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I. Introduction

We develop a new geometric L2-method for nonlinear PDE. I will
introduce this method in the NLS and NLW contexts and conclude
with some comments on the Euler equation.

W.-M. Wang Spectral Methods in PDE



II. NLS on Td

We study NLS on the torus in arbitrary dimensions d :

−i u̇ = −∆u + |u|2pu + H(x , u), p ∈ N arbitrary,

where H is analytic, has a higher order zero at zero and could have
x dependence, which break translation invariance. Since the
method is indifferent to the lack of symmetry and is stable under
perturbation, we take H = 0 for this talk.

Remark. Stability comes from the fact that this is an L2-method.
More comments later on connections with geometry and (lack of )
integrability.
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We recall that the local theory (existence and uniqueness in a time
interval of length O(1)) for NLS is in Hs for

s > max(0,
1

2
(d − 2

p
))

from L2p+2 (Strichartz) estimates [Bourgain], which linearizes
about the flow of the Laplacian.

In higher dimensions, s > 1 for p which are not very large. E. g.,
d = 4, the local theory for the quintic NLS is in H3/2, where there
is no available conservation law and is therefore energy
supercritical. The main difficulty here is that the linear flow cannot
be used as the reference flow as in the usual Duhamel formula.
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The existence of global flow is generally unknown because of this
lack of a conservation law and the additional lack of dispersion on
the torus. The result that I present below constructs a class of
global solutions to NLS and NLW on the torus in arbitrary
dimensions.

Remark. This class of global flow in the energy supercritical regime
is in some sense “non-classical”. In the subcritical (or critical)
regime the flow could be viewed as “classical”. More on this later.
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The method that I will present analyzes the geometry of the
nonlinearity relative to the bi-characteristics and does not make
use of conservation laws. A consequence is that it applies to both
focusing and defocusing cases and has particular relevance in the
energy supercritical context. In fact, the method relies little on the
specifics of the equation and appears to be general.

We note that this geometric analysis here is necessitated by the
complete violation of the Kolmogorov non-degeneracy conditions
or its weaker versions (on the Hamiltonian).

From the oscillatory integral point of view, it is about choosing a
phase other than the Laplacian.
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III. The Non-Linear Space - Time Fourier Series

The solutions to the linear Schrödinger equation on the d-torus:

−i u̇ = −∆u,

are provided by spectral theory. They are linear combinations of
the eigenfunction solutions:

u = e−iωj te ij ·x .

Since ωj = j2, e. v. of the Laplacian, they are time periodic.
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As an ansatz, we seek solutions of b frequencies to the nonlinear
equation

−i u̇ = −∆u + |u|2pu

in the form of a nonlinear Fourier series:

u =
∑

û(n, j)e in·ωte ij ·x , (n, j) ∈ Zb+d ,

where ω ∈ Rb is to be determined. We note that for each
frequency in time we add a dimension.

Remark. In the usual restriction theorem, we add one dimension
for time.
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This is the so called amplitude-frequency modulation, fundamental
to nonlinear equations. For linear equations, ω are the eigenvalues,
they are fixed once and for all. In this language, a solution u(0) to
the linear equation can be written as

u(0) =
∑
j

û(ej , j)e
−iω(0)

j te ij ·x , (n, j) ∈ Zb+d ,

where ej is a basis vector in Zb and ω
(0)
j = ej · ω(0) = j2.

W.-M. Wang Spectral Methods in PDE



If we succeed in their constructions, these quasi-periodic solutions
play a role related to “eigenfunctions” in the nonlinear setting by
providing a basis for the (smooth) flow for NLS.

Remark. For NLW, reflecting the dense nature of the spectrum of√
−∆ in dimensions two and above, this is not enough. The higher

part of the spectrum just does not have a similar structure as the
lower one. The geometry is also more complicated as we will see.
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IV. The Bi-Characteristics

In the Fourier space Zb+d , the support of the solution in the
above form to the linear equation and its complex conjugate are by
definition, the bi-characteristics C:

C = {(n, j) ∈ Zb+d | ± n · ω(0) + j2 = 0}.

We further define

C+ = {(n, j)|n · ω(0) + j2 = 0}
C− = {(n, j)| − n · ω(0) + j2 = 0}.

It is convenient to consider these as subsets of two copies of Zb+d

(the usual doubling of dimensions) and therefore we have

C = C+ × C− ⊂ Zb+d × Zb+d .
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1d periodic for NLS:
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C is the support of the solution to the linear equation. We consider
C as the restriction to Zb+d × Zb+d of the corresponding manifold,
the paraboloids on Rb+d ×Rb+d . So C is a manifold of singularities
and not just isolated points. Moreover since ω(0) is an integer
vector, C not only lacks convexity but also has null directions in n.

Using the ansatz, we use a Newton scheme to solve the nonlinear
equation. To start this scheme we need a spectral gap (invertibility
of a linearized operator). This spectral gap will come from
analyzing the geometry of the bi-characteristics.
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The main novelty is that this gap is created by the nonlinearity
itself and not from the linear operator. It is non-perturbative
leading to a high frequency semi-classical theory as well. It is
non-perturbative, because it comes from geometry. Recall that the
geometry is non-convex here.

Remark. In infinite dimensions, another natural parameter is 1/N
where N is the finite dimension approximation. This is the high
frequency or semi-classical parameter.
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V. The Nonlinear Matrix Equation and Newton
Scheme

Using the ansatz, the nonlinear equation becomes:

diag (n · ω + j2)û + (û ∗ v̂)∗p ∗ û = 0

where (n, j) ∈ Zb+d , v̂ = ˆ̄u and ω ∈ Rb is to be determined. For
simplicity we drop the hat and write u for û and v for v̂ etc.

We seek solutions close to the linear solution u(0) of b frequencies,
supp u(0) = {(−ek , jk), k = 1, ..., b}, with frequencies
ω(0) = {j2k}bk=1 (jk 6= 0).
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We complete the above equation by writing the equation for the
complex conjugate. So we have the system:

diag (n · ω + j2)u + (u ∗ v)∗p ∗ u = 0,

diag (−n · ω + j2)v + (u ∗ v)∗p ∗ v = 0.

When the nonlinearity is absent, i.e., p = 0, the above system
gives the bi-characteristics, the paraboloids C, which is the
eigen-space of the eigenvalue 0. This is a set of co-dimension 1, an
infinite set. We are therefore in a setting which is non- elliptic (or
non sub-elliptic).
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We use a Newton scheme to solve the above equations, with u(0)

as the initial approximation. We recall the formal Newton scheme:
the first correction

∆

(
u(1)

v (1)

)
=

(
u(1)

v (1)

)
−
(
u(0)

v (0)

)
= [F ′(u(0), v (0)]−1F (u(0), v (0)),

where

(
u(1)

v (1)

)
is the next approximation and F ′(u(0), v (0)) is the

linearized operator on `2(Zb+d)× `2(Zb+d).

The convergence is double exponential:

|F (u + ∆u)| = O(|F (u)|2),

provided one has adequate control over the linearized operator.
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VI. Generic Linear Solutions and Invertibility of
F ′(u(0))

Concretely we have
F ′ = D + A,

where

D =

(
diag (n · ω + j2) 0

0 diag (−n · ω + j2)

)
and

A =

(
(p + 1)(u ∗ v)∗p p(u ∗ v)∗p−1 ∗ u ∗ u

p(u ∗ v)∗p−1 ∗ v ∗ v (p + 1)(u ∗ v)∗p

)
with ω = ω(0), u = u(0) and v = v (0).

Since we look at small data, ‖A‖ = O(δ2p)� 1 and the diagonal:
±n · ω + j2 are integer valued, using the Schur complement
reduction, the spectrum of F ′ around 0 is equivalent to that of a
reduced operator on `2(C).
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So it suffices to establish a spectral gap for the convolution
operator A restricted to the paraboloids C. The difficulty here is
that C is not convex because it is flat in the n-directions,
compatible with convolution.

However as we show below, for generic linear solutions, the size of
the sets on C connected by the convolution operator A is uniformly
bounded. So the matrix A is a direct sum of finite matrices and
hence 0 is typically not in the spectrum leading to a spectral gap.
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The genericity conditions come from bounding the size of
connected sets on C. This can be seen as follows. Assume
(n, j) ∈ C+ is connected to (n′, j ′) ∈ C by the convolution operator
A, then n′ = n + ∆n and j ′ = j + ∆j , where
(∆n,∆j) ∈ supp (u(0) ∗ v (0))∗p, if (n′, j ′) ∈ C+ and

(n · ω(0) + j2) = 0,

(n + ∆n) · ω(0) + (j + ∆j)2 = 0;

and if (n′, j ′) ∈ C−, then
(∆n,∆j) ∈ supp (u(0) ∗ v (0))∗p−1 ∗ u(0) ∗ u(0) and

(n · ω(0) + j2) = 0,

−(n + ∆n) · ω(0) + (j + ∆j)2 = 0.

(Clearly the situation is similar if (n, j) ∈ C−.)
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The above defines a system of linear equations. By requiring the
determinant (resultant) to be non-zero, we obtain that aside from
the degenerate case, the connected sets are of sizes at most d + 2.
The degenerate case results from translation invariance and has
spatial support in the set {±jk}bk=1.

The resultant being non-zero gives the main part of the genericity
conditions. For generic linear solutions, A = ⊕αAα.

The determinant of Aα is a polynomial in the Fourier coefficients
a = {ak}bk=1. It is easy to show that this is not a constant
polynomial by restricting to a = {a1, 0, ..., 0}. Requiring the
determinant to be non-zero then gives the spectral gap on a set of
Fourier coefficients a of positive measure.
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Let P be the projection onto the paraboloids C. Invertibility of F ′

then follows from Schur complement reduction:

λ ∈ σ(F ′) if and only if 0 ∈ σ(H), where

H = PF ′P − λ+ PF ′Pc(PcF ′Pc − λ)−1PcF ′P,

by taking λ = 0.

So we have the following lemma, which is at the basis of this
construction:
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The Spectral Gap Lemma. For generic linear solutions, the
linearized operator F ′ has a spectral gap on a set of Fourier
coefficients of positive measure. The non-generic set is of
co-dimension 1 given by algebraic equations.

Remark. This lemma continues to hold in the high-frequency
semi-classical case by considering the bi-characteristics fixed also
at integers other than 0.
In other words, for high- frequencies, the bi-characteristic are
approximate invariants and used to fibre the dual space Zb+d , the
Fourier space.

The above spectral gap lemma leads, for example, to the following
results:
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VII. Theorems

Theorem 1. For any b, there exists a set Ω ⊂ (Rd)b of
codimension 1. Assume j = {jk}bk=1 ∈ (Rd)b\Ω and

u(0) =
∑b

k=1 ake
−ij2k te ijk ·x a solution to the linear equation with b

frequencies and a = {ak} ∈ (0, δ]b. There exist C , c > 0, such
that for all ε ∈ (0, 1), there exists δ0 > 0 and for all δ ∈ (0, δ0) a
Cantor set G with

meas {G ∩ B(0, δ)}/δb ≥ 1− Cεc .

For all a ∈ G, there is a quasi-periodic solution of b frequencies to
the nonlinear Schrödinger equation

u(t, x) =
∑

ake
−iωk te ijk ·x +O(δ3),

with basic frequencies ω = {ωk} satisfying

ωk = j2k +O(δ2p).

The remainder O(δ3) is in an appropriate analytic norm on Tb+d .
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Theorem 2. Let u0 = u1 + u2. Assume u1 is generic and
‖u2‖ = O(δ), where ‖ · ‖ is an analytic norm on Td . Then for all
A > 1, there exists an open set A ⊂ B(0, 1) of positive measure
and δ0 > 0, such that for all δ ∈ (0, δ0), if {|û1|} ∈ A, then (*) has
a unique solution u(t) for |t| ≤ δ−A satisfying u(t = 0) = u0 and
‖u(t)‖ ≤ ‖u0‖+O(δ). Moreover if u2 = 0, meas A → 1 as δ → 0.
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VIII. Semi-Classical Corollaries

Corollary 1. Assume

u(0)(t, x) =
b∑

k=1

ake
−ij2k te ijk ·x ,

a solution to the linear equation is generic with {jk}bk=1 ∈ [KZd ]b,
K ∈ N+ and a = {ak} ∈ (0, 1]b = B(0, 1). There exist C , c > 0,
such that for all ε ∈ (0, 1), there exists K0 > 0 and for all K > K0

a Cantor set G with

meas {G ∩ B(0, 1)} ≥ 1− Cεc .
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For all a ∈ G, there is a quasi-periodic solution of b frequencies to
the nonlinear Schrödinger equation:

u(t, x) =
∑

ake
−iωk te ijk ·x +O(1/K 2),

with basic frequencies ω = {ωk} satisfying

ωk = j2k +O(1).

The remainder O(1/K 2) is in an analytic norm about a strip of
width O(1) in t and O(1/K ) in x on Tb+d .
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Corollary 2. Assume u0 is generic with frequencies
{jk}bk=1 ∈ [KZd ]b, K ∈ N+. Let B(0, 1) = (0, 1]b. Then for all
A > 1, there exist an open set A ⊂ B(0, 1) of positive measure and
K0 > 0, such that for all K > K0, if {|û0|} ∈ A, then the nonlinear
Schrödinger equation has a unique solution u(t) for |t| ≤ KA

satisfying u(t = 0) = u0 and ‖u(t)‖ ≤ ‖u0‖+O(1/K 2), where
‖ · ‖ is an analytic norm (about a strip of width O(1/K )) on Td ,
moreover meas A → 1 as K →∞.

Remark. The previous related results [Carles] are only to time
O(K ) by solving the associated Hamilton-Jacobi equations, before
the arrival of caustics. Here we put space and time on equal
footing and take a space-time approach.
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We note that these seem to be the first instances where global
solutions are constructed for energy supercritical NLS. We use
geometry and spectral methods to bypass the lack of Sobolev
embedding into a useful space (usually H1) with an available
conservation law.

In some sense, the new method is about how to deal with first
order operators, namely the operator:

i
∂

∂t
,

and its entailed “non-classical” flow.
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IX. A Word on the Constrution of Quasi-Periodic
Solutions

The spectral gap lemma provides the good geometry, which is
essential to start the analysis. The ensuing analysis adapts the
iteration scheme of Bourgain. The adaptation is needed because
this is singular perturbation theory.

We note that the Bourgain scheme has as its predecessor the
Craig-Wayne scheme, which is in turn inspired by the
Fröhlich-Spencer Anderson localization.
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X. Remarks on the Method

I would like to insert this method into two other general contexts
(algebraic and geometric) .

1. Preparation theorem (polynomial)

Using the geometric incompatibility of the nonlinearity with the
bi-characteristics for generic linear solutions, the linearized
operator, which is an infinite matrix decomposes into a direct sum
of finite matrices. So the determinant becomes the product of
polynomials of bounded degree and moreover there are only finite
types of such polynomials. This enables us to show that generically
the determinant is non-zero.
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2. Sobolev embedding

When one finds an appropriate space of functions, Sobolev
embedding is available for all functions in the space. In the present
setting this is no longer the case, the p in the Lp nonlinearity is too
large and there are geometric obstructions.

In some sense the method shows that under appropriate
conditions, this obstruction pertains only to a set of co-dimenison
1. So away from it, one could continue the analysis and construct
a global flow.
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XI. NLW

We consider real valued solutions to the nonlinear wave equation
on the d-torus Td = [0, 2π)d :

∂2v

∂t2
−∆v + v + vp+1 = 0 (p ≥ 1, p ∈ N arbitrary),

with periodic boundary conditions: v(t, x) = v(t, x + 2jπ),
x ∈ [0, 2π)d for all j ∈ Zd and v ∈ R. We use the standard ODE
technique to write the above equation as a first order equation in t.
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Let
D =

√
−∆ + 1

and

u = (v ,D−1
∂v

∂t
) ∈ R2.

Identifying R2 with C, we then obtain the corresponding first order
equation

i
∂u

∂t
= Du + D−1(

u + ū

2
)p+1.
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We note that the bi-characteristics for the wave equation are
hyperbolic, being the hyperboloids. As far as stability issues are
concerned, this presents a more difficult geometry. The analysis
difficulty comes from that fact that the spectrum of
D =

√
−∆ + 1 is not close to a discrete set and is dense in

dimensions two and above.
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Remark. Contrary to the linear Schrödinger, whose solutions are all
periodic; the solutions to the linear wave equation are in general
quasi-periodic. This is in fact the generic case on compact
manifolds, cf. [Duistermaat, Guillemin].

So NLW puts this spectral gap method in its general form both
from the geometric and the analysis angles.
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XII. Remarks on the Euler Vortex Patches

This method has possible applications to the geometric stability of
Kirchhoff ellipses (1876). More precisely one looks for divergence
free solutions of the (incompressible) Euler equation in the
Euclidean plane:

u̇ + u · ∇u +∇p = 0

with initial condition which is the characteristic function of a
bounded open set – a patch.
The Euler equation is an area preserving transformation. The
question regards lower dimensional quantities such as the
circumference of the patch, which is not a conserved quantity.
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This method could possibly address L∞ geometric stability for data
appropriately close to the Kirchhoff ellipses with small eccentricity.
In particular this should exclude “fingering”.

Previously it is known that the boundary of a smooth patch
remains smooth for all time [Chemin, 1993]. But two smooth
curves enclosing the same area could have no relation with each
other.

It is also known that there is L1 Lyapunov stability [Wan,
Pulvirenti, 1985]. But this does not imply geometric stability of
the boundary in any metric.
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One should note that these vortex patches are only piece-wise
smooth data with jump discontinuity across sets of co-dimension 1.
The global existence and uniqueness of such weak solutions in
L∞ ∩ L1 is established by Yudovich.

The method of Arnold, cf. [Ebin, Marsden, 1970], which maps
onto the manifold of groups of volume preserving diffeomorphisms
is in the C∞ category and not applicable. Instead we map onto a
problem in Euclidean geometry and establish a spectral gap. We
note that the fact that our method does not use the Hamiltonian
structure becomes essential here.
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XIII. Conclusion

To conclude, the main theme of the talk is the construction of a
class of global non-classical, nonlinear flow by developing methods
based on (classical) algebraic geometry and Fourier series analysis.
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XIV. Some Literature on NLS and NLW

1. NLS
With external parameter (spectrally defined Laplacian): Bourgain,
Eliasson-Kuksin, Geng-You,

2. NLW
With external parameter (spectrally defined square root of
Laplacian): Bourgain
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