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Schrödinger operators with alloy type potential

Let us consider Schrödinger operators of the form

HD :=−∆ +VD on L2(Rd )

I ∆ is the d -dimensional Laplacian operator.
I VD is an alloy-type potential:

VD(x) := ∑
ζ∈D

uζ (x), where uζ (x) = u(x−ζ )

I The single site potential u is a nonnegative bounded
measurable function on Rd with compact support, uniformly
bounded away from zero in a neighborhood of the origin.

It is well-known that if D is a periodic then HD has ac spectrum.
What if D has a more complex structure, like Delone sets ?



Quasicrystals

1984 (’82) D. Shechtman, I. Blech, D. Gratias, J.W. Cahn,
“Metallic phase with long-range orientational order and no
translation symmetry” , Phys. Rev. Letters.

A Delone set D of parameters (r ,R) is a pure point set in Rd ,
uniformly discrete (r) and relatively dense (R).



Delone sets

Delone set Penrose tiling lattice

Let D a (r ,R)-Delone set,

H(D) =−∆ + ∑
ζ∈D

u(·−ζ )

I The spectrum of H(D) is generically purely singular
continuous, within the set of (r ,R)-Delone sets.

’90, ’00’s: A. Hof, R. Moody, J.C. Lagarias, B. Solomyak, D. Lenz-
P.Stollmann, P. Müller-C. Richard.



QUESTION
Can we get Schrödinger operators with a Delone potential and
localization ?
That is: take D a (r ,R)-Delone set, u ≥ Cχδ ≥ 0, δ < r < R . Can

HD =−∆ + ∑
ζ∈D

u(·−ζ )

has localization in [Σinf ,Σinf + κ]∩σ(HD) 6= 0, for some κ > 0,
where Σinf = infσ(HD) ?
There is no randomness here.

I YES!
I How "many" ? A lot from a topological point of view: in

progress (dense and union of Gδ )
I How "regular" are they? Rather irregular: for instance, those

we construct do not exhibit uniform pattern frequency. There
is an infinite number of patterns, repeated an infinite number
of times (in progress)



A detour: The Continuous Anderson Hamiltonian
The Anderson Hamiltonian is the random Schrödinger operator

Hω :=−∆ +V0 +Vω on L2(Rd )

I ∆ is the d -dimensional Laplacian operator.
I V0 is a bounded periodic background potential.
I Vω is an alloy-type random potential:

Vω (x) := ∑
ζ∈Zd

ωζ uζ (x), where uζ (x) = u(x−ζ )

I The single site potential u is a nonnegative bounded
measurable function on Rd with compact support, uniformly
bounded away from zero in a neighborhood of the origin.

I ω = {ωζ}ζ∈Zd is a family of independent identically
distributed random variables, whose common probability
distribution µ is non-degenerate with bounded support.



Localization

Theorem (G., Klein 2012)
(Ergodic) Anderson Hamiltonians exhibit a strong form of
localization at the bottom of the spectrum without any additional
condition on the single site probability distribution.

This strong form of localization holds in an interval

[Einf ,E0]⊂ Σ (E0 > Einf)

and includes:
I Anderson localization: pure point spectrum with exponentially

decaying eigenfunctions (with probability one).
I Dynamical localization: no spreading of wave packets under

the time evolution.
Moreover, the integrated density of states is Log-Hölder continuous
on the interval [Einf ,E0].



Comments I

I We are only discussing results that hold in arbitrary dimension
d . (d = 1 is special.)

I If the single-site probability distribution µ has a bounded
density (or is Hölder continuous) these results have been
known for some time. They also hold for the Anderson model
on `2(Zd ).

I If µ is a Bernoulli distribution, Anderson localization (pure
point spectrum with exponentially decaying eigenfunctions)
was proved by Bourgain and Kenig (2005).

I Spectral localization (pure point spectrum) for arbitrary µ

follows from an extension of the BK results by a Bernoulli
decomposition for random variables (Aizenman, G., Klein,
Warzel (2009)).

I The proof is based on a multiscale analysis that incorporates
the new ideas introduced by Bourgain and Kenig.



Comments II

I Anderson localization was proved for Poisson random
potentials by G., Hislop and Klein (2007) using the BK results.
The results in this talk, including dynamical localization and
log-Hölder continuity of the IDS hold for the Poisson
Hamiltonian.

I Related open problems:
- discrete Bernoulli Anderson model: no UCP
- Landau Hamiltonian with singular random potential: UCP
with exponent 2 instead of 4

3 , which is not enough to perform
the MSA
- singular potential of non definite sign: cannot use the QUCP



Notation
I Given x = (x1,x2, . . . ,xd ) ∈ Rd , we set

‖x‖ := max{|x1| , |x2| , . . . , |xd |} and 〈x〉 :=

√
1+‖x‖2.

I The (open) box of side L centered at x ∈ Rd :

ΛL(x) :=
{
y ∈ Rd ; ‖y − x‖< L

2

}
= x +

]
−L

2 ,
L
2

[d
I χx := χΛ1(x) is the characteristic function of the unit box

centered at x ∈ Rd .
I Spectral projections:

Pω (B) := χB(Hω ) for B ⊂ Rd ,

Pω (E ) := Pω ({E}) for E ∈ R,

P(E)
ω := Pω (]−∞,E ]), the Fermi projection with Fermi energy E .



Log-Hölder continuity of the integrated density of states

The integrated density of states: N(E ) := E
{
trχ0P

(E)
ω χ0

}
.

Theorem
Let Hω be an Anderson Hamiltonian on L2(Rd ). Then there exists
an energy E0 > Einf , constants C and κ > 0 such that for all
E1,E2 ∈ [Einf ,E0] with |E2−E1| sufficiently small we have

|N(E2)−N(E1)| ≤ C
|log |E2−E1||κ

.

Regular case [Combes, Hislop, Klopp]:
|N(E2)−N(E1)| ≤ C Qµ (|E2−E1|), where
Qµ (s) := supt∈R µ ([t, t + s]) for s > 0.



Theorem (Details of Localization) I
Let Hω be an Anderson Hamiltonian on L2(Rd ). Then there exists
an energy E0 > Einf , constants β ∈]0,1] and M > 0, so Hω exhibits
strong localization in the energy interval [Einf ,E0] in the following
sense:
1. Enhanced Anderson localization: The following holds with

probability one:
I Hω has pure point spectrum in the interval [Einf ,E0] .
I For all E ∈ [Einf ,E0], ψ ∈ RanPω (E ), and ν > d

2 , we have

‖χxψ‖ ≤ Cω,E ,ν

∥∥〈X 〉−ν
ψ
∥∥ e−M‖x‖ for all x ∈ Rd .

In particular, each eigenfunction ψ of Hω with eigenvalue
E ∈ [Einf ,E0] is exponentially localized with the non-random
rate of decay m > 0.

I The eigenvalues of Hω in [Einf ,E0] have finite multiplicity:

trPω (E ) < ∞ for all E ∈ [Einf ,E0].



Theorem (Details of Localization) II

2. The following holds with probability one for all ε > 0:
I Summable uniform decay of eigenfunction correlations

(SUDEC):

For all E ∈ [Einf ,E0], x ,y ∈ Rd , and ν > d
2 , we have

‖χxφ‖
∥∥χyψ

∥∥≤Cω,ε,ν

∥∥〈X 〉−ν
φ
∥∥∥∥〈X 〉−ν

ψ
∥∥e‖x‖

1
2 +ε

e−
1
4M‖x−y‖

β

2

for all φ ,ψ ∈ RanPω (E ), and

‖χxPω (E )‖2
∥∥χyPω (E )

∥∥
2≤Cω,ε,ν

∥∥〈X 〉−ν Pω (E )
∥∥2

2 e‖x‖
1
2 +ε

e−
1
4M‖x−y‖

β

2 .



Theorem (Details of Localization) III

I Semi-uniformly localized eigenfunctions (SULE):
For all E ∈ [Einf ,E0] there exists a “center of localization”
yω,E ∈Rd for all eigenfunctions with eigenvalue E , in the sense
that for all x ∈ Rd and ν > d

2 we have

‖χxφ‖≤Cω,ε,ν

∥∥T−1
ν φ

∥∥e‖yω,E‖
1
2 +ε

e−
1
4M‖x−yω,E‖

β

2 for φ ∈RanPω (E ),

and

‖χxPω (E )‖2≤Cω,ε,ν

∥∥T−1
ν Pω (E )

∥∥
2 e‖yω,E‖

1
2 +ε

e−
1
4M‖x−yω,E‖

β

2
.

Moreover, we have

Nω (L) := ∑
E∈[Einf ,E0];‖yω,E‖≤L

trPω (E )≤Cω,ε L(1+2ε) d
β for L≥ 1.



Theorem (Details of Localization) IV

I Almost sure dynamical localization:

For all x ,y ∈ Rd we have

sup
|f |≤1

∥∥χy f (Hω )Pω ([Einf ,E0])χx
∥∥

1 ≤ Cω,ε e‖x‖
1
2 +ε

e−
1
4M‖x−y‖

β

2 .

I Almost sure decay of the Fermi projection:

For all E ∈ [Einf ,E0] and x ,y ∈ Rd we have∥∥∥χyP(E)
ω χx

∥∥∥
1
≤ Cω,ε e‖x‖

1
2 +ε

e−
1
4M‖x−y‖

β

2 .



Theorem (Details of Localization) V

3. Given b > 0, for all s ∈
]
0, β

b+ 1
2

[
and x0 ∈ Rd we have

I Strong dynamical localization:

E

{
sup
|f |≤1

∥∥∥〈X 〉bd f (Hω )Pω ([Einf ,E0])χx0

∥∥∥s

1

}
< ∞

and

E
{
sup
t∈R

∥∥∥〈X 〉bd e−itHω Pω ([Einf ,E0])χx0

∥∥∥s

1

}
< ∞.

I Strong decay of the Fermi projection:

E

{
sup

E∈[Einf ,E0]

∥∥∥〈X 〉bd P(E)
ω χx0

∥∥∥s

1

}
< ∞.



The Bernoulli-Delone Schrödinger operator

- Let D1 be a (r ,R)-Delone set.
- Take D2 another (r ,R)-Delone
- such that D1∪D2 is a ( r

2 ,R)-Delone
(possible: for instance play with the Voronoï diagram associated to
D1).
Consider the Bernoulli-Delone Schrödinger operator

Hω =−∆ + ∑
ζ∈D1

uζ + ∑
ζ∈D2

ωζuζ

with (ωz)ζ∈D2 iid Bernoulli rv.

Write D2,ω = {ζ ∈ D2, ωζ = 1}, so that Hω =−∆ +VD1∪D2,ω .
Note that for any given ω , D1∪D2,ω is a ( r

2 ,R)-Delone set.



How to get localization?

APPLY MULTISCALE ANALYSIS
I The multiscale analysis is not sensitive to the geometry of the

underlying set where impurities are located (see e.g. [RM12]).

I The multiscale analysis of Bourgain-Kenig for the Bernoulli
Schrödinger operator (D1 = /0 and D2 periodic), applies in a
similar way. See [G., Klein 2012] for a detailed version in the
ergodic case, with arbitrary non trivial rv.

I But one has to start! GET THE ILSE, that is for E close to
the bottom of the spectrum, for some q ∈]1

3 ,
3
8 [,

P(‖χxRω,Λ(E )χy‖≤ e−m‖x−y‖ and ‖Rω,Λ(E )‖≤ eL1−ε

)≥ 1−L−qd ,

Lifshitz tail ? OK if D1 and D2 are periodic.



The case D1 = /0: [G, proc. Qmath10]
ILSE follows easily as in [BK,GKH]. Compare VD2,ω to an averaged
potential V ≥ CR−d with a good probability, and use the fact that
at the bottom of the spectrum (= 0), the kinetic energy is small.

V ωΛ
(x) :=

1
(KR)d

∫
ΛKR(0)

daVωΛ
(x−a)≥

cu,d
Rd Yω,ΛχΛ(x), (1)

with K ≈ (logL)
1
d and

Yω,Λ := min
ξ∈Λ̃

1
Kd ∑

ζ∈ΛK/3(ξ )

ωζ ≥
µ̄

2
, (2)

with a probility ≥ 1− e−AµKd
, with µ̄ the mean of the probability

measure µ , and for some Aµ > 0 (deviation estimate).
We have, for ϕ ∈ C∞

c (Λ), ‖ϕ‖= 1,〈
ϕ,Hω,Λϕ

〉
Λ
≥ 〈ϕ,V ωΛ

ϕ〉+ 〈ϕ,(VωΛ
−V ωΛ

)ϕ〉

≥ C
Rd − cKR‖∇Lϕ‖ ≥ C

Rd − cKR
〈
ϕ,Hω,Λϕ

〉1/2
Λ

and thus
〈
ϕ,Hω,Λϕ

〉
Λ
≥ C ′R−2(d+1)K−2.



The case D1 = /0 (end)

[BK,GK] provides localization for Hω =−∆ +VD2,ω , at the bottom
of the spectrum, that is in an interval of the type
[0,CδR−2(d+1)(logR)−2], for R ≥ r ≥ δ , δ > 0 given.

BUT: the sets D2,ω for which localization is obtained are not
Delone anymore (large holes). However, for any ε > 0, for any
x ∈ Rd , for a.e. ω ,

lim
L→∞

L−(d−ε)|ΛL(x)∩D2,ω |= +∞. (3)

It does not solve the original problem.



The case D1 6= /0

PROBLEM: show that for some κ > 0, with a good enough
probability (operators in ΛL)

infσ(−∆L +VD1 +VD2,ω )≥ infσ(−∆L +VD1) + κ.

IDEA: pick K ≈ (logL)
1
d +ε , divide ΛL in cubes ΛK (γj),

j = 1, · · · ,(L/K )d , and make sure there is at least one point of D2,ω
in each ΛK (γj). We have, with p = P(ωζ = 0),

P(AK := {ω,#(ΛK (γj)∩D2,ω )≥ 1, ∀j})≥ 1− (
L
K

)dpc(K/R)d .

We restrict ourselves to ω ∈ AK .
The rest of the argument is deterministic.
We consider the family H(t) =−∆ +VD1 + tVD2,ω .



Using a QUCP of [RMV12]

We have [RMV12] (operators in ΛL),

infσ(−∆L +VD1 + tVD2,ω )≥ infσ(−∆L +VD1) + tκ(K ),

with κ(K )≥ cK−K4/3
uniformly in ω .

It uses a precise version of Bourgain-Kenig’s quantitative unique
continuation principe (as in [GK]) combined with a clever
decompostion of ΛL in dominant and non dominant boxes, in order
to get a scale free parameter κ .
Next: to start the MSA, we need the size of the gap to be >> L−1,
that is

L ·K−K4/3
>> 1.

Remember K ≈ (logL)
1
d +ε . So we need 4

3d < 1, that is d ≥ 2.
Case d = 1: use Gronwall inequality to improve on the general
QUCP. Then κ(K ) = ce−cK , and the proof applies for p small
enough (p ≤ ce−cR).



The Quantitative Unique Continuation Principle
Lemma (Bourgain-Kenig, as in G-Klein)
Set Λ = ΛL(x0). Let ∆Λ be the Dirichlet Laplacian on L2(Λ),
let V be a bounded potential on Λ with ‖V ‖∞ ≤ K, let Θ⊂ Λ
measurable, and consider u ∈D(∆Λ) satisfying,

−∆Λu+Vu = 0,∥∥uχΛδ (x)∩Λ

∥∥≤ Q for all x ∈ Λ,

‖uχΘ‖ ≥ β ‖uχΛ‖ .

Then, there exist finite constants R1 > 1 and M > 0, where R1
depends only on d ,K ,Q,δ , and M depends only on d, such that
for all x ∈ Λ with

R := dist(x ,Θ)≥max{R1,diamΘ} and Λδ (x)⊂ Λ,

we have ∥∥uχΛδ (x)

∥∥2 ≥ R−M
(
1+K

2
3 +logβ

)
R

4
3 ‖uχΘ‖2 .



QUCP for H0 =−∆ + V0
Let H0,L =−∆L +V0,L with V0 bounded, and E0 = infσ(H0).

Theorem (Rojas-Molina - Veselic 2012)
If ϕ is an eigenfunction of the operator H0,L in an interval I , and D
is a Delone set, we have

∑
γ∈D∩ΛL

‖ϕ‖2B(γ,δ) ≥ CUCP(I ,d)‖ϕ‖2ΛL

Known with a periodic background: Combes-Hislop-Klopp’03,
Combes-Hislop-Klopp’07
i) Application to Wegner estimates
ii) Perturbation of the bottom of the spectrum: denote by

λL(t) = infσ(Ht,L) the bottom of the spectrum of
Ht,L :=−∆L +V0,L + tVL on ΛL(x) with Dirichlet boundary
conditions. Then

∀ t ∈ (0,1] : λ
L(t)≥ λ

L(0) +CUCP(u, I ,d) · t
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