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Schrédinger operators with alloy type potential
Let us consider Schrédinger operators of the form

Hp:=—A+Vp on L*RY)

» A is the d-dimensional Laplacian operator.
» Vp is an alloy-type potential:

Vb(x):= Y ug(x), where ug(x)=u(x—{)
teD

» The single site potential v is a nonnegative bounded
measurable function on R with compact support, uniformly
bounded away from zero in a neighborhood of the origin.

It is well-known that if D is a periodic then Hp has ac spectrum.
What if D has a more complex structure, like Delone sets 7



Quasicrystals

1984 ('82) D. Shechtman, I. Blech, D. Gratias, J.W. Cahn,
“Metallic phase with long-range orientational order and no
translation symmetry”, Phys. Rev. Letters.

Diffraction patterns

crystal quasicrystal

A Delone set D of parameters (r,R) is a pure point set in RY,
uniformly discrete (r) and relatively dense (R).



Delone sets
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Delone set Penrose tiling lattice

Let D a (r,R)-Delone set,

H(D)=-A+ ) u(-={)

teD

» The spectrum of H(D) is generically purely singular
continuous, within the set of (r, R)-Delone sets.
'90, '00’s: A. Hof, R. Moody, J.C. Lagarias, B. Solomyak, D. Lenz-
P.Stollmann, P. Miiller-C. Richard.



QUESTION

Can we get Schrodinger operators with a Delone potential and
localization 7

That is: take D a (r,R)-Delone set, u> Cys >0, 6 <r < R. Can

Hp=-A+ Y u(-—{)

teD

has localization in [Ei.f, Lins + kK] N o (Hp) # 0, for some k > 0,
where ¥;.s =info(Hp) ?
There is no randomness here.

» YES!

» How "many" 7 A lot from a topological point of view: in
progress (dense and union of Gg)

» How "regular" are they? Rather irregular: for instance, those
we construct do not exhibit uniform pattern frequency. There
is an infinite number of patterns, repeated an infinite number
of times (in progress)



A detour: The Continuous Anderson Hamiltonian
The Anderson Hamiltonian is the random Schrédinger operator

Hyp:= A+ Vo+V, on L3(RY)

» A is the d-dimensional Laplacian operator.
» ) is a bounded periodic background potential.

» V), is an alloy-type random potential:

Vo(x) =) opug(x), where ug(x)=u(x—{)
(ezd

» The single site potential v is a nonnegative bounded
measurable function on R with compact support, uniformly
bounded away from zero in a neighborhood of the origin.

» ©={W¢}royq is a family of independent identically
distributed‘: random variables, whose common probability
distribution u is non-degenerate with bounded support.



Localization

Theorem (G., Klein 2012)

(Ergodic) Anderson Hamiltonians exhibit a strong form of
localization at the bottom of the spectrum without any additional
condition on the single site probability distribution.

This strong form of localization holds in an interval
[Einf, Eo] cXx (EO > Einf)

and includes:

» Anderson localization: pure point spectrum with exponentially
decaying eigenfunctions (with probability one).

» Dynamical localization: no spreading of wave packets under
the time evolution.

Moreover, the integrated density of states is Log-Holder continuous
on the interval [E;.s, Eo|.



Comments |

» We are only discussing results that hold in arbitrary dimension
d. (d =1 is special.)

» If the single-site probability distribution p has a bounded
density (or is Holder continuous) these results have been
known for some time. They also hold for the Anderson model
on 2(29).

» If u is a Bernoulli distribution, Anderson localization (pure
point spectrum with exponentially decaying eigenfunctions)
was proved by Bourgain and Kenig (2005).

» Spectral localization (pure point spectrum) for arbitrary u
follows from an extension of the BK results by a Bernoulli
decomposition for random variables (Aizenman, G., Klein,
Warzel (2009)).

» The proof is based on a multiscale analysis that incorporates
the new ideas introduced by Bourgain and Kenig.



Comments |l

» Anderson localization was proved for Poisson random
potentials by G., Hislop and Klein (2007) using the BK results.
The results in this talk, including dynamical localization and
log-Hélder continuity of the IDS hold for the Poisson
Hamiltonian.

» Related open problems:
- discrete Bernoulli Anderson model: no UCP
- Landau Hamiltonian with singular random potential: UCP
with exponent 2 instead of %, which is not enough to perform
the MSA
- singular potential of non definite sign: cannot use the QUCP



Notation

» Given x = (x1,%0,...,xg) € RY, we set

x| := max{|xi|,|x2|,..., [xq|} and (x):=+/1+]x]|>

» The (open) box of side L centered at x € R
d
M) = {y RS Iy xl < S} =xt] =48]

> Xx = XA, (x) is the characteristic function of the unit box
centered at x € RY.

» Spectral projections:

Py(B):=Xg(Hy) for BC ]Rd,
Po(E):= Py({E}) for EE€R,
).

PwE = Pp(] —o=, E]), the Fermi projection with Fermi energy E.



Log-Holder continuity of the integrated density of states

The integrated density of states:  N(E) := E{trXOP(E,E)XO}.

Theorem

Let Hy be an Anderson Hamiltonian on 1L?(R?). Then there exists
an energy Eq > Ein¢, constants C and x > 0 such that for all

E1, Ey € [Einf, Eo] with |Ey — Eq| sufficiently small we have

C

N(E)—N(E)| < ————.
ME) = NES g g, BT

Regular case [Combes, Hislop, Klopp]:
‘N(Ez) - N(El)’ < CQu (‘Ez - E1|), where
Qu(s) :==supser u ([t,t+5s]) for s > 0.



Theorem (Details of Localization) |

Let Hy, be an Anderson Hamiltonian on L?(R?). Then there exists
an energy Eo > Ej.f, constants 8 €]0,1] and M >0, so H,, exhibits
strong localization in the energy interval [E.¢, Eo] in the following
sense:
1. Enhanced Anderson localization: The following holds with
probability one:
» Hy, has pure point spectrum in the interval [Einf, Eo] -
» For all E € [Enf, Eo], W € RanPy(E), and v > &, we have

12wl < Coen|[(X) Yyl e ™l forall xeR?.

In particular, each eigenfunction y of H, with eigenvalue
E € [Ein, Eo] is exponentially localized with the non-random

rate of decay m > 0.
» The eigenvalues of Hy, in [Einf, Eo] have finite multiplicity:

trPy(E) <eo forall E € [Einf, Eol.



Theorem (Details of Localization) Il

2. The following holds with probability one for all € > 0:

» Summable uniform decay of eigenfunction correlations

(SUDEC):
For all E € [Einf, Eo), x,y €RY, and v > ¢, we have

1., B
12012, WI| < Coren (X0 @ [[0X) ™ | 2 e aMIl2

for all ¢,y € Ran P, (E), and

1 €
1ZPo(E)ll2 |4y Po(E)|l, < Coew [|(X) ™Y Po(E)|5elXI2 e aMlx-y



Theorem (Details of Localization) Il

» Semi-uniformly localized eigenfunctions (SULE):

For all E € [Einf, Eo] there exists a “center of localization”
Yo,E € R for all eigenfunctions with eigenvalue E, in the sense
that for all x € R? and v > ¢ we have

1+£ B
||XX¢|| < Ca),e,v || TV_1¢H eHyw,E”7 ef%MHX*}’w.EH7 for¢ c Ran Pw(E)7
and
1., B
1%Po(E)ll, < Coev | T;le(E)Hze”yw,EH 27 e iM|xvoel| 2
Moreover, we have

d
No(L) := y tr Po(E) < Coe LU25  for L>1.
E€[Einf,Eol; ||yo,£]| <L



Theorem (Details of Localization) IV

» Almost sure dynamical localization:

For all x,y € RY we have

lie 1 s
sup 1%, f (Ho) Po([Einf, Eo]) %], < CoeelXI? e aMlxvl2,
f1<1

» Almost sure decay of the Fermi projection:

For all £ € [Ejn, Eo] and x,y € RY we have

1 B
[, PO%,| < Couelt e huaben,
1 )



Theorem (Details of Localization) V

3. Given b >0, for all s € }0 [ and xg € R? we have

s

< oo
1
s

< oo,
1

s
< oo,
1

B
7b_~_%

» Strong dynamical localization:

E{ sup
[fl<1

E {sup
teR

» Strong decay of the Fermi projection:

E sup
E€[Einf.Eol

|02 £ (Ho) Po (Bt Eo]) X

and

|(X)4 Mo Po([ B, Eo]) 2o

(X)* P 2




The Bernoulli-Delone Schrédinger operator

- Let Dy be a (r, R)-Delone set.

- Take Dy another (r, R)-Delone

- such that Dy U Ds is a (5, R)-Delone

(possible: for instance play with the Voronoi diagram associated to
D).

Consider the Bernoulli-Delone Schrédinger operator

Ho=—OD+ ) ug+ ), ocu
febD 4

with (@;)¢cp, iid Bernoulli rv.

Write Dz’w = {C e D, Wy = 1}, so that Hy = —A+ VD1UD2,w'
Note that for any given ®, D1 UD; 4, is a (5, R)-Delone set.



How to get localization?

APPLY MULTISCALE ANALYSIS
» The multiscale analysis is not sensitive to the geometry of the

underlying set where impurities are located (see e.g. [RM12]).

» The multiscale analysis of Bourgain-Kenig for the Bernoulli
Schrédinger operator (D; =0 and D, periodic), applies in a
similar way. See [G., Klein 2012] for a detailed version in the
ergodic case, with arbitrary non trivial rv.

» But one has to start! GET THE ILSE, that is for E close to
the bottom of the spectrum, for some g E]%,% ,

P(|lxxRon(E)xyl <e ™I and [[Rya(E)|| <€t ) >1-179,

Lifshitz tail 7 OK if Dy and D, are periodic.



The case D1 =0: [G, proc. Qmath10]

ILSE follows easily as in [BK,GKH]. Compare Vp, to an averaged

potential VV > CR~9 with a good probability, and use the fact that
at the bottom of the spectrum (= 0), the kinetic energy is small.

_ 1 ' Cu,d
Vor) = (g /AKR(O)da Vor(x = 2) 2 25 Yo a(x), (1)

with K ~ (IogL)% and
; (2)

with a probility > 1 —e‘AﬂKd, with [i the mean of the probability

measure [, and for some A, > 0 (deviation estimate).
We have, for ¢ € CZ(A), [[o]| =1,

<(p7 H(u,/\(P>,\ Z <(P?VwA(P> + <(p7(VwA 7V{1}/\)(P>
C C 1/2
> = cKRIVLO| = 5~ KR (9, Hong)y

and thus <(p,Hw_,/\(p>A > C'R-2Ad+1) K2,



The case D; =0 (end)

[BK,GK] provides localization for H, = —A + Vp, ,, at the bottom
of the spectrum, that is in an interval of the type
[0, CsR2(4+ ) (log R) 2], for R>r >, § > 0 given.

BUT: the sets D, for which localization is obtained are not
Delone anymore (large holes). However, for any € > 0, for any
x €RY, for ae. o,

lim L= |AL(x) N Dy.| = +oo. (3)

L—oo

It does not solve the original problem.



The case Dy # 0

PROBLEM: show that for some k > 0, with a good enough
probability (operators in A;)

infG(—AL—l- Vp, + VDz,w) > infO'(—AL + VD1) +K.

IDEA: pick K ~ (log L)4+¢, divide A, in cubes Ax(7;),
j=1,---,(L/K)9, and make sure there is at least one point of D> o
in each Ak(7;). We have, with p =P(w; =0),

B(Ak = {0, #(A(5)N Do) 2 1, ¥j}) > 1 () /)",

We restrict ourselves to @ € Ag.
The rest of the argument is deterministic.
We consider the family H(t) = —A+ Vp, +tVp, .



Using a QUCP of [RMV12]
We have [RMV12] (operators in Ay),
info(—AL+ Vp, + tVDz,w) >info(—AL+ VDl) + tx(K),

with k(K) > K=K uniformly in ®.
It uses a precise version of Bourgain-Kenig's quantitative unique
continuation principe (as in [GK]) combined with a clever
decompostion of A; in dominant and non dominant boxes, in order
to get a scale free parameter k.
Next: to start the MSA, we need the size of the gap to be >> L1,
that is

LK KPS,

Remember K ~ (log L)@ €. So we need 4 <1, thatis d > 2.
Case d = 1: use Gronwall inequality to improve on the general
QUCP. Then k(K) = ce=K, and the proof applies for p small
enough (p < ce™F).



The Quantitative Unique Continuation Principle
Lemma (Bourgain-Kenig, as in G-Klein)
Set A=A, (x0). Let Ap be the Dirichlet Laplacian on L?(\),
let V' be a bounded potential on \ with ||V |. < K, let © C A
measurable, and consider u € P(Ap) satisfying,
—Apu+ Vu =0,
H”%/\a(X)ﬂ/\H <Q forall xeA,

luxell = B lluxall-

Then, there exist finite constants Ry > 1 and M > 0, where R;
depends only on d,K,Q,8, and M depends only on d, such that
for all x € \ with

R :=dist(x,©) > max{R;,diam©} and Ags(x) CA,

we have
2 4
(1-+K3 +log ) R’

uxagooll® = R7Y luxell®.



QUCP for Hp = —A+ V)
Let Ho = —Ar+ Vo with Vg bounded, and Eq = inf 6(Hp).
Theorem (Rojas-Molina - Veselic 2012)

If  is an eigenfunction of the operator Hy  in an interval |, and D
is a Delone set, we have

Y lelzws = Cuce(l.d) oA,
yeDNAL

Known with a periodic background: Combes-Hislop-Klopp'03,
Combes-Hislop-Klopp'07
i) Application to Wegner estimates
ii) Perturbation of the bottom of the spectrum: denote by
AL(t) =info(H,) the bottom of the spectrum of
Hep = —Ap+ Vo + 1tV on A(x) with Dirichlet boundary
conditions. Then

Ve (0,1]: AL(t) = AL0)+ Cucp(u,l,d) -t
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