} \frac{g(x)}{|x|^{1 / 2}} \mathrm{~d} x<0
$$

if $\ell>0$ is small enough.
Next, arguing exactly as in Homework 7.3 (the details of the potential is not important for this part), we obtain the Thomas-Fermi equation

$$
\left(6 \pi^{2}\right)^{2 / 3} f_{0}(x)^{2 / 3}=\left[\frac{1}{|x|^{1 / 2}}-\mu\right]_{+} \Longleftrightarrow f_{0}(x)=\frac{1}{6 \pi^{2}}\left[\frac{1}{|x|^{1 / 2}}-\mu\right]_{+}^{3 / 2} .
$$

for a constant

$$
0 \leq \mu=-\frac{\int_{\mathbb{R}^{3}} f_{0}(x)\left[\left(6 \pi^{2}\right)^{2 / 3} f_{0}(x)^{2 / 3}-|x|^{-1 / 2}\right] \mathrm{d} x}{\int_{\mathbb{R}^{3}} f_{0}}
$$

If $\int_{\mathbb{R}^{3}} f_{0}<1$, then we have

$$
\mathcal{E}^{\mathrm{TF}}\left((1+t) f_{0}\right) \geq \mathcal{E}^{\mathrm{TF}}\left(f_{0}\right), \quad \forall t \in(-\varepsilon, \varepsilon)
$$

for some $\varepsilon>0$ small enough. Hence

$$
0=\left.\frac{d}{d t}\right|_{t=0} \mathcal{E}^{\mathrm{TF}}\left((1+t) f_{0}\right)=\int_{\mathbb{R}^{3}} f_{0}(x)\left[\left(6 \pi^{2}\right)^{2 / 3} f_{0}(x)^{2 / 3}-|x|^{-1 / 2}\right] \mathrm{d} x
$$

which implies that $\mu=0$. However, in this case the Thomas-Fermi equation implies that

$$
f_{0}(x)=\frac{1}{6 \pi^{2}} \frac{1}{|x|^{3 / 4}}
$$

which is not integrable.
Thus $\int_{\mathbb{R}^{3}} f_{0}=1$. Using the Thomas-Fermi equation we can compute μ :
$1=\int_{\mathbb{R}^{3}} f_{0}(x) \mathrm{d} x=\frac{1}{6 \pi^{2}} \int_{\mathbb{R}^{3}}\left[\frac{1}{|x|^{1 / 2}}-\mu\right]_{+}^{3 / 2} \mathrm{~d} x=\frac{1}{6 \pi^{2}} 4 \pi \int_{0}^{\mu^{-2}}\left[\frac{1}{r^{1 / 2}}-\mu\right]^{3 / 2} r^{2} \mathrm{~d} r=\frac{7}{768 \mu^{9 / 2}}$.
Thus

$$
\mu=\left(\frac{7}{768}\right)^{2 / 9}
$$

(c) Step 1. By the rescaling argument in (a), the functions $\left\{u_{n}^{(\ell)}\right\}_{n=1}^{N}$ with

$$
u_{n}^{(\ell)}(x)=\ell^{3 / 2} u_{n}(\ell x), \quad \ell=N^{-4 / 9}
$$

are the first N eigenfunctions of the operator $N^{-2 / 3}(-\Delta)-|x|^{-1}$. Hence, the Slater determinant

$$
u_{1}^{(\ell)} \wedge u_{2}^{(\ell)} \wedge \ldots \wedge u_{N}^{(\ell)}
$$

is a ground state for the Hamiltonian H_{N}. In particular,

$$
\rho_{N}^{(\ell)}(x)=\sum_{n=1}^{N}\left|u_{n}^{(\ell)}(x)\right|^{2}=\sum_{n=1}^{N} \ell^{3}\left|u_{n}(\ell x)\right|^{2}=\ell^{3} \rho_{N}(\ell x)
$$

is the one-body density of this ground state. By the convergence to the Thomas-Fermi theory in the lecture notes (Section 8.4) we find that

$$
N^{-1} \rho_{N}^{(\ell)} \rightharpoonup f_{0}
$$

weakly in $L^{5 / 3}\left(\mathbb{R}^{3}\right)$. Consequently, for every constant $R>0$ we have

$$
\int_{|x|<R} f_{0}(x) \mathrm{d} x=\lim _{N \rightarrow \infty} N^{-1} \int_{|x|<R} \rho_{N}^{(\ell)}(x) \mathrm{d} x=\lim _{N \rightarrow \infty} N^{-1} \int_{|x|<R} \ell^{3} \rho_{N}(\ell x) \mathrm{d} x .
$$

On the other hand, from the definition of R_{N} we have

$$
\frac{1}{2}=N^{-1} \int_{|x|<R_{N}} \rho_{N}(x) \mathrm{d} x=N^{-1} \int_{|x|<\ell R_{N}} \rho_{N}(\ell x) \mathrm{d} x
$$

Step 2. Let us show that ℓR_{N} is bounded. Indeed, if ℓR_{N} is unbounded, then up to a subsequence as $N \rightarrow \infty$ we have $\ell R_{N} \rightarrow \infty$. This implies that for every $R>0$, we have $\ell R_{N} \geq R$ for N large and hence

$$
\frac{1}{2}=N^{-1} \int_{|x|<\ell R_{N}} \rho_{N}(\ell x) \mathrm{d} x \geq N^{-1} \int_{|x|<R} \rho_{N}(\ell x) \mathrm{d} x \rightarrow_{N \rightarrow \infty} \int_{|x|<R} f_{0}(x) \mathrm{d} x .
$$

Since it holds for all $R>0$, we can take $R \rightarrow \infty$ and find that

$$
\frac{1}{2} \geq \lim _{R \rightarrow \infty} \int_{|x|<R} f_{0}(x) \mathrm{d} x=\int_{\mathbb{R}^{3}} f_{0}(x) \mathrm{d} x=1
$$

which is a contradiction. Thus ℓR_{N} is bounded.
Step 3. Since $\ell R_{N} \rightarrow R_{0}$ is bounded, up to a subsequence we can assume that $\ell R_{N} \rightarrow R_{0}$. Let us show that

$$
\frac{1}{2}=\int_{|x|<R_{0}} f_{0}(x) \mathrm{d} x
$$

Indeed, for every $\varepsilon>0$ we have $\ell R_{N} \geq(1-\varepsilon) R_{0}$ for N large, and hence

$$
\frac{1}{2}=N^{-1} \int_{|x|<\ell R_{N}} \rho_{N}(\ell x) \mathrm{d} x \geq N^{-1} \int_{|x|<(1-\varepsilon) R_{0}} \rho_{N}(\ell x) \mathrm{d} x \rightarrow_{N \rightarrow \infty} \int_{|x|<(1-\varepsilon) R_{0}} f_{0}(x) \mathrm{d} x .
$$

Since it holds for every $\varepsilon>0$ we obtain

$$
\frac{1}{2} \geq \lim _{\varepsilon \rightarrow 0^{+}} \int_{|x|<(1-\varepsilon) R_{0}} f_{0}(x) \mathrm{d} x=\int_{|x|<R_{0}} f_{0}(x) \mathrm{d} x
$$

Similarly,

$$
\frac{1}{2}=N^{-1} \int_{|x|<\ell R_{N}} \rho_{N}(\ell x) \mathrm{d} x \leq N^{-1} \int_{|x|<(1+\varepsilon) R_{0}} \rho_{N}(\ell x) \mathrm{d} x \rightarrow_{N \rightarrow \infty} \int_{|x|<(1+\varepsilon) R_{0}} f_{0}(x) \mathrm{d} x
$$

and hencee

$$
\frac{1}{2} \leq \lim _{\varepsilon \rightarrow 0^{+}} \int_{|x|<(1+\varepsilon) R_{0}} f_{0}(x) \mathrm{d} x=\int_{|x|<R_{0}} f_{0}(x) \mathrm{d} x .
$$

Thus

$$
\frac{1}{2}=\int_{|x|<R_{0}} f_{0}(x) \mathrm{d} x=\frac{1}{6 \pi^{2}} \int_{|x|<R_{0}}\left[\frac{1}{|x|^{-1 / 2}}-\mu\right]_{+}^{3 / 2} \mathrm{~d} x
$$

Finally, note that the function

$$
g(R):=\frac{1}{6 \pi^{2}} \int_{|x|<R}\left[\frac{1}{|x|^{-1 / 2}}-\mu\right]_{+}^{3 / 2} \mathrm{~d} x
$$

is increasing on $R \in[0, \infty)$; moreover, $g(0)=0, g\left(\mu^{-2}\right)=1$ and g is strictly increasing on $R \in\left(0, \mu^{-2}\right)$ since $\left[\frac{1}{|x|^{-1 / 2}}-\mu\right]_{+}^{3 / 2}>0$ for all $|x| \in\left(0, \mu^{-2}\right)$. Thus there exists a unique R_{0} such that $g\left(R_{0}\right)=1 / 2$ (we can even compute R_{0} explicitly). Since the limit R_{0} is unique, we have the convergence of the whole sequence $\ell R_{N} \rightarrow R_{0}$.

Problem $3(\mathbf{1 0}+\mathbf{1 0}+\mathbf{1 0}+\mathbf{2 0}$ points). Let $N \geq 2$ and consider the operator

$$
H_{N}=\sum_{j=1}^{N}\left(-\Delta_{x_{j}}-\left|x_{j}\right|^{-1 / 2}\right)+\sum_{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{-1 / 2}, \quad x_{j} \in \mathbb{R}^{3},
$$

on the anti-symmetric space $L_{a}^{2}\left(\mathbb{R}^{3 N}\right)$ with the core domain $\mathcal{D}_{N}=L_{a}^{2}\left(\mathbb{R}^{3 N}\right) \cap C_{c}^{\infty}\left(\mathbb{R}^{3 N}\right)$. Let $\Psi_{N} \in \mathcal{D}_{N}$ be a normalized function in $L_{a}^{2}\left(\mathbb{R}^{3 N}\right)$ and let ρ_{N} be its one-body density.
(a) Prove that for every $R>0$ we have

$$
\left.\left\langle\Psi_{N}, \sum_{1 \leq i<j \leq N}\right| x_{i}-\left.x_{j}\right|^{-1 / 2} \Psi_{N}\right\rangle \geq \frac{1}{2 \sqrt{2 R}}\left(N_{R}^{2}-N_{R}\right)
$$

with $N_{R}=\int_{|x| \leq R} \rho_{N}(x) \mathrm{d} x$.
Hint: You can use $|x-y|^{-1 / 2} \geq(2 R)^{-1 / 2} \mathbb{1}_{B(0, R)}(x) \mathbb{1}_{B(0, R)}(y)$.
(b) Prove that for every $R>r>0$ we have

$$
\left\langle\Psi_{N}, \sum_{i=1}^{N}\left(-\Delta_{x_{i}}-\left|x_{i}\right|^{-1 / 2}\right) \Psi_{N}\right\rangle \geq-C r^{7 / 4}-\frac{N_{R}}{\sqrt{r}}-\frac{N}{\sqrt{R}}
$$

with a constant $C>0$ independent of N, R, r.
Hint: You can split the potential $-|x|^{-1 / 2}$ into three parts.
(c) Use (a) and (b) to prove that $H_{N} \geq-C N^{14 / 25}$ with a constant $C>0$ independent of N.

Note that $N^{14 / 25} \ll N^{7 / 9}$ when $N \rightarrow \infty$. Thus the interaction improves significantly the ground state energy (c.f. Problem 2 for the non-interacting case).
(d) Can you prove that $H_{N} \geq-C N^{a}$ with a constant $a<14 / 25$?

Solutions: (a) For every $R>0$, by the triangle inequality we have

$$
|x-y| \leq 2 R, \quad \forall x, y \in B_{R}=B(0, R)
$$

Hence,

$$
|x-y|^{-1 / 2} \geq(2 R)^{-1 / 2} \mathbb{1}_{B_{R}}(x) \mathbb{1}_{B_{R}}(y), \quad \forall x, y \in \mathbb{R}^{3}
$$

Consequently,

$$
\begin{aligned}
\sum_{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{-1 / 2} & \geq(2 R)^{-1 / 2} \sum_{1 \leq i<j \leq N} \mathbb{1}_{B_{R}}\left(x_{i}\right) \mathbb{1}_{B_{R}}\left(x_{j}\right) \\
& =\frac{1}{2 \sqrt{2 R}}\left(\left(\sum_{i=1}^{N} \mathbb{1}_{B_{R}}\left(x_{i}\right)\right)^{2}-\sum_{i=1}^{N} \mathbb{1}_{B_{R}}\left(x_{i}\right)\right) .
\end{aligned}
$$

Taking the expectation against Ψ_{N} and using the Cauchy-Schwarz inequality we find that

$$
\begin{aligned}
& \left.\left\langle\Psi_{N}, \sum_{1 \leq i<j \leq N}\right| x_{i}-\left.x_{j}\right|^{-1 / 2} \Psi_{N}\right\rangle \\
& \geq \frac{1}{2 \sqrt{2 R}}\left(\left\langle\Psi_{N},\left(\sum_{i=1}^{N} \mathbb{1}_{B_{R}}\left(x_{i}\right)\right)^{2} \Psi_{N}\right\rangle-\left\langle\Psi_{N},\left(\sum_{i=1}^{N} \mathbb{1}_{B_{R}}\left(x_{i}\right)\right) \Psi_{N}\right\rangle\right) \\
& \geq \frac{1}{2 \sqrt{2 R}}\left(\left\langle\Psi_{N},\left(\sum_{i=1}^{N} \mathbb{1}_{B_{R}}\left(x_{i}\right)\right) \Psi_{N}\right\rangle^{2}-\left\langle\Psi_{N},\left(\sum_{i=1}^{N} \mathbb{1}_{B_{R}}\left(x_{i}\right)\right) \Psi_{N}\right\rangle\right) .
\end{aligned}
$$

By the definition of the one-body density ρ_{N} we have

$$
\left\langle\Psi_{N},\left(\sum_{i=1}^{N} \mathbb{1}_{B_{R}}\left(x_{i}\right)\right) \Psi_{N}\right\rangle=\int_{\mathbb{R}^{3}} \rho_{N}(x) \mathbb{1}_{B_{R}}(x) \mathrm{d} x=\int_{B_{R}} \rho_{N}(x) \mathrm{d} x=N_{R} .
$$

Thus we conclude that

$$
\left\langle\Psi_{N}, \sum_{i=1}^{N}\left(-\Delta_{x_{i}}-\left|x_{i}\right|^{-1 / 2}\right) \Psi_{N}\right\rangle \geq \frac{N_{R}^{2}-N_{R}}{2 \sqrt{2 R}} .
$$

(b) For any $R>r>0$ we can decompose

$$
|x|^{-1 / 2}=V_{1}+V_{2}+V_{3}
$$

with

$$
V_{1}=|x|^{-1 / 2} \mathbb{1}(|x| \leq r), \quad V_{2}=|x|^{-1 / 2} \mathbb{1}(r<|x| \leq R), \quad V_{3}=|x|^{-1 / 2} \mathbb{1}(|x|>R) .
$$

Hence,

$$
\begin{aligned}
& \left\langle\Psi_{N}, \sum_{i=1}^{N}\left(-\Delta_{x_{i}}-\left|x_{i}\right|^{-1 / 2}\right) \Psi_{N}\right\rangle \\
& =\left\langle\Psi_{N}, \sum_{i=1}^{N}\left(-\Delta_{x_{i}}-V_{1}\left(x_{i}\right)\right) \Psi_{N}\right\rangle-\int_{\mathbb{R}^{3}} V_{2}(x) \rho_{N}(x) \mathrm{d} x-\int_{\mathbb{R}^{3}} V_{3}(x) \rho_{N}(x) \mathrm{d} x .
\end{aligned}
$$

Let us estimate the right side term by term.
For $k=1$, using Pauli's exclusion principle and Lieb-Thirring inequality we have

$$
\begin{aligned}
\left\langle\Psi_{N}, \sum_{i=1}^{N}\left(-\Delta_{x_{i}}-V_{1}\left(x_{i}\right)\right) \Psi_{N}\right\rangle & \geq \operatorname{Tr}\left(-\Delta-V_{1}\right)_{-} \geq-L_{1,3} \int_{\mathbb{R}^{3}}\left|V_{1}(x)\right|^{5 / 2} \mathrm{~d} x \\
& =-L_{1,3} \int_{|x| \leq r} \frac{1}{|x|^{5 / 4}} \mathrm{~d} x=-L_{1,3}(4 \pi) r^{7 / 4}
\end{aligned}
$$

For $k=2$, using $V_{2} \leq r^{-1 / 2} \mathbb{1}(|x| \leq R)$ and the definition of N_{R} we have

$$
-\int_{\mathbb{R}^{3}} V_{2}(x) \rho_{N}(x) \mathrm{d} x \geq-\frac{1}{\sqrt{r}} \int_{|x<R|} \rho_{N}(x) \mathrm{d} x=-\frac{N_{R}}{\sqrt{r}}
$$

For $k=3$, using $V_{3} \leq R^{-1 / 2}$ we have

$$
-\int_{\mathbb{R}^{3}} V_{3}(x) \rho_{N}(x) \mathrm{d} x \geq-\frac{1}{\sqrt{R}} \int_{\mathbb{R}^{3}} \rho_{N}(x) \mathrm{d} x=-\frac{N}{\sqrt{R}} .
$$

Thus in summary,

$$
\left\langle\Psi_{N}, \sum_{i=1}^{N}\left(-\Delta_{x_{i}}-\left|x_{i}\right|^{-1 / 2}\right) \Psi_{N}\right\rangle \geq-C r^{7 / 4}-\frac{N_{R}}{\sqrt{r}}-\frac{N}{\sqrt{R}} .
$$

The constant $C=4 \pi L_{1,3}$ is independent of N, R, r.
(c) From (a) and (b) we find that for every normalized wave function $\Psi_{N} \in \mathcal{D}_{N}$ and for every $R>r>0$

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle \geq-C r^{7 / 4}-\frac{N_{R}}{\sqrt{r}}-\frac{N}{\sqrt{R}}+\frac{N_{R}^{2}-N_{R}}{2 \sqrt{2 R}}
$$

Since $N_{R} \leq N$ we have

$$
-\frac{N_{R}}{2 \sqrt{2 R}} \geq-\frac{N}{2 \sqrt{2 R}}
$$

Moreover, by the Cauchy-Schwarz inequality

$$
\frac{N_{R}^{2}}{2 \sqrt{2 R}}-\frac{N_{R}}{\sqrt{r}} \geq-\frac{R}{\sqrt{2} r}
$$

Thus

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle \geq-C\left(r^{7 / 4}+\frac{R}{r}+\frac{N}{\sqrt{R}}\right)
$$

with a constant C independent of N, R, r. It remains to choose R and r to optimize the right side. We can take them such that

$$
r^{7 / 4}=\frac{R}{r}=\frac{N}{\sqrt{R}}=\left(\left(r^{7 / 4}\right)^{4}\left(\frac{R}{r}\right)^{7}\left(\frac{N}{\sqrt{R}}\right)^{14}\right)^{1 /(4+7+14)}=N^{14 / 25}
$$

Thus we conclude that

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle \geq-C N^{14 / 25}
$$

Since it holds for every normalized function $\Psi_{N} \in \mathcal{D}_{N}$, we get the operator lower bound $H_{N} \geq-C N^{14 / 25}$.
(d) We can improve the bound to $H_{N} \geq-C_{\varepsilon} N^{\varepsilon}$ for every $\varepsilon>0$. The idea is that we
can decompose $V(x)=|x|^{-1 / 2}$ into several pieces. Introducing the parameters

$$
r_{1}<r_{2}<\ldots<r_{M}
$$

we can write

$$
\begin{aligned}
V(x)=|x|^{-1 / 2} & =V(x) \mathbb{1}\left(|x|<r_{1}\right)+\sum_{m=2}^{M} V(x) \mathbb{1}\left(r_{m-1} \leq|x|<r_{m}\right)+V(x) \mathbb{1}\left(|x| \geq r_{M}\right) \\
& \leq V(x) \mathbb{1}\left(|x|<r_{1}\right)-\sum_{m=2}^{M} \frac{\mathbb{1}\left(|x|<r_{m}\right)}{\sqrt{r_{m-1}}}-\frac{1}{\sqrt{r_{M}}} .
\end{aligned}
$$

Therefore, arguing as in (c) we obtain for every normalized wave function $\Psi_{N} \in \mathcal{D}_{N}$

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle \geq-C r_{1}^{7 / 4}-\sum_{m=2}^{M} \frac{N_{r_{m}}}{\sqrt{r_{m-1}}}-\frac{N}{\sqrt{r_{M}}}
$$

Moreover, from (a) we can write, for every $m=1,2, \ldots, M$,

$$
\left.\left\langle\Psi_{N}, \sum_{1 \leq i<j \leq N}\right| x_{i}-\left.x_{j}\right|^{-1 / 2} \Psi_{N}\right\rangle \geq \frac{\left(N_{r_{m}}^{2}-N_{r_{m}}\right)_{+}}{2 \sqrt{2 r_{m}}} \geq \frac{\left(N_{r_{m}}^{2}-1\right)}{2 \sqrt{2 r_{m}}}
$$

since the left side is finite. Thus in summary,

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle \geq-C r_{1}^{7 / 4}-\sum_{m=2}^{M} \frac{N_{r_{m}}}{\sqrt{r_{m-1}}}-\frac{N}{\sqrt{r_{M}}}+\frac{1}{M} \sum_{m=2}^{M} \frac{\left(N_{r_{m}}^{2}-1\right)}{2 \sqrt{2 r_{m}}}
$$

We will choose all $r_{m} \geq 1$, so that

$$
-\frac{1}{2 \sqrt{2 r_{m}}} \geq-1
$$

Moreover, by the Cauchy-Schwarz inequality

$$
\frac{N_{r_{m}}^{2}}{M 2 \sqrt{2 r_{m}}}-\frac{N_{r_{m}}}{\sqrt{r_{m-1}}} \geq-C_{M} \frac{r_{m}}{r_{m-1}}, \quad \forall m=2, \ldots, M
$$

Hence,

$$
\left\langle\Psi_{N}, H_{N} \Psi_{N}\right\rangle \geq-C_{M}\left(r_{1}^{7 / 4}+\sum_{m=2}^{M} \frac{r_{m}}{r_{m-1}}+\frac{N}{\sqrt{r_{M}}}+1\right) .
$$

It remains to optimize the right side by choosing $1 \leq r_{1} \leq r_{2} \leq \ldots \leq r_{M}$. We can take

$$
\begin{aligned}
1 \leq r_{1}^{7 / 4}=\frac{r_{2}}{r_{1}}=\ldots=\frac{r_{M}}{r_{M-1}}=\frac{N}{\sqrt{r_{M}}} & =\left(\left(r_{1}^{7 / 4}\right)^{4} \prod_{m=2}^{M}\left(\frac{r_{m}}{r_{m-1}}\right)^{7}\left(\frac{N}{\sqrt{r_{M}}}\right)^{14}\right)^{1 /(4+7(M-1)+14)} \\
& =N^{14 /(4+7(M-1)+14)}
\end{aligned}
$$

Thus

$$
H_{N} \geq-C_{M} N^{14 /(4+7(M-1)+14)}
$$

Since M can be arbitrarily large, we find that $H_{N} \geq-C_{\varepsilon} N^{\varepsilon}$ for every $\varepsilon>0$.

