The mass shell in the semi-relativistic Pauli-Fierz model

Oliver Matte (LMU Munich)
Joint work with
Martin Könenberg (U Vienna)

Spectral Days, Munich, 11.4.2012

Contents

- Model
- Main Result
- Strategy
- Related Results

Model

The semi-relativistic Pauli-Fierz Hamiltonian

for an electron (with spin) moving in \mathbb{R}^{3} and interacting with the quantized radiation field is [Miyao-Spohn 2009]

$$
\mathbb{H}:=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(-i \nabla_{\mathbf{x}} \otimes \mathbb{1}+\mathfrak{e} \mathbb{A}\right)\right)^{2}+\mathbb{1}}+\mathbb{1} \otimes H_{\mathrm{f}} .
$$

It is acting in the Hilbert space $L^{2}\left(\mathbb{R}_{\mathbf{x}}^{3}, \mathbb{C}^{2}\right) \otimes \mathscr{F}$, where \mathscr{F} is the bosonic Fock space,

$$
\mathscr{F}:=\mathbb{C} \oplus \bigoplus_{n=1}^{\infty} L_{\mathrm{sym}}^{2}\left(\left(\mathbb{R}_{\mathbf{k}}^{3} \times \mathbb{Z}_{2}\right)^{n}\right) .
$$

The semi-relativistic Pauli-Fierz Hamiltonian

for an electron (with spin) moving in \mathbb{R}^{3} and interacting with the quantized radiation field is [Miyao-Spohn 2009]

$$
\mathbb{H}:=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(-i \nabla_{\mathbf{x}} \otimes \mathbb{1}+\mathfrak{e} \mathbb{A}\right)\right)^{2}+\mathbb{1}}+\mathbb{1} \otimes H_{\mathrm{f}} .
$$

It is acting in the Hilbert space $L^{2}\left(\mathbb{R}_{\mathbf{x}}^{3}, \mathbb{C}^{2}\right) \otimes \mathscr{F}$, where \mathscr{F} is the bosonic Fock space,

$$
\mathscr{F}:=\mathbb{C} \oplus \bigoplus_{n=1}^{\infty} L_{\mathrm{sym}}^{2}\left(\left(\mathbb{R}_{\mathbf{k}}^{3} \times \mathbb{Z}_{2}\right)^{n}\right) .
$$

- σ : vector of Pauli matrices.
\square

The semi-relativistic Pauli-Fierz Hamiltonian

for an electron (with spin) moving in \mathbb{R}^{3} and interacting with the quantized radiation field is [Miyao-Spohn 2009]

$$
\mathbb{H}:=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(-i \nabla_{\mathbf{x}} \otimes \mathbb{1}+\mathfrak{e} \mathbb{A}\right)\right)^{2}+\mathbb{1}}+\mathbb{1} \otimes H_{\mathrm{f}} .
$$

It is acting in the Hilbert space $L^{2}\left(\mathbb{R}_{\mathbf{x}}^{3}, \mathbb{C}^{2}\right) \otimes \mathscr{F}$, where \mathscr{F} is the bosonic Fock space,

$$
\mathscr{F}:=\mathbb{C} \oplus \bigoplus_{n=1}^{\infty} L_{\mathrm{sym}}^{2}\left(\left(\mathbb{R}_{\mathbf{k}}^{3} \times \mathbb{Z}_{2}\right)^{n}\right) .
$$

- σ : vector of Pauli matrices.
- A: quantized, UV cutoff vector potential; $\mathfrak{e}>0$.

The semi-relativistic Pauli-Fierz Hamiltonian

for an electron (with spin) moving in \mathbb{R}^{3} and interacting with the quantized radiation field is [Miyao-Spohn 2009]

$$
\mathbb{H}:=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(-i \nabla_{\mathbf{x}} \otimes \mathbb{1}+\mathfrak{e} \mathbb{A}\right)\right)^{2}+\mathbb{1}}+\mathbb{1} \otimes H_{\mathrm{f}} .
$$

It is acting in the Hilbert space $L^{2}\left(\mathbb{R}_{\mathbf{x}}^{3}, \mathbb{C}^{2}\right) \otimes \mathscr{F}$, where \mathscr{F} is the bosonic Fock space,

$$
\mathscr{F}:=\mathbb{C} \oplus \bigoplus_{n=1}^{\infty} L_{\mathrm{sym}}^{2}\left(\left(\mathbb{R}_{\mathbf{k}}^{3} \times \mathbb{Z}_{2}\right)^{n}\right) .
$$

- σ : vector of Pauli matrices.
- A: quantized, UV cutoff vector potential; $\mathfrak{e}>0$.
- $H_{\mathrm{f}}=\sum_{\lambda=0,1} \int_{\mathbb{R}^{3}}|\mathbf{k}| a_{\lambda}^{*}(\mathbf{k}) a_{\lambda}(\mathbf{k}) d^{3} \mathbf{k}$: radiation field energy.

Previous results in exterior potential

Thm (M.-Stockmeyer ' $\mathbf{1 0}$, Könenberg-M.-S. ' $\mathbf{1 1 , ~ K . - M . ~ ' ~}{ }^{1 X}$)
For all $\mathfrak{e}, \kappa>0$ and $\gamma \in[0,2 / \pi]$, there is a distinguished self-adjoint realization of

$$
\mathbb{H}_{\gamma}:=\mathbb{H}-\gamma /|\mathbf{x}| .
$$

If $\gamma \in(0,2 / \pi]$, then $\inf \sigma\left(H_{\gamma}\right)$ is a (degenerate) eigenvalue. If Φ is a corresponding eigenvector, and $a>0$ satisfies

For $\gamma>2 / \pi$, the quadratic form of H_{γ} is unbounded below.

Previous results in exterior potential

Thm (M.-Stockmeyer '10, Könenberg-M.-S. '11, K.-M. '1X)
For all $\mathfrak{e}, \kappa>0$ and $\gamma \in[0,2 / \pi]$, there is a distinguished self-adjoint realization of

$$
H_{\gamma}:=\mathbb{H}-\gamma /|\mathbf{x}| .
$$

If $\gamma \in(0,2 / \pi]$, then $\inf \sigma\left(H_{\gamma}\right)$ is a (degenerate) eigenvalue. If Φ is a corresponding eigenvector, and $a>0$ satisfies

For $\gamma>2 / \pi$, the quadratic form of H_{γ} is unbounded below.

Previous results in exterior potential

Thm (M.-Stockmeyer '10, Könenberg-M.-S. '11, K.-M. '1X)

For all $\mathfrak{e}, \kappa>0$ and $\gamma \in[0,2 / \pi]$, there is a distinguished self-adjoint realization of

$$
\mathbb{H}_{\gamma}:=\mathbb{H}-\gamma /|\mathbf{x}| .
$$

If $\gamma \in(0,2 / \pi]$, then $\inf \sigma\left(\mathbb{H}_{\gamma}\right)$ is a (degenerate) eigenvalue. If Φ is a corresponding eigenvector, and $a>0$ satisfies
$1-\left(1-a^{2}\right)^{1 / 2}<\inf \sigma(\mathbb{H})-\inf \sigma\left(H_{\gamma}\right), \quad$ then $\quad e^{a|\mathbf{x}|} \Phi \in L^{2} \otimes \mathscr{F}$.
For $\gamma>2 / \pi$, the quadratic form of H_{γ} is unbounded below.

Previous results in exterior potential

Thm (M.-Stockmeyer '10, Könenberg-M.-S. '11, K.-M. '1X)

For all $\mathfrak{e}, \kappa>0$ and $\gamma \in[0,2 / \pi]$, there is a distinguished self-adjoint realization of

$$
\mathbb{H}_{\gamma}:=\mathbb{H}-\gamma /|\mathbf{x}| .
$$

If $\gamma \in(0,2 / \pi]$, then $\inf \sigma\left(H_{\gamma}\right)$ is a (degenerate) eigenvalue. If Φ is a corresponding eigenvector, and $a>0$ satisfies $1-\left(1-a^{2}\right)^{1 / 2}<\inf \sigma(H)-\inf \sigma\left(H_{\gamma}\right), \quad$ then $\quad e^{a|\mathbf{x}|} \Phi \in L^{2} \otimes \mathscr{F}$.

For $\gamma>2 / \pi$, the quadratic form of H_{γ} is unbounded below.

Previous results in exterior potential

Thm (M.-Stockmeyer '10, Könenberg-M.-S. '11, K.-M. '1X)

For all $\mathfrak{e}, \kappa>0$ and $\gamma \in[0,2 / \pi]$, there is a distinguished self-adjoint realization of

$$
\mathbb{H}_{\gamma}:=\mathbb{H}-\gamma /|\mathbf{x}| .
$$

If $\gamma \in(0,2 / \pi]$, then $\inf \sigma\left(H_{\gamma}\right)$ is a (degenerate) eigenvalue. If Φ is a corresponding eigenvector, and $a>0$ satisfies
$1-\left(1-a^{2}\right)^{1 / 2}<\inf \sigma(H)-\inf \sigma\left(H_{\gamma}\right), \quad$ then $\quad e^{a|\mathbf{x}|} \Phi \in L^{2} \otimes \mathscr{F}$.
For $\gamma>2 / \pi$, the quadratic form of H_{γ} is unbounded below.

- NR case: Bach-Fröhlich-Sigal 1999, Griesemer-Lieb-Loss 2001.

Theorem (Könenberg-M.)

Let $\mathfrak{e}, \kappa>0$, let $V: \mathbb{R}^{3} \rightarrow[0, \infty)$ be a small form perturbation of $\sqrt{1-\Delta}$, and assume $\sqrt{1-\Delta}-1-V$ has negative eigenvalues $e_{0}<e_{1}<\ldots<0$. Then the binding energy is increased in presence of the quantized radiation field, i.e.

$$
\inf \sigma(\mathbb{H})-\inf \sigma(\mathbb{H}-V)>\left|e_{0}\right| .
$$

Remarks. - For non-zero $0 \leqslant V \in L^{3 / 2}\left(\mathbb{R}^{3}\right) \cap L^{3}\left(\mathbb{R}^{3}\right)$ one observes

Theorem (Könenberg-M.)

Let $\mathfrak{e}, \kappa>0$, let $V: \mathbb{R}^{3} \rightarrow[0, \infty)$ be a small form perturbation of $\sqrt{1-\Delta}$, and assume $\sqrt{1-\Delta}-1-V$ has negative eigenvalues $e_{0}<e_{1}<\ldots<0$. Then the binding energy is increased in presence of the quantized radiation field, i.e.

$$
\inf \sigma(\mathbb{H})-\inf \sigma(\mathbb{H}-V)>\left|e_{0}\right| .
$$

Remarks.

- For non-zero $0 \leqslant V \in L^{3 / 2}\left(\mathbb{R}^{3}\right) \cap L^{3}\left(\mathbb{R}^{3}\right)$ one observes enhanced binding in the quantized radiation field at arbitrary $\mathfrak{e}, \kappa>0$.

Spohn, Vougalter, Wugalter.

Theorem (Könenberg-M.)

Let $\mathfrak{e}, \kappa>0$, let $V: \mathbb{R}^{3} \rightarrow[0, \infty)$ be a small form perturbation of $\sqrt{1-\Delta}$, and assume $\sqrt{1-\Delta}-1-V$ has negative eigenvalues $e_{0}<e_{1}<\ldots<0$. Then the binding energy is
increased in presence of the quantized radiation field, i.e.

$$
\inf \sigma(\mathbb{H})-\inf \sigma(\mathbb{H}-V)>\left|e_{0}\right| .
$$

Remarks.

- For non-zero $0 \leqslant V \in L^{3 / 2}\left(\mathbb{R}^{3}\right) \cap L^{3}\left(\mathbb{R}^{3}\right)$ one observes enhanced binding in the quantized radiation field at arbitrary $\mathfrak{e}, \kappa>0$.
- NR case: Catto, Chen, Exner, Hainzl, Hiroshima, Linde, Spohn, Vougalter, Wugalter.

Theorem (Könenberg-M.)

Let $\mathfrak{e}, \kappa>0$, let $V: \mathbb{R}^{3} \rightarrow[0, \infty)$ be a small form perturbation of $\sqrt{1-\Delta}$, and assume $\sqrt{1-\Delta}-1-V$ has negative eigenvalues $e_{0}<e_{1}<\ldots<0$. Then the binding energy is
increased in presence of the quantized radiation field, i.e.

$$
\inf \sigma(\mathbb{H})-\inf \sigma(\mathbb{H}-V)>\left|e_{0}\right| .
$$

Remarks.

- For non-zero $0 \leqslant V \in L^{3 / 2}\left(\mathbb{R}^{3}\right) \cap L^{3}\left(\mathbb{R}^{3}\right)$ one observes enhanced binding in the quantized radiation field at arbitrary $\mathfrak{e}, \kappa>0$.
- NR case: Catto, Chen, Exner, Hainzl, Hiroshima, Linde, Spohn, Vougalter, Wugalter.
- (\%) with \geqslant has been shown first by Hiroshima-Sasaki, 2010.

Intuitive picture:
A moving electron is surrounded by a cloud of soft photons, i.e. photons of low energy. The electron together with its photon cloud behaves like a particle having a larger mass than the electron alone. Heavier particles yield higher binding energies.

Intuitive picture:
A moving electron is surrounded by a cloud of soft photons, i.e. photons of low energy. The electron together with its photon cloud behaves like a particle having a larger mass than the electron alone. Heavier particles yield higher binding energies.

Aim

Study the electron and its photon cloud more precisely
\square

Intuitive picture:
A moving electron is surrounded by a cloud of soft photons, i.e. photons of low energy. The electron together with its photon cloud behaves like a particle having a larger mass than the electron alone. Heavier particles yield higher binding energies.

Aim

Study the electron and its photon cloud more precisely using Pizzo's iterative analytic perturbation theory [Pizzo 2003].

We shall establish results recently obtained in the
\square [Chen-Fröhlich-Pizzo, 2009], [Fröhlich-Pizzo, 2010$]$

Intuitive picture:
A moving electron is surrounded by a cloud of soft photons, i.e. photons of low energy. The electron together with its photon cloud behaves like a particle having a larger mass than the electron alone. Heavier particles yield higher binding energies.

Aim

Study the electron and its photon cloud more precisely using Pizzo's iterative analytic perturbation theory [Pizzo 2003].

We shall establish results recently obtained in the non-relativistic case by [Chen-Fröhlich, 2007],
[Chen-Fröhlich-Pizzo, 2009], [Fröhlich-Pizzo, 2010].

Fiber Hamiltonians

The semi-relativistic Pauli-Fierz Hamiltonian is unitarily equivalent to a direct integral,

$$
\mathbb{H} \cong_{U} \int_{\mathbb{R}^{3}}^{\oplus} H(\mathbf{P}) d^{3} \mathbf{P}
$$

of fiber Hamiltonians, $\left.\left.H(\mathbb{P})=\sqrt{\left(\sigma \cdot\left(\mathbf{P}-\mathrm{p}_{\mathrm{f}}\right.\right.}+c \mathrm{~A}\right)\right)^{2}+\mathbb{1}+H_{\mathrm{f}}$ acting in the fiber Hilbert space $\mathbb{C}^{2} \otimes \mathscr{F}$.

Fiber Hamiltonians

The semi-relativistic Pauli-Fierz Hamiltonian is unitarily equivalent to a direct integral,

$$
\mathbb{H} \cong_{U} \int_{\mathbb{R}^{3}}^{\oplus} H(\mathbf{P}) d^{3} \mathbf{P}
$$

of fiber Hamiltonians,

$$
H(\mathbf{P})=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}+\mathfrak{e} \mathbf{A}\right)\right)^{2}+\mathbb{1}}+H_{\mathrm{f}}, \quad \mathbf{P} \in \mathbb{R}^{3}, \mathfrak{e}>0
$$

acting in the fiber Hilbert space $\mathbb{C}^{2} \otimes \mathscr{F}$.

Fiber Hamiltonians

The semi-relativistic Pauli-Fierz Hamiltonian is unitarily equivalent to a direct integral,

$$
\mathbb{H} \cong_{U} \int_{\mathbb{R}^{3}}^{\oplus} H(\mathbf{P}) d^{3} \mathbf{P}
$$

of fiber Hamiltonians,

$$
H(\mathbf{P})=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}+\mathfrak{e} \mathbf{A}\right)\right)^{2}+\mathbb{1}}+H_{\mathrm{f}}, \quad \mathbf{P} \in \mathbb{R}^{3}, \mathfrak{e}>0
$$

acting in the fiber Hilbert space $\mathbb{C}^{2} \otimes \mathscr{F}$.

- $H_{\mathrm{f}}=\sum_{\lambda=0,1} \int_{\mathbb{R}^{3}}|\mathbf{k}| a_{\lambda}^{*}(\mathbf{k}) a_{\lambda}(\mathbf{k}) d^{3} \mathbf{k}$
- $\mathbf{p}_{\mathrm{f}}=\sum_{\lambda=0,1} \int_{\mathbb{R}^{3}} \mathbf{k} a_{\lambda}^{*}(\mathbf{k}) a_{\lambda}(\mathbf{k}) d^{3} \mathbf{k}$
- $\mathbf{A}=\frac{1}{(2 \pi)^{3 / 2}} \sum_{\lambda=0,1} \int_{|\mathbf{k}|<\kappa} \varepsilon_{\lambda}(\mathbf{k})\left(a_{\lambda}^{*}(\mathbf{k})+a_{\lambda}(\mathbf{k})\right) \frac{d^{3} \mathbf{k}}{(2|\mathbf{k}|)^{1 / 2}}$, $\kappa>0$.

Main Result

Define the mass shell / ground state energies,

$$
E(\mathbf{P}):=\inf \sigma(H(\mathbf{P})), \quad \mathbf{P} \in \mathbb{R}^{3} .
$$

Theorem (Könenberg-M.)

For all $n, \psi>0$, there exists $c_{0}>0$ such that, for all $e \in\left(0, e_{0}\right)$, the ground state energy E is twice continuously differentiable and strictly convex on $\mathcal{B}_{\mathfrak{p}}:=\left\{\mathbf{P} \in \mathbb{R}^{3}:|\mathbf{P}|<\mathfrak{p}\right\}$. Moreover, $E(\mathbf{0})=\min E$.

- NR case: Fröhlich-Pizzo 2010.

- Bounds on $F^{\prime \prime}$ in the NR case: Bach-Chen-Fröhlich-Sigal 2007, Chen 2008.

Define the mass shell / ground state energies,

$$
E(\mathbf{P}):=\inf \sigma(H(\mathbf{P})), \quad \mathbf{P} \in \mathbb{R}^{3}
$$

Theorem (Könenberg-M.)

For all $\kappa, \mathfrak{p}>0$, there exists $\mathfrak{e}_{0}>0$ such that, for all $\mathfrak{e} \in\left(0, \mathfrak{e}_{0}\right]$, the ground state energy E is twice continuously differentiable and strictly convex on $\mathcal{B}_{\mathfrak{p}}:=\left\{\mathbf{P} \in \mathbb{R}^{3}:|\mathbf{P}|<\mathfrak{p}\right\}$.
Moreover, $E(\mathbf{0})=\min E$.

$$
\text { NR case: Fröhlich-Pizzo } 2010 .
$$

Bounds on $E^{\prime \prime}$ in the NR case: Bach-Chen-Fröhlich-Sigal 2007, Chen 2008.

Define the mass shell / ground state energies,

$$
E(\mathbf{P}):=\inf \sigma(H(\mathbf{P})), \quad \mathbf{P} \in \mathbb{R}^{3}
$$

Theorem (Könenberg-M.)

For all $\kappa, \mathfrak{p}>0$, there exists $\mathfrak{e}_{0}>0$ such that, for all $\mathfrak{e} \in\left(0, \mathfrak{e}_{0}\right]$, the ground state energy E is twice continuously differentiable and strictly convex on $\mathcal{B}_{\mathfrak{p}}:=\left\{\mathbf{P} \in \mathbb{R}^{3}:|\mathbf{P}|<\mathfrak{p}\right\}$.
Moreover, $E(\mathbf{0})=\min E$.

- NR case: Fröhlich-Pizzo 2010.
- Bounds on $E^{\prime \prime}$ in the NR case: Bach-Chen-Fröhlich-Sigal 2007, Chen 2008.

Strategy

Obstacle

$E(\mathbf{P})$ is not an isolated eigenvalue of $H(\mathbf{P})$; analytic perturbation theory is not applicable.

Introduce IR cutoff fiber Hilbert spaces, $\mathbb{C}^{2} \otimes \mathscr{F}{ }_{j}, j \in \mathbb{N}_{0}$,

Obstacle

$E(\mathbf{P})$ is not an isolated eigenvalue of $H(\mathbf{P})$; analytic perturbation theory is not applicable.
\rightsquigarrow Introduce IR cutoff fiber Hilbert spaces, $\mathbb{C}^{2} \otimes \mathscr{F}_{j}, j \in \mathbb{N}_{0}$,

$$
\mathscr{F}_{j}:=\mathbb{C} \oplus \bigoplus^{\infty} L_{\text {sym }}^{2}\left(\left(\mathcal{A}_{j} \times \mathbb{Z}_{2}\right)^{n}\right), \quad \mathcal{A}_{j}:=\left\{|\mathbf{k}| \geqslant \kappa(1 / 2)^{j}\right\} ;
$$

define $H_{j}(\mathbf{P})$ in the same way as $H(\mathbf{P})$ on the IR cutoff space,

$$
H_{j}(\mathbf{P}):=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}^{(j)}+\mathfrak{e} \mathbf{A}^{(j)}\right)^{2}+\mathbb{1}\right.}+H_{\mathrm{f}}^{(j)}
$$

Obstacle

$E(\mathbf{P})$ is not an isolated eigenvalue of $H(\mathbf{P})$; analytic perturbation theory is not applicable.
\rightsquigarrow Introduce IR cutoff fiber Hilbert spaces, $\mathbb{C}^{2} \otimes \mathscr{F}_{j}, j \in \mathbb{N}_{0}$,

$$
\mathscr{F}_{j}:=\mathbb{C} \oplus \bigoplus_{n=1}^{\infty} L_{\text {sym }}^{2}\left(\left(\mathcal{A}_{j} \times \mathbb{Z}_{2}\right)^{n}\right), \quad \mathcal{A}_{j}:=\left\{|\mathbf{k}| \geqslant \kappa(1 / 2)^{j}\right\}
$$

define $H_{j}(\mathbf{P})$ in the same way as $H(\mathbf{P})$ on the IR cutoff space,

$$
H_{j}(\mathbf{P}):=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}^{(j)}+\mathfrak{e} \mathbf{A}^{(j)}\right)^{2}+\mathbb{1}\right.}+H_{\mathrm{f}}^{(j)}
$$

- $H_{\mathrm{f}}^{(j)}=\sum_{\lambda=0,1} \int_{\mathcal{A}_{j}}|\mathbf{k}| a_{\lambda}^{*}(\mathbf{k}) a_{\lambda}(\mathbf{k}) d^{3} \mathbf{k}$
- $\mathbf{p}_{\mathrm{f}}^{(j)}=\sum_{\lambda=0,1} \int_{\mathcal{A}_{j}} \mathbf{k} a_{\lambda}^{*}(\mathbf{k}) a_{\lambda}(\mathbf{k}) d^{3} \mathbf{k}$
- $\mathbf{A}^{(j)}=\frac{1}{(2 \pi)^{3 / 2}} \sum_{\lambda=0,1} \int_{|\mathbf{k}|<\kappa} \varepsilon_{\lambda}(\mathbf{k})\left(a_{\lambda}^{*}(\mathbf{k})+a_{\lambda}(\mathbf{k})\right) \frac{\mathbb{1}_{\mathcal{A}_{j}}(\mathbf{k}) d^{d^{1} \mathbf{k}}}{(2 \mid \mathbf{k})^{1 / 2}}$

Strategy

\rightsquigarrow Introduce IR cutoff fiber Hilbert spaces, $\mathbb{C}^{2} \otimes \mathscr{F}_{j}, j \in \mathbb{N}_{0}$,

$$
\mathscr{F}_{j}:=\mathbb{C} \oplus \bigoplus_{n=1}^{\infty} L_{\text {sym }}^{2}\left(\left(\mathcal{A}_{j} \times \mathbb{Z}_{2}\right)^{n}\right), \quad \mathcal{A}_{j}:=\left\{|\mathbf{k}| \geqslant \kappa(1 / 2)^{j}\right\},
$$

and define $H_{j}(\mathbf{P})$ in the same way as $H(\mathbf{P})$, but on the IR cutoff space,

$$
H_{j}(\mathbf{P}):=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}^{(j)}+\mathfrak{e} \mathbf{A}^{(j)}\right)^{2}+\mathbb{1}\right.}+H_{\mathrm{f}}^{(j)}
$$

$$
\Rightarrow H_{\mathrm{f}}^{(j)} \geqslant \kappa(1 / 2)^{j} \text { on } L_{\mathrm{sym}}^{2}\left(\left(\mathcal{A}_{j} \times \mathbb{Z}_{2}\right)^{n}\right)
$$

Strategy

\rightsquigarrow Introduce IR cutoff fiber Hilbert spaces, $\mathbb{C}^{2} \otimes \mathscr{F}_{j}, j \in \mathbb{N}_{0}$,

$$
\mathscr{F}_{j}:=\mathbb{C} \oplus \bigoplus_{n=1}^{\infty} L_{\text {sym }}^{2}\left(\left(\mathcal{A}_{j} \times \mathbb{Z}_{2}\right)^{n}\right), \quad \mathcal{A}_{j}:=\left\{|\mathbf{k}| \geqslant \kappa(1 / 2)^{j}\right\},
$$

and define $H_{j}(\mathbf{P})$ in the same way as $H(\mathbf{P})$, but on the IR cutoff space,

$$
H_{j}(\mathbf{P}):=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}^{(j)}+\mathfrak{e} \mathbf{A}^{(j)}\right)^{2}+\mathbb{1}\right.}+H_{\mathrm{f}}^{(j)} .
$$

$\Rightarrow H_{\mathrm{f}}^{(j)} \geqslant \kappa(1 / 2)^{j}$ on $L_{\mathrm{sym}}^{2}\left(\left(\mathcal{A}_{j} \times \mathbb{Z}_{2}\right)^{n}\right)$.
\Rightarrow If $\mathfrak{e}>0$ is small, depending on $|\mathbf{P}|$ and κ, then

- $E_{j}(\mathbf{P}):=\inf \sigma\left(H_{j}(\mathbf{P})\right)$ is an isolated, two-fold degenerate eigenvalue.
- $\operatorname{gap}_{j}:=\inf \left\{\sigma\left(H_{j}(\mathbf{P})-E_{j}(\mathbf{P})\right) \backslash\{0\}\right\} \geqslant(1 / 2)^{j} / \mathfrak{c}$.

How to treat the square root?

The two-fold direct sum of

$$
\mathcal{T}:=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}+\mathfrak{e} \mathbf{A}\right)\right)^{2}+\mathbb{1}}
$$

can be written as

$$
\mathcal{T} \oplus \mathcal{T} \psi=\lim _{\tau \rightarrow \infty} \int_{-\tau}^{\tau}\left(\mathbb{1}+i y(D-i y)^{-1}\right) \psi \frac{d y}{\pi}
$$

for $\psi \in \mathcal{D}(D)$, where

$$
D:=\boldsymbol{\alpha} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}+\mathfrak{e} \mathbf{A}\right)+\beta
$$

$\alpha_{1}, \alpha_{2}, \alpha_{3}$, and β are the Dirac matrices.

Strategy

So, $E_{j}(\mathbf{P})$ is an eigenvalue of $H_{j}(\mathbf{P})$. Let

$$
\Pi_{j} \equiv \Pi_{j}(\mathbf{P}):=\mathbb{1}_{\left\{E_{j}(\mathbf{P})\right\}}\left(H_{j}(\mathbf{P})\right)
$$

be the corresponding spectral projection.
Since gap $_{j}>0$, the resolvent
is well-defined.

Strategy

So, $E_{j}(\mathbf{P})$ is an eigenvalue of $H_{j}(\mathbf{P})$. Let

$$
\Pi_{j} \equiv \Pi_{j}(\mathbf{P}):=\mathbb{1}_{\left\{E_{j}(\mathbf{P})\right\}}\left(H_{j}(\mathbf{P})\right)
$$

be the corresponding spectral projection. Since $\operatorname{gap}_{j}>0$, the resolvent

$$
\mathcal{R}_{j}^{\perp} \equiv \mathcal{R}_{j}^{\perp}(\mathbf{P}):=\left(H_{j}(\mathbf{P}) \Pi_{j}(\mathbf{P})^{\perp}-E_{j}(\mathbf{P})\right)^{-1} \Pi_{j}(\mathbf{P})^{\perp}
$$

is well-defined.

Strategy

For $j \in \mathbb{N}_{0}$, Hellmann-Feynman formulas are valid,

$$
\begin{aligned}
& \partial_{\mathbf{h}} E_{j}=\operatorname{Tr}\left[\Pi_{j} \partial_{\mathbf{h}} H_{j} \Pi_{j}\right] / 2, \\
& \partial_{\mathbf{h}}^{2} E_{j}=\operatorname{Tr}\left[\Pi_{j} \partial_{\mathbf{h}}^{2} H_{j} \Pi_{j}\right] / 2-\left\|\left(\mathcal{R}_{j}^{\perp}\right)^{1 / 2} \partial_{\mathbf{h}} H_{j} \Pi_{j}\right\|_{\mathrm{HS}}^{2} .
\end{aligned}
$$

Use these formulas to show that

More precisely, show

Strategy

For $j \in \mathbb{N}_{0}$, Hellmann-Feynman formulas are valid,

$$
\begin{aligned}
& \partial_{\mathbf{h}} E_{j}=\operatorname{Tr}\left[\Pi_{j} \partial_{\mathbf{h}} H_{j} \Pi_{j}\right] / 2, \\
& \partial_{\mathbf{h}}^{2} E_{j}=\operatorname{Tr}\left[\Pi_{j} \partial_{\mathbf{h}}^{2} H_{j} \Pi_{j}\right] / 2-\left\|\left(\mathcal{R}_{j}^{\perp}\right)^{1 / 2} \partial_{\mathbf{h}} H_{j} \Pi_{j}\right\|_{\mathrm{HS}}^{2} .
\end{aligned}
$$

Use these formulas to show that

$$
E=E_{0}+\sum_{j=0}^{\infty}\left(E_{j+1}-E_{j}\right) \quad \text { converges absolutely in } C_{b}^{2}\left(\mathcal{B}_{\mathfrak{p}}\right)
$$

More precisely, show

Strategy

For $j \in \mathbb{N}_{0}$, Hellmann-Feynman formulas are valid,

$$
\begin{aligned}
& \partial_{\mathbf{h}} E_{j}=\operatorname{Tr}\left[\Pi_{j} \partial_{\mathbf{h}} H_{j} \Pi_{j}\right] / 2, \\
& \partial_{\mathbf{h}}^{2} E_{j}=\operatorname{Tr}\left[\Pi_{j} \partial_{\mathbf{h}}^{2} H_{j} \Pi_{j}\right] / 2-\left\|\left(\mathcal{R}_{j}^{\perp}\right)^{1 / 2} \partial_{\mathbf{h}} H_{j} \Pi_{j}\right\|_{\mathrm{HS}}^{2} .
\end{aligned}
$$

Use these formulas to show that

$$
E=E_{0}+\sum_{j=0}^{\infty}\left(E_{j+1}-E_{j}\right) \quad \text { converges absolutely in } C_{b}^{2}\left(\mathcal{B}_{\mathfrak{p}}\right)
$$

More precisely, show

$$
\sup _{\mathcal{B}_{\mathfrak{p}}}\left|\partial_{\mathbf{h}}^{\nu} E_{j+1}-\partial_{\mathbf{h}}^{\nu} E_{j}\right| \leqslant \mathfrak{c e}(1+\mathfrak{c e})^{j} \begin{cases}(1 / 2)^{j}, & \nu=0,1 \\ (1 / 2)^{j / 2}, & \nu=2\end{cases}
$$

Strategy

For $j \in \mathbb{N}_{0}$, Hellmann-Feynman formulas are valid,

$$
\begin{aligned}
& \partial_{\mathbf{h}} E_{j}=\operatorname{Tr}\left[\Pi_{j} \partial_{\mathbf{h}} H_{j} \Pi_{j}\right] / 2, \\
& \partial_{\mathbf{h}}^{2} E_{j}=\operatorname{Tr}\left[\Pi_{j} \partial_{\mathbf{h}}^{2} H_{j} \Pi_{j}\right] / 2-\left\|\left(\mathcal{R}_{j}^{\perp}\right)^{1 / 2} \partial_{\mathbf{h}} H_{j} \Pi_{j}\right\|_{\mathrm{HS}}^{2} .
\end{aligned}
$$

Use these formulas to show that

$$
E=E_{0}+\sum_{j=0}^{\infty}\left(E_{j+1}-E_{j}\right) \quad \text { converges absolutely in } C_{b}^{2}\left(\mathcal{B}_{\mathfrak{p}}\right)
$$

More precisely, show

$$
\sup _{\mathcal{B}_{\mathfrak{p}}}\left|\partial_{\mathbf{h}}^{\nu} E_{j+1}-\partial_{\mathbf{h}}^{\nu} E_{j}\right| \leqslant \mathfrak{c e}(1+\mathfrak{c e})^{j} \begin{cases}(1 / 2)^{j}, & \nu=0,1 \\ (1 / 2)^{j / 2}, & \nu=2\end{cases}
$$

Since $E_{0}(\mathbf{P})=\sqrt{\mathbf{P}^{2}+1}$, this implies $E \in C^{2}, E^{\prime \prime}>0$, on $B_{\mathfrak{p}}$.

Strategy

To compare operators acting in the same Hilbert space, $\mathbb{C}^{2} \otimes \mathscr{F}_{j+1}$, we introduce

$$
H_{j}^{j+1}(\mathbf{P}):=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}^{(j+1)}+\mathfrak{e} \mathbf{A}^{(j)}\right)\right)^{2}+\mathbb{1}}+H_{\mathrm{f}}^{(j+1)}
$$

$E_{j}(\mathbf{P})=\inf \sigma\left(H_{j}^{j+1}(\mathbf{P})\right)$ is again an isolated, two-fold
where

and similarly for $\partial_{\mathbf{h}}^{2} E_{j}$.

Strategy

To compare operators acting in the same Hilbert space, $\mathbb{C}^{2} \otimes \mathscr{F}_{j+1}$, we introduce

$$
H_{j}^{j+1}(\mathbf{P}):=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}^{(j+1)}+\mathfrak{e} \mathbf{A}^{(j)}\right)\right)^{2}+\mathbb{1}}+H_{\mathrm{f}}^{(j+1)}
$$

$\Rightarrow E_{j}(\mathbf{P})=\inf \sigma\left(H_{j}^{j+1}(\mathbf{P})\right)$ is again an isolated, two-fold degenerate eigenvalue of $H_{j}^{j+1}(\mathbf{P})$ and

$$
\partial_{\mathbf{h}} E_{j}=\operatorname{Tr}\left[\Pi_{j}^{j+1} \partial_{\mathbf{h}} H_{j}^{j+1} \Pi_{j}^{j+1}\right] / 2
$$

where

$$
\Pi_{j}^{j+1} \equiv \Pi_{j}^{j+1}(\mathbf{P}):=\mathbb{1}_{\left\{E_{j}(\mathbf{P})\right\}}\left(H_{j}^{j+1}(\mathbf{P})\right)
$$

and similarly for $\partial_{\mathbf{h}}^{2} E_{j}$.

Strategy: The dressing transform

In order to find a good bound on $\left|\partial_{\mathbf{h}}^{\nu} E_{j+1}(\mathbf{P})-\partial_{\mathbf{h}}^{\nu} E_{j}(\mathbf{P})\right|$, for $\mathbf{P} \neq \mathbf{0}$, we must not compare $\Pi_{j+1}(\mathbf{P})$ directly with $\Pi_{j}^{j+1}(\mathbf{P})$, which is of the form

$$
\begin{aligned}
\Pi_{j}^{j+1}(\mathbf{P})= & \Pi_{j}(\mathbf{P}) \otimes P_{\Omega_{j}^{j+1}} \\
P_{\Omega_{j}^{i+1}}:= & \text { projection onto the vacuum sector in } \\
& \mathscr{F}_{j}^{j+1}:=\mathbb{C} \oplus \bigoplus_{n=1}^{\infty} L_{\text {sym }}^{2}\left(\left(\left[\mathcal{A}_{j+1} \backslash \mathcal{A}_{j}\right] \times \mathbb{Z}_{2}\right)^{n}\right)
\end{aligned}
$$

$\left(\right.$ Recall $\left.\mathscr{F}_{j+1}=\mathscr{F}_{j} \otimes \mathscr{F}_{j}^{j+1}.\right)$

Strategy: The dressing transform

In order to find a good bound on $\left|\partial_{\mathbf{h}}^{\nu} E_{j+1}(\mathbf{P})-\partial_{\mathbf{h}}^{\nu} E_{j}(\mathbf{P})\right|$, for $\mathbf{P} \neq \mathbf{0}$, we must not compare $\Pi_{j+1}(\mathbf{P})$ directly with $\Pi_{j}^{j+1}(\mathbf{P})$, which is of the form

$$
\begin{aligned}
\Pi_{j}^{j+1}(\mathbf{P})= & \Pi_{j}(\mathbf{P}) \otimes P_{\Omega_{j}^{j+1}} \\
P_{\Omega_{j}^{i+1}}:= & \text { projection onto the vacuum sector in } \\
& \mathscr{F}_{j}^{j+1}:=\mathbb{C} \oplus \bigoplus_{n=1}^{\infty} L_{\mathrm{sym}}^{2}\left(\left(\left[\mathcal{A}_{j+1} \backslash \mathcal{A}_{j}\right] \times \mathbb{Z}_{2}\right)^{n}\right) .
\end{aligned}
$$

(Recall $\left.\mathscr{F}_{j+1}=\mathscr{F}_{j} \otimes \mathscr{F}_{j}^{j+1}.\right)$
In fact, if the total system is moving with total momentum $\mathbf{P} \neq \mathbf{0}$, then the electron should be dressed into a cloud of soft photons. Hence, $\Pi_{j}^{j+1}(\mathbf{P})$ is not a good approximation of $\Pi_{j+1}(\mathbf{P})$, since it contains no photons with frequences in $\mathcal{A}_{j+1} \backslash \mathcal{A}_{j}$.

Strategy: The dressing transform

\rightsquigarrow Define a dressing transform (compare [Chen-Fröhlich, 2007]),

$$
\begin{aligned}
U_{j}(\mathbf{P}) & :=e^{-i e \varpi\left(f_{j}(\mathbf{P})\right)}, \\
\varpi\left(f_{j}\right) & :=\frac{i}{2^{1 / 2}} \sum_{\lambda=0,1} \int_{\mathcal{A}_{j+1} \backslash \mathcal{A}_{j}} f_{j}(\mathbf{P} ; \mathbf{k}, \lambda)\left(a^{*}(\mathbf{k})-a(\mathbf{k})\right) d^{3} \mathbf{k}, \\
f_{j}(\mathbf{P} ; \mathbf{k}, \lambda) & :=\frac{1}{(2 \pi)^{3 / 2} / 2} \frac{1}{|\mathbf{k}|^{1 / 2}} \frac{\varepsilon_{\lambda}(\mathbf{k}) \cdot \nabla E_{j}(\mathbf{P})}{|\mathbf{k}|-\mathbf{k} \cdot \nabla E_{j}(\mathbf{P})},
\end{aligned}
$$

and seek for a bound on

Strategy: The dressing transform

\rightsquigarrow Define a dressing transform (compare [Chen-Fröhlich, 2007]),

$$
\begin{aligned}
U_{j}(\mathbf{P}) & :=e^{-i e \varpi\left(f_{j}(\mathbf{P})\right)}, \\
\varpi\left(f_{j}\right) & :=\frac{i}{2^{1 / 2}} \sum_{\lambda=0,1} \int_{\mathcal{A}_{j+1} \backslash \mathcal{A}_{j}} f_{j}(\mathbf{P} ; \mathbf{k}, \lambda)\left(a^{*}(\mathbf{k})-a(\mathbf{k})\right) d^{3} \mathbf{k}, \\
f_{j}(\mathbf{P} ; \mathbf{k}, \lambda) & :=\frac{1}{(2 \pi)^{3 / 2}} \frac{1}{|\mathbf{k}|^{1 / 2}} \frac{\varepsilon_{\lambda}(\mathbf{k}) \cdot \nabla E_{j}(\mathbf{P})}{|\mathbf{k}|-\mathbf{k} \cdot \nabla E_{j}(\mathbf{P})},
\end{aligned}
$$

and seek for a bound on

$$
\left\|\check{\Pi}_{j+1}(\mathbf{P})-\Pi_{j}^{j+1}(\mathbf{P})\right\|_{\mathrm{HS}},
$$

where

$$
\check{\Pi}_{j+1}(\mathbf{P}):=U_{j}(\mathbf{P}) \Pi_{j+1}(\mathbf{P}) U_{j}(\mathbf{P})^{*}
$$

Strategy

It turns out that

$$
\left\|\check{\Pi}_{j+1}-\Pi_{j}^{j+1}\right\|_{\mathrm{HS}} \leqslant \mathfrak{c e}(1 / 2)^{j}\left\|\mathcal{R}_{j}^{\perp} \nabla H_{j} \Pi_{j}\right\|_{\mathrm{HS}}+\mathfrak{c e}(1 / 2)^{j} .
$$

Guiding theme in Pizzo's iterative perturbation theory: (Note that $\left\|\mathcal{R}_{j}^{\perp}\right\| \sim 2^{j}$.) \rightsquigarrow Estimate expressions like $K_{j}^{(1 / 2)}:=\left\|\left(\mathcal{R}_{j}^{ \pm}\right)^{1 / 2} \nabla H_{j} \Pi_{j}\right\|_{\text {HS }}, \quad K_{j}^{(1)}:=\left\|\mathcal{R}_{j}^{ \pm} \nabla H_{j} \Pi_{j}\right\|_{\text {HS }}$
by relating them to their precessors at scale $j-1$.
It turns out that

Strategy

It turns out that

$$
\left\|\check{\Pi}_{j+1}-\Pi_{j}^{j+1}\right\|_{\mathrm{HS}} \leqslant \mathfrak{c e}(1 / 2)^{j}\left\|\mathcal{R}_{j}^{\perp} \nabla H_{j} \Pi_{j}\right\|_{\mathrm{HS}}+\mathfrak{c e}(1 / 2)^{j} .
$$

Guiding theme in Pizzo's iterative perturbation theory: (Note that $\left\|\mathcal{R}_{j}^{\perp}\right\| \sim 2^{j}$.) \rightsquigarrow Estimate expressions like

$$
K_{j}^{(1 / 2)}:=\left\|\left(\mathcal{R}_{j}^{\perp}\right)^{1 / 2} \nabla H_{j} \Pi_{j}\right\|_{\mathrm{HS}}, \quad K_{j}^{(1)}:=\left\|\mathcal{R}_{j}^{\perp} \nabla H_{j} \Pi_{j}\right\|_{\mathrm{HS}},
$$

by relating them to their precessors at scale $j-1$.

Strategy

It turns out that

$$
\left\|\check{\Pi}_{j+1}-\Pi_{j}^{j+1}\right\|_{\mathrm{HS}} \leqslant \mathfrak{c e}(1 / 2)^{j}\left\|\mathcal{R}_{j}^{\perp} \nabla H_{j} \Pi_{j}\right\|_{\mathrm{HS}}+\mathfrak{c e}(1 / 2)^{j} .
$$

Guiding theme in Pizzo's iterative perturbation theory: (Note that $\left\|\mathcal{R}_{j}^{\perp}\right\| \sim 2^{j}$.) \rightsquigarrow Estimate expressions like

$$
K_{j}^{(1 / 2)}:=\left\|\left(\mathcal{R}_{j}^{\perp}\right)^{1 / 2} \nabla H_{j} \Pi_{j}\right\|_{\mathrm{HS}}, \quad K_{j}^{(1)}:=\left\|\mathcal{R}_{j}^{\perp} \nabla H_{j} \Pi_{j}\right\|_{\mathrm{HS}}
$$

by relating them to their precessors at scale $j-1$.
It turns out that

$$
\begin{aligned}
K_{j+1}^{(1)} & \leqslant(1+\mathfrak{c e}) K_{j}^{(1)}+\mathfrak{c e} \\
\left|K_{j+1}^{(1 / 2)}-K_{j}^{(1 / 2)}\right| & \leqslant \mathfrak{c e}(1 / 2)^{j / 2}\left(K_{j}^{(1)}+1\right) \\
\left\|\check{\Pi}_{j+1}-\Pi_{j}^{j+1}\right\|_{\mathrm{HS}} & \leqslant \mathfrak{c e}(1+\mathfrak{c e})^{j}(1 / 2)^{j}
\end{aligned}
$$

Strategy

It turns out that

$$
\left\|\check{\Pi}_{j+1}-\Pi_{j}^{j+1}\right\|_{\mathrm{HS}} \leqslant \mathfrak{c e}(1 / 2)^{j}\left\|\mathcal{R}_{j}^{\perp} \nabla H_{j} \Pi_{j}\right\|_{\mathrm{HS}}+\mathfrak{c e}(1 / 2)^{j} .
$$

Guiding theme in Pizzo's iterative perturbation theory: (Note that $\left\|\mathcal{R}_{j}^{\perp}\right\| \sim 2^{j}$.) \rightsquigarrow Estimate expressions like

$$
K_{j}^{(1 / 2)}:=\left\|\left(\mathcal{R}_{j}^{\perp}\right)^{1 / 2} \nabla H_{j} \Pi_{j}\right\|_{\mathrm{HS}}, \quad K_{j}^{(1)}:=\left\|\mathcal{R}_{j}^{\perp} \nabla H_{j} \Pi_{j}\right\|_{\mathrm{HS}}
$$

by relating them to their precessors at scale $j-1$.
It turns out that

$$
\begin{aligned}
K_{j+1}^{(1)} & \leqslant(1+\mathfrak{c e}) K_{j}^{(1)}+\mathfrak{c e} \\
\left|K_{j+1}^{(1 / 2)}-K_{j}^{(1 / 2)}\right| & \leqslant \mathfrak{c e}(1 / 2)^{j / 2}\left(K_{j}^{(1)}+1\right) \\
\left\|\check{\Pi}_{j+1}-\Pi_{j}^{j+1}\right\|_{\mathrm{HS}} & \leqslant \mathfrak{c e}(1+\mathfrak{c e})^{j}(1 / 2)^{j}
\end{aligned}
$$

This implies the desired bounds on $\left|\partial_{\mathbf{h}}^{\nu} E_{j+1}(\mathbf{P})-\partial_{\mathbf{h}}^{\nu} E_{j}(\mathbf{P})\right|$.

Related results

Existence and multiplicity of ground states

Define operators on the original fiber Hilbert space, $\mathbb{C}^{2} \otimes \mathscr{F}$,

$$
\begin{aligned}
& H_{j}^{\infty}(\mathbf{P}):=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}+\mathfrak{e} \mathbf{A}^{(j)}\right)\right)^{2}+\mathbb{1}}+H_{\mathrm{f}}, \\
& \widetilde{H}_{j}^{\infty}(\mathbf{P}):=W_{j}(\mathbf{P}) H_{j}^{\infty}(\mathbf{P}) W_{j}(\mathbf{P})^{*}, \quad W_{j}(\mathbf{P}):=\prod_{\ell=0}^{j-1} U_{j}(\mathbf{P}),
\end{aligned}
$$

$$
\widetilde{H}(\mathbf{P}):=\underset{j \rightarrow \infty}{\text { norm-res. }-\lim } \widetilde{H}_{j}^{\infty}(\mathbf{P}) .
$$

Existence and multiplicity of ground states

Define operators on the original fiber Hilbert space, $\mathbb{C}^{2} \otimes \mathscr{F}$,

$$
\begin{aligned}
H_{j}^{\infty}(\mathbf{P}) & :=\sqrt{\left(\boldsymbol{\sigma} \cdot\left(\mathbf{P}-\mathbf{p}_{\mathrm{f}}+\mathfrak{e} \mathbf{A}^{(j)}\right)\right)^{2}+\mathbb{1}}+H_{\mathrm{f}}, \\
\widetilde{H}_{j}^{\infty}(\mathbf{P}) & :=W_{j}(\mathbf{P}) H_{j}^{\infty}(\mathbf{P}) W_{j}(\mathbf{P})^{*}, \quad W_{j}(\mathbf{P}):=\prod_{\ell=0}^{j-1} U_{j}(\mathbf{P}),
\end{aligned}
$$

$$
\widetilde{H}(\mathbf{P}):=\underset{j \rightarrow \infty}{\text { norm-res. }} \text { - } \lim \widetilde{H}_{j}^{\infty}(\mathbf{P}) .
$$

Theorem (Könenberg-M.)

For all $\mathfrak{p}, \kappa>0$, there exist $\mathfrak{e}_{0}, \mathfrak{c}>0$ such that, for all $\mathbf{P} \in \mathcal{B}_{\mathfrak{p}}$ and $\mathfrak{e} \in\left(0, \mathfrak{e}_{0}\right]$, the ground state energy $E(\mathbf{P})$ is an exactly two-fold degenerate eigenvalue of $\widetilde{H}(\mathbf{P})$, and

$$
\left\|\mathbb{1}_{E(\mathbf{P})}(\widetilde{H}(\mathbf{P}))-\mathbb{1}_{E_{j}(\mathbf{P})}\left(\widetilde{H}_{j}^{\infty}(\mathbf{P})\right)\right\| \leqslant \mathfrak{c e}(1+\mathfrak{c e})^{j}(1 / 2)^{j} .
$$

(Notice that $\widetilde{H}(\mathbf{0})=H(\mathbf{0})$.)

Absence of ground states at non-zero momenta

However:
Theorem (Könenberg-M.)
For all $\mathfrak{p}, \kappa>0$, there exists $\mathfrak{e}_{0}>0$ such that, for all $\mathbf{P} \in \mathcal{B}_{\mathfrak{p}} \backslash\{0\}$ and $\mathfrak{e} \in\left(0, \mathfrak{e}_{0}\right]$, the ground state energy $E(\mathbf{P})$ is not an eigenvalue of $H(\mathbf{P})$.

This follows from the bound
for every normalized ground state eigenvector, $\phi_{j}(\mathbf{P})$, of $H_{j}(\mathbf{P})$. - NR casc: [Schrocr, 1963], [Fröhlich 1073], [Chen-Fröhlich, 2007], [Hasler-Herbst, 2008]

Absence of ground states at non-zero momenta

However:

Theorem (Könenberg-M.)

For all $\mathfrak{p}, \kappa>0$, there exists $\mathfrak{e}_{0}>0$ such that, for all
$\mathbf{P} \in \mathcal{B}_{\mathfrak{p}} \backslash\{0\}$ and $\mathfrak{e} \in\left(0, \mathfrak{e}_{0}\right]$, the ground state energy $E(\mathbf{P})$ is not an eigenvalue of $H(\mathbf{P})$.

This follows from the bound

$$
\|a_{\lambda}(\mathbf{k}) \phi_{j}(\mathbf{P})+\mathfrak{e} \underbrace{f_{j}(\mathbf{P} ; \mathbf{k}, \lambda)}_{\sim|\mathbf{k}|^{-3 / 2}} \phi_{j}(\mathbf{P})\| \leqslant \mathfrak{c e} \frac{\mathbb{1}_{|\mathbf{k}|<\kappa}}{|\mathbf{k}|^{1 / 2}}, \quad \mathbf{k} \in \mathcal{A}_{j},
$$

for every normalized ground state eigenvector, $\phi_{j}(\mathbf{P})$, of $H_{j}(\mathbf{P})$.
\square

Absence of ground states at non-zero momenta

However:

Theorem (Könenberg-M.)

For all $\mathfrak{p}, \kappa>0$, there exists $\mathfrak{e}_{0}>0$ such that, for all
$\mathbf{P} \in \mathcal{B}_{\mathfrak{p}} \backslash\{0\}$ and $\mathfrak{e} \in\left(0, \mathfrak{e}_{0}\right]$, the ground state energy $E(\mathbf{P})$ is not an eigenvalue of $H(\mathbf{P})$.

This follows from the bound

$$
\|a_{\lambda}(\mathbf{k}) \phi_{j}(\mathbf{P})+\mathfrak{e} \underbrace{f_{j}(\mathbf{P} ; \mathbf{k}, \lambda)}_{\sim|\mathbf{k}|^{-3 / 2}} \phi_{j}(\mathbf{P})\| \leqslant \mathfrak{c e} \frac{\mathbb{1}_{|\mathbf{k}|<\kappa}}{|\mathbf{k}|^{1 / 2}}, \quad \mathbf{k} \in \mathcal{A}_{j},
$$

for every normalized ground state eigenvector, $\phi_{j}(\mathbf{P})$, of $H_{j}(\mathbf{P})$.

- NR case: [Schroer, 1963], [Fröhlich 1973], [Chen-Fröhlich, 2007], [Hasler-Herbst, 2008].

Coherent state representation space

The unitaries $W_{j}(\mathbf{P})$ do not have limit.

Coherent state representation space

The unitaries $W_{j}(\mathbf{P})$ do not have limit.
However, consider (as in [Fröhlich 1973]) the incomplete direct product space in the sense of von Neumann,

$$
\mathscr{H}_{\mathbf{P}}^{\text {ren }}:=\mathbb{C}^{2} \otimes \mathscr{F}_{0} \otimes \bigotimes_{j \in \mathbb{N}}^{\tilde{\Omega}_{\mathbf{P}}} \mathscr{F}_{j}^{j+1}
$$

containing the coherent state

$$
\widetilde{\Omega}_{\mathbf{P}}:=v \otimes \Omega_{0} \otimes U_{0}^{*}(\mathbf{P}) \Omega_{0}^{1} \otimes U_{1}^{*}(\mathbf{P}) \Omega_{1}^{2} \otimes \ldots
$$

where v may be any vector in \mathbb{C}^{2}.
One can construct a unitary
map $W(\mathbf{P})^{*}: \mathbb{C}^{2} \otimes \mathscr{F} \rightarrow \mathscr{H}_{\mathbf{P}}^{\text {ren }}$, so that
\square

Coherent state representation space

The unitaries $W_{j}(\mathbf{P})$ do not have limit.
However, consider (as in [Fröhlich 1973]) the incomplete direct product space in the sense of von Neumann,

$$
\mathscr{H}_{\mathbf{P}}^{\text {ren }}:=\mathbb{C}^{2} \otimes \mathscr{F}_{0} \otimes \bigotimes_{j \in \mathbb{N}}^{\tilde{\Omega}_{\mathbf{P}}} \mathscr{F}_{j}^{j+1}
$$

containing the coherent state

$$
\widetilde{\Omega}_{\mathbf{P}}:=v \otimes \Omega_{0} \otimes U_{0}^{*}(\mathbf{P}) \Omega_{0}^{1} \otimes U_{1}^{*}(\mathbf{P}) \Omega_{1}^{2} \otimes \ldots
$$

where v may be any vector in \mathbb{C}^{2}. One can construct a unitary $\operatorname{map} W(\mathbf{P})^{*}: \mathbb{C}^{2} \otimes \mathscr{F} \rightarrow \mathscr{H}_{\mathbf{P}}{ }^{\text {ren }}$, so that

$$
W(\mathbf{P})^{*} v \otimes \Omega=\widetilde{\Omega}_{\mathbf{P}}, \quad W(\mathbf{P}) a\left(g_{j}\right) W(\mathbf{P})^{*}=a\left(g_{j}\right)-\mathfrak{e}\left\langle g_{j} \mid f_{j}\right\rangle
$$

where $g_{j} \in L^{2}\left(\left(\mathcal{A}_{j+1} \backslash \mathcal{A}_{j}\right) \times \mathbb{Z}_{2}\right)$.

Coherent state representation space

Define

$$
H^{\mathrm{ren}}(\mathbf{P}):=W(\mathbf{P})^{*} \widetilde{H}(\mathbf{P}) W(\mathbf{P}) .
$$

Then $E(\mathbf{P})$ is an exactly two-fold degenerate eigenvalue of $H^{\text {ren }}(\mathbf{P})$ and for every
and $\pi_{\mathbf{P}}: \mathcal{B}\left(\mathbb{C}^{2} \otimes \mathscr{F}_{j}\right) \rightarrow \mathcal{B}\left(\mathscr{H}_{\mathbf{P}}^{\text {ren }}\right)$ is a natural embedding.

Coherent state representation space

Define

$$
H^{\mathrm{ren}}(\mathbf{P}):=W(\mathbf{P})^{*} \widetilde{H}(\mathbf{P}) W(\mathbf{P})
$$

Then $E(\mathbf{P})$ is an exactly two-fold degenerate eigenvalue of $H^{\text {ren }}(\mathbf{P})$ and

$$
\lim _{j \rightarrow \infty} \operatorname{Tr}\left[\mathbb{1}_{E_{j}(\mathbf{P})}\left(H_{j}^{\infty}(\mathbf{P})\right) A\right]=\operatorname{Tr}\left[\mathbb{1}_{E(\mathbf{P})}\left(H^{\mathrm{ren}}(\mathbf{P})\right) \pi_{\mathbf{P}}(A)\right]
$$

for every

$$
A \in \mathcal{B}\left(\mathbb{C}^{2} \otimes \mathscr{F}_{j}\right) \cong \mathcal{B}\left(\mathbb{C}^{2} \otimes \mathscr{F}_{j}\right) \otimes \mathbb{1} \subset \mathcal{B}\left(\mathbb{C}^{2} \otimes \mathscr{F}\right)
$$

and $\pi_{\mathbf{P}}: \mathcal{B}\left(\mathbb{C}^{2} \otimes \mathscr{F}_{j}\right) \rightarrow \mathcal{B}\left(\mathscr{H}_{\mathbf{P}}^{\text {ren }}\right)$ is a natural embedding.

On the renormalized electron mass

Theorem (Könenberg-M.)

Let $\kappa, \mathfrak{e}>0$ be arbitrary. If E is twice continuously differentiable near $\mathbf{0}$, then the renormalized electron mass is strictly larger than its bare mass, i.e.

$$
1 / \partial_{\mathbf{h}}^{2} E(\mathbf{0})>1, \quad|\mathbf{h}|=1 .
$$

Thank you for your attention!

