A central limit theorem for mean field quantum dynamics

Benjamin Schlein, University of Bonn

Munich, April 13, 2012
N-boson system: described by wave function $\psi_{N} \in L^{2}\left(\mathbb{R}^{3 N}\right)$.
Evolution governed by Schrödinger equation

$$
i \partial_{t} \psi_{N, t}=H_{N} \psi_{N, t}
$$

with Hamiltonian

$$
H_{N}=\sum_{j=1}^{N}\left(-\Delta_{x_{j}}+V_{\mathrm{ext}}\left(x_{j}\right)\right)+\lambda \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)
$$

Mean field regime: $N \gg 1, \lambda \ll 1$, with $N \lambda$ fixed. Study dynamics generated by

$$
H_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}}+\frac{1}{N} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)
$$

We assume the potential to have at most Coulomb type singularities, in the sense that

$$
V^{2}(x) \leq C(1-\Delta)
$$

Self-consistent evolution: consider a factorized initial state

$$
\psi_{N, 0}(\mathrm{x})=\prod_{j=1}^{N} \varphi\left(x_{j}\right) \quad\left(\mathrm{x}=\left(x_{1}, \ldots, x_{N}\right)\right)
$$

If factorization is approximately preserved in time,

$$
\psi_{N, t}(\mathrm{x}) \simeq \prod_{j=1}^{N} \varphi_{t}\left(x_{j}\right)
$$

we may replace the many-body interaction by an effective oneparticle potential
$\frac{1}{N} \sum_{i \neq j}^{N} V\left(x_{i}-x_{j}\right) \simeq \frac{1}{N} \sum_{i \neq j}^{N} \int \mathrm{~d} x_{i} V\left(x_{i}-x_{j}\right)\left|\varphi_{t}\left(x_{i}\right)\right|^{2} \simeq\left(V *\left|\varphi_{t}\right|^{2}\right)\left(x_{j}\right)$

The one-particle wave function φ_{t} must solve the self-consistent Hartree equation

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+\left(V *\left|\varphi_{t}\right|^{2}\right) \varphi_{t}
$$

Reduced Densities: For $k=1, . ., N$, the reduced k-particle density matrix is given by

$$
\gamma_{N, t}^{(k)}=\operatorname{Tr}_{k+1, \ldots, N}\left|\psi_{N, t}\right\rangle\left\langle\psi_{N, t}\right| \quad \text { acting on } L^{2}\left(\mathbb{R}^{3 k}\right)
$$

$\gamma_{N, t}^{(k)}$ is an operator on $L^{2}\left(\mathbb{R}^{3 k}\right)$ with kernel

$$
\gamma_{N, t}^{(k)}\left(\mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right)=\int \mathrm{d} \mathbf{x}_{N-k} \psi_{N, t}\left(\mathbf{x}_{k}, \mathbf{x}_{N-k}\right) \bar{\psi}_{N, t}\left(\mathbf{x}_{k}^{\prime}, \mathbf{x}_{N-k}\right)
$$

with $\mathbf{x}_{k}=\left(x_{1}, \ldots, x_{k}\right), \mathbf{x}_{N-k}=\left(x_{k+1}, \ldots, x_{N}\right), \operatorname{Tr} \gamma_{N, t}^{(k)}=1$.
Convergence towards Hartree dynamics: for every fixed $k \in \mathbb{N}$ and $t \in \mathbb{R}$, one finds

$$
\gamma_{N, t}^{(k)} \rightarrow\left|\varphi_{t}\right\rangle\left\langle\left.\varphi_{t}\right|^{\otimes k}\right.
$$

as $N \rightarrow \infty$.
First proof by Erdős-Yau (2000), using techniques of Spohn (1980), other methods and proofs by Rodnianski-S. (2007), Fröhlich-Knowles-Schwarz (2008), Knowles-Pickl (2009).

Fock space representation: let

$$
\mathcal{F}=\bigoplus_{n \geq 0} L_{s}^{2}\left(\mathbb{R}^{3 n}, \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}\right)
$$

Vectors in \mathcal{F} are sequences $\psi=\left\{\psi^{(n)}\right\}_{n \geq 1}$ with $\psi^{(n)} \in L_{s}^{2}\left(\mathbb{R}^{3 n}\right)$.
Creation and annihilation operators: for $f \in L^{2}\left(\mathbb{R}^{3}\right)$, define

$$
\begin{aligned}
\left(a^{*}(f) \psi\right)^{(n)}\left(x_{1}, \ldots, x_{n}\right) & =\frac{1}{\sqrt{n}} \sum_{j=1}^{n} f\left(x_{j}\right) \psi^{(n-1)}\left(x_{1}, \ldots, \widehat{x}_{j}, \ldots, x_{n}\right) \\
(a(f) \psi)^{(n)}\left(x_{1}, \ldots, x_{n}\right) & =\sqrt{n+1} \int \mathrm{~d} x \overline{f(x)} \psi^{(n+1)}\left(x, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

They satisfy canonical commutation realtions:

$$
\left[a(f), a^{*}(g)\right]=(f, g)_{L^{2}} \quad[a(f), a(g)]=\left[a^{*}(f), a^{*}(g)\right]=0
$$

For example,

$$
\left\{0, \ldots, 0, \varphi^{\otimes N}, 0, \ldots\right\}=\frac{\left(a^{*}(\varphi)\right)^{N}}{\sqrt{N!}} \Omega
$$

where $\Omega=\{1,0, \ldots\}$ is the vacuum.

We also introduce the operator-valued distributions a_{x}^{*}, a_{x} s.t.

$$
a^{*}(f)=\int \mathrm{d} x f(x) a_{x}^{*} \quad \text { and } \quad a(f)=\int \mathrm{d} x \overline{f(x)} a_{x}
$$

We define the number of particle operator

$$
\mathcal{N}=\int \mathrm{d} x a_{x}^{*} a_{x}
$$

and the Hamiltonian

$$
\mathcal{H}_{N}=\int \mathrm{d} x \nabla_{x} a_{x}^{*} \nabla_{x} a_{x}+\frac{1}{N} \int \mathrm{~d} x \mathrm{~d} y V(x-y) a_{x}^{*} a_{y}^{*} a_{y} a_{x}
$$

Observe that

$$
e^{-i \mathcal{H}_{N} t}\left\{0, \ldots, 0, \varphi^{\otimes N}, 0, \ldots\right\}=\left\{0, \ldots, 0, e^{-i H_{N} t} \varphi^{\otimes N}, 0, \ldots\right\}
$$

What did we gain by formulating the problem on Fock space?

Coherent states: for $\varphi \in L^{2}\left(\mathbb{R}^{3}\right)$ define the Weyl operator

$$
W(\varphi)=\exp \left(a^{*}(\varphi)-a(\varphi)\right)
$$

The coherent state with wave function φ is then given by

$$
W(\varphi) \Omega=e^{-\|\varphi\|^{2} / 2} \sum_{j=0}^{\infty} \frac{a^{*}(\varphi)^{j}}{j!} \Omega=e^{-\|\varphi\|^{2} / 2}\left\{1, \varphi, \frac{\varphi^{\otimes 2}}{\sqrt{2}}, \ldots\right\}
$$

where $\Omega=\{1,0, \ldots\}$ is the vacuum.

- $W(\varphi)^{*}=W(\varphi)^{-1}=W(-\varphi)$
- $\langle W(\varphi) \Omega, \mathcal{N} W(\varphi) \Omega\rangle=\|\varphi\|^{2}$
- We have

$$
\begin{aligned}
& W^{*}(\varphi) a_{x} W(\varphi)=a_{x}+\varphi(x) \\
& W^{*}(\varphi) a_{x}^{*} W(\varphi)=a_{x}^{*}+\bar{\varphi}(x)
\end{aligned}
$$

Evolution of coherent states: we consider the initial state

$$
W(\sqrt{N} \varphi) \Omega=e^{-N / 2}\left\{1, \sqrt{N} \varphi, \ldots, \frac{N^{j / 2}}{\sqrt{j!}} \varphi^{\otimes j}, \ldots\right\}
$$

and the one-particle density associated with its time-evolution

$$
\Gamma_{N, t}^{(1)}(x ; y)=\frac{1}{N}\left\langle e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi) \Omega, a_{y}^{*} a_{x} e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi) \Omega\right\rangle
$$

Expanding around $a_{x} \simeq \sqrt{N} \varphi_{t}(x), a_{y}^{*} \simeq \sqrt{N} \bar{\varphi}_{t}(y)$, we conclude

$$
\begin{aligned}
& \Gamma_{N, t}^{(1)}(x ; y)-\varphi_{t}(x) \bar{\varphi}_{t}(y) \\
& =\frac{1}{N}\left\langle\Omega, W^{*}(\sqrt{N} \varphi) e^{i \mathcal{H}_{N} t}\left(a_{y}^{*}-\sqrt{N} \bar{\varphi}_{t}(y)\right)\right. \\
& \left.\quad \times\left(a_{x}-\sqrt{N} \varphi_{t}(x)\right) e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi) \Omega\right\rangle \\
& \quad+\frac{\varphi_{t}(x)}{\sqrt{N}}\left\langle\Omega, W^{*}(\sqrt{N} \varphi) e^{i \mathcal{H}_{N} t}\left(a_{y}^{*}-\sqrt{N} \bar{\varphi}_{t}(y)\right) e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi) \Omega\right\rangle \\
& \quad+\frac{\bar{\varphi}_{t}(y)}{\sqrt{N}}\left\langle\Omega, W^{*}(\sqrt{N} \varphi) e^{i \mathcal{H}_{N} t}\left(a_{x}-\sqrt{N} \varphi_{t}(x)\right) e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi) \Omega\right\rangle
\end{aligned}
$$

Fluctuation dynamics: since

$$
\begin{aligned}
& \left(a_{y}^{*}-\sqrt{N} \bar{\varphi}_{t}(y)\right)=W\left(\sqrt{N} \varphi_{t}\right) a_{y}^{*} W^{*}\left(\sqrt{N} \varphi_{t}\right) \\
& \left(a_{x}-\sqrt{N} \varphi_{t}(y)\right)=W\left(\sqrt{N} \varphi_{t}\right) a_{x} W^{*}\left(\sqrt{N} \varphi_{t}\right)
\end{aligned}
$$

we write, following ideas of Hepp (1973),

$$
\begin{aligned}
\Gamma_{N, t}^{(1)}(x ; y)-\varphi_{t}(x) \bar{\varphi}_{t}(y) & =\frac{1}{N}\left\langle\Omega, \mathcal{U}^{*}(t) a_{y}^{*} a_{x} \mathcal{U}(t) \Omega\right\rangle \\
& +\frac{\varphi_{t}(x)}{\sqrt{N}}\left\langle\Omega, \mathcal{U}^{*}(t) a_{y}^{*} \mathcal{U}(t) \Omega\right\rangle+\frac{\bar{\varphi}_{t}(y)}{\sqrt{N}}\left\langle\Omega, \mathcal{U}^{*}(t) a_{x} \mathcal{U}(t) \Omega\right\rangle
\end{aligned}
$$

with

$$
\mathcal{U}(t)=W\left(\sqrt{N} \varphi_{t}\right) e^{-i \mathcal{H}_{N} t} W^{*}(\sqrt{N} \varphi)
$$

The problem reduces essentially to estimating

$$
\left\langle\Omega, \mathcal{U}^{*}(t) \mathcal{N} \mathcal{U}(t) \Omega\right\rangle
$$

uniformly in N.

Observe that fluctuation dynamics satisfies

$$
i \partial_{t} \mathcal{U}(t)=\mathcal{L}_{N}(t) \mathcal{U}(t) \quad \text { with } \quad \mathcal{U}_{N}(0)=1
$$

with time-dependent generator

$$
\begin{aligned}
\mathcal{L}_{N}(t)= & \int \mathrm{d} x \nabla_{x} a_{x}^{*} \nabla_{x} a_{x}+\int \mathrm{d} x\left(V *\left|\varphi_{t}\right|^{2}\right)(x) a_{x}^{*} a_{x} \\
& +\int \mathrm{d} x \mathrm{~d} y V(x-y) \varphi_{t}(x) \bar{\varphi}_{t}(y) a_{x}^{*} a_{y} \\
& +\int \mathrm{d} x \mathrm{~d} y V(x-y)\left(\varphi_{t}(x) \varphi_{t}(y) a_{x}^{*} a_{y}^{*}+\bar{\varphi}_{t}(x) \bar{\varphi}_{t}(y) a_{x} a_{y}\right) \\
& +\frac{1}{\sqrt{N}} \int \mathrm{~d} x \mathrm{~d} y V(x-y) a_{x}^{*}\left(\bar{\varphi}_{t}(y) a_{y}+\varphi_{t}(y) a_{y}^{*}\right) a_{x} \\
& +\frac{1}{N} \int \mathrm{~d} x \mathrm{~d} y V(x-y) a_{x}^{*} a_{y}^{*} a_{y} a_{x}
\end{aligned}
$$

Growth of $\mathcal{N}: \mathcal{U}_{N}(t)$ does not preserves number of particles. Still, one can show [Rodnianski-S. (2008)]:

$$
\left\langle\psi, \mathcal{U}^{*}(t)(\mathcal{N}+1)^{k} \mathcal{U}(t) \psi\right\rangle \leq C e^{K|t|}\left\langle\psi,(\mathcal{N}+1)^{2 k+2} \psi\right\rangle
$$

Consequence [Rodnianski-S. (2008)]: For every fixed $k \in \mathbb{N}$ and $t \in \mathbb{R}$, there exists constants $C=C(k), K=K(k)>0$ with

$$
\left.\operatorname{Tr}\left|\Gamma_{N, t}^{(k)}-\right| \varphi_{t}\right\rangle\left\langle\left.\varphi_{t}\right|^{\otimes k}\right| \leq \frac{C e^{K|t|}}{N}
$$

Limiting fluctuation dynamics [Ginibre-Velo (1979)]: as $N \rightarrow \infty, \mathcal{U}(t)$ approaches $\mathcal{U}_{\infty}(t)$ where

$$
i \partial_{t} \mathcal{U}_{\infty}(t)=\mathcal{L}_{\infty}(t) \mathcal{U}_{\infty}(t)
$$

with time-dependent generator

$$
\begin{aligned}
\mathcal{L}_{\infty}(t)= & \int \mathrm{d} x \nabla_{x} a_{x}^{*} \nabla_{x} a_{x}+\int \mathrm{d} x\left(V *\left|\varphi_{t}\right|^{2}\right)(x) a_{x}^{*} a_{x} \\
& +\int \mathrm{d} x \mathrm{~d} y V(x-y) \varphi_{t}(x) \bar{\varphi}_{t}(y) a_{x}^{*} a_{y} \\
& +\int \mathrm{d} x \mathrm{~d} y V(x-y)\left(\varphi_{t}(x) \varphi_{t}(y) a_{x}^{*} a_{y}^{*}+\bar{\varphi}_{t}(x) \bar{\varphi}_{t}(y) a_{x} a_{y}\right)
\end{aligned}
$$

Since the generator is quadratic, $\mathcal{U}_{\infty}(t)$ can be described as a Bogoliubov transformation.

For $f, g \in L^{2}\left(\mathbb{R}^{3}\right)$, let $A(f, g)=a^{*}(f)+a(\bar{g})$.
A Bogoliubov transformation is a linear map

$$
\Theta: L^{2}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right) \rightarrow L^{2}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)
$$

which preserves canonical commutation relation, i.e.

$$
\left[A\left(\Theta\left(f_{1}, g_{1}\right)\right), A\left(\Theta\left(f_{2}, g_{2}\right)\right)\right]=\left[A\left(f_{1}, g_{1}\right), A\left(f_{2}, g_{2}\right)\right]
$$

for all $f_{1}, f_{2}, g_{1}, g_{2} \in L^{2}\left(\mathbb{R}^{3}\right)$.
Easy to check:
Θ Bogoliubov transf. $\Leftrightarrow \Theta^{*}\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right) \Theta=\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right)$

$$
\Leftrightarrow \quad \Theta=\left(\begin{array}{cc}
\frac{U}{V} & \frac{V}{U}
\end{array}\right)
$$

where $U, V: L^{2}\left(\mathbb{R}^{3}\right) \rightarrow L^{2}\left(\mathbb{R}^{3}\right)$ are s.t. $U^{*} U-V^{*} V=1$ and $U^{*} \bar{V}-V^{*} \bar{U}=0$.

The limiting fluctuation dynamics $\mathcal{U}_{\infty}(t)$ is so that

$$
\mathcal{U}_{\infty}(t) A(f, g) \mathcal{U}_{\infty}^{*}(t)=A\left(\Theta_{t}(f, g)\right)
$$

for a time-dependent Bogoliubov transformation

$$
\Theta_{t}=\left(\begin{array}{cc}
U_{t} & \bar{V}_{t} \\
V_{t} & \bar{U}_{t}
\end{array}\right)
$$

A simple computation shows that $\Theta_{t=0}=1$ and

$$
i \partial_{t} \Theta_{t}=\left(\begin{array}{cc}
D_{t} & -\bar{B}_{t} \\
B_{t} & -\bar{D}_{t}
\end{array}\right) \Theta_{t}
$$

with $D_{t}, B_{t}: L^{2}\left(\mathbb{R}^{3}\right) \rightarrow L^{2}\left(\mathbb{R}^{3}\right)$ given by

$$
\begin{aligned}
& D_{t} f=-\Delta f+\left(V *\left|\varphi_{t}\right|^{2}\right) f+\left(V * \bar{\varphi}_{t} f\right) \varphi_{t} \\
& B_{t} f=\left(V * \bar{\varphi}_{t} f\right) \bar{\varphi}_{t}
\end{aligned}
$$

Back to factorized data: we compute

$$
\begin{aligned}
\gamma_{N, t}^{(1)}(x, y) & =\frac{1}{N}\left\langle e^{-i \mathcal{H}_{N} t} \frac{\left(a^{*}(\varphi)\right)^{N}}{\sqrt{N!}} \Omega, a_{x}^{*} a_{y} e^{-i \mathcal{H}_{N} t} \frac{\left(a^{*}(\varphi)\right)^{N}}{\sqrt{N!}} \Omega\right\rangle \\
& =\frac{d_{N}}{N}\left\langle e^{-i \mathcal{H}_{N} t} \frac{\left(a^{*}(\varphi)\right)^{N}}{\sqrt{N!}} \Omega, a_{x}^{*} a_{y} e^{-i \mathcal{H}_{N} t} P_{N} W(\sqrt{N} \varphi) \Omega\right\rangle \\
& =\frac{d_{N}}{N}\left\langle e^{-i \mathcal{H}_{N} t} \frac{\left(a^{*}(\varphi)\right)^{N}}{\sqrt{N!}} \Omega, a_{x}^{*} a_{y} e^{-i \mathcal{H}_{N} t} W(\sqrt{N} \varphi) \Omega\right\rangle
\end{aligned}
$$

with $d_{N} \simeq N^{1 / 4}$. We introduce fluctuation dynamics:

$$
\begin{aligned}
\gamma_{N, t}^{(1)}(x, y)= & \frac{1}{N}\left\langle\xi, \mathcal{U}(t)\left(a_{x}^{*}+\sqrt{N} \bar{\varphi}_{t}(x)\right)\left(a_{y}+\sqrt{N} \varphi_{t}(y)\right) \mathcal{U}^{*}(t) \Omega\right\rangle \\
= & \bar{\varphi}_{t}(x) \varphi_{t}(y)+\frac{1}{N}\left\langle\xi, \mathcal{U}^{*}(t) a_{x}^{*} a_{y} \mathcal{U}(t) \Omega\right\rangle \\
& +\frac{\bar{\varphi}_{t}(x)}{\sqrt{N}}\left\langle\xi, \mathcal{U}^{*}(t) a_{y} \mathcal{U}(t) \Omega\right\rangle+\frac{\varphi_{t}(y)}{\sqrt{N}}\left\langle\xi, \mathcal{U}^{*}(t) a_{x}^{*} \mathcal{U}(t) \Omega\right\rangle
\end{aligned}
$$

with

$$
\xi=d_{N} W^{*}(\sqrt{N} \varphi) \frac{\left(a^{*}(\varphi)\right)^{N}}{\sqrt{N!}} \Omega
$$

As before, the problem reduces to controlling the growth of

$$
\left\langle\xi, \mathcal{U}^{*}(t) \mathcal{N} \mathcal{U}(t) \Omega\right\rangle
$$

uniformly in N.
Using the estimate

$$
\left\|(\mathcal{N}+1)^{-1} \xi\right\| \lesssim 1
$$

and the bounds

$$
\left\langle\psi, \mathcal{U}^{*}(t)(\mathcal{N}+1)^{k} \mathcal{U}(t) \psi\right\rangle \leq C e^{K|t|}\left\langle\psi,(\mathcal{N}+1)^{2 k+2} \psi\right\rangle
$$

one obtains:

Theorem [Chen, Lee, S. (2011)]: For every $k \in \mathbb{N}, t \in \mathbb{R}$, there exist constants $C=C(k)$ and $K=K(k)$ such that

$$
\left.\operatorname{Tr}\left|\gamma_{N, t}^{(k)}-\right| \varphi_{t}\right\rangle\left\langle\left.\varphi_{t}\right|^{\otimes k}\right| \leq \frac{C e^{K|t|}}{N}
$$

A probabilistic setting: For a self-adjoint J on $L^{2}\left(\mathbb{R}^{3}\right)$, let

$$
\mathcal{J}=\sum_{i=1}^{N} J^{(i)} \quad \text { with } J^{(i)}=1 \otimes \cdots \otimes J \otimes \cdots \otimes 1
$$

For example, if $J=\chi_{A}(x)$, for $A \subset \mathbb{R}^{3}, \mathcal{J}$ measures the number of particles in A.

At time $t=0, \psi_{N}=\varphi^{\otimes N}$, and \mathcal{J} is a sum of iid random variables. Hence, we have a law of large numbers:

$$
\mathbb{P}_{\varphi^{\otimes N}}\left(\left|\frac{1}{N} \sum_{i=1}^{N}\left(J^{(i)}-\langle\varphi, J \varphi\rangle\right)\right| \geq \delta\right) \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

and a central limit theorem:
$\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(J^{(i)}-\langle\varphi, J \varphi\rangle\right) \rightarrow N\left(0, \sigma^{2}\right), \quad$ with $\sigma^{2}=\left\langle\varphi, J^{2} \varphi\right\rangle-\langle\varphi, J \varphi\rangle^{2}$

What happens at time $t \neq 0$?

The law of large number is still correct. In fact, with

$$
\tilde{J}=J-\left\langle\varphi_{t}, J \varphi_{t}\right\rangle,
$$

we find

$$
\begin{aligned}
\mathbb{P}_{\psi_{N, t}}\left(\left|\frac{1}{N} \sum_{i=1}^{N} \widetilde{J}^{(i)}\right| \geq \delta\right) & \leq \frac{1}{\delta^{2} N^{2}}\left\langle\psi_{N, t},\left(\sum_{i=1}^{N} \widetilde{J}^{(i)}\right)^{2} \psi_{N, t}\right\rangle \\
& =\frac{1}{\delta^{2}} \operatorname{Tr} \gamma_{N, t}^{(2)}(\widetilde{J} \otimes \widetilde{J})+\frac{1}{\delta^{2} N} \operatorname{Tr} \gamma_{N, t}^{(1)} \widetilde{J}^{2} \\
& \rightarrow \frac{1}{\delta^{2}} \operatorname{Tr}\left|\varphi_{t}\right\rangle\left\langle\left.\varphi_{t}\right|^{2}(\widetilde{J} \otimes \widetilde{J})=0\right.
\end{aligned}
$$

as $N \rightarrow \infty$.

Natural question: does a central limit theorem hold w.r.t. $\psi_{N, t}$?

Theorem [Ben Arous, Kirkpatrick, S. (2011)]: W.r.t. the wave function $\psi_{N, t}$ the random variable

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(J^{(i)}-\left\langle\varphi_{t}, J \varphi_{t}\right\rangle\right)
$$

converges in distribution, as $N \rightarrow \infty$ to a centered Gaussian random variable with variance
$\sigma_{t}^{2}=\left[\left\langle\Theta_{t}\left(J \varphi_{t}, \overline{J \varphi_{t}}\right), \Theta_{t}\left(J \varphi_{t}, \overline{J \varphi_{t}}\right)\right\rangle-\left|\left\langle\Theta_{t}\left(J \varphi_{t}, \overline{J \varphi_{t}}\right), \frac{1}{\sqrt{2}}(\varphi, \bar{\varphi})\right\rangle\right|^{2}\right]$

Equivalently,

$$
\sigma_{t}^{2}=\left\|U_{t} J \varphi_{t}+\bar{V}_{t} J \varphi_{t}\right\|^{2}-\left|\left\langle\varphi, U_{t} J \varphi_{t}+\bar{V}_{t} J \varphi_{t}\right\rangle\right|^{2} \geq 0
$$

So, w.r.t. $\psi_{N, t}$ central limit theorem still holds true, but the variance changes.

Ideas from proof: compute moments in the limit $N \rightarrow \infty$.

For example,
$\mathbb{E}_{\psi_{N, t}}\left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(J^{(i)}-\left\langle\varphi_{t}, J \varphi_{t}\right\rangle\right)\right)^{2}=\operatorname{Tr} \gamma_{N, t}^{(1)} \tilde{J}^{2}+N \operatorname{Tr} \gamma_{N, t}^{(2)}(\widetilde{J} \otimes \widetilde{J})$

First term gives $\left\|\widetilde{J} \varphi_{t}\right\|^{2}$, the result we would find for factorized wave function $\varphi_{t}^{\otimes N}$.

Second term gives contribution from correlations. It can be computed writing

$$
N \operatorname{Tr} \gamma_{N, t}^{(2)}(\widetilde{J} \otimes \widetilde{J})=N \int \tilde{J}\left(x_{1}, x_{1}^{\prime}\right) \widetilde{J}\left(x_{2}, x_{2}^{\prime}\right) \gamma_{N, t}^{(2)}\left(x_{1}^{\prime}, x_{2}^{\prime} ; x_{1}, x_{2}\right)
$$

and

$$
\gamma_{N, t}^{(2)}\left(x_{1}^{\prime}, x_{2}^{\prime} ; x_{1}, x_{2}\right)=\frac{1}{N^{2}}\left\langle\psi_{N, t}, a_{x_{1}}^{*} a_{x_{2}}^{*} a_{x_{1}^{\prime}} a_{x_{2}^{\prime}} \psi_{N, t}\right\rangle
$$

As before, we put

$$
\xi=d_{N} W^{*}(\sqrt{N} \varphi) \frac{a^{*}(\varphi)^{N}}{\sqrt{N!}} \Omega
$$

Then

$$
\begin{aligned}
& N \operatorname{Tr} \gamma_{N, t}^{(2)}(\widetilde{J} \otimes \widetilde{J}) \\
& \begin{aligned}
&=\frac{1}{N} \int \widetilde{J}\left(x_{1}, x_{1}^{\prime}\right) \widetilde{J}\left(x_{2}, x_{2}^{\prime}\right) \\
& \times\left\langle\xi, \mathcal{U}^{*}(t)\left(a_{x_{1}}^{*}+\sqrt{N} \bar{\varphi}_{t}\left(x_{1}\right)\right)\left(a_{x_{2}}^{*}+\sqrt{N} \bar{\varphi}_{t}\left(x_{2}\right)\right)\right. \\
&\left.\times\left(a_{x_{1}^{\prime}}+\sqrt{N} \varphi_{t}\left(x_{1}^{\prime}\right)\right)\left(a_{x_{2}^{\prime}}+\sqrt{N} \varphi_{t}\left(x_{2}^{\prime}\right)\right) \mathcal{U}(t) \Omega\right\rangle
\end{aligned}
\end{aligned}
$$

Counting ξ as order one, only terms with at least 2 factors φ_{t} survive the limit $N \rightarrow \infty$.

On other hand, all terms with more than $2 \varphi_{t}$ factors vanish, because $\left\langle\varphi_{t}, \widetilde{J} \varphi_{t}\right\rangle=0$.

We are left with

$$
\begin{aligned}
N \operatorname{Tr} \gamma_{N, t}^{(2)}(\widetilde{J} \otimes \widetilde{J}) & =\left\langle\xi, \mathcal{U}^{*}(t):\left(a^{*}\left(\widetilde{J} \varphi_{t}\right)+a\left(\widetilde{J} \varphi_{t}\right)\right)^{2}: \mathcal{U}(t) \Omega\right\rangle \\
& \simeq\left\langle\xi, \mathcal{U}_{\infty}^{*}(t) A\left(\widetilde{J} \varphi_{t}, \widetilde{J} \varphi_{t}\right)^{2} \mathcal{U}_{\infty}(t) \Omega\right\rangle-\left\|\widetilde{J} \varphi_{t}\right\|^{2} \\
& =\left\langle\xi, A\left(\Theta_{t}\left(\widetilde{J} \varphi_{t}, \widetilde{J} \varphi_{t}\right)\right)^{2} \Omega\right\rangle-\left\|\widetilde{J} \varphi_{t}\right\|^{2}
\end{aligned}
$$

Since $\xi \simeq \Omega-\frac{1}{2} a^{*}(\varphi)^{2} \Omega+\ldots$, we conclude

$$
\begin{aligned}
N \operatorname{Tr} \gamma_{N, t}^{(2)}(\tilde{J} \otimes \widetilde{J})= & \left\langle\Omega, A\left(\Theta_{t}\left(\widetilde{J} \varphi_{t}, \widetilde{\widetilde{J} \varphi_{t}}\right)\right)^{2} \Omega\right\rangle \\
& -\frac{1}{2}\left\langle a^{*}(\varphi)^{2} \Omega, A\left(\Theta_{t}\left(\widetilde{J} \varphi_{t}, \bar{J} \varphi_{t}\right)\right)^{2} \Omega\right\rangle-\left\|\widetilde{J} \varphi_{t}\right\|^{2}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \mathbb{E}_{\psi_{N, t}}\left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(J^{(i)}-\left\langle\varphi_{t}, J \varphi_{t}\right\rangle\right)\right)^{2} \\
& \rightarrow\left[\left\langle\Theta_{t}\left(J \varphi_{t}, \overline{J \varphi_{t}}\right), \Theta_{t}\left(J \varphi_{t}, \overline{J \varphi_{t}}\right)\right\rangle-\left|\left\langle\Theta_{t}\left(J \varphi_{t}, \overline{J \varphi_{t}}\right), \frac{1}{\sqrt{2}}(\varphi, \bar{\varphi})\right\rangle\right|^{2}\right]
\end{aligned}
$$

