Classical Coulomb gases, (Ginzburg-Landau), and the Renormalized Energy

Sylvia Serfaty (joint with E. Sandier)

Université P. et M. Curie Paris 6, Laboratoire Jacques-Louis Lions \& Courant Institute http://www.ann.jussieu.fr/~serfaty

Spectral days, Munich, 2012

The statistical mechanics of Coulomb gases

Probability law (=Gibbs measure)

$$
d \mathbb{P}_{n}^{\beta}\left(x_{1}, \cdots, x_{n}\right)=\frac{1}{Z_{n}^{\beta}} e^{-\frac{\beta}{2} w_{n}\left(x_{1}, \cdots, x_{n}\right)} d x_{1} \cdots d x_{n}
$$

where Z_{n}^{β} is the associated partition function, and

$$
w_{n}\left(x_{1}, \cdots, x_{n}\right)=-\sum_{i \neq j} \log \left|x_{i}-x_{j}\right|+n \sum_{i=1}^{n} V\left(x_{i}\right) .
$$

and $x_{i} \in \mathbb{R}^{d}$. V smooth enough and grows faster than $\log ^{2}|x|$ at infinity.

Important examples

- For general β and V, these ensembles are called Coulomb gases, or sometimes β-ensembles. book by Forrester
- Minimizers of $w_{n}=$ "weighted Fekete points" (important in interpolation)
- Analogous problems better studied in dimension 3 (Lieb-Narnhofer Lieb-Oxford...)
- Statistical mechanics (Alastuey-Jancovici, Jancovici-Leibowitz-Manificat, Sari-Merlini, Frölich-Spencer)
- For $d=1, \beta=2, V(x)=x^{2} / 2 \rightsquigarrow$ GUE ($=$ law of eigenvalues of Hermitian matrices with complex Gaussian i.i.d. entries)
- For $d=1, \beta=1, V(x)=x^{2} / 2 \rightsquigarrow$ GOE (real symmetric matrices with Gaussian i.i.d. entries)
- For $d=2, \beta=2$ and $V(x)=|x|^{2} \rightsquigarrow$ Ginibre ensemble (matrices with complex Gaussian i.i.d. entries)

Reference texts:

- Anderson-Guionnet-Zeitouni, Deift, Forrester, Mehta.

Important examples

- For general β and V, these ensembles are called Coulomb gases, or sometimes β-ensembles. book by Forrester
- Minimizers of $w_{n}=$ "weighted Fekete points" (important in interpolation)
- Analogous problems better studied in dimension 3 (Lieb-Narnhofer, Lieb-Oxford...)
- Statistical mechanics (Alastuey-Jancovici Jancovici-Leibowitz-Manificat, Sari-Merlini, Frölich-Spencer)
- For $d=1, \beta=2, V(x)=x^{2} / 2 \rightsquigarrow$ GUE ($=$ law of eigenvalues of Hermitian matrices with complex Gaussian i.i.d. entries)
- For $d=1, \beta=1, V(x)=x^{2} / 2 \rightsquigarrow$ GOE (real symmetric matrices with Gaussian i.i.d. entries)
- For $d=2, \beta=2$ and $V(x)=|x|^{2} \rightsquigarrow$ Ginibre ensemble (matrices with complex Gaussian i.i.d. entries)

Reference texts:

- Anderson-Guionnet-Zeitouni, Deift, Forrester, Mehta.

Important examples

- For general β and V, these ensembles are called Coulomb gases, or sometimes β-ensembles. book by Forrester
- Minimizers of $w_{n}=$ "weighted Fekete points" (important in interpolation)
- Analogous problems better studied in dimension 3 (Lieb-Narnhofer, Lieb-Oxford...)
- Statistical mechanics (Alastuey-Jancovici, Jancovici-Leibowitz-Manificat, Sari-Merlini, Frölich-Spencer)
- For $d=1, \beta=2, V(x)=x^{2} / 2 \rightsquigarrow$ GUE ($=$ law of eigenvalues of Hermitian matrices with complex Gaussian i.i.d. entries).
- For $d=1, \beta=1, V(x)=x^{2} / 2 \rightsquigarrow$ GOE (real symmetric matrices with Gaussian i.i.d. entries)
\downarrow For $d=2, \beta=2$ and $V(x)=|x|^{2} \rightsquigarrow$ Ginibre ensemble (matrices with complex Gaussian i.i.d. entries)

Reference texts:

- Anderson-Guionnet-Zeitouni, Deift, Forrester, Mehta.

Important examples

- For general β and V, these ensembles are called Coulomb gases, or sometimes β-ensembles. book by Forrester
- Minimizers of $w_{n}=$ "weighted Fekete points" (important in interpolation)
- Analogous problems better studied in dimension 3 (Lieb-Narnhofer, Lieb-Oxford...)
- Statistical mechanics (Alastuey-Jancovici, Jancovici-Leibowitz-Manificat, Sari-Merlini, Frölich-Spencer)
- For $d=1, \beta=2, V(x)=x^{2} / 2 \rightsquigarrow$ GUE ($=$ law of eigenvalues of Hermitian matrices with complex Gaussian i.i.d. entries).
- For $d=1, \beta=1, V(x)=x^{2} / 2 \rightsquigarrow \mathbf{G O E}$ (real symmetric matrices with Gaussian i.i.d. entries)
- For $d=2, \beta=2$ and $V(x)=|x|^{2} \rightsquigarrow$ Ginibre ensemble (matrices with complex Gaussian i.i.d. entries).

Reference texts:

- Anderson-Guionnet-Zeitouni, Deift, Forrester, Mehta.

Important examples

- For general β and V, these ensembles are called Coulomb gases, or sometimes β-ensembles. book by Forrester
- Minimizers of $w_{n}=$ "weighted Fekete points" (important in interpolation)
- Analogous problems better studied in dimension 3 (Lieb-Narnhofer, Lieb-Oxford...)
- Statistical mechanics (Alastuey-Jancovici, Jancovici-Leibowitz-Manificat, Sari-Merlini, Frölich-Spencer)
- For $d=1, \beta=2, V(x)=x^{2} / 2 \rightsquigarrow$ GUE ($=$ law of eigenvalues of Hermitian matrices with complex Gaussian i.i.d. entries).
For $d=1, \beta=1, V(x)=x^{2} / 2 \rightsquigarrow$ GOE (real symmetric matrices
with Gaussian i.i.d. entries).
- For $d=2, \beta=2$ and $V(x)=|x|^{2} \rightsquigarrow$ Ginibre ensemble (matrices
with complex Gaussian i.i.d. entries). with complex Gaussian i.i.d. entries).

Reference texts:

- Anderson-Guionnet-Zeitouni, Deift, Forrester, Mehta.

Important examples

- For general β and V, these ensembles are called Coulomb gases, or sometimes β-ensembles. book by Forrester
- Minimizers of $w_{n}=$ "weighted Fekete points" (important in interpolation)
- Analogous problems better studied in dimension 3 (Lieb-Narnhofer, Lieb-Oxford...)
- Statistical mechanics (Alastuey-Jancovici, Jancovici-Leibowitz-Manificat, Sari-Merlini, Frölich-Spencer)
- For $d=1, \beta=2, V(x)=x^{2} / 2 \rightsquigarrow$ GUE (= law of eigenvalues of Hermitian matrices with complex Gaussian i.i.d. entries).
- For $d=1, \beta=1, V(x)=x^{2} / 2 \rightsquigarrow \mathbf{G O E}$ (real symmetric matrices with Gaussian i.i.d. entries).
with complex Gaussian i.i.d. entries).
Reference texts:

Important examples

- For general β and V, these ensembles are called Coulomb gases, or sometimes β-ensembles. book by Forrester
- Minimizers of $w_{n}=$ "weighted Fekete points" (important in interpolation)
- Analogous problems better studied in dimension 3 (Lieb-Narnhofer, Lieb-Oxford...)
- Statistical mechanics (Alastuey-Jancovici, Jancovici-Leibowitz-Manificat, Sari-Merlini, Frölich-Spencer)
- For $d=1, \beta=2, V(x)=x^{2} / 2 \rightsquigarrow$ GUE (= law of eigenvalues of Hermitian matrices with complex Gaussian i.i.d. entries).
- For $d=1, \beta=1, V(x)=x^{2} / 2 \rightsquigarrow \mathbf{G O E}$ (real symmetric matrices with Gaussian i.i.d. entries).
- For $d=2, \beta=2$ and $V(x)=|x|^{2} \rightsquigarrow$ Ginibre ensemble (matrices with complex Gaussian i.i.d. entries).
Reference texts:

Important examples

- For general β and V, these ensembles are called Coulomb gases, or sometimes β-ensembles. book by Forrester
- Minimizers of $w_{n}=$ "weighted Fekete points" (important in interpolation)
- Analogous problems better studied in dimension 3 (Lieb-Narnhofer, Lieb-Oxford...)
- Statistical mechanics (Alastuey-Jancovici, Jancovici-Leibowitz-Manificat, Sari-Merlini, Frölich-Spencer)
- For $d=1, \beta=2, V(x)=x^{2} / 2 \rightsquigarrow$ GUE (= law of eigenvalues of Hermitian matrices with complex Gaussian i.i.d. entries).
- For $d=1, \beta=1, V(x)=x^{2} / 2 \rightsquigarrow \mathbf{G O E}$ (real symmetric matrices with Gaussian i.i.d. entries).
- For $d=2, \beta=2$ and $V(x)=|x|^{2} \rightsquigarrow$ Ginibre ensemble (matrices with complex Gaussian i.i.d. entries).
Reference texts:
- Anderson-Guionnet-Zeitouni, Deift, Forrester, Mehta.

Numerical minimization

Numerical minimization of w_{n} by Gueron-Shafrir, $n=24,29$

Equilibrium measure

Define

$$
I(\mu)=\int_{\mathbb{R}^{2} \times \mathbb{R}^{2}}-\log |x-y| d \mu(x) d \mu(y)+\int_{\mathbb{R}^{2}} V(x) d \mu(x)
$$

I has a unique minimizer among probability measures, called the equilibrium measure, denoted μ_{0}.
Denote $E=\operatorname{Supp}\left(\mu_{0}\right)$ (assumed to be compact with C^{1} boundary).

- For GUE: $\mu_{0}=\frac{1}{2 \pi} \sqrt{4-x^{2}} \mathbf{1}_{\{|x|<2\}}$ (Wigner semicircle law, Deift, Ben Arous-Guionnet).
- For Ginibre: $\mu_{0}=\frac{1}{\sqrt{\pi}} \mathbf{1}_{B_{1}}$ (circle law, Edelman, Girko, Mehta).

Large Deviations

$$
\frac{w_{n}}{n^{2}} \Gamma-\text { converges to } I
$$

i.e.

$$
\lim _{n \rightarrow \infty} \frac{\min w_{n}}{n^{2}}=I\left(\mu_{0}\right) \quad \lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \delta_{x_{i}}}{n}=\mu_{0} \quad \text { for a minimizer }
$$

Theorem (Ben Arous-Guionnet $d=1$, Ben Arous-Zeitouni $d=2$, Hiai-Petz)
\mathbb{P}_{n}^{β} satisfies a large deviations principle with good rate function $I(\cdot)$ and speed $n^{-2}:$ for all $A \subset\{$ probability measures $\}$,

$$
\begin{aligned}
&-\inf _{\mu \in A^{\circ}} \widetilde{I}(\mu) \leq \liminf _{n \rightarrow \infty} \frac{1}{n^{2}} \log \mathbb{P}_{n}^{\beta}(A) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{n^{2}} \log \mathbb{P}_{n}^{\beta}(A) \leq-\inf _{\mu \in \bar{A}} \widetilde{I}(\mu)
\end{aligned}
$$

where $\tilde{I}=I-\min I$.

First objective

Understand minimizers of w_{n}. We know the global distribution of the points and min $w_{n} \sim n^{2} I\left(\mu_{0}\right)$.
Can we say more about the local distribution of points and the next order terms in $\min w_{n}$?? For that we want to blow up the points at the scale \sqrt{n} to see them at finite distances from each other.

Splitting of w_{n}

The idea is to understand the next order behavior by splitting w_{n}, writing $\nu_{n}:=\sum_{i=1}^{n} \delta_{x_{i}}$ as $n \mu_{0}+\left(\nu_{n}-n \mu_{0}\right)$. We find

$$
w_{n}\left(x_{1}, \cdots, x_{n}\right)=n^{2} l\left(\mu_{0}\right)+\frac{1}{\pi} W\left(\nabla H, \mathbf{1}_{\mathbb{R}^{2}}\right)+2 n \sum_{i=1}^{n} \zeta\left(x_{i}\right)
$$

where H is the solution to

$$
H=-2 \pi \Delta^{-1}\left(\sum_{i=1}^{n} \delta_{x_{i}}-n \mu_{0}\right)
$$

and

$$
\begin{cases}\zeta=\operatorname{cst}+\frac{1}{2} V-\int \log |x-y| d \mu_{0}(y) & \\ \zeta=0 & \text { in } E \\ \zeta>0 & \text { in } \mathbb{R}^{2} \backslash E\end{cases}
$$

and for every function χ,

$$
W(\nabla H, \chi):=\lim _{\eta \rightarrow 0} \int_{\mathbb{R}^{2} \backslash \cup_{i=1}^{n} B\left(x_{i}, \eta\right)} \chi|\nabla H|^{2}+\pi \log \eta \sum_{i} \chi\left(x_{i}\right) .
$$

In rescaled coordinates $x^{\prime}=\sqrt{n}\left(x-x_{0}\right)$ this becomes

$$
w_{n}\left(x_{1}, \cdots, x_{n}\right)=n^{2} I\left(\mu_{0}\right)-\frac{n}{2} \log n+\frac{1}{\pi} W\left(\nabla H^{\prime}, \mathbf{1}_{\mathbb{R}^{2}}\right)+2 n \sum_{i=1}^{n} \zeta\left(x_{i}\right)
$$

where H^{\prime} is the solution to

$$
\begin{gathered}
H^{\prime}\left(x^{\prime}\right)=-2 \pi \Delta^{-1}\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}\left(x_{0}+\frac{x^{\prime}}{\sqrt{n}}\right)\right) \\
W\left(\nabla H^{\prime}, \chi\right):=\lim _{\eta \rightarrow 0} \int_{\mathbb{R}^{2} \backslash \cup i=1} B\left(x_{i}^{\prime}, \eta\right) \\
\chi\left|\nabla H^{\prime}\right|^{2}+\pi \log \eta \sum_{i} \chi\left(x_{i}^{\prime}\right) .
\end{gathered}
$$

- remains to understand this $W\left(\nabla H^{\prime}, \mathbf{1}_{\mathbb{R}^{2}}\right)$, "renormalized" Coulomb interaction between the points in a neutralizing background, of slowly varying density $\sim \mu_{0}$
- difficulties in letting $n \rightarrow \infty$, in particular no local "charge neutrality"
- need to define a total Coulomb interaction for such a system with infinite number of points

In rescaled coordinates $x^{\prime}=\sqrt{n}\left(x-x_{0}\right)$ this becomes

$$
w_{n}\left(x_{1}, \cdots, x_{n}\right)=n^{2} I\left(\mu_{0}\right)-\frac{n}{2} \log n+\frac{1}{\pi} W\left(\nabla H^{\prime}, \mathbf{1}_{\mathbb{R}^{2}}\right)+2 n \sum_{i=1}^{n} \zeta\left(x_{i}\right)
$$

where H^{\prime} is the solution to

$$
\begin{gathered}
H^{\prime}\left(x^{\prime}\right)=-2 \pi \Delta^{-1}\left(\sum_{i=1}^{n} \delta_{x_{i}^{\prime}}-\mu_{0}\left(x_{0}+\frac{x^{\prime}}{\sqrt{n}}\right)\right) \\
W\left(\nabla H^{\prime}, \chi\right):=\lim _{\eta \rightarrow 0} \int_{\mathbb{R}^{2} \backslash \cup i=1} B\left(x_{i}^{\prime}, \eta\right) \\
\chi\left|\nabla H^{\prime}\right|^{2}+\pi \log \eta \sum_{i} \chi\left(x_{i}^{\prime}\right) .
\end{gathered}
$$

- remains to understand this $W\left(\nabla H^{\prime}, \mathbf{1}_{\mathbb{R}^{2}}\right)$, "renormalized" Coulomb interaction between the points in a neutralizing background, of slowly varying density $\sim \mu_{0}$
- difficulties in letting $n \rightarrow \infty$, in particular no local "charge neutrality"
- need to define a total Coulomb interaction for such a system with infinite number of points

Complete definition of W

Let $m>0$ given. Let Λ be a discrete set in \mathbb{R}^{2}, and $j(=\nabla H)$ a vector field such that

$$
\operatorname{div} j=2 \pi(\nu-m) \quad \text { and } \quad \operatorname{curl} j=0, \quad \text { where } \quad \nu=\sum_{p \in \Lambda} \delta_{p}
$$

We say such a j belongs to the class \mathcal{A}_{m}.

Definition

For any smooth positive χ, let

$$
W(j, \chi)=\lim _{\eta \rightarrow 0}\left(\frac{1}{2} \int_{\mathbb{R}^{2} \backslash \cup_{\boldsymbol{p} \in \wedge} B(p, \eta)} \chi|j|^{2}+\pi \log \eta \sum_{p \in \Lambda} \chi(p)\right) .
$$

We define the renormalized energy W by

$$
W(j)=\limsup _{R \rightarrow \infty} \frac{W\left(j, \chi_{B_{R}}\right)}{\left|B_{R}\right|},
$$

where $\chi_{B_{R}}$ is any cutoff function supported in B_{R} with $\chi_{B_{R}}=1$ in B_{R-1} and $\left|\nabla \chi_{B_{R}}\right| \leq C$.

Computing W

The case of the torus

Assume Λ is \mathbb{T}-periodic. Then W can be written as a function of Λ. Identify Λ with $\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{T}$. Let $H_{\left\{a_{i}\right\}}$ be a solution of

$$
-\Delta H_{\left\{a_{i}\right\}}=2 \pi\left(\sum_{i=1}^{n} \delta_{\mathrm{a}_{i}}-\frac{n}{|\mathbb{T}|}\right) \quad \text { on } \mathbb{T} \text {. }
$$

Let $j_{\left\{a_{i}\right\}}=\nabla H_{\left\{a_{i}\right\}}$, identified with a periodic vector field on \mathbb{R}^{2}.

Lemma

Take the normalization $n=|\mathbb{T}|$. Let G be the Green function for \mathbb{T} :

$$
-\Delta G(x)=2 \pi\left(\delta_{0}-\frac{1}{|\mathbb{T}|}\right) \quad \text { in } \mathbb{T}
$$

normalized to have mean zero. Then

$$
W\left(j_{\left\{a_{i}\right\}}\right)=\frac{\pi}{|\mathbb{T}|} \sum_{i \neq j} G\left(a_{i}-a_{j}\right)+\pi \lim _{x \rightarrow 0}(G(x)+\log |x|) .
$$

Moreover, $j_{\left\{a_{i}\right\}}$ is the minimizer of $W(j)$ over all \mathbb{T}-periodic j satisfying $\operatorname{div} j=2 \pi(\nu-1)$ and $\operatorname{curl} j=0$.

Further expression of W in the square torus case

Let $\mathbb{T}_{N}=\mathbb{R}^{2} /(N \mathbb{Z})^{2}$. By a Fourier series expansion, the Green function of \mathbb{T}_{N} is expressed in terms of Eisenstein series. We obtain:

Proposition

Let a_{1}, \cdots, a_{n} be $n=N^{2}$ points on \mathbb{T}_{N}, we have

$$
W\left(j_{\left\{a_{i}\right\}}\right)=\frac{1}{2 N^{2}} \sum_{j \neq k} E\left(a_{j}-a_{k}\right)+\pi \log \frac{N}{2 \pi}-2 \pi \log \eta(i) .
$$

Here $E(x)=E_{\Re(x / N), \Im(x / N)}(i)$ where $E_{u, v}(\tau)$ is the Eisenstein series defined for $\tau \in \mathbb{C}$ and $u, v \in \mathbb{R}$ by

$$
E_{u, v}(\tau)=\sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{0\}} e^{2 i \pi(m u+n v)} \frac{\Im(\tau)}{|m \tau+n|^{2}}
$$

Finally, η denotes the Dedekind η function, which is given by

$$
\eta(\tau)=q^{1 / 24} \prod_{k=1}^{\infty}\left(1-q^{k}\right) \quad \text { where } q=e^{2 i \pi \tau}
$$

Minimization of W

- W is unchanged by a compact perturbation of the point configuration.
- Minimizers of W exist (requires work)
- Scaling: call \mathcal{A}_{m} the vector fields corresponding to density m, that is, $\operatorname{div} j=2 \pi(\nu-m)$ and curl $j=0$. Then if j belongs to \mathcal{A}_{m}, then $j^{\prime}=\frac{1}{\sqrt{m}} j(\cdot / \sqrt{m})$ belongs to \mathcal{A}_{1} and

$$
W(j)=m\left(W\left(j^{\prime}\right)-\frac{\pi}{2} \log m\right)
$$

so we can reduce to \mathcal{A}_{1}

- Proposition: $\min _{\mathcal{A}}, W$ is the limit as $N \rightarrow \infty$ of the min over \mathbb{T}_{N}-periodic configurations.

Minimization of W

- W is unchanged by a compact perturbation of the point configuration.
- Minimizers of W exist (requires work)
- Scaling: call \mathcal{A}_{m} the vector fields corresponding to density m, that is, $\operatorname{div} j=2 \pi(\nu-m)$ and curl $j=0$. Then if j belongs to \mathcal{A}_{m}, then $j^{\prime}=\frac{1}{\sqrt{m}} j(\cdot / \sqrt{m})$ belongs to \mathcal{A}_{1} and

$$
W(j)=m\left(W\left(j^{\prime}\right)-\frac{\pi}{2} \log m\right)
$$

so we can reduce to \mathcal{A}_{1}

- Proposition: $\min _{\mathcal{A}_{1}} W$ is the limit as $N \rightarrow \infty$ of the min over \mathbb{T}_{N}-periodic configurations.

Minimization of W

- W is unchanged by a compact perturbation of the point configuration.
- Minimizers of W exist (requires work)
- Scaling: call \mathcal{A}_{m} the vector fields corresponding to density m, that is, $\operatorname{div} j=2 \pi(\nu-m)$ and $\operatorname{curl} j=0$. Then if j belongs to \mathcal{A}_{m}, then $j^{\prime}=\frac{1}{\sqrt{m}} j(\cdot / \sqrt{m})$ belongs to \mathcal{A}_{1} and

$$
W(j)=m\left(W\left(j^{\prime}\right)-\frac{\pi}{2} \log m\right)
$$

so we can reduce to \mathcal{A}_{1}.

- Proposition: $\min _{\mathcal{A}_{1}} W$ is the limit as $N \rightarrow \infty$ of the min over \mathbb{T}_{N}-periodic configurations.

Minimization of W

- W is unchanged by a compact perturbation of the point configuration.
- Minimizers of W exist (requires work)
- Scaling: call \mathcal{A}_{m} the vector fields corresponding to density m, that is, $\operatorname{div} j=2 \pi(\nu-m)$ and curl $j=0$. Then if j belongs to \mathcal{A}_{m}, then $j^{\prime}=\frac{1}{\sqrt{m}} j(\cdot / \sqrt{m})$ belongs to \mathcal{A}_{1} and

$$
W(j)=m\left(W\left(j^{\prime}\right)-\frac{\pi}{2} \log m\right)
$$

so we can reduce to \mathcal{A}_{1}.

- Proposition: $\min _{\mathcal{A}_{1}} W$ is the limit as $N \rightarrow \infty$ of the min over \mathbb{T}_{N}-periodic configurations.

Minimization among lattices

We can look for minimizers of W among perfect lattice configurations, i.e., $\Lambda=\mathbb{Z} \vec{u}+\mathbb{Z} \vec{v}$, with unit volume.

Theorem (Sandier-S. '10)
The minimum of $\Lambda \mapsto W(\Lambda)$ over perfect lattice configurations is achieved uniquely, modulo rotations, by the triangular lattice.

```
* in that setting, explicit formula in terms of Eisenstein series
- by transformations using modular functions or by direct
    computations, minimizing W becomes equivalent to minimizing the
    Epstein zeta function }\zeta(s)=\mp@subsup{\sum}{p\in\Lambda}{}\frac{1}{|p\mp@subsup{|}{}{s}},s>2\mathrm{ , over lattices
- results from number theory (Cassels, Rankin. Ennola. Diananda
    Montgomery 60'-80's) say that this is minimized by the triangular
    lattice
The "Abrikosov" triangular lattice is a global minimizer of W
```


Minimization among lattices

We can look for minimizers of W among perfect lattice configurations, i.e., $\Lambda=\mathbb{Z} \vec{u}+\mathbb{Z} \vec{v}$, with unit volume.

Theorem (Sandier-S. '10)

The minimum of $\Lambda \mapsto W(\Lambda)$ over perfect lattice configurations is achieved uniquely, modulo rotations, by the triangular lattice.

- in that setting, explicit formula in terms of Eisenstein series
- by transformations using modular functions or by direct computations, minimizing W becomes equivalent to minimizing the Epstein zeta function $\zeta(s)=\sum_{p \in \Lambda} \frac{1}{|p|^{s}}, s>2$, over lattices
- results from number theory (Cassels, Rankin, Ennola, Diananda, Montgomery $60^{\prime}-80^{\prime}$ s) say that this is minimized by the triangular lattice

Minimization among lattices

We can look for minimizers of W among perfect lattice configurations, i.e., $\Lambda=\mathbb{Z} \vec{u}+\mathbb{Z} \vec{v}$, with unit volume.

Theorem (Sandier-S. '10)

The minimum of $\Lambda \mapsto W(\Lambda)$ over perfect lattice configurations is achieved uniquely, modulo rotations, by the triangular lattice.

- in that setting, explicit formula in terms of Eisenstein series
- by transformations using modular functions or by direct computations, minimizing W becomes equivalent to minimizing the Epstein zeta function $\zeta(s)=\sum_{p \in \Lambda} \frac{1}{|p|^{s}}, s>2$, over lattices
- results from number theory (Cassels, Rankin, Ennola, Diananda, Montgomery $60^{\prime}-80^{\prime}$ s) say that this is minimized by the triangular lattice

Conjecture

The "Abrikosov" triangular lattice is a global minimizer of W.

Γ-convergence of $w_{n} /$ estimate of ground state energy

Theorem (Sandier-S '12)

Fix $1<p<2$ and let $X=E \times L_{\text {loc }}^{p}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$.
A. Lower bound. Let $\nu_{n}=\sum_{i=1}^{n} \delta_{x_{i}}$ be a sequence such that

$$
w_{n}\left(x_{1}, \cdots, x_{n}\right)-n^{2} I\left(\mu_{0}\right)+\frac{n}{2} \log n \leq C n .
$$

Let P_{n} be the probability on X which is the push-forward of $\frac{1}{|E|} d x_{\mid E}$ by

$$
x \mapsto\left(x, j_{n}(\sqrt{n} x+\cdot)\right), \quad j_{n}:=\nabla H_{n}^{\prime} .
$$

1. Up to a subsequence, P_{n} converges to a probability P on X.
2. The first marginal of P is $\frac{1}{|E|} d x_{\mid E} . P$ is invariant by $(x, j) \mapsto(x, j(\lambda+\cdot))$, for any $\lambda \in \mathbb{R}^{2}$.
3. For P a.e. (x, j) we have $j \in \mathcal{A}_{\mu_{0}(x)}$.
4.

$$
\liminf _{n \rightarrow \infty} \frac{1}{n}\left(w_{n}\left(x_{1}, \ldots, x_{n}\right)-n^{2} I\left(\mu_{0}\right)+\frac{n}{2} \log n\right) \geq \frac{|E|}{\pi} \int W(j) d P(x, j) .
$$

Theorem (continued)

B. Upper bound construction. Conversely, assume P is an invariant probability measure on X whose first marginal is $\frac{1}{|E|} d x_{\mid E}$ and such that for P-a.e. (x, j) we have $j \in \mathcal{A}_{\mu_{0}(x)}$. Then there exists a sequence $\left\{\nu_{n}=\sum_{i=1}^{n} \delta_{x_{i}}\right\}_{n}$ of empirical measures on E and a sequence $\left\{j_{n}\right\}_{n}$ in $L_{\text {loc }}^{p}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ such that div $j_{n}=2 \pi\left(\nu_{n}^{\prime}-\mu_{0}^{\prime}\right)$ and such that the image P_{n} of $\frac{1}{|E|} d x_{\mid E}$ by $x \mapsto\left(x, j_{n}(\sqrt{n} x+\cdot)\right)$ converges to P. Moreover

$$
\limsup _{n \rightarrow \infty} \frac{1}{n}\left(w_{n}\left(x_{1}, \ldots, x_{n}\right)-n^{2} I\left(\mu_{0}\right)+\frac{n}{2} \log n\right) \leq \frac{|E|}{\pi} \int W(j) d P(x, j) .
$$

C. Consequences for minimizers. Assume (x_{1}, \ldots, x_{n}) minimize w_{n} and let $\nu_{n}=\sum_{i=1}^{n} \delta_{x_{i}}$. Then P_{n} converges to P, and for P a.e. $(x, j), j$ minimizes W over $\mathcal{A}_{\mu_{0}(x)}$. Moreover,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n}\left(w_{n}\left(x_{1}, \ldots, x_{n}\right)-n^{2} I\left(\mu_{0}\right)+\frac{n}{2} \log n\right)=\min \frac{|E|}{\pi} \int W(j) d P(x, j),
$$

and $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \operatorname{dist}^{2}\left(x_{i}, E\right)=0$.

Method of the proof

- 「-convergence: prove general (ansatz-free) lower bounds and upper bounds which match
- Introduce a new general method for lower bound on two-scale energies (after splitting + blow-up, the domain becomes of infinite size, so it is difficult to localize energy lower bounds). A probability measure approach allows to do this via the use of the ergodic theorem (idea of Varadhan)
- That method applies well to positive (or bounded below) energy densities, but those associated to $W(\nabla H, \chi)$ are not!
- Start by modifying the energy density to make it bounded below: method of mass transport, using sharp energy lower bounds by "ball construction" methods (à la Jerrard / Sandier)

Original motivation: the Ginzburg-Landau model

W is derived as a limit problem for the minimization of the $2 D$ Ginzburg-Landau functional of superconductivity:

$$
G_{\varepsilon}(\psi, A)=\frac{1}{2} \int_{\Omega}|(\nabla-i A) \psi|^{2}+\left|\operatorname{curl} A-h_{\mathrm{ex}}\right|^{2}+\frac{\left(1-|\psi|^{2}\right)^{2}}{2 \varepsilon^{2}} .
$$

- $\psi: \Omega \rightarrow \mathbb{C}$ "order parameter"
- $|\psi|^{2}=$ density of superconducting Cooper pairs, $|\psi| \sim 1$ superconducting phase, $|\psi| \sim 0$ normal phase, $\psi=0$ vortices $\psi=\rho e^{i \varphi}$

$$
\frac{1}{2 \pi} \int_{\partial B\left(x_{0}, r\right)} \frac{\partial \varphi}{\partial \tau}=d \in \mathbb{Z}
$$

degree of the vortex

- $A: \Omega \rightarrow \mathbb{R}^{2}$ vector potential $\nabla_{A}=\nabla-i A$
- $h=\operatorname{curl} A$ induced magnetic field
- $h_{\text {ex }}>0$ intensity of applied field
- $\varepsilon=\frac{1}{\kappa}$ "Ginzburg-Landau parameter": material constant
- limit $\varepsilon \rightarrow 0$ extreme type-II or strongly repulsive

For $H_{c_{1}}<h_{\text {ex }} \ll \frac{1}{\varepsilon^{2}}$, minimizers (ψ, A) of G_{ε} have vortices (= zeros of the complex-valued function ψ) which are densely-packed in the domain.

Abrikosov lattice

From Ginzburg-Landau to W

Minimizing the Ginzburg-Landau energy is roughly equivalent to minimizing

$$
\frac{1}{2} \int_{\Omega}\left|\nabla h_{\varepsilon}\right|^{2}+\left|h_{\varepsilon}-h_{\mathrm{ex}}\right|^{2}
$$

with

$$
\begin{cases}-\Delta h_{\varepsilon}+h_{\varepsilon}=\mu_{\varepsilon} \simeq 2 \pi \sum_{i} d_{i} \delta_{a_{i}}^{(\varepsilon)} & \text { in } \Omega \\ h_{\varepsilon}=h_{\mathrm{ex}} & \text { on } \partial \Omega\end{cases}
$$

$\delta_{a_{i}}^{(\varepsilon)}$ Dirac mass regularized at the scale ε

Mean field description for $h_{\text {ex }}>H_{c_{1}}$ (Sandier-S)

$$
h_{\text {ex }}=\lambda|\log \varepsilon|, \quad \lambda>\lambda_{\Omega} \quad H_{c_{1}} \sim \lambda_{\Omega}|\log \varepsilon|
$$

$\frac{\mu_{\varepsilon}}{h_{\mathrm{ex}}} \rightharpoonup \mu_{*} \quad$ solution to an obstacle problem

Theorem (Sandier-S. '10)

Consider minimizers ($u_{\varepsilon}, A_{\varepsilon}$) of the Ginzburg-Landau. After blow-up around a randomly chosen point in ω_{λ}, their "currents" $\nabla h_{\varepsilon}\left(=\nabla \operatorname{curl} A_{\varepsilon}\right)$ converge as $\varepsilon \rightarrow 0$ to currents in the plane which, almost surely, minimize W. Moreover,

$$
\min G_{\varepsilon}=h_{\mathrm{ex}}^{2} E_{\lambda}\left(\mu_{*}\right)+(1-1 /(2 \lambda)) h_{\mathrm{ex}}\left|\omega_{\lambda}\right|(\min W+\gamma)+o\left(h_{\mathrm{ex}}\right)
$$

Method: same as for Coulomb gases, but complicated by the presence of vortices of arbitrary signs and degrees

Back to Coulomb gases: Next-order expansion of the partition function

Theorem (Sandier-S. '12)

$$
n \beta f_{1}(\beta) \leq \log Z_{n}^{\beta}-\left(-\beta n^{2} I\left(\mu_{0}\right)+\frac{\beta n}{2} \log n\right) \leq n \beta f_{2}(\beta)
$$

where $f_{1}(\beta)$ and $f_{2}(\beta)$ are independent of n, bounded, and

$$
\lim _{\beta \rightarrow \infty} f_{1}(\beta)=\lim _{\beta \rightarrow \infty} f_{2}(\beta)=\alpha_{0}
$$

where

$$
\alpha_{0}=\frac{1}{\pi} \min _{\mathcal{A}_{1}} W-\frac{1}{2} \int \mu_{0} \log \mu_{0} d x
$$

Eigenvalues of $\mathbf{1 0 0 0}$-by- $\mathbf{1 0 0 0}$ matrix with i.i.d Gaussian entries
(Stolen from Benedek Valkó's webpage)

Large deviations type result

Theorem (Sandier-S.)

Let $A_{n} \subset\left(\mathbb{R}^{2}\right)^{n}$. Then

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}_{n}^{\beta}\left(A_{n}\right) \leq-\beta\left(\frac{|E|}{\pi} \inf _{P \in A} \int W(j) d P(x, j)-\alpha_{0}-\frac{C}{\beta}\right),
$$

and A is the set of probability measures which are limits of blow-ups at rate $n^{1 / 2}$ around a point x of the current j associated to $\nu=\sum_{i=1}^{n} \delta_{x_{i}}$ with $\left(x_{i}\right) \in A_{n}$.

Corollary: crystallisation as $\beta \rightarrow \infty: \rightsquigarrow$ after blowing up around a point x in the support of μ_{0}, at the scale of $\left(n \mu_{0}(x)\right)^{1 / 2}$, we see (almost surely) a configuration which minimizes W

Large deviations type result

Theorem (Sandier-S.)

Let $A_{n} \subset\left(\mathbb{R}^{2}\right)^{n}$. Then

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}_{n}^{\beta}\left(A_{n}\right) \leq-\beta\left(\frac{|E|}{\pi} \inf _{P \in A} \int W(j) d P(x, j)-\alpha_{0}-\frac{C}{\beta}\right),
$$

and A is the set of probability measures which are limits of blow-ups at rate $n^{1 / 2}$ around a point x of the current j associated to $\nu=\sum_{i=1}^{n} \delta_{x_{i}}$ with $\left(x_{i}\right) \in A_{n}$.

Corollary: crystallisation as $\beta \rightarrow \infty: \rightsquigarrow$ after blowing up around a point x in the support of μ_{0}, at the scale of $\left(n \mu_{0}(x)\right)^{1 / 2}$, we see (almost surely) a configuration which minimizes W.

Definition of \mathcal{W} for arbitrary point processes (with Borodin)

By analogy with the \mathbb{T}_{N}-periodic case, we define for any point process the random variable

$$
\mathcal{W}_{N}=-\frac{1}{N} \sum_{i \neq j, a_{i}, a_{j} \in[0, N]} \log \left|2 \sin \frac{\pi\left(a_{i}-a_{j}\right)}{N}\right|+\log N \quad \text { in dimension } 1
$$

and

$$
\mathcal{W}_{N}=\frac{1}{2 \pi N^{2}} \sum_{i \neq j, a_{i}, a_{j} \in[0, N]^{2}} E\left(a_{i}-a_{j}\right)+\log \frac{N}{2 \pi \eta(i)^{2}} \quad \text { in dimension } 2 .
$$

For stationary processes, we give conditions for $\mathbb{E} \mathcal{W}_{N}$ to have a limit as $N \rightarrow \infty$ as well as for $\operatorname{Var} \mathcal{W}_{N}$.

Characterization of the expectation of W

Theorem (Borodin-S.)

Let a random point process in \mathbb{R}^{d} ($d=1$ or 2) have two-point correlation function $\rho_{2}(x, y)=1-T_{2}(x-y)$. If $\int T_{2}=1$ and T_{2} satisfies some decay conditions, then

$$
\lim _{N \rightarrow \infty} \mathbb{E} \mathcal{W}_{N}=\int_{\mathbb{R}^{d}} \log |2 \pi v| T_{2}(v) d v
$$

Moreover, under additional decay conditions, $\lim _{N \rightarrow \infty} \operatorname{Var} \mathcal{W}_{N}=0$.

Examples

- Poisson process in dimensions $d=1,2: \lim _{N \rightarrow \infty} \mathbb{E} \mathcal{W}_{N}=+\infty$.
- perfect lattice \mathbb{Z} in dimension $d=1: \lim _{N \rightarrow \infty} \mathbb{E} \mathcal{W}_{N}=\mathbb{E} \mathcal{W}_{N}=0$.
- sine-beta process in dimension $d=1$:

$$
\begin{cases}\lim _{N \rightarrow \infty} \mathbb{E} \mathcal{W}_{N}=2-\gamma-\log 2 & \beta=1 \\ \lim _{N \rightarrow \infty} \mathbb{E} \mathcal{W}_{N}=1-\gamma & \beta=2 \\ \lim _{N \rightarrow \infty} \mathbb{E} \mathcal{W}_{N}=\frac{3}{2}-\gamma-\log 2 & \beta=4\end{cases}
$$

Directly related to the "thermodynamic energy per particle" for the log gas found in Dyson '62, Dyson-Mehta '63, \mathcal{W} provides the rigorous quantity.

- The determinantal process $(d=2)$ with kernel $e^{-\frac{\pi}{2}|x-y|^{2}}$:

$$
\lim _{N \rightarrow \infty} \mathbb{E} \mathcal{W}_{N}=\frac{1}{2}(\gamma-\log \pi)
$$

- Zeros of Gaussian Analytic Functions:

$$
\lim _{N \rightarrow \infty} \mathbb{E} \mathcal{W}_{N}=-\frac{1}{2}(1+\log \pi)
$$

Extensions

- extension of the definition of W to 1D and analogous results (with E. Sandier).

In $1 \mathrm{D}, \min W$ is achieved by the perfect lattice \mathbb{Z}, and the crystallisation result is complete.

- usual Fekete points on a compact set (with A. Contreras and E. Sandier)
- quantum Coulomb gases in 2D (with M. Lewin and P. T. Nam).

