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Lieb-Thirring Inequalities

We consider the Schrödinger operator on L2(Rd)

H = −∆+ V (x)

The LT inequalities bound power sums of the negative eigenvalues of H in terms of some
Lp-norms of the negative part of the potential, V (x)− = max{0, −V (x)}.

If λ1, λ2, . . . are the negative eigenvalues of H then∑
j

|λj |κ ≤ Lκ,d

∫
Rd

V (x)
κ+d/2
− dx

The (sharp) values of κ ≥ 0 for which the inequality holds
are • for d = 1, κ ≥ 1/2 (Lieb, Thirring, Weidl)

• for d = 2, κ > 0 (LT)
• for d ≥ 3, κ ≥ 0 (Cwikel, Lieb, Rozenblum, LT)
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The Constants Lκ,d

Note that one can write
∑

j |λj |κ = Tr
(
−∆+V (x)

)κ
−. A semiclassical approxima-

tion of the trace yields the phase space integral

(2π)−d

∫
Rd×Rd

(
p2 + V (x)

)κ
−dp dx = Lscl

κ,d

∫
Rd

V (x)
κ+d/2
− dx

It is always true that Lκ,d ≥ Lscl
κ,d

Some sharp values for Lκ,d are known:

• Lκ,d = Lscl
κ,d for all κ ≥ 3/2 and d = 1 (LT, Aizenman-Lieb), d ≥ 2 (Laptev, Weidl)

• L1/2,1 = 1/2 while Lscl
1/2,1 = 1/4 (Hundertmark, Lieb, Thomas)

Open problem: The optimal constant in the physically most interesting case, κ = 1
and d = 3, remains unknown (and is conjectured to be L1,3 = Lscl

1,3)
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Kinetic Energy Inequality

For κ = 1, the LT Inequality has the dual formulation

Tr (−∆)γ ≥ Kd

∫
Rd

ργ(x)
1+2/ddx

for trace class operators 0 ≤ γ ≤ 1, with ργ(x) = γ(x, x). Alternatively,⟨
Ψ

∣∣∣∣−∑N

i=1
∆i

∣∣∣∣Ψ⟩
≥ Kd

∫
Rd

ρΨ(x)
1+2/ddx

for anti-symmetric functions Ψ(x1, . . . , xN ), with

ρΨ(x) = N

∫
Rd(N−1)

|Ψ(x, x2, . . . , xN )|2dx2 · · · dxN

The LT Inequality can thus be viewed as giving a lower bound on the minimal kinetic
energy needed to assemble a system of fermions at density ρ(x).
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Application: Stability of Matter

A system of charged particles (N electrons and K fixed nuclei) is described by the Hamil-
tonian

H = − 1

2m

N∑
j=1

∆i + e2VN,K(x1, . . . , xN ;R1, . . . , RK)

The Pauli exclusion principle dictates that H acts on anti-symmetric functions in
L2(R3N ). The Coulomb potential is

VN,K =
∑

1≤i<j≤N

1

|xi − xj |
−

N∑
j=1

K∑
k=1

Zk

|xj −Rk|
+

∑
1≤k<l≤K

ZkZl

|Rk −Rl|
.

(electron-electron, electron-nuclei, nuclei-nuclei, respectively).

Stability of Matter refers to the fact that

inf
{Rk}

inf specH ≥ −const. (N +K)
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Stability of non-relativistic matter was first proved by Dyson and Lenard in 1967. In
1975, Lieb and Thirring gave a much shorter proof using their inequalities: On the
subspace of antisymmetric functions,

N∑
i=1

(−∆i + V (xi)) ≥ −2L1,d

∫
Rd

V (x)
1+d/2
− dx

The reduction of the many-body Coulomb potential to a one-body potential is achieved
via an electrostatic inequality due to Baxter (and refined later by Lieb and Yau):

In the case Zk = Z for 1 ≤ k ≤ K,

VN,K(x1, . . . , xN ;R1, . . . , Rk) ≥ −
N∑
i=1

2Z + 1

mink |xi −Rk|

Stability of Matter follows using V (x) = λ− (2Z + 1)/mink |x−Rk| for some λ > 0.
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Particle System at Positive Density

Imagine an infinite system of non-interacting fermions at some density ρ > 0. It is
described by the projection

Πµ = 1(−∆ ≤ µ) with µ = 4π2

(
ρ

|Bd|

)2/d

We seek a lower bound on the energy differ-
ence

Tr (−∆− µ) (γ −Πµ)

in terms of its semiclassical approximation

! ?

Kscl
d

∫
Rd

(
ργ(x)

1+2/d − ρ1+2/d − 2 + d

d
ρ2/d (ργ(x)− ρ)

)
dx

Note that the integrand behaves like (ργ(x)−ρ)2 for ργ(x) close to ρ, and like ργ(x)
1+2/d

for large ργ(x).
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Lieb-Thirring Inequalities at Positive Density

Main result:

Theorem 1. For d ≥ 2 there exist constants Kd > 0 such that for all 0 ≤ γ ≤ 1

Tr (−∆− µ) (γ −Πµ) ≥ Kd

∫
Rd

(
ργ(x)

1+2/d − ρ1+2/d − 2 + d

d
ρ2/d (ργ(x)− ρ)

)
dx

Remarks.

1. For ρ = 0 this reduces to the usual Lieb-Thirring Inequality

2. By scaling, Kd is independent of ρ.

3. No such inequality can hold, in general, for d = 1. This can be verified using
second-order perturbation theory and is related to the Peierls instability.

4. The inequality quantifies the energy cost to make a local change in the density of
particles.
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Lieb-Thirring Inequality; Potential version

Via a Legendre transform, the theorem leads to the statement that

Tr
(
(−∆− µ+ V )− − (−∆− µ)−

)
+ ρ

∫
Rd

V (x)dx

≤ Ld

∫
Rd

(
(V (x)− µ)

1+d/2
− − µ1+d/2 +

2 + d

d
µd/2V (x)

)
dx

for d ≥ 2. Here, it is only necessary to assume that V ∈ L2(Rd) ∩ L1+d/2(Rd), the left
side is really equal to

−Tr (−∆− µ+ V ) (1(−∆+ V ≤ µ)− 1(−∆ ≤ µ))

which is well-defined even if V ̸∈ L1(Rd).

The right side estimates the validity of first-order perturbation theory. The inte-
grand is quadratic in V (x) for small V (x), and grows like |V (x)|1+d/2 for large (negative)
V (x).
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Comparison with Second-Order Perturbation Theory

For nice enough V , one can compute the limit

lim
t→0

Tr (−∆− µ+ tV ) (1(−∆+ tV ≤ µ)− 1(−∆ ≤ µ))

t2

= −µd/2−1

∫
Rd

ψd

(
k
√
µ

)
|V̂ (k)|2dk

where

ψd(k) =
1

(2π)d

∫
|p|≤1

|p−k|≥1

dp

|p− k|2 − |p|2

Note that ψ1 diverges logarithmically at |k| = 2, while ψd is bounded for d ≥ 2.

This shows that our Lieb-Thirring inequality fails for d = 1! A suitable modified version,
with an integrand of the form above, does hold, however.
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Ideas in the Proof

Let Q = γ −Πµ. Since the right side∫
Rd

(
ργ(x)

1+2/d − ρ1+2/d − 2 + d

d
ρ2/d (ργ(x)− ρ)

)
dx

is convex in ρQ(x) = ργ(x)− ρ, it suffices to consider separately the contributions of

Q−− = ΠµQΠµ , Q++ = (1−Πµ)Q(1−Πµ) , Q−+ = ΠµQ(1−Πµ)

Note that Tr (−∆− µ)Q = Tr (−∆− µ)(Q++ +Q−−) with

Tr (−∆− µ)Q++ = Tr | −∆− µ|(1−Πµ)γ(1−Πµ)

and
Tr (−∆− µ)Q−− = Tr | −∆− µ|Πµ(1− γ)Πµ

To bound these terms, we use a recent method of Rumin (for any d ≥ 1).
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Rumin’s Method

The starting point is the representation

Tr (−∆− µ)Q++ = Tr | −∆− µ|Q++ =

∫ ∞

0

dE TrQ++
E =

∫
R3

dx

∫ ∞

0

dE ρ++
E (x)

where Q++
E = P≥EQ

++P≥E , ρ
++
E (x) = Q++

E (x, x), and P≥E = 1(| −∆− µ| ≥ E).
By the triangle inequality and Q++ ≤ 1,√

ρ++(x) ≤
√
ρ++
E (x) +

√
r(E)

where r(E) is the density of P≤E = 1− P≥E , which is easily found to be

r(E) = (2π)−d|Bd|
(
(µ+ E)d/2 − (µ− E)

d/2
+

)
This gives

Tr (−∆− µ)Q++ ≥
∫
R3

Fd(ρ
++(x)) dx with F (y) =

∫ ∞

0

dE
(√

|y| −
√
r(E)

)2

+
.
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The Off-Diagonal Terms

To conclude the proof of the theorem, we shall show that∫
R3

|ρ−+(x)|2 dx ≤ µd/2−1∥ϕd∥∞Tr (−∆− µ)Q

with

ϕd(k) =
1

(2π)d

∫
|p|≤1

|p−k|≥1

dp√
|p− k|2 − 1

√
1− |p|2

which is bounded for d ≥ 2. In fact, by Schwarz’s inequality and Q2 ≤ Q++ −Q−−,∣∣∣∣∫
Rd

V ρQ−+

∣∣∣∣ = |TrVΠµQ(1−Πµ)| ≤
∥∥∥∥ 1−Πµ

|∆+ µ|1/4
V

Πµ

|∆+ µ|1/4

∥∥∥∥
S2

[Tr (−∆− µ)Q]
1/2

which implies the statement since the square of the Hilbert-Schmidt norm equals
µd/2−1

∫
Rd |V̂ (k)|2ϕd(k/

√
µ)dk.
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Conclusions

• We have presented a positive density analogue of the Lieb-Thirring Inequalities

• The bound estimates the energy cost to make a local change in the density of a free
electron gas, in terms of the corresponding semiclassical approximation

• Our inequality concerns the behavior of both the discrete and the continuous
spectrum of the Laplacian under local perturbations

• A similar bound can be proved at positive temperature

• The method can be generalized in various ways, e.g., to particles in a periodic
background potential
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