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MOTIVATION

Ergodic Schrödinger operators

Let Hω =−∆ +Vω be an ergodic Schrödinger operator on either L2(Rd )
or `2(Zd ), and consider its integrated density of states N(E ).

What can we say about the continuity of N(E )?
Craig and Simon (1983) proved log-Hölder continuity for discrete
ergodic Schrödinger operators and one-dimensional ergodic
Schrödinger operators :

N(E + ε)−N(E )≤ C
log 1

ε

for ε ≤ 1
2 .

Delyon and Souillard (1984) gave a simple proof of continuity of N(E )
for discrete ergodic Schrödinger operators.

In this generality not more appears to have been known.
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MOTIVATION

Random Schrödinger operators

For Anderson models with regularity assumptions we have Wegner
estimates. The optimal result is due to Combes, Hislop and Klopp (2007),
who proved for both discrete and continuous Anderson models that

N(E + ε)−N(E )≤ C Sµ (ε) for ε ≤ 1
2 ,

where Sµ (s) := supt∈R µ([t, t + s]) is the concentration function of the
single-site probability distribution µ .

Note that

µ has no atoms ⇐⇒ lim
s↓0

Sµ (s) = 0 =⇒ continuity of N(E )

The integrated density of states N(E ) is always continuous when the
single-site probability distribution µ has no atoms.
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MOTIVATION

Multi-dimensional continuous Anderson models

What could we say about the continuity of the density states for
multi-dimensional continuous Anderson models with arbitrary single-site
probability distribution (e.g., Bernoulli)?

Germinet and Klein proved log-Hölder continuity of N(E ) in the region
of localization (more precisely, in the region of applicability of the
multiscale analysis):

N(E + ε)−N(E )≤ C(
log 1

ε

) 3
8d−

for ε ≤ 1
2 .

This result holds for Poisson Hamiltonians.
In general the continuity of the integrated density of states has been
an open question.
Continuity of the integrated density of states for (continuous) ergodic
Schrödinger operators is # 14 in Simon’s Problems for Schrödinger
operators.
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Introduction

Schrödinger operators

We consider the Schrödinger operator

H =−∆ +V on L2(Rd )
(
or `2(Zd )

)
,

where ∆ is the Laplacian operator and V is a bounded potential.
We let

ΛL(x) := x +
]
−L

2 ,
L
2

[d
denote the (open) box of side L centered at x ∈ Rd . By a box ΛL we will
mean a box ΛL(x) for some x ∈ Rd .
Given a finite open box Λ⊂ Rd we let HΛ and ∆Λ be the restriction of H
and ∆ to L2(Λ) with Dirichlet boundary condition. (Our results will be
independent of the boundary condition.)
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Introduction

Density of states measures and outer-measures

We define finite volume (normalized) density of states measures on Borel
subsets B of Rd by

ηΛ(B) = ηΛ,∞(B) := 1
|Λ| tr{χB(H)χΛ} ,

ηΛ,D(B) := 1
|Λ| tr{χB(HΛ)}

Note that for ] = ∞,D and B ⊂]−∞,E ] we have

ηΛ,](B)≤ Cd ,V∞,E < ∞.

We define outer-measures on Borel subsets B of Rd for ] = ∞,D by

η
∗
L,](B) := sup

x∈Rd
ηΛL(x),](B),

η
∗
] (B) := limsup

L→∞

η
∗
L,](B).

Abel Klein Bounds on the density of states



Introduction

Density of states outer-measures

For any two values of ] we have (e.g., Doi, Iwatsuka and Mine (2001))

η
∗
]1([E1,E2])≤ η

∗
]2([E1−δ ,E2 + δ ]) for all δ > 0.

Thus, if for some value of ] we have

lim
ε→0

η
∗
] ([E − ε,E + ε]) = 0 for all E ∈ R,

we conclude that for all E1,E2 ∈ R, E1 ≤ E2, we have

η
∗([E1,E2]) := η

∗
∞([E1,E2]) = η

∗
D([E1,E2]).

Remark
For ergodic Schrödinger operators Hω , if η is the density of states
measures, i.e., η(]E2,E2] = N(E2)−N(E1), we always have

η (]E2,E2])≤ η
∗
ω ([E1,E2]) with probability one .
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Results

Main theorems

Theorem (Discrete Schrödinger operators)

Let H be a Schrödinger operator on `2(Zd ). Then for all E ∈ R and ε ≤ 1
2

we have

η
∗ ([E ,E + ε])≤

Cd ,‖V ‖
∞

log 1
ε

.

Theorem (Continuous Schrödinger operators)

Let H be a Schrödinger operator on L2(Rd ), where d = 1,2,3. Then, given
E0 ∈ R, for all E ≤ E0 and ε ≤ 1

2 we have

η
∗ ([E ,E + ε])≤

Cd ,‖V ‖
∞
,E0(

log 1
ε

)κd
, where κ1 = 1, κ2 = 1

4 , κ3 = 1
8 .
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Results

Comments

The theorems are proved in finite volume with Dirichlet boundary
condition.
The discrete case and the one-dimensional continuous case are proved
in the same way. We select approximate eigenfunctions for which we
have global upper bounds, and pick one for which we have a local
lower bound.
The two and three-dimensional continuous case require a different
approach. We select approximate eigenfunctions for which we have
local upper bounds, and pick one for which we have a global lower
bound.
Our proof will give log-Hölder continuity of the density states in any
dimension in the continuous case if we can improve on the exponent in
the quantitative unique continuation principle.
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Discrete case and the one-dimensional continuous case

Discrete case and the one-dimensional continuous case

Theorem

Let H be a discrete Schrödinger operator. Let E ∈R and 0< ε ≤ 1
2 . Then

for all boxes Λ = ΛL with L≥ Ld ,V∞
log 1

ε
we have

ηΛ ([E ,E + ε])≤
Cd ,V∞

log 1
ε

.

Theorem
Let H be a one-dimensional Schrödinger operator. Given E0 ∈ R, there
exists LV∞,E0 such that for all 0< ε ≤ 1

2 , open intervals Λ = ΛL with
L≥ LV∞,E0 log

1
ε
, and energies E ≤ E0, we have

ηΛ ([E ,E + ε])≤
CV∞,E0

log 1
ε

.
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Discrete case and the one-dimensional continuous case

Proof for the one-dimensional continuous case

Let Λ = ΛL =]a0,a0 +L[, E ∈ R, ε ∈]0, 1
2 ], and set P = χ [E ,E+ε](HΛ).

We have RanP ⊂D(∆Λ)⊂ C 1(Λ) and

‖(HΛ−E )ψ‖ ≤ ε ‖ψ‖ for all ψ ∈ RanP.

Given 0< R < L, set aj = a0 + jR for j = 1,2, . . . , L
R . We introduce the

vector space

FR :=
{

ψ ∈ RanP; ψ(aj) = ψ
′(aj) = 0 for j = 1,2, . . . , L

R −1
}
.

If ψ ∈ FR , It follows from Gronwall’s inequality that for all
x ∈]aj −R,aj +R[ we have, with K = 1+‖V −E‖

∞
,

|ψ(x)| ≤ eK |x−aj |
∣∣∣∣∫ x

aj

e−K |y−aj | |(HΛ−E )ψ(y)| dy
∣∣∣∣≤ (2K )−

1
2 eKR

ε ‖ψ‖ .
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Discrete case and the one-dimensional continuous case

Proof for the one-dimensional continuous case -continued

Since Λ is the union of these intervals, we conclude that

‖ψ‖
∞
≤ (2K )−

1
2 eKR

ε ‖ψ‖ for all ψ ∈ FR .

We now assume that

ηΛ ([E ,E + ε]) = 1
L trP ≥ ρ > 0.

If R ∈ [ 4
ρ
,L], it follows that dimFR ≥ ρL−2 L

R ≥
1
2ρL.
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Discrete case and the one-dimensional continuous case

A useful lemma

Lemma

Let V be a finite dimensional linear subspace of L∞(Ω,P), where (Ω,P) is
a probability space.
Then there exists ψ ∈ V with ‖ψ‖2 = 1 such that

‖ψ‖
∞
≥
√
dimV .

This lemma follows from the theory of absolutely summing operators. The
lemma can also be proved by a direct argument.
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Discrete case and the one-dimensional continuous case

Proof for the one-dimensional continuous case–end

Applying the Lemma, we obtain ψ ∈ FR , ψ 6= 0, such that

‖ψ‖
∞
≥
√

dimFR

L
‖ψ‖ ≥

√
1
2ρ ‖ψ‖ .

Taking R = 4
ρ
and L> R , it follows that√

1
2ρ ≤ (2K )−

1
2 eKR

ε = (2K )−
1
2 e

4K
ρ ε.

Thus we get

ρ ≤ CK

log 1
ε

.

and hence
η
∗ ([E ,E + ε])≤ CK

log 1
ε

.

The discrete case has a similar proof.
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Some Harmonic Analysis

Key ingredients for the multidimensional case

We select approximate eigenfunctions for which we have local upper
bounds, and pick one for which we have a global lower bound.

1 Local behavior with bounds for approximate solutions of Schrödinger
equations
We extend the local behavior results of Hartman and Wintner (1953)
and Bers (1955) for solutions of Schrödinger equations to obtain local
behavior with bounds for approximate solutions.

2 The quantitative unique continuation principle
We use a version of Bourgain and Kenig’s quantitative unique
continuation principle, rewritten to explicit the dependence on the
relevant parameters.
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Some Harmonic Analysis

Local behavior of approximate solutions for d ≥ 2

Theorem

Let Ω = B(x0, r0) for some x0 ∈ Rd and r0 > 0, where d = 2,3, . . ..
Given W ∈ L∞(Ω) real-valued, let F be a linear subspace of H 2(Ω) with
the following property:

‖(−∆ +W )ψ‖L∞(Ω) ≤ CF ‖ψ‖L2(Ω) for all ψ ∈F .

Then there exist constants γd > 0 and 0< r1 = r1 (d ,‖W ‖
∞

) < r0, with the
property that for all N ∈ N there is a linear subspace FN of F ,with

dimFN ≥ dimF − γdNd−1,

such that for all ψ ∈FN we have

|ψ(x)| ≤
(
CN2

d ,‖W ‖
∞

|x− x0|N+1 +CF

)
‖ψ‖L2(Ω) for x ∈ B(x0, r1).
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Some Harmonic Analysis

Local behavior of solutions for d ≥ 2

Let d ≥ 2, x0 ∈ Rd , r0 > 0, W ∈ L∞(Ω) real-valued, and consider the
equation

−∆φ +W φ = 0 on Ω = B(x0,2r0).

Let E0(Ω) be the space of solutions φ ∈H 2(Ω). Define linear subspaces

EN(Ω) =

{
φ ∈ E0(Ω); limsup

x→x0

|φ(x)|
|x−x0|N

< ∞

}
for N ∈ N.

E1(Ω) = {φ ∈ E0(Ω); φ(x0) = 0}, EN(Ω)⊃ EN+1(Ω).
(Note ∩∞

N=0EN(Ω) = {0} by the unique continuation principle.)

Let H
(d)

m denote the vector space of homogenous harmonic polynomials on
Rd of degree m, and recall that

N

∑
m=0

dimH
(d)

m ≤ γdNd−1 for all N ∈ N
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Some Harmonic Analysis

Lemma (Local behavior of solutions in d ≥ 2)

Let Ω = B(x0,2r0) for some x0 ∈ Rd and r0 > 0.
For all N ∈ N0 there is a linear map Y (Ω)

N : EN(Ω)→H
(d)

N such that for all
φ ∈ EN(Ω) we have∣∣∣φ(x)−

(
Y (Ω)

N φ

)
(x− x0)

∣∣∣≤ CN2

d ,r0,W∞
|x− x0|N+1 ‖φ‖L2(Ω)

for all x ∈ B(x0,
r0
2 ), where W∞ = ‖W ‖L∞(Ω).

As a consequence, for all N ∈ N0 we have

EN+1(Ω) = kerY (Ω)
N and dimEN+1(Ω)≥ dimEN(Ω)−dimH

(d)
N .

In particular, if J is a vector subspace of E0(Ω) we have

dimJ ∩EN+1(Ω)≥ dimJ − γdNd−1 for all N ∈ N.
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Some Harmonic Analysis

Lemma (Local behavior of approximate solutions in d ≥ 2)

Let Ω = B(x0, r1), x0 ∈ Rd , r1 > 0.
Let F ⊂H 2(Ω) linear subspace with

‖(−∆ +W )ψ‖L∞(Ω) ≤ ε ‖ψ‖L2(Ω) for all ψ ∈F .

Then there is 0< r2 = r2 (d ,W∞) < r1, with the property that for all
r ∈]0, r2] there exists a linear map Zr : F → E0(B(x0, r)) such that

‖ψ−Zrψ‖L∞(B(x0,r)) ≤ Cd ,rε ‖ψ‖L2(Ω) where lim
r→0

Cd ,r = 0.

As a consequence, for all N ∈ N there is a vector subspace FN of F , with

dimFN ≥ dimF − γdNd−1,

such that for all ψ ∈FN and x ∈ B(x0,
r2
4 ) we have

|ψ(x)| ≤
(
CN2

d ,W∞,r1 |x− x0|N+1 + ε

)
‖ψ‖L2(Ω) .
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Some Harmonic Analysis

Theorem (Quantitative unique continuation principle)

Let Ω⊂ Rd open. Let ψ ∈ H2(Ω) and let ζ ∈ L2(Ω) be defined by

−∆ψ +Vψ = ζ a.e. on Ω,

where V is a bounded real measurable function on Ω, ‖V ‖
∞
≤ K < ∞.

Let Θ⊂ Ω be a bounded measurable set where
∥∥ψχΘ

∥∥
2 > 0.

Set Q(x ,Θ) := sup
y∈Θ
|y − x | for x ∈ Ω.

Let x0 ∈ Ω\Θ satisfy Q = Q(x0,Θ)≥ 1 and B(x0,6Q +2)⊂ Ω.

Then, given
0< δ ≤min

{
2dist(x0,Θ) , 1

300

}
,

we have(
δ

Q

)md

(
1+K

2
3
)(

Q
4
3 +log ‖ψχΩ‖2

‖ψχΘ‖2

)
‖ψχΘ‖22 ≤

∥∥ψχB(x0,δ)

∥∥2
2 +‖ζ χΩ‖22 .
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Two and three dimensions

Bounds for two and three dimensional Schrödinger operators

Theorem

Let H be a Schrödinger operator in L2(Rd ), where d = 2,3.
Given E0 ∈ R, there exists Ld ,V∞,E0 such that for all energies E ≤ E0 and
0< ε ≤ 1

2 we have

ηΛL ([E ,E + ε])≤
Cd ,V∞,E0(
log 1

ε

) 4−d
8

for all open boxes ΛL with L≥ Ld ,V∞,E0

(
log 1

ε

) 3
8 ,
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Two and three dimensions

Proof for the two and three dimensional continuous cases I

Let Λ = ΛL(x0), E ≤ E0, ε ∈]0, 1
2 ], and set P = χ [E ,E+ε](HΛ).

Recall that RanP ⊂D(∆Λ)⊂H 2(Λ), and note that we have

‖(HΛ−E )ψ‖ ≤ ε ‖ψ‖ for all ψ ∈ RanP.

Recall also that for ψ ∈ RanP we have

‖ψ‖
∞

=
∥∥∥e−HΛeHΛψ

∥∥∥
∞

≤
∥∥∥e−HΛ

∥∥∥
L2→L∞

∥∥∥eHΛψ

∥∥∥≤ Cd ,V∞
e|E |+1 ‖ψ‖ .

Since P (HΛ−E )ψ = (HΛ−E )Pψ for ψ ∈ RanP , we conclude that

‖(HΛ−E )ψ‖
∞
≤ εCd ,V∞,E0 ‖ψ‖ for all ψ ∈ RanP.
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Two and three dimensions

Proof for the two and three dimensional continuous cases II

Suppose now that

ηΛ ([E ,E + ε]) = 1
Ld trP ≥ ρ > 0.

We fix 0< R < L, to be selected later, and let G ⊂ Λ be defined by

Λ =
⋃
y∈G

ΛR(y) and #G =
( L

R

)d
.

We take

N ≈
(

1
2γd

ρ

) 1
d−1 R

d
d−1 ∈ N.

Applying the local behavior theorem at all the sites in G , we conclude that
there exists a subspace FR of RanP and r0 = r0(d ,V∞,E ) > 0, such that

dimFR ≥ ρLd − γdNd−1 ( L
R

)d ≥ 1
2ρLd ,

and for all ψ ∈FR and y ∈ G we have

|ψ(y + x)| ≤
(
CN2

d ,V∞,E |x |
N+1 + εCd ,V∞,E

)
‖ψ‖ if |x | ≤ r0.
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Two and three dimensions

Proof for the two and three dimensional continuous cases III

Let QR be the orthogonal projection onto FR , so QR = QRP .
Since trQR = dimFR ≥ 1

2ρLd , there is ψ ∈FR , ‖ψ‖= 1, and x0 ∈ Λ such
that Λ1(x0)⊂ Λ and∥∥ψχΛ1(x0)

∥∥
2 ≥ γρ, where γ = γ(d ,V∞,E0) > 0.

We then pick y0 ∈ G such that
R
2 ≤ dist(y0,Λ1(x0))≤ R

√
d

Taking 0< δ < 1
300 , it follows from the QUCP that, with K = ‖V ‖

∞
+E0,(

δ√
dR

)md

(
1+K

2
3
)(

R
4
3 +|log‖ψχΛ1(x0)‖2|

)∥∥ψχΛ1(x0)

∥∥2
2 ≤

∥∥ψχB(y0,δ)

∥∥2
2 + ε

2.

Making δ ≤ r0 and using the local behavior estimate, we get(
δ√
dR

)m
(
1+K

2
3
)(

R
4
3 +|log(γρ)|

)
(γρ)2 ≤ CdCN2

d ,V∞,E0
δ

2(N+1)+d +Cd ,V∞,E0 ε
2.
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Two and three dimensions

Proof for the two and three dimensional continuous cases IV

Using ρRd ≥ 2γd (it follows from N ≥ 1), noting δ ≤ d−
1
2R , we get

(
δ

R

)MR
4
3

≤ CN2

d ,V∞,E0
δ

2N +Cd ,V∞,E0 ε
2,

with M = Md ,V∞,E0 > 0.

We now choose δ by

CN
d ,V∞,E0

δ
2 = δ

R , i.e., δ =
(
CN

d ,V∞,E0
R
)−1

,

obtaining

(
δ

R

)MR
4
3

≤
(

δ

R

)N
+Cd ,V∞,E0 ε

2.
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Two and three dimensions

Proof for the two and three dimensional continuous cases V

We now take d = 2,3 and take R large enough so that(
δ

R

)N
≤ 1

2

(
δ

R

)MR
4
3

,

which can always be done since for d = 2,3 we have 4
3 < d

d−1 , so

MR
4
3 < N ≈

(
1

2γd
ρ

) 1
d−1 R

d
d−1 , i.e., ρ > Cd ,V∞,ER

d−4
3 .

(Here we need d < 4, that is, d = 2 or d = 3.)
It follows that

1
2

(
δ

R

)MR
4
3

≤ Cd ,V∞,E0 ε
2.

We conclude that (
CN

d ,V∞,ER
2
)−MR

4
3

≤ 2Cd ,V∞,E0 ε
2.
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Two and three dimensions

Proof for the two and three dimensional continuous cases VI

We now choose R (with an appropriate constant cd ,V∞,E ) by

ρ = cd ,V∞,E0R
d−4
3 ,

We get

e−M ′R
8
3 = e−M ′R

d−4
3(d−1)

+ d
d−1 + 4

3 ≤ Cd ,V∞,E0 ε
2 where M ′ = M ′d ,V∞,E0

.

Thus

log 1
ε
≤ Cd ,V∞,E0R

8
3 =

C ′d ,V∞,E0

ρ
8

4−d
,

and hence
ρ ≤

Cd ,V∞,E0(
log 1

ε

) 4−d
8
.
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Two and three dimensions

What about d ≥ 3?

The restriction to d = 1,2,3 is due to the present form of the
quantitative unique continuation principle, where there is a term Q

4
3

in the exponent.
If instead we had Qβ we would be able to prove log-Hölder continuity
of the integrated density of states for dimensions d < β

β−1 . Since
β = 4

3 , we get d < 4.
It is reasonable to expect that something like the the quantitative
unique continuation principle holds with β = 1+ (there are no
counterexamples for real potentials). In this case we would obtain
log-Hölder continuity of the integrated density of states for all d , with

κd =
β −d(β −1)

2β
=

1
2
− for d ≥ 2.
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