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Abstract of Talk

I will discuss how the Ginzburg-Landau (GL) model of
superconductivity arises as an asymptotic limit of the
microscopic Bardeen-Cooper-Schrieffer (BCS) model.

The asymptotic limit may be seen as a semiclassical limit and
one of the main difficulties is to derive a semiclassical expansion
with minimal regularity assumptions.

It is not rigorously understood how the BCS model approximates
the underlying many-body quantum system. I will formulate the
BCS model as a variational problem, but only heuristically discuss
its relation to quantum mechanics.
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Ginzburg-Landau (GL) model

For superconducting materials on 3D box Λ (Could be 1D or 2D):
W potential, A magnetic vector potential:
GL functional: For constants B1, B3 > 0 and B2 ∈ R:

EGL(ψ) =

∫
Λ

B1|(−i∇+ 2A(x))ψ(x)|2 +B2W (x)|ψ(x)|2

+B3

∣∣1− |ψ(x)|2
∣∣2 dx , ψ ∈ H1(Λ)

What is ψ?

What does this have to do with Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity?

We will derive GL from BCS in an appropriate limit:
T ≈ Tc, A, W small and slowly varying on microscopic scale.
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The BCS states

Fermionic wave functions Ψ ∈
⊕∞

N=0

∧N L2(Ξ) (Fock Space).
E.g., Ξ = Λ× {−1, 1}, Λ ⊆ R3, ±1 =spin-degrees, ξ = (x, σ).
Normal state (Slater determinant): For N particles

Ψ(ξ1, . . . , ξN ) ≈ φ1 ∧ · · · ∧ φN (ξ1, . . . , ξN ) = (N !)−1/2det(φi(ξj))

BCS state: Describes an average over 0, 1, . . . , 2M particle states

Ψ ≈ (α1 + β1φ1 ∧ φ2) ∧ · · · ∧ (αM + βMφ2M−1 ∧ φ2M )

φ1, . . . , φ2M orthonormal in L2(Ξ), |αi|2 + |βi|2 = 1.
Describe state in terms of 1-particle density matrices:

γ = |β1|2(|φ1〉〈φ1|+ |φ2〉〈φ2|) + . . .

+|βM |2(|φ2M−1〉〈φ2M−1|+ |φ2M 〉〈φ2M |)
α = α1β1φ1 ∧ φ2 + . . .+ αMβMφ2M−1 ∧ φ2M

α is the Cooper pair wave function. Vanishes in normal state.
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BCS States continued

Spin dependence (pairing of spin up and down):

γ(x, σ; y, τ) = γ(x, y)(δσ,1δτ,1 + δσ,−1δτ,−1), γ(x, y) = γ(y, x)

α(x, σ; y, τ) = α(x, y)(δσ,1δτ,−1 − δσ,−1δτ,1), α(x, y) = α(y, x)

2× 2-block matrix-operator

Γ =

(
γ α
α 1− γ

)
T = 0 BCS state: State is pure (case described above) and Γ is a
projection with vanishing entropy:

S(Γ) = −Tr [Γ ln Γ] = −1

2
Tr [Γ ln Γ + (1− Γ) ln(1− Γ)]

T > 0 BCS-state: State is not pure 0 < Γ < 1, S(Γ) > 0.
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BCS Free energy functional

Hamiltonian: For gases of fermionic atoms on 3d-torus Λ:

H =
∑
j

(
(−i∇j + A(xj))

2 − µ+W (xj)
)

+
∑
i 6=j

V (|xi − xj |)

Remark: The original BCS Hamiltonian obtained after integrating
out phonons is similar, but non-local.
BCS free energy functional: Temperature T ≥ 0

F(Γ) = Tr
[(

(−i∇+ A(x))2 − µ+W (x)
)
γ
]
− T S(Γ)

+

∫
Λ×Λ

V (|x− y|)|α(x, y)|2 dx dy .

Remark: Would be upper bound except we ignore (absorb in µ)

• direct term:

∫∫
γ(x, x)γ(y, y)V (|x− y|)dxdy

• exhange term: −
∫∫
|γ(x, y)|2V (|x− y|)dxdy.
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BCS free energy in special cases

• Non-interacting case V = 0: BCS minimizer is normal state
Γ0: α = 0,

γ0 = (1 + exp(h/T ))−1, h = (−i∇+ A(x))2 +W (x)− µ

• Translation invariant case A = 0, W = 0: There exists
critical temperature Tc ≥ 0 such that.

• T ≥ Tc: Minimizer is normal (as above with A = 0, W = 0)

• T < Tc: Minimizer has α 6= 0.

The critical temperature may be characterized by the operator

KTc(−∇2 − µ) + V (|x|), KT (η) =
η

tanh(η/2T )

having 0 as the lowest eigenvalue (on symmetric functions).
Note σ(KT (−∇2 − µ) = [2T,∞).
We assume Tc > 0 and eigenfunction α0 unique (e.g. V̂ < 0 OK).
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Making the asymptotics precise

Introduce small parameter h > 0. A, W occuring in GL
functional are rescaled versions of the potentials in BCS
functional. Denote quantities in BCS functional by Ã, W̃ , Λ̃. In
terms of quantities in GL functional:

Ã(x) = hA(hx), W̃ (x) = h2W (hx), Λ̃ = h−1Λ

In BCS functional F̃ insert α̃ = h3α(hx, hy), γ̃ = h3γ(hx, hy):

F̃(Γ̃) = Tr
[(

(−ih∇+ hA(x))2 − µ+ h2W (x)
)
γ
]

−T S(Γ) +

∫
Λ×Λ

V (h−1|x− y|)|α(x, y)|2 dx dy .

Here we assume

T = Tc(1−Dh2), D > 0.

Note the semiclassical nature of the asymptotics.
The order of the free energy is h−3.
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Main result

Theorem (GL limit of BCS)

If T = Tc(1−Dh2) there exist B1, B2, B3 in GL functional giving

inf
Γ
F(Γ) = F(Γ0) + h−3+4(inf

ψ
EGL(ψ)−B3|Λ|+ o(1)),

as h→ 0, where Γ0 is the normal state. Moreover, if
F(Γ) ≤ F(Γ0) + h

(
infψ EGL(ψ)−B3|Λ|+ o(1)

)
then the

corresponding Cooper pair wave function α satisfies:

‖α− αGL‖2L2 ≤ o(h)‖αGL‖2L2 = o(h)h2−3

αGL(x, y)=h−3+1ψ0

(
x+ y

2

)
α0

(
x− y
h

)
=Op(hψ0(x)α̂0(ih∇))

(α0 appropriately normalized) and EGL(ψ0) ≤ infψ E(ψ) + o(1).
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Sketch of proof

Rewrite:

F(Γ) =
1

2
Tr [H∆Γ]− TS(Γ)−

∫
V (|x− y|/h)|αGL(x, y)|2dxdy

+

∫
V (|x− y|/h)|αGL(x, y)− α(x, y)|2dxdy

∆(x, y) = 2V (|x− y|/h)αGL(x, y) = 2hOp(ψ0(x)(α̂0V )(−ih∇))

H∆ =

(
h ∆

∆ −h

)
, h = (−ih∇+ hA(x))2 − µ+ h2W (x).

2T [Tr [HΓ]− TS(Γ)] ≥
the inf︷ ︸︸ ︷

−Tr ln(1 + exp(−H/T ))

+ Tr
[
KT (H)

(
Γ− (1 + exp(H/T ))−1

)2]
,

First use this with αGL replaced by 0 and gap in KTc(H0) + V to
conclude α close to αGL (almost ground state of KTc + V ).
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Semiclassical estimate

Finally, use semiclassical estimates with good regularity bounds:

Theorem (Semiclassical estimate)

With errors controlled by H1 and H2 norms of ψ0

−h
3

2
T
(

Tr ln(1 + exp(−H∆/T ))− Tr ln(1 + exp(−H0/T )
)

= h2D2(ψ0) + h4D4(ψ0) + h4(E(ψ0)−B3|Λ|) +O(h5)

h3

∫
V (|x− y|/h)|αGL(x, y)|2dxdy =h2D2(ψ0) + h4D4(ψ0)

+O(h5)
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