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0. Introduction

Non-self-adjoint spectral problems appear naturally e.g.:

I Resonances, (scattering poles) for self-adjoint operators, like
the Schrödinger operator,

I The Kramers–Fokker–Planck operator

y · h∂x − V ′(x) · h∂y +
γ

2
(y − h∂y ) · (y + h∂y ).

A major difficulty is that the resolvent may be very large even
when the spectral parameter is far from the spectrum:

‖(z − P)−1‖ � 1

dist (z , σ(P))
,

σ(P) = spectrum of P. This implies that σ(P) is unstable under
small perturbations of the operator. (Here P : H → H is a closed

operator and H a complex Hilbert space.)
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In the case of (pseudo-)differential operators this follows from the
Hörmander–Davies quasimode construction [Ho60a, Ho60b],
[Da99], valid when the Poisson bracket of the symbol and it
complex adjoint is 6= 0. Related problems:

I Numerical instability,

I No spectral resolution theorem in general,

I Difficult to study the distribution of eigenvalues.

I Significance of eigenvalues for instance in evolution problems?
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Pleasant fact: The spectral instability also leads to very general
results about Weyl asymptotics of eigenvalues of differential
operators when adding a small random perturbation. See Hager
[Ha05, Ha06a, Ha06b, HaSj08] , W. Bordeaux Montrieux
[Bo08, Bo11, BoSj10] and the speaker [Sj08a, Sj08b] showing that
for large classes of elliptic (pseudo-)differential operators with
small random perturbations, with probability close or equal to 1,
the eigenvalues distribute according to the Weyl law, wellknown in
the self-adjoint case.
Also related works by Hager-Davies [DaHa09] and
T. Christinsen-Zworski [ChrZw09].
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This was quite surprising, since eigenvalues of ordinary differential
operators with analytic coefficients tend to obey a complex
Bohr-Sommerfeld quantization condition and are confined to a
union of curves.

Plan of this talk:

1) Discussion of an earlier result about Weyl asymptotics of
eigenvalues for elliptic semi-classical operators with a
simplified presentation.

2) Presentation of a recent result about Weyl asymptotics for
resonances near the real axis for Schrödinger operators.
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1. Eigenvalues of elliptic semi-classical operators

The original 1D result of Hager was generalized in many ways and
we present here (in a simplified formulation) a general result for
elliptic semi-classical operators on compact manifolds with a small
random perturbation in the 0 order term.
Let X be a compact n-dimensional manifold. The unperturbed
operator is

P =
∑
|α|≤m

aα(x ; h)(hD)α. (1)

The perturbed operator is

P + W , W = W (x) is the random perturbation. (2)
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Assume

aα(x ; h) = a0
α(x) +O(h) in C∞, (3)

aα(x ; h) = aα(x) is independent of h for |α| = m.

Let
pm(x , ξ) =

∑
|α|=m

aα(x)ξα (4)

Assume that P is elliptic,

|pm(x , ξ)| ≥ 1

C
|ξ|m, (5)

and that pm(T ∗X ) 6= C.

7 / 32



Let p =
∑
|α|≤m a0

α(x)ξα be the semi-classical principal symbol.
We make the symmetry assumption

P = ΓP∗Γ =: Pt, (6)

where P∗ denotes the complex adjoint with respect to some fixed
smooth positive density of integration and Γ is the antilinear
operator of complex conjugation; Γu = u. Notice that this
assumption implies that

p(x ,−ξ) = p(x , ξ). (7)

Let Vz(t) := vol ({ρ ∈ T ∗X ; |p(ρ)− z |2 ≤ t}). For κ ∈]0, 1],
z ∈ C, we consider the non-flatness property that

Vz(t) = O(tκ), 0 ≤ t � 1. (8)

We see that (8) holds with κ = 1/(2m).
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Theorem ([Sj08b])

Let Γ b C have smooth boundary, let κ ∈]0, 1] and assume that
(8) holds uniformly for z in a neighborhood of ∂Γ. Then there
exists a probability measure supported on ∩s̃,N≥0BH s̃ (0,Cs̃,NhN)
and constants C ,N0 > 0 such that for C−1 ≥ r > 0, ε̃ ≥ Cε0(h),
ε0(h) := hκ(ln 1/h)3 we have with probability (for W )

≥ 1− C

rhN0
e
− ε̃

Cε0(h) (9)

that:

|#(σ(P + W ) ∩ Γ)− 1

(2πh)n
vol (p−1(Γ))| ≤ (10)

C

hn

(
ε̃

r
+ C

(
r + ln(

1

r
)vol

(
p−1(∂Γ + D(0, r))

)))
.

Here #(σ(P + W ) ∩ Γ) denotes the number of eigenvalues of
P + W in Γ, counted with their algebraic multiplicity.

Explain the choice of parameters!
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Some ideas in the proofs

The random potential is constructed as a finite linear combination
of eigenfunctions of an auxiliary elliptic operator with many
parameters .....
As in other works, we identify the eigenvalues of the operator with
the zeros of a holomorphic function with exponential growth and
show that with probability close to 1 this function is exponentially
large at finitely many points distributed nicely along the boundary
of Γ, then apply a result about the number of zeros of such
functions.
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First we construct a symbol p̃, equal to p outside a compact set
such that p̃ − z 6= 0 for z ∈ neigh (Γ), and put on the operator
level: P̃ = P + (p̃ − p). Then P̃ − z has a bounded
(pseudodifferential) inverse for every z in some simply connected
neighborhood of Γ. The eigenvalues of P coincide with the zeros
of the holomorphic function,

z 7→ det(P̃ − z)−1(P − z) = det(1− (P̃ − z)−1(P̃ − P)).

If PW = P + W , put P̃W := P̃ + W which has no spectrum near
Γ. The eigenvalues of PW in that region are the zeros of

z 7→ det(P̃W ,z),

where

P̃W ,z = (P̃W − z)−1(PW − z) = 1− (P̃W − z)−1(P̃ − P).

The general strategy is the following:
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I Step 1. Show that with probability close to 1, we have for all
z in a neighborhood of ∂Γ with pz = (p̃ − z)−1(p − z):

ln | det PW ,z | ≤
1

(2πh)n
(

∫
ln |pz(ρ)|dρ+ o(1)). (11)

I Step 2. Show that for each z in a neighborhood of ∂Γ we
have with probability close to one that

ln | det PW ,z | ≥
1

(2πh)n
(

∫
ln |pz(ρ)|dρ+ o(1)). (12)

I Step 3. Apply results ([Ha05, Ha06b, HaSj08, Sj09]) about
counting zeros of holomorphic functions: Roughly, if
u(z) = u(z ; h̃) is holomorphic with respect to z in a
neighborhood of Γ, |u(z)| ≤ exp(φ(z)/h̃) near ∂Γ and we
have a reverse estimate |u(zj)| ≥ exp((φ(zj)− ”small”)/h̃) for
a finite set of points, distributed “densely” along the
boundary, then the number of zeros of u in Γ is equal to
(2πh̃)−1(

∫∫
Γ ∆φ(z)d<zd=z + ”small”). This is applied with

h̃ = (2πh)n, φ(z) =
∫

ln |pz(ρ)|dρ.
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2. Resonances in semi-classical potential scattering

Consider
P = −h2∆ + V (x), V ∈ L∞comp(Rn;R)

This is a self-adjoint operator with domain H2(Rn) and the
scattering poles can be defined as the poles of the meromorphic
extension of the resolvent H0

comp(Rn)→ H2
loc(Rn) from

C \ [0,+∞[ to the double/logarithmic covering space of C \ {0}
when n is odd/even.
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In one dimension and for h = 1 M. Zworski [Zw87] showed that if
[a, b] is the convex hull of the support of V , then the number N(r)
of resonances in the disc D(0, r 2) satisfies

N(r) =
2(b − a)

π
r + o(r), r →∞ (13)

which is 2 times the asymptotic number of eigenvalues ≤ r 2 of
the Dirichlet realization of −∆ + V on [a, b]. He also showed that
most of these concentrate to narrow sectors around the real axis.
This extended an earlier result of Regge. Subsequently R. Froese
[Fr97] got similar results for potentials that do not necessarily have
compact support but are very small near infinity. See also the
recent works [DaPu10, DaExLi10, ExLi11] about Weyl and
non-Weyl asymptotics for graphs.
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In higher odd dimensions, M. Zworski [Zw89] considered the case
of radial potentials of the form V (x) = f (|x |) with support in
B(0, a) where f ∈ C 2([0, a]), a > 0, f (a) 6= 0 and obtained a Weyl
type asympotics (still with h = 1)

N(r) = Knanrn + o(rn), r → +∞, (14)

where Kn > 0.
P. Stefanov [St06]: Explicit formula for the constant Knan and link
to the distribution of eigenvalues for the Dirichlet problem in the
ball and for the resonances for the exterior obstacle problem. Also
a very precise upper bound for non-radial potentials with support
in the ball.
T. Christiansen [Chr10]: Extension and more precise results for a
class of non-necessarily radial potentials supported in the ball. Also
upper and lower bounds in sectors for “averaged” counting
functions for generic potentials with support in the ball.
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The main result

Let O b Rn be open strictly convex with smooth boundary. Let
N = min(]n−1

2 ,+∞[∩Z), s̃ > max(n2 + 3, 2N + n
2 ). The

unperturbed operator is:

P0 = −h2∆ + V0 : L2(Rn)→ L2(Rn), (15)

V0 ∈ H s̃(O), i.e. V0 ∈ H s̃(Rn) and supp (V0) ⊂ O.
Let P0

in denote the Dirichet realization of P0 in O and let N0(I )
denote the number of eigenvalues of P0

in in the interval I .
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T. Hargé and G. Lebeau [HaLe94] showed that the exterior
Dirichlet problem for −h2∆ on Rn \O has no resonances in the set

=z ≥ −2(h<z)
2
3κζ1,

1

2
≤ <z ≤ 2, (16)

if h is small enough and

0 < κ < 2−
1
3 ζ1 cos

π

6
min
S∂O

Q
2
3 , (17)

Q is the second fundamental form on ∂O and ζ1 > 0 is the
smallest zero of Ai(−t).
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Theorem ([Sj11])

Let s > n
2 , β > 0. Then there exists a probability measure µ on

Hs(O) with support in the ball {W ∈ Hs(O); ‖W ‖Hs ≤ hβ} such
that the following holds:
Let 0 < c < 2(1/2)2/3κζ1, and let δ0 > 0 be arbitrarily small but
fixed. There exist constants C , N0 > 0 such that if 1

2 ≤ a < b ≤ 2,

ε̃ ≥ Ch(ln 1/h)2 and V0 ∈ H s̃(O), then for P = −h2∆ + V0 + W ,
W ∈ Hs(O), we have with probability (with respect to the random
term W )

≥ 1−O(1)h−N0e
− ε̃

Ch(ln 1/h)2 , (18)

that for the set σ(P) of resonances of P,

|#(σ(P) ∩ ([a, b] + ih
2
3 c[−1, 0]))− N0([a, b])|

≤ O(1)(
∑

w=a,b

N0([w − h−δ0+2/3,w + h−δ0+2/3])) + h−
2
3
−nε̃).

(19)
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Perspectives
1) The restriction to =z ≥ −c0h2/3 is probably only due to the

proof. Could be replaced by =z ≥ −Ch2/3 or even
=z ≥ −o(1).

2) As in [BoSj10] it should be possible to get a result about the
almost sure Weyl asymptotics for the large resonances of
−∆ + Vω in a region 0 < −=λ ≤ C (<λ)2/3, 1 ≤ <λ ≤ r ,
r →∞.

3) The proof seems to give more general results for operators of
black box type, with the black box situated inside O and with
the random perturbation supported near ∂O.

4) One would like to have a more general theorem for −h2∆ + V
where the convex hull of suppV plays the role of O.

5) There are some interesting upper bounds on the density of
resonances close to the real axis related to the Minkowski
dimension of the trapped set for the classical flow. To get
matching lower bounds, the addition of a small random
perturbation is a possibility.
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Some elements of the proof

Method of complex scaling (Aguilar-Combes, Balslev-Combes,
Simon ...): Close to R+ the resonances coincide with the
eigenvalues of a complex distorsion PΓ = P|Γ as illustrated on the
next drawing:

Γ is a maximally totally real submanifold of Cn equal to e iθ0Rn

near infinity. The red crosses illustrate the resonances.
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Explanation: PΓ is an elliptic operator on Γ and the symbol near
∞ is equal to e−i2θ0ξ2 so PΓ − z is elliptic near ∞ provided that
z 6∈ e−2iθ0 [0,+∞[.
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The perturbed operator is:

P = Pδ = P0 + δΘ(x)qω(x)︸ ︷︷ ︸
W (x)

, (20)

where Θ(x) ∈ C∞(O) is identified with its zero extension and for
some v0 ∈]n−1

2 ,+∞[∩N:

0 < Θ(x) � dist (x , ∂O)v0 , near ∂O. (21)

qω is a random linear combination of eigenfunctions of an
auxiliary elliptic operator.
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We use a contour Γ ⊂ Cn which coincides with Rn along O and
with e iθ0Rn near ∞, 0 < θ0 < π/2. Let P = PΓ be the
corresponding dilation of −h2∆ + V , V = V0 + δΘ(x)qω(x). Then
P = PΓ has discrete spectrum in the angle −2θ0 < arg z ≤ 0 and
the eigenvalues there coincide with the resonances.
Let Pext be the Dirichlet realization of P on Γ \ O, so that the
spectrum of Pext in the above angle coincides with the set of
resonances for the exterior Dirichlet problem for −h2∆ (recalling
that suppV ⊂ O).
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Restricting z to the domain

1

2
< <z < 2, =z > −c0h

2
3 (22)

and extending suitably the notion of the determinant we get

detPout(z) = detPin(z) det(Nin(z)−Next(z)). (23)

Here:

I Pout(z) corresponds to our operator on O with outgoing
boundary condition. The zeros of the determinant are the
resonances that we are after.

I Pin(z) corresponds to the Dirichlet problem on O
I Nout and Nin are the Dirichlet to Neumann maps for the

exterior and interior problems respectively. They are
pseudodifferential operators on ∂O.
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A rather substantial part of the paper is devoted to the study of
Nin, Next, in the regions |=z | ≥ h2/3/C̃ and =z ≥ −c0h2/3

respectively and we get somewhat roughly,

ln | det(Nin −Next)| ≤ O(h1−n). (24)

for

<z ∈]
1

2
, 2[, |=z | � h2/3, =z ≥ −h

2
3 c0. (25)

The exponent in (24) reflects the fact that we have made a
reduction to the n − 1 dimensional manifold ∂O.
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(23) and (24) can be used to prove the upper bound

ln | detPout(z)| ≤ Φin(z) +O(h1−n) (26)

in the rectangle ] 1
2 , 2[+ih2/3]− c0, c0[, where Φin(z) coincides

with ln | detPin(z)| for |=z | ≥ h2/3/C̃ and is extended suitably to
the whole rectangle.
In the spirit of [Sj08a, Sj08b]) one can show that for every z with
h2/3/C̃ ≤ |=z | ≤ c0h2/3, 1/2 < <z < 2, we also have a lower
bound on ln | det(Nin −Next)| almost as sharp as the upper bound
(24) with probability very close to 1.
With these upper and lower bounds at our disposal, the main
result follows by applying Theorem 1.2 of [Sj09] to the
holomorphic function detPout(z).
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quantum graphs with general coupling conditions, J. Phys. A 43
(2010), no. 47, 474013, 16 pp.

E.B. Davies, M. Hager, Perturbations of Jordan matrices, J. Approx.
Theory 156(1)(2009), 82–94.

E.B. Davies, A. Pushnitski, Non-weyl resonance asymptotics for
quantum graphs, http://arxiv.org/abs/1003.0051
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