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The statistical mechanics of Coulomb gases

Probability law (=Gibbs measure)

P 1 J
de(Xl-,"" 7X") = ?eigwn(XL'”.X")Xm "'an
n

where Z,? is the associated partition function, and
n
Wn(xg, -, Xp) = — Z log |x; — xj| + nz V().
i#j i=1

and x; € R?. V smooth enough and grows faster than log? |x| at infinity.
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Important examples

» For general 8 and V, these ensembles are called Coulomb gases, or
sometimes (3-ensembles. book by Forrester

» Minimizers of w, = “weighted Fekete points" (important in
interpolation)

» Analogous problems better studied in dimension 3 (Lieb-Narnhofer,
Lieb-Oxford...)

» Statistical mechanics (Alastuey-Jancovici,
Jancovici-Leibowitz-Manificat, Sari-Merlini, Frélich-Spencer)

» Ford =1, 3 =2, V(x) = x?/2 ~ GUE (= law of eigenvalues of
Hermitian matrices with complex Gaussian i.i.d. entries).
» Ford =1, 3=1, V(x) = x?/2 ~ GOE (real symmetric matrices
with Gaussian i.i.d. entries).
» For d =2, 3=2and V(x) = |x|> ~> Ginibre ensemble (matrices
with complex Gaussian i.i.d. entries).
Reference texts:

» Anderson-Guionnet-Zeitouni, Deift, Forrester, Mehta.



Numerical minimization
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Numerical minimization of w, by Gueron-Shafrir, n = 24,29



Equilibrium measure

Define

= [, ~loglx =yl dn(x)dp(y) + [ V() dp(x).

I has a unique minimizer among probability measures, called the
equilibrium measure, denoted pig.

Denote E = Supp(1i0) (assumed to be compact with C! boundary).

» For GUE: o = %\/4 — x21{|x<2} (Wigner semicircle law, Deift,
Ben Arous-Guionnet).

» For Ginibre: o = %131 (circle law, Edelman, Girko, Mehta).



Large Deviations
Kg " — converges to /
n

n
. : i—1 0x; N
lim = I(po) lim 2iz1 %% = o for a minimizer
n— oo n n—oo n

min w,

Theorem (Ben Arous-Guionnet d = 1, Ben Arous-Zeitouni
d = 2, Hiai-Petz)

P2 satisfies a large deviations principle with good rate function I(-) and
speed n=2: for all A C {probability measures},

— inf I(p )<I|m|nf—|og]P”@(A)

pneA° n— 00 n

<lim sup —3 IogIP’ﬁ(A) < —inf 1(),
n— oo HEA

where | = I —min /.



First objective

Understand minimizers of w,. We know the global distribution of the
points and min w, ~ n?/(ug).

Can we say more about the local distribution of points and the next order
terms in min w,?? For that we want to blow up the points at the scale
\/n to see them at finite distances from each other.



Splitting of w,

The idea is to understand the next order behavior by splitting w,, writing
Vp =Y i1 0x as npg + (Vn — npo). We find
1 n
Wn(X17 e :Xn) = nzl(/l,o) + = W(VH* le) + 2"2 C(XI')
T i=1

where H is the solution to

H=—27A" (E:@q )

and
(=cst+ 3V — [log|x —y|duo(y)
¢=0 in E
(>0 in R2\E

and for every function ¥,

n—0

W(VH, x) = lim / x|VH|? +7T|0g7]2x(x,-).
R2\UZ_, B(xi.1) ,



In rescaled coordinates x’ = \/n(x — xp) this becomes

1 n
WX+ x0) = (o) = 7 log -+ ~ W(VH', 15a) + 203" (x)
i=1

where H' is the solution to
n /
(Y -1 X
H'(x") = —2mA (;_1 dx; — po(xo + ﬁ)>

W(VH', x) = lim

XIVH'? +logn >  x(x).
n—0 /Rz\U;'IB(X,-’m) Z



In rescaled coordinates x’ = \/n(x — xp) this becomes

1 n
W3, 30) = 121(u0) = 2 log -+ ~W(VH', 1a) +2n 3" C(x)
i=1

where H' is the solution to
n /
AN -1 X
H'(x") = —2mA (;_1 dx; — po(xo + ﬁ)>

W(VH', x) = lim

XIVH'? +logn >  x(x).
n—0 /Rz\U;'IB(X,-’m) Z

» remains to understand this W(VH’, 1g=), “renormalized" Coulomb
interaction between the points in a neutralizing background, of
slowly varying density ~ 1

» difficulties in letting n — oo, in particular no local “charge neutrality"

» need to define a total Coulomb interaction for such a system with
infinite number of points



Complete definition of W
Let m > 0 given. Let A be a discrete set in R?, and j(= VH) a vector
field such that

divj=2n(v—m) and curlj=0, where v= Z(Sp.
pEN

We say such a j belongs to the class A,,.
Definition

For any smooth positive x, let

. . 1 .
W(j,x) = lim 5/ XUil” +mlogn Y x(p)
L E2\UpenB(p.n) pen

We define the renormalized energy W by

where X, is any cutoff function supported in Bg with xg, =1 in Bgr_;
and |Vxge| < C.



Computing W




The case of the torus

Assume A is T-periodic. Then W can be written as a function of A.
Identify A with {a1,...,a,} C T. Let Hy,,; be a solution of

n
n
7AH{2’} =27 <Z 53’. — |’]T> on T.
i=1

Let jia,3 = VHya,y, identified with a periodic vector field on R,

Lemma

Take the normalization n = |T|. Let G be the Green function for T:

—AG(x) =27 ((50 — &) in T,

normalized to have mean zero. Then

W(jtary) = ZG )+ ||m (G(x) + log|x]) .

l#]

Moreover, ji,,1 is the minimizer of W (j) over all T-periodic j satisfying
div j = 2n(v — 1) and curlj = 0.



Further expression of W in the square torus case

Let Ty = R2/(NZ)2. By a Fourier series expansion, the Green function
of Ty is expressed in terms of Eisenstein series. We obtain:

Proposition
Let ai, -+ ,a, be n = N? points on Ty, we have
W (j > E(a )+l ﬂ — 2 log n(i).
(ar}) 2N2 mlog 5 7 log n(i

J7#k

Here E(x) = Ex(x/n),5(x/n) (i) where E, ,(7) is the Eisenstein series
defined for 7 € C and u,v € R by

) Cx
Eu,v(T) _ Z e217r(mu+nv) ‘S(T) )

2
(m,n)€Z2\ {0} |m + i

Finally,  denotes the Dedekind 7 function, which is given by

n(r)=q"* [J(1—q*)  where g =e*"".
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Minimization of W

» W is unchanged by a compact perturbation of the point
configuration.

» Minimizers of W exist (requires work)

» Scaling: call Ap, the vector fields corresponding to density m, that
is, div j = 27r(v — m) and curlj = 0. Then if j belongs to A,, then

Jj = ﬁj(/\/ﬁ) belongs to A; and
N N
W(j) = m (W(") = 3 log m)
so we can reduce to A;.

» Proposition: min_, W is the limit as N — oo of the min over
Tn-periodic configurations.



Minimization among lattices

We can look for minimizers of W among perfect lattice configurations,
i.e., N=Zid+ Zv, with unit volume.
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Minimization among lattices

We can look for minimizers of W among perfect lattice configurations,
i.e., N=Zid+ Zv, with unit volume.

Theorem (Sandier-S. '10)

The minimum of N — W/(A) over perfect lattice configurations is
achieved uniquely, modulo rotations, by the triangular lattice.

» in that setting, explicit formula in terms of Eisenstein series

» by transformations using modular functions or by direct
computations, minimizing W becomes equivalent to minimizing the
. . _ 1 .
Epstein zeta function ((s) = > ca [pfF+ S > 2, over lattices
» results from number theory (Cassels, Rankin, Ennola, Diananda,
Montgomery 60’-80's) say that this is minimized by the triangular
lattice

Conjecture

The “Abrikosov" triangular lattice is a global minimizer of W .



[-convergence of w, / estimate of ground state energy

Theorem (Sandier-S '12)
Fix1<p<2andlet X =Ex L (R?R?).

loc
A. Lower bound. Let v, = 27:1 Oy, be a sequence such that

Wi(x1, -+, Xp) — n*1 (o) + g logn < Cn.
Let P, be the probability on X which is the push-forward of ‘%ldx‘ E by

x = (x,ja(\/nx+:)),  jn:=VH,.

1. Up to a subsequence, P, converges to a probability P on X.
2. The first marginal of P is ‘%ldx“:—. P is invariant by

(x,4) = (x,j(A+-)), for any X € R?.
3. For P a.e. (x,j) we have j € A, (x)-

lim inf 1 (W,,(xl7 o Xn) — 02 (o) + g log n) >

n—oo n

E]

™

/ W(j) dP(x,j).



Theorem (continued)

B. Upper bound construction. Conversely, assume P is an invariant
probability measure on X whose first marginal is i E‘ dx|e and such that
for P-a.e. (x,j) we have j € A, (xy. Then there exists a sequence
{vn =>"7_, 0x }n of empirical measures on E and a sequence {jn}, in
Lﬁ)c(R2 R?) such that div j, = 2n(v), — ugy) and such that the image P,

of rgydxie by x = (x,ja(v/nx +-)) converges to P. Moreover

lim sup 1 (W,,(Xl, ey Xn) — 0?1 (o) + g log n) < @ / W (j) dP(x,J).

n—oo N

C. Consequences for minimizers. Assume (xy,...,x,) minimize w,

n o o
and let v, =), 0y,. Then P, converges to P, and for P a.e. (x,J), j
minimizes W over .A 1o(x)- Moreover,

1
lim sup — (w,,(xl,...,x,,)—nzl(,uo)—i-glogn —mln—/W dP(x,j),
n

n— o0

and lim,_. Y i, dist ?(x;, E) = 0.



Method of the proof

» [-convergence: prove general (ansatz-free) lower bounds and upper
bounds which match

» Introduce a new general method for lower bound on two-scale
energies (after splitting + blow-up, the domain becomes of infinite
size, so it is difficult to localize energy lower bounds). A probability
measure approach allows to do this via the use of the ergodic
theorem (idea of Varadhan)

» That method applies well to positive (or bounded below) energy
densities, but those associated to W(VH, x) are not!

» Start by modifying the energy density to make it bounded below:
method of mass transport, using sharp energy lower bounds by “ball
construction" methods (a la Jerrard / Sandier)



Original motivation: the Ginzburg-Landau model

W is derived as a limit problem for the minimization of the 2D
Ginzburg-Landau functional of superconductivity:

1— [|2)2
(v, A) /| — iA)Y|? + |curl A — hey |2 + w
2¢?

» ¢ : Q — C "order parameter"

» |4|?= density of superconducting Cooper pairs, || ~ 1
superconducting phase, || ~ 0 normal phase, ) = 0 vortices
= pei®

1 0
% _dez
27T OB(xo,r) 87’

degree of the vortex

A Q — R? vector potential Va4 =V —iA

h = curl A induced magnetic field

hex > 0 intensity of applied field

€= % "Ginzburg-Landau parameter": material constant

vV v v.v Yy

limit € — 0 extreme type-ll or strongly repulsive



For He, < hex < 2, minimizers (¢, A) of G. have vortices (= zeros of
the complex-valued function ) which are densely-packed in the domain.

R2e o o
e o o o

e o o o
e o o o

e o o o
e o o o

Abrikosov lattice



From Ginzburg-Landau to W

Minimizing the Ginzburg-Landau energy is roughly equivalent to
minimizing
1
= / IVhe|? + |he — hex|?
2 Ja
with
“Ah 4 he = pe ~ 275 disE) in Q
hs = hex on 0.

6‘(;,.5) Dirac mass regularized at the scale ¢



Mean field description for hex > H,, (Sandier-S)

hex = M logel, A > Aa He, ~ Aalloge|

He | s solution to an obstacle problem

hex




Theorem (Sandier-S. '10)

Consider minimizers (u., Ac) of the Ginzburg-Landau. After blow-up
around a randomly chosen point in wy, their “currents” Vh.(= Vcurl A,)
converge as € — 0 to currents in the plane which, almost surely, minimize
W. Moreover,

min G. = h2 Ex(ps) + (1 — 1/(2)0)) hex|wr|(min W + ) + 0(hex)

Method: same as for Coulomb gases, but complicated by the presence of
vortices of arbitrary signs and degrees



Back to Coulomb gases: Next-order expansion of the
partition function

Theorem (Sandier-S. "12)

nBAR(9) <log 2] — (— B 1() + 27 log n) < (),
where f(3) and () are independent of n, bounded, and

lim f(8) = ||m H(8) = ag,

B—o0 —00

where ] ]
ag = —min W — */,Uo log pig dx.



Eigenvalues of 1000-by-1000 matrix with i.i.d Gaussian entries

(Stolen from Benedek Valké's webpage)



Large deviations type result

Theorem (Sandier-S.)
Let A, C (R?)". Then

. 1 E| . . . C
II;n sup log Py (A,) < —6(% Jnf | W(G)dP(x,j) — a0 — 5),

and A is the set of probability measures which are limits of blow-ups at
rate n*/? around a point x of the current j associated to v =Y 1, 0y,
with (x;) € Ap.



Large deviations type result

Theorem (Sandier-S.)
Let A, C (R?)". Then

. 1 E| . . . C

In;nﬁs;p - log Py (A,) < —ﬁ(% Jnf | W(G)dP(x,j) — a0 — 5),
and A is the set of probability measures which are limits of blow-ups at
rate n*/? around a point x of the current j associated to v =Y 1, 0y,
with (x;) € Ap.

Corollary: crystallisation as 3 — oo : ~~ after blowing up around a point
x in the support of jig, at the scale of (nuo(x))'/2, we see (almost
surely) a configuration which minimizes W.



Definition of W for arbitrary point processes (with Borodin)

By analogy with the T y-periodic case, we define for any point process
the random variable

1 PR .
Wy = N N Z log |2sin w + log N in dimension 1,
i#j,a;,a;€[0,N]
and
4% L Z E(aj — a;) + 1o N in dimension 2
_ . a: [ — in di i )
N orn2 Y & 2mn(i)?

i#j,a;,a;€[0,N]?

For stationary processes, we give conditions for EW) to have a limit as
N — oo as well as for Var\Wy.



Characterization of the expectation of W

Theorem (Borodin-S.)

Let a random point process in RY (d =1 or 2) have two-point correlation
function pa(x,y) =1— Ta(x — y). If [ To =1 and T, satisfies some
decay conditions, then

lim IEWN:/ log |27mv| To(v) dv.
N—oo RrRd

Moreover, under additional decay conditions, limy_, .. VarWWy = 0.



Examples

» Poisson process in dimensions d = 1,2: limy_co EWy = 400.
» perfect lattice Z in dimension d = 1: limy_ . EWy = EWy = 0.
» sine-beta process in dimension d = 1:

Nlim EWy=2—-~v—-log2 pB=1,

lim EWy =1—~ 8 =2,

N—oo

NIEnOOIEWN =3 —vy—log2 p=4,
Directly related to the “thermodynamic energy per particle" for the log
gas found in Dyson 62, Dyson-Mehta '63, W provides the rigorous

quantity.
. . ™ 2
» The determinantal process (d = 2) with kernel e~z 1"

) 1
Nlinoo EWy = 5(7 — log 7r).
» Zeros of Gaussian Analytic Functions:

1
lim EWy = —5(1 + log )

N—oco



Extensions

» extension of the definition of W to 1D and analogous results (with
E. Sandier).

In 1D, min W is achieved by the perfect lattice Z, and the
crystallisation result is complete.

» usual Fekete points on a compact set (with A. Contreras and E.
Sandier)

» quantum Coulomb gases in 2D (with M. Lewin and P. T. Nam).



