Localization for Schrödinger operators with Delone potentials

François Germinet

University of Cergy-Pontoise, Paris
with P. Müller, C. Rojas-Molina // A. Klein
MUNCHEN - April 10-13, 2012

Schrödinger operators with alloy type potential

Let us consider Schrödinger operators of the form

$$
H_{D}:=-\Delta+V_{D} \quad \text { on } \quad L^{2}\left(\mathbb{R}^{d}\right)
$$

- Δ is the d-dimensional Laplacian operator.
- V_{D} is an alloy-type potential:

$$
V_{D}(x):=\sum_{\zeta \in D} u_{\zeta}(x), \quad \text { where } \quad u_{\zeta}(x)=u(x-\zeta)
$$

- The single site potential u is a nonnegative bounded measurable function on \mathbb{R}^{d} with compact support, uniformly bounded away from zero in a neighborhood of the origin.

It is well-known that if D is a periodic then H_{D} has ac spectrum. What if D has a more complex structure, like Delone sets?

Quasicrystals

1984 ('82) D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, "Metallic phase with long-range orientational order and no translation symmetry", Phys. Rev. Letters.

A Delone set D of parameters (r, R) is a pure point set in \mathbb{R}^{d}, uniformly discrete (r) and relatively dense (R).

Delone sets

Let D a (r, R)-Delone set,

$$
H(D)=-\Delta+\sum_{\zeta \in D} u(\cdot-\zeta)
$$

- The spectrum of $H(D)$ is generically purely singular continuous, within the set of (r, R)-Delone sets.
'90, '00's: A. Hof, R. Moody, J.C. Lagarias, B. Solomyak, D. LenzP.Stollmann, P. Müller-C. Richard.

QUESTION

Can we get Schrödinger operators with a Delone potential and localization?
That is: take D a (r, R)-Delone set, $u \geq C \chi_{\delta} \geq 0, \delta<r<R$. Can

$$
H_{D}=-\Delta+\sum_{\zeta \in D} u(\cdot-\zeta)
$$

has localization in $\left[\Sigma_{\text {inf }}, \Sigma_{\text {inf }}+\kappa\right] \cap \sigma\left(H_{D}\right) \neq 0$, for some $\kappa>0$, where $\Sigma_{\text {inf }}=\inf \sigma\left(H_{D}\right)$?
There is no randomness here.

- YES!
- How "many" ? A lot from a topological point of view: in progress (dense and union of G_{δ})
- How "regular" are they? Rather irregular: for instance, those we construct do not exhibit uniform pattern frequency. There is an infinite number of patterns, repeated an infinite number of times (in progress)

A detour: The Continuous Anderson Hamiltonian

The Anderson Hamiltonian is the random Schrödinger operator

$$
H_{\omega}:=-\Delta+V_{0}+V_{\omega} \quad \text { on } \quad \mathrm{L}^{2}\left(\mathbb{R}^{d}\right)
$$

- Δ is the d-dimensional Laplacian operator.
- V_{0} is a bounded periodic background potential.
- V_{ω} is an alloy-type random potential:

$$
V_{\omega}(x):=\sum_{\zeta \in \mathbb{Z}^{d}} \omega_{\zeta} u_{\zeta}(x), \quad \text { where } \quad u_{\zeta}(x)=u(x-\zeta)
$$

- The single site potential u is a nonnegative bounded measurable function on \mathbb{R}^{d} with compact support, uniformly bounded away from zero in a neighborhood of the origin.
- $\omega=\left\{\omega_{\zeta}\right\}_{\zeta \in \mathbb{Z}^{d}}$ is a family of independent identically distributed random variables, whose common probability distribution μ is non-degenerate with bounded support.

Localization

Theorem (G., Klein 2012)
(Ergodic) Anderson Hamiltonians exhibit a strong form of localization at the bottom of the spectrum without any additional condition on the single site probability distribution.
This strong form of localization holds in an interval

$$
\left[E_{\mathrm{inf}}, E_{0}\right] \subset \Sigma \quad\left(E_{0}>E_{\mathrm{inf}}\right)
$$

and includes:

- Anderson localization: pure point spectrum with exponentially decaying eigenfunctions (with probability one).
- Dynamical localization: no spreading of wave packets under the time evolution.
Moreover, the integrated density of states is Log-Hölder continuous on the interval $\left[E_{\text {inf }}, E_{0}\right]$.

Comments I

- We are only discussing results that hold in arbitrary dimension d. $(d=1$ is special.)
- If the single-site probability distribution μ has a bounded density (or is Hölder continuous) these results have been known for some time. They also hold for the Anderson model on $\ell^{2}\left(\mathbb{Z}^{d}\right)$.
- If μ is a Bernoulli distribution, Anderson localization (pure point spectrum with exponentially decaying eigenfunctions) was proved by Bourgain and Kenig (2005).
- Spectral localization (pure point spectrum) for arbitrary μ follows from an extension of the BK results by a Bernoulli decomposition for random variables (Aizenman, G., Klein, Warzel (2009)).
- The proof is based on a multiscale analysis that incorporates the new ideas introduced by Bourgain and Kenig.

Comments II

- Anderson localization was proved for Poisson random potentials by G., Hislop and Klein (2007) using the BK results. The results in this talk, including dynamical localization and log-Hölder continuity of the IDS hold for the Poisson Hamiltonian.
- Related open problems:
- discrete Bernoulli Anderson model: no UCP
- Landau Hamiltonian with singular random potential: UCP with exponent 2 instead of $\frac{4}{3}$, which is not enough to perform the MSA
- singular potential of non definite sign: cannot use the QUCP

Notation

- Given $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, we set

$$
\|x\|:=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{d}\right|\right\} \quad \text { and } \quad\langle x\rangle:=\sqrt{1+\|x\|^{2}}
$$

- The (open) box of side L centered at $x \in \mathbb{R}^{d}$:

$$
\left.\Lambda_{L}(x):=\left\{y \in \mathbb{R}^{d} ;\|y-x\|<\frac{L}{2}\right\}=x+\right]-\frac{L}{2}, \frac{L}{2}\left[^{d}\right.
$$

- $\chi_{x}:=\chi_{\Lambda_{1}(x)}$ is the characteristic function of the unit box centered at $x \in \mathbb{R}^{d}$.
- Spectral projections:

$$
\begin{aligned}
& P_{\omega}(B):=\chi_{B}\left(H_{\omega}\right) \quad \text { for } \quad B \subset \mathbb{R}^{d} \\
& P_{\omega}(E):=P_{\omega}(\{E\}) \quad \text { for } \quad E \in \mathbb{R}
\end{aligned}
$$

$$
\left.\left.P_{\omega}^{(E)}:=P_{\omega}(]-\infty, E\right]\right), \quad \text { the Fermi projection with Fermi energy } E .
$$

Log-Hölder continuity of the integrated density of states

The integrated density of states: $\quad N(E):=\mathbb{E}\left\{\operatorname{tr} \chi_{0} P_{\omega}^{(E)} \chi_{0}\right\}$.
Theorem
Let H_{ω} be an Anderson Hamiltonian on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$. Then there exists an energy $E_{0}>E_{\text {inf }}$, constants C and $\kappa>0$ such that for all $E_{1}, E_{2} \in\left[E_{\text {inf }}, E_{0}\right]$ with $\left|E_{2}-E_{1}\right|$ sufficiently small we have

$$
\left|N\left(E_{2}\right)-N\left(E_{1}\right)\right| \leq \frac{C}{|\log | E_{2}-\left.E_{1}\right|^{\kappa}} .
$$

Regular case [Combes, Hislop, Klopp]:
$\left|N\left(E_{2}\right)-N\left(E_{1}\right)\right| \leq C Q_{\mu}\left(\left|E_{2}-E_{1}\right|\right)$, where $Q_{\mu}(s):=\sup _{t \in \mathbb{R}} \mu([t, t+s])$ for $s>0$.

Theorem (Details of Localization) I

Let H_{ω} be an Anderson Hamiltonian on $L^{2}\left(\mathbb{R}^{d}\right)$. Then there exists an energy $E_{0}>E_{\text {inf }}$, constants $\left.\left.\beta \in\right] 0,1\right]$ and $M>0$, so H_{ω} exhibits strong localization in the energy interval $\left[E_{\text {inf }}, E_{0}\right]$ in the following sense:

1. Enhanced Anderson localization: The following holds with probability one:

- H_{ω} has pure point spectrum in the interval $\left[E_{\text {inf }}, E_{0}\right]$.
- For all $E \in\left[E_{\text {inf }}, E_{0}\right], \psi \in \operatorname{Ran} P_{\omega}(E)$, and $v>\frac{d}{2}$, we have

$$
\left\|\chi_{x} \psi\right\| \leq C_{\omega, E, v}\left\|\langle X\rangle^{-v} \psi\right\| e^{-M\|x\|} \quad \text { for all } \quad x \in \mathbb{R}^{d} .
$$

In particular, each eigenfunction ψ of H_{ω} with eigenvalue $E \in\left[E_{\text {inf }}, E_{0}\right]$ is exponentially localized with the non-random rate of decay $m>0$.

- The eigenvalues of H_{ω} in $\left[E_{\text {inf }}, E_{0}\right.$] have finite multiplicity:

$$
\operatorname{tr} P_{\omega}(E)<\infty \quad \text { for all } \quad E \in\left[E_{\text {inf }}, E_{0}\right] .
$$

Theorem (Details of Localization) II

2. The following holds with probability one for all $\varepsilon>0$:

- Summable uniform decay of eigenfunction correlations (SUDEC):
For all $E \in\left[E_{\text {inf }}, E_{0}\right], x, y \in \mathbb{R}^{d}$, and $v>\frac{d}{2}$, we have
$\left\|\chi_{x} \phi\right\|\left\|\chi_{y} \psi\right\| \leq C_{\omega, \varepsilon, v}\left\|\langle X\rangle^{-v} \phi\right\|\left\|\langle X\rangle^{-v} \psi\right\| \mathrm{e}^{\|x\|^{\frac{1}{2}+\varepsilon}} \mathrm{e}^{-\frac{1}{4} M\|x-y\|^{\frac{\beta}{2}}}$
for all $\phi, \psi \in \operatorname{Ran} P_{\omega}(E)$, and

$$
\left\|\chi_{x} P_{\omega}(E)\right\|_{2}\left\|\chi_{y} P_{\omega}(E)\right\|_{2} \leq C_{\omega, \varepsilon, v}\left\|\langle X\rangle^{-v} P_{\omega}(E)\right\|_{2}^{2} \mathrm{e}^{\|x\|^{\frac{1}{2}+\varepsilon}} \mathrm{e}^{\left.-\frac{1}{4} M \| x-y \right\rvert\,}
$$

Theorem (Details of Localization) III

- Semi-uniformly localized eigenfunctions (SULE):

For all $E \in\left[E_{\text {inf }}, E_{0}\right]$ there exists a "center of localization" $y_{\omega, E} \in \mathbb{R}^{d}$ for all eigenfunctions with eigenvalue E, in the sense that for all $x \in \mathbb{R}^{d}$ and $v>\frac{d}{2}$ we have

$$
\left\|\chi_{x} \phi\right\| \leq C_{\omega, \varepsilon, v}\left\|T_{v}^{-1} \phi\right\| \mathrm{e}^{\left\|y_{\omega, E}\right\|^{\frac{1}{2}+\varepsilon}} \mathrm{e}^{-\frac{1}{4} M\left\|x-y_{\omega, E}\right\|^{\frac{\beta}{2}}} \text { for } \phi \in \operatorname{Ran} P_{\omega}(E),
$$

and

$$
\left\|\chi_{x} P_{\omega}(E)\right\|_{2} \leq C_{\omega, \varepsilon, v}\left\|T_{v}^{-1} P_{\omega}(E)\right\|_{2} \mathrm{e}^{\left\|y_{\omega, E}\right\|^{\frac{1}{2}+\varepsilon}} \mathrm{e}^{-\frac{1}{4} M\left\|x-y_{\omega, E}\right\|^{\frac{\beta}{2}}} .
$$

Moreover, we have

Theorem (Details of Localization) IV

- Almost sure dynamical localization:

For all $x, y \in \mathbb{R}^{d}$ we have

$$
\sup _{|f| \leq 1}\left\|\chi_{y} f\left(H_{\omega}\right) P_{\omega}\left(\left[E_{\text {inf }}, E_{0}\right]\right) \chi_{x}\right\|_{1} \leq C_{\omega, \varepsilon} \mathrm{e}^{\|x\|^{\frac{1}{2}+\varepsilon}} \mathrm{e}^{-\frac{1}{4} M\|x-y\|^{\frac{\beta}{2}}}
$$

- Almost sure decay of the Fermi projection:

For all $E \in\left[E_{\text {inf }}, E_{0}\right]$ and $x, y \in \mathbb{R}^{d}$ we have

$$
\left\|\chi_{y} P_{\omega}^{(E)} \chi_{x}\right\|_{1} \leq C_{\omega, \varepsilon} \mathrm{e}^{\|x\|^{\frac{1}{2}+\varepsilon}} \mathrm{e}^{-\frac{1}{4} M\|x-y\|^{\frac{\beta}{2}}} .
$$

Theorem (Details of Localization) V

3. Given $b>0$, for all $s \in] 0, \frac{\beta}{b+\frac{1}{2}}\left[\right.$ and $x_{0} \in \mathbb{R}^{d}$ we have

- Strong dynamical localization:

$$
\mathbb{E}\left\{\sup _{|f| \leq 1}\left\|\langle X\rangle^{b d} f\left(H_{\omega}\right) P_{\omega}\left(\left[E_{\text {inf }}, E_{0}\right]\right) \chi_{\chi_{0}}\right\|_{1}^{s}\right\}<\infty
$$

and

$$
\mathbb{E}\left\{\sup _{t \in \mathbb{R}}\left\|\langle X\rangle^{b d} \mathrm{e}^{-i t H_{\omega}} P_{\omega}\left(\left[E_{\text {inf }}, E_{0}\right]\right) \chi_{x_{0}}\right\|_{1}^{s}\right\}<\infty .
$$

- Strong decay of the Fermi projection:

$$
\mathbb{E}\left\{\sup _{E \in\left[E_{\text {inf }}, E_{0}\right]}\left\|\langle X\rangle^{b d} P_{\omega}^{(E)} \chi_{x_{0}}\right\|_{1}^{s}\right\}<\infty .
$$

The Bernoulli-Delone Schrödinger operator

- Let D_{1} be a (r, R)-Delone set.
- Take D_{2} another (r, R)-Delone
- such that $D_{1} \cup D_{2}$ is a $\left(\frac{r}{2}, R\right)$-Delone
(possible: for instance play with the Voronoï diagram associated to D_{1}).
Consider the Bernoulli-Delone Schrödinger operator

$$
H_{\omega}=-\Delta+\sum_{\zeta \in D_{1}} u_{\zeta}+\sum_{\zeta \in D_{2}} \omega_{\zeta} u_{\zeta}
$$

with $\left(\omega_{z}\right)_{\zeta \in D_{2}}$ iid Bernoulli rv.
Write $D_{2, \omega}=\left\{\zeta \in D_{2}, \omega_{\zeta}=1\right\}$, so that $H_{\omega}=-\Delta+V_{D_{1} \cup D_{2, \omega}}$. Note that for any given $\omega, D_{1} \cup D_{2, \omega}$ is a $\left(\frac{r}{2}, R\right)$-Delone set.

How to get localization?

APPLY MULTISCALE ANALYSIS

- The multiscale analysis is not sensitive to the geometry of the underlying set where impurities are located (see e.g. [RM12]).
- The multiscale analysis of Bourgain-Kenig for the Bernoulli Schrödinger operator ($D_{1}=\emptyset$ and D_{2} periodic), applies in a similar way. See [G., Klein 2012] for a detailed version in the ergodic case, with arbitrary non trivial rv.
- But one has to start! GET THE ILSE, that is for E close to the bottom of the spectrum, for some $q \in] \frac{1}{3}, \frac{3}{8}[$,

$$
\mathbb{P}\left(\left\|\chi_{x} R_{\omega, \Lambda}(E) \chi_{y}\right\| \leq \mathrm{e}^{-m\|x-y\|} \text { and }\left\|R_{\omega, \Lambda}(E)\right\| \leq \mathrm{e}^{L^{1-\varepsilon}}\right) \geq 1-L^{-q d}
$$

Lifshitz tail? OK if D_{1} and D_{2} are periodic.

The case $D_{1}=\emptyset:[G$, proc. Qmath10]

ILSE follows easily as in [BK,GKH]. Compare $V_{D_{2, \omega}}$ to an averaged potential $\bar{V} \geq C R^{-d}$ with a good probability, and use the fact that at the bottom of the spectrum $(=0)$, the kinetic energy is small.

$$
\begin{equation*}
\bar{V}_{\omega_{\Lambda}}(x):=\frac{1}{(K R)^{d}} \int_{\Lambda_{K R}(0)} \text { da } V_{\omega_{\Lambda}}(x-a) \geq \frac{c_{u, d}}{R^{d}} Y_{\omega, \wedge} \chi_{\Lambda}(x) \tag{1}
\end{equation*}
$$

with $K \approx(\log L)^{\frac{1}{d}}$ and

$$
\begin{equation*}
Y_{\omega, \Lambda}:=\min _{\xi \in \widetilde{\Lambda}} \frac{1}{K^{d}} \sum_{\zeta \in \Lambda_{K / 3}(\xi)} \omega_{\zeta} \geq \frac{\bar{\mu}}{2}, \tag{2}
\end{equation*}
$$

with a probility $\geq 1-\mathrm{e}^{-A_{\mu} K^{d}}$, with $\bar{\mu}$ the mean of the probability measure μ, and for some $A_{\mu}>0$ (deviation estimate).
We have, for $\varphi \in C_{c}^{\infty}(\Lambda),\|\varphi\|=1$,

$$
\begin{aligned}
\left\langle\varphi, H_{\omega, \Lambda} \varphi\right\rangle_{\Lambda} & \geq\left\langle\varphi, \bar{V}_{\omega_{\Lambda}} \varphi\right\rangle+\left\langle\varphi,\left(V_{\omega_{\Lambda}}-\bar{V}_{\omega_{\Lambda}}\right) \varphi\right\rangle \\
& \geq \frac{C}{R^{d}}-c K R\left\|\nabla_{L} \varphi\right\| \geq \frac{C}{R^{d}}-c K R\left\langle\varphi, H_{\omega, \Lambda} \varphi\right\rangle_{\Lambda}^{1 / 2}
\end{aligned}
$$

and thus $\left\langle\varphi, H_{\omega, \Lambda} \varphi\right\rangle_{\Lambda} \geq C^{\prime} R^{-2(d+1)} K^{-2}$.

The case $D_{1}=\emptyset($ end $)$

[BK, GK] provides localization for $H_{\omega}=-\Delta+V_{D_{2, \omega}}$, at the bottom of the spectrum, that is in an interval of the type $\left[0, C_{\delta} R^{-2(d+1)}(\log R)^{-2}\right]$, for $R \geq r \geq \delta, \delta>0$ given.
BUT: the sets $D_{2, \omega}$ for which localization is obtained are not Delone anymore (large holes). However, for any $\varepsilon>0$, for any $x \in \mathbb{R}^{d}$, for a.e. ω,

$$
\begin{equation*}
\lim _{L \rightarrow \infty} L^{-(d-\varepsilon)}\left|\Lambda_{L}(x) \cap D_{2, \omega}\right|=+\infty . \tag{3}
\end{equation*}
$$

It does not solve the original problem.

The case $D_{1} \neq \emptyset$

PROBLEM: show that for some $\kappa>0$, with a good enough probability (operators in Λ_{L})

$$
\inf \sigma\left(-\Delta_{L}+V_{D_{1}}+V_{D_{2}, \omega}\right) \geq \inf \sigma\left(-\Delta_{L}+V_{D_{1}}\right)+\kappa
$$

IDEA: pick $K \approx(\log L)^{\frac{1}{d}+\varepsilon}$, divide Λ_{L} in cubes $\Lambda_{K}\left(\gamma_{j}\right)$, $j=1, \cdots,(L / K)^{d}$, and make sure there is at least one point of $D_{2, \omega}$ in each $\Lambda_{K}\left(\gamma_{j}\right)$. We have, with $p=\mathbb{P}\left(\omega_{\zeta}=0\right)$,

$$
\mathbb{P}\left(A_{K}:=\left\{\omega, \#\left(\Lambda_{K}\left(\gamma_{j}\right) \cap D_{2, \omega}\right) \geq 1, \forall j\right\}\right) \geq 1-\left(\frac{L}{K}\right)^{d} p^{c(K / R)^{d}}
$$

We restrict ourselves to $\omega \in A_{K}$.
The rest of the argument is deterministic.
We consider the family $H(t)=-\Delta+V_{D_{1}}+t V_{D_{2}, \omega}$.

Using a QUCP of [RMV12]

We have [RMV12] (operators in Λ_{L}),

$$
\inf \sigma\left(-\Delta_{L}+V_{D_{1}}+t V_{D_{2}, \omega}\right) \geq \inf \sigma\left(-\Delta_{L}+V_{D_{1}}\right)+t \kappa(K)
$$

with $\kappa(K) \geq c K^{-K^{4 / 3}}$ uniformly in ω.
It uses a precise version of Bourgain-Kenig's quantitative unique continuation principe (as in [GK]) combined with a clever decompostion of Λ_{L} in dominant and non dominant boxes, in order to get a scale free parameter κ.
Next: to start the MSA, we need the size of the gap to be $\gg L^{-1}$, that is

$$
L \cdot K^{-K^{4 / 3}} \gg 1
$$

Remember $K \approx(\log L)^{\frac{1}{d}+\varepsilon}$. So we need $\frac{4}{3 d}<1$, that is $d \geq 2$. Case $d=1$: use Gronwall inequality to improve on the general QUCP. Then $\kappa(K)=c \mathrm{e}^{-c K}$, and the proof applies for p small enough ($p \leq c \mathrm{e}^{-c R}$).

The Quantitative Unique Continuation Principle

 Lemma (Bourgain-Kenig, as in G-Klein) Set $\Lambda=\Lambda_{L}\left(x_{0}\right)$. Let Δ_{Λ} be the Dirichlet Laplacian on $L^{2}(\Lambda)$, let V be a bounded potential on Λ with $\|V\|_{\infty} \leq K$, let $\Theta \subset \Lambda$ measurable, and consider $u \in \mathscr{D}\left(\Delta_{\Lambda}\right)$ satisfying,$$
\begin{aligned}
& -\Delta_{\wedge} u+V u=0, \\
& \left\|u \chi_{\Lambda_{\delta}(x) \cap \Lambda}\right\| \leq Q \quad \text { for all } \quad x \in \Lambda, \\
& \left\|u \chi_{\Theta}\right\| \geq \beta\left\|u \chi_{\Lambda}\right\| .
\end{aligned}
$$

Then, there exist finite constants $R_{1}>1$ and $M>0$, where R_{1} depends only on d, K, Q, δ, and M depends only on d, such that for all $x \in \Lambda$ with

$$
R:=\operatorname{dist}(x, \Theta) \geq \max \left\{R_{1}, \operatorname{diam} \Theta\right\} \quad \text { and } \quad \Lambda_{\delta}(x) \subset \Lambda,
$$

we have

$$
\left\|u \chi_{\Lambda_{\delta}(x)}\right\|^{2} \geq R^{-M\left(1+K^{\frac{2}{3}}+\log \beta\right) R^{\frac{4}{3}}}\left\|u \chi_{\Theta}\right\|^{2}
$$

QUCP for $H_{0}=-\Delta+V_{0}$

Let $H_{0, L}=-\Delta_{L}+V_{0, L}$ with V_{0} bounded, and $E_{0}=\inf \sigma\left(H_{0}\right)$.
Theorem (Rojas-Molina - Veselic 2012)
If φ is an eigenfunction of the operator $H_{0, L}$ in an interval I, and D is a Delone set, we have

$$
\sum_{\gamma \in D \cap \Lambda_{L}}\|\varphi\|_{B(\gamma, \delta)}^{2} \geq C_{U C P}(I, d)\|\varphi\|_{\Lambda_{L}}^{2}
$$

Known with a periodic background: Combes-Hislop-Klopp'03, Combes-Hislop-Klopp'07
i) Application to Wegner estimates
ii) Perturbation of the bottom of the spectrum: denote by $\lambda^{L}(t)=\inf \sigma\left(H_{t, L}\right)$ the bottom of the spectrum of $H_{t, L}:=-\Delta_{L}+V_{0, L}+t V_{L}$ on $\Lambda_{L}(x)$ with Dirichlet boundary conditions. Then

$$
\forall t \in(0,1]: \quad \lambda^{L}(t) \geq \lambda^{L}(0)+C_{U C P}(u, l, d) \cdot t
$$

