# Localization for Schrödinger operators with Delone potentials

François Germinet

University of Cergy-Pontoise, Paris

with P. Müller, C. Rojas-Molina // A. Klein

MUNCHEN – April 10-13, 2012

Schrödinger operators with alloy type potential

Let us consider Schrödinger operators of the form

 $H_D := -\Delta + V_D$  on  $L^2(\mathbb{R}^d)$ 

•  $\Delta$  is the *d*-dimensional Laplacian operator.

V<sub>D</sub> is an alloy-type potential:

$$V_D(x) := \sum_{\zeta \in D} u_{\zeta}(x), \quad \text{where} \quad u_{\zeta}(x) = u(x - \zeta)$$

► The single site potential u is a nonnegative bounded measurable function on ℝ<sup>d</sup> with compact support, uniformly bounded away from zero in a neighborhood of the origin.

It is well-known that if D is a periodic then  $H_D$  has ac spectrum. What if D has a more complex structure, like Delone sets ?

#### Quasicrystals

1984 ('82) D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, "Metallic phase with long-range orientational order and no translation symmetry", Phys. Rev. Letters.



**Diffraction patterns** 

A **Delone** set D of parameters (r, R) is a pure point set in  $\mathbb{R}^d$ , uniformly discrete (r) and relatively dense (R).

#### Delone sets



Let D = (r, R)-Delone set,

$$H(D) = -\Delta + \sum_{\zeta \in D} u(\cdot - \zeta)$$

► The spectrum of H(D) is generically purely singular continuous, within the set of (r, R)-Delone sets.

'90, '00's: A. Hof, R. Moody, J.C. Lagarias, B. Solomyak, D. Lenz-P.Stollmann, P. Müller-C. Richard.

# QUESTION

Can we get Schrödinger operators with a Delone potential and localization ?

That is: take D a (r, R)-Delone set,  $u \ge C\chi_{\delta} \ge 0$ ,  $\delta < r < R$ . Can

$$H_D = -\Delta + \sum_{\zeta \in D} u(\cdot - \zeta)$$

has localization in  $[\Sigma_{inf}, \Sigma_{inf} + \kappa] \cap \sigma(H_D) \neq 0$ , for some  $\kappa > 0$ , where  $\Sigma_{inf} = \inf \sigma(H_D)$ ?

There is no randomness here.

- YES!
- How "many" ? A lot from a topological point of view: in progress (dense and union of G<sub>δ</sub>)
- How "regular" are they? Rather irregular: for instance, those we construct do not exhibit uniform pattern frequency. There is an infinite number of patterns, repeated an infinite number of times (in progress)

A detour: The Continuous Anderson Hamiltonian The Anderson Hamiltonian is the random Schrödinger operator

$$H_{\omega} := -\Delta + V_0 + V_{\omega}$$
 on  $L^2(\mathbb{R}^d)$ 

- $\Delta$  is the *d*-dimensional Laplacian operator.
- $V_0$  is a bounded periodic background potential.
- $V_{\omega}$  is an alloy-type random potential:

$$V_{\omega}(x) := \sum_{\zeta \in \mathbb{Z}^d} \omega_{\zeta} u_{\zeta}(x), \quad \text{where} \quad u_{\zeta}(x) = u(x - \zeta)$$

- ► The single site potential u is a nonnegative bounded measurable function on ℝ<sup>d</sup> with compact support, uniformly bounded away from zero in a neighborhood of the origin.
- $\omega = \{\omega_{\zeta}\}_{\zeta \in \mathbb{Z}^d}$  is a family of independent identically distributed random variables, whose common probability distribution  $\mu$  is non-degenerate with bounded support.

## Localization

Theorem (G., Klein 2012)

(Ergodic) Anderson Hamiltonians exhibit a strong form of localization at the bottom of the spectrum without any additional condition on the single site probability distribution.

This strong form of localization holds in an interval

 $[E_{inf}, E_0] \subset \Sigma$   $(E_0 > E_{inf})$ 

and includes:

- Anderson localization: pure point spectrum with exponentially decaying eigenfunctions (with probability one).
- Dynamical localization: no spreading of wave packets under the time evolution.

Moreover, the integrated density of states is Log-Hölder continuous on the interval  $[E_{inf}, E_0]$ .

# Comments I

- We are only discussing results that hold in arbitrary dimension
   d. (d = 1 is special.)
- If the single-site probability distribution µ has a bounded density (or is Hölder continuous) these results have been known for some time. They also hold for the Anderson model on ℓ<sup>2</sup>(Z<sup>d</sup>).
- If μ is a Bernoulli distribution, Anderson localization (pure point spectrum with exponentially decaying eigenfunctions) was proved by Bourgain and Kenig (2005).
- Spectral localization (pure point spectrum) for arbitrary μ follows from an extension of the BK results by a Bernoulli decomposition for random variables (Aizenman, G., Klein, Warzel (2009)).
- The proof is based on a multiscale analysis that incorporates the new ideas introduced by Bourgain and Kenig.

#### Comments II

- Anderson localization was proved for Poisson random potentials by G., Hislop and Klein (2007) using the BK results. The results in this talk, including dynamical localization and log-Hölder continuity of the IDS hold for the Poisson Hamiltonian.
- Related open problems:
  - discrete Bernoulli Anderson model: no UCP
  - Landau Hamiltonian with singular random potential: UCP with exponent 2 instead of  $\frac{4}{3}$ , which is not enough to perform the MSA
  - singular potential of non definite sign: cannot use the QUCP

Notation

• Given 
$$x = (x_1, x_2, ..., x_d) \in \mathbb{R}^d$$
, we set  
 $\|x\| := \max\{|x_1|, |x_2|, ..., |x_d|\}$  and  $\langle x \rangle := \sqrt{1 + \|x\|^2}$ .

• The (open) box of side *L* centered at  $x \in \mathbb{R}^d$ :

$$\Lambda_L(x) := \left\{ y \in \mathbb{R}^d; \|y - x\| < \frac{L}{2} \right\} = x + \left] - \frac{L}{2}, \frac{L}{2} \right[^d$$

- X<sub>x</sub> := X<sub>Λ1(x)</sub> is the characteristic function of the unit box centered at x ∈ ℝ<sup>d</sup>.
- Spectral projections:

$$\begin{array}{ll} P_{\omega}(B) := \chi_{B}(H_{\omega}) & \text{for} \quad B \subset \mathbb{R}^{d}, \\ P_{\omega}(E) := P_{\omega}(\{E\}) & \text{for} \quad E \in \mathbb{R}, \\ P_{\omega}^{(E)} := P_{\omega}(] - \infty, E]), & \text{the Fermi projection with Fermi energy } E. \end{array}$$

Log-Hölder continuity of the integrated density of states

The integrated density of states: N(E

$$\mathsf{V}(E) := \mathbb{E}\left\{\mathsf{tr}\,\chi_0 P_{\omega}^{(E)}\chi_0\right\}.$$

#### Theorem

Let  $H_{\omega}$  be an Anderson Hamiltonian on  $L^{2}(\mathbb{R}^{d})$ . Then there exists an energy  $E_{0} > E_{inf}$ , constants C and  $\kappa > 0$  such that for all  $E_{1}, E_{2} \in [E_{inf}, E_{0}]$  with  $|E_{2} - E_{1}|$  sufficiently small we have

$$|N(E_2) - N(E_1)| \le rac{C}{|\log |E_2 - E_1||^{\kappa}}$$
.

Regular case [Combes, Hislop, Klopp]:  $|N(E_2) - N(E_1)| \le C Q_{\mu} (|E_2 - E_1|)$ , where  $Q_{\mu}(s) := \sup_{t \in \mathbb{R}} \mu ([t, t+s])$  for s > 0.

# Theorem (Details of Localization) I

Let  $H_{\omega}$  be an Anderson Hamiltonian on  $L^{2}(\mathbb{R}^{d})$ . Then there exists an energy  $E_{0} > E_{inf}$ , constants  $\beta \in ]0,1]$  and M > 0, so  $H_{\omega}$  exhibits strong localization in the energy interval  $[E_{inf}, E_{0}]$  in the following sense:

1. Enhanced Anderson localization: The following holds with probability one:

- $H_{\omega}$  has pure point spectrum in the interval  $[E_{inf}, E_0]$ .
- ► For all  $E \in [E_{inf}, E_0]$ ,  $\psi \in \operatorname{Ran} P_{\omega}(E)$ , and  $v > \frac{d}{2}$ , we have

 $\|\chi_x\psi\| \leq C_{\omega,E,v} \left\| \langle X \rangle^{-v} \psi \right\| \, e^{-M\|x\|} \qquad \text{for all} \quad x \in \mathbb{R}^d.$ 

In particular, each eigenfunction  $\psi$  of  $H_{\omega}$  with eigenvalue  $E \in [E_{inf}, E_0]$  is exponentially localized with the non-random rate of decay m > 0.

• The eigenvalues of  $H_{\omega}$  in  $[E_{inf}, E_0]$  have finite multiplicity:

 $\operatorname{tr} P_{\omega}(E) < \infty$  for all  $E \in [E_{\inf}, E_0]$ .

## Theorem (Details of Localization) II

- 2. The following holds with probability one for all  $\varepsilon > 0$ :
  - Summable uniform decay of eigenfunction correlations (SUDEC):
     For all E ∈ [E<sub>inf</sub>, E<sub>0</sub>], x, y ∈ ℝ<sup>d</sup>, and v > <sup>d</sup>/<sub>2</sub>, we have

 $\begin{aligned} \|\chi_{\mathsf{x}}\phi\| \left\|\chi_{\mathsf{y}}\psi\right\| &\leq C_{\omega,\varepsilon,\nu} \left\|\langle X\rangle^{-\nu}\phi\right\| \left\|\langle X\rangle^{-\nu}\psi\right\| \mathrm{e}^{\|\mathsf{x}\|^{\frac{1}{2}+\varepsilon}} \mathrm{e}^{-\frac{1}{4}M\|\mathsf{x}-\mathsf{y}\|^{\frac{\beta}{2}}} \end{aligned}$ for all  $\phi,\psi\in\operatorname{Ran} P_{\omega}(E)$ , and

 $\|\chi_{x}P_{\omega}(E)\|_{2}\|\chi_{y}P_{\omega}(E)\|_{2} \leq C_{\omega,\varepsilon,\nu}\|\langle X\rangle^{-\nu}P_{\omega}(E)\|_{2}^{2}e^{\|x\|^{\frac{1}{2}+\varepsilon}}e^{-\frac{1}{4}M\|x-y\|}$ 

#### Theorem (Details of Localization) III

Semi-uniformly localized eigenfunctions (SULE):

For all  $E \in [E_{inf}, E_0]$  there exists a "center of localization"  $y_{\omega,E} \in \mathbb{R}^d$  for all eigenfunctions with eigenvalue E, in the sense that for all  $x \in \mathbb{R}^d$  and  $v > \frac{d}{2}$  we have

$$\|\chi_{\mathsf{x}}\phi\| \leq C_{\omega,\varepsilon,\nu} \left\| T_{\nu}^{-1}\phi \right\| e^{\|y_{\omega,\mathcal{E}}\|^{\frac{1}{2}+\varepsilon}} e^{-\frac{1}{4}M \|\mathsf{x}-y_{\omega,\mathcal{E}}\|^{\frac{\beta}{2}}} \text{ for } \phi \in \operatorname{Ran} P_{\omega}(\mathcal{E}),$$

and

$$\|\chi_{x}P_{\omega}(E)\|_{2} \leq C_{\omega,\varepsilon,v} \|T_{v}^{-1}P_{\omega}(E)\|_{2} e^{\|y_{\omega,E}\|^{\frac{1}{2}+\varepsilon}} e^{-\frac{1}{4}M\|x-y_{\omega,E}\|^{\frac{\beta}{2}}}.$$

Moreover, we have

$$N_{\omega}(L) := \sum_{E \in [E_{\inf}, E_0]; \|y_{\omega, E}\| \leq L} \operatorname{tr} P_{\omega}(E) \leq C_{\omega, \varepsilon} L^{(1+2\varepsilon)\frac{d}{\beta}} \quad \text{for} \quad L \geq 1.$$

Theorem (Details of Localization) IV

Almost sure dynamical localization:

For all  $x, y \in \mathbb{R}^d$  we have

 $\sup_{|f|\leq 1} \left\|\chi_{y}f(\mathcal{H}_{\omega})P_{\omega}([E_{\inf}, E_{0}])\chi_{x}\right\|_{1} \leq C_{\omega,\varepsilon}e^{\|x\|^{\frac{1}{2}+\varepsilon}}e^{-\frac{1}{4}M\|x-y\|^{\frac{\beta}{2}}}.$ 

Almost sure decay of the Fermi projection:
 For all E ∈ [E<sub>inf</sub>, E<sub>0</sub>] and x, y ∈ ℝ<sup>d</sup> we have

$$\left\|\chi_{y} P_{\omega}^{(E)} \chi_{x}\right\|_{1} \leq C_{\omega,\varepsilon} \mathrm{e}^{\|x\|^{\frac{1}{2}+\varepsilon}} \mathrm{e}^{-\frac{1}{4}M\|x-y\|^{\frac{\beta}{2}}}$$

Theorem (Details of Localization) V

- 3. Given b > 0, for all  $s \in \left]0, \frac{\beta}{b+\frac{1}{2}}\right[$  and  $x_0 \in \mathbb{R}^d$  we have
  - Strong dynamical localization:

$$\mathbb{E}\left\{\sup_{|f|\leq 1}\left\|\langle X\rangle^{bd}f(H_{\omega})P_{\omega}([E_{\inf},E_{0}])\chi_{\times_{0}}\right\|_{1}^{s}\right\}<\infty$$

and

$$\mathbb{E}\left\{\sup_{t\in\mathbb{R}}\left\|\langle X\rangle^{bd}\,\mathrm{e}^{-itH_{\omega}}P_{\omega}([E_{\mathrm{inf}},E_{0}])\chi_{\mathsf{x}_{0}}\right\|_{1}^{s}\right\}<\infty.$$

Strong decay of the Fermi projection:

$$\mathbb{E}\left\{\sup_{E\in[E_{\inf},E_0]}\left\|\langle X\rangle^{bd}\,P_{\omega}^{(E)}\chi_{\times_0}\right\|_1^s\right\}<\infty.$$

#### The Bernoulli-Delone Schrödinger operator

- Let  $D_1$  be a (r, R)-Delone set.
- Take  $D_2$  another (r, R)-Delone
- such that  $D_1 \cup D_2$  is a  $(\frac{r}{2}, R)$ -Delone

(possible: for instance play with the Voronoï diagram associated to  $D_1$ ).

Consider the Bernoulli-Delone Schrödinger operator

$$H_{\omega} = -\Delta + \sum_{\zeta \in D_1} u_{\zeta} + \sum_{\zeta \in D_2} \omega_{\zeta} u_{\zeta}$$

with  $(\omega_z)_{\zeta \in D_2}$  iid Bernoulli rv.

Write  $D_{2,\omega} = \{\zeta \in D_2, \ \omega_{\zeta} = 1\}$ , so that  $H_{\omega} = -\Delta + V_{D_1 \cup D_{2,\omega}}$ . Note that for any given  $\omega$ ,  $D_1 \cup D_{2,\omega}$  is a  $(\frac{r}{2}, R)$ -Delone set.

#### How to get localization?

#### APPLY MULTISCALE ANALYSIS

- The multiscale analysis is not sensitive to the geometry of the underlying set where impurities are located (see e.g. [RM12]).
- ► The multiscale analysis of Bourgain-Kenig for the Bernoulli Schrödinger operator (D<sub>1</sub> = Ø and D<sub>2</sub> periodic), applies in a similar way. See [G., Klein 2012] for a detailed version in the ergodic case, with arbitrary non trivial rv.
- ▶ But one has to start! GET THE ILSE, that is for *E* close to the bottom of the spectrum, for some *q* ∈]<sup>1</sup>/<sub>3</sub>, <sup>3</sup>/<sub>8</sub>[,

 $\mathbb{P}(\|\chi_{x}R_{\omega,\Lambda}(E)\chi_{y}\| \leq e^{-m\|x-y\|} \text{ and } \|R_{\omega,\Lambda}(E)\| \leq e^{L^{1-\varepsilon}}) \geq 1 - L^{-qd},$ 

Lifshitz tail ? OK if  $D_1$  and  $D_2$  are periodic.

# The case $D_1 = \emptyset$ : [G, proc. Qmath10]

ILSE follows easily as in [BK,GKH]. Compare  $V_{D_{2,\omega}}$  to an averaged potential  $\overline{V} \ge CR^{-d}$  with a good probability, and use the fact that at the bottom of the spectrum (= 0), the kinetic energy is small.

$$\overline{V}_{\omega_{\Lambda}}(x) := \frac{1}{(\mathcal{K}R)^{d}} \int_{\Lambda_{\mathcal{K}R}(0)} \mathrm{d}a \, V_{\omega_{\Lambda}}(x-a) \ge \frac{c_{u,d}}{R^{d}} \, Y_{\omega,\Lambda} \chi_{\Lambda}(x), \quad (1)$$

with  $K \approx (\log L)^{\frac{1}{d}}$  and

$$Y_{\omega,\Lambda} := \min_{\xi \in \widetilde{\Lambda}} \frac{1}{K^d} \sum_{\zeta \in \Lambda_{K/3}(\xi)} \omega_{\zeta} \ge \frac{\overline{\mu}}{2}, \tag{2}$$

with a probility  $\geq 1 - e^{-A_{\mu}K^{d}}$ , with  $\bar{\mu}$  the mean of the probability measure  $\mu$ , and for some  $A_{\mu} > 0$  (deviation estimate). We have, for  $\varphi \in C_{c}^{\infty}(\Lambda)$ ,  $\|\varphi\| = 1$ ,

$$\begin{split} \left\langle \varphi, H_{\omega,\Lambda} \varphi \right\rangle_{\Lambda} &\geq \left\langle \varphi, \overline{V}_{\omega_{\Lambda}} \varphi \right\rangle + \left\langle \varphi, (V_{\omega_{\Lambda}} - \overline{V}_{\omega_{\Lambda}}) \varphi \right\rangle \\ &\geq \frac{C}{R^{d}} - cKR \| \nabla_{L} \varphi \| \geq \frac{C}{R^{d}} - cKR \left\langle \varphi, H_{\omega,\Lambda} \varphi \right\rangle_{\Lambda}^{1/2} \end{split}$$

and thus  $\langle \varphi, H_{\omega,\Lambda} \varphi \rangle_{\Lambda} \geq C' R^{-2(d+1)} K^{-2}$ .

#### The case $D_1 = \emptyset$ (end)

[BK,GK] provides localization for  $H_{\omega} = -\Delta + V_{D_{2,\omega}}$ , at the bottom of the spectrum, that is in an interval of the type  $[0, C_{\delta}R^{-2(d+1)}(\log R)^{-2}]$ , for  $R \ge r \ge \delta$ ,  $\delta > 0$  given.

BUT: the sets  $D_{2,\omega}$  for which localization is obtained are not Delone anymore (large holes). However, for any  $\varepsilon > 0$ , for any  $x \in \mathbb{R}^d$ , for a.e.  $\omega$ ,

$$\lim_{\omega \to \infty} L^{-(d-\varepsilon)} |\Lambda_L(x) \cap D_{2,\omega}| = +\infty.$$
(3)

It does not solve the original problem.

#### The case $D_1 \neq \emptyset$

PROBLEM: show that for some  $\kappa > 0$ , with a good enough probability (operators in  $\Lambda_L$ )

 $\inf \sigma(-\Delta_L + V_{D_1} + V_{D_2,\omega}) \geq \inf \sigma(-\Delta_L + V_{D_1}) + \kappa.$ 

IDEA: pick  $K \approx (\log L)^{\frac{1}{d}+\varepsilon}$ , divide  $\Lambda_L$  in cubes  $\Lambda_K(\gamma_j)$ ,  $j = 1, \dots, (L/K)^d$ , and make sure there is at least one point of  $D_{2,\omega}$  in each  $\Lambda_K(\gamma_j)$ . We have, with  $p = \mathbb{P}(\omega_{\zeta} = 0)$ ,

 $\mathbb{P}(A_{\mathcal{K}} := \{\omega, \#(\Lambda_{\mathcal{K}}(\gamma_j) \cap D_{2,\omega}) \ge 1, \forall j\}) \ge 1 - (\frac{L}{\mathcal{K}})^d p^{c(\mathcal{K}/R)^d}.$ 

We restrict ourselves to  $\omega \in A_K$ . The rest of the argument is deterministic. We consider the family  $H(t) = -\Delta + V_{D_1} + tV_{D_2,\omega}$ .

# Using a QUCP of [RMV12]

We have [RMV12] (operators in  $\Lambda_L$ ),

 $\inf \sigma(-\Delta_L + V_{D_1} + tV_{D_2,\omega}) \geq \inf \sigma(-\Delta_L + V_{D_1}) + t\kappa(K),$ 

with  $\kappa(\kappa) \geq c \kappa^{-\kappa^{4/3}}$  uniformly in  $\omega$ .

It uses a precise version of Bourgain-Kenig's quantitative unique continuation principe (as in [GK]) combined with a clever decompostion of  $\Lambda_L$  in dominant and non dominant boxes, in order to get a scale free parameter  $\kappa$ .

Next: to start the MSA, we need the size of the gap to be  $>> L^{-1}$ , that is

$$L \cdot K^{-K^{4/3}} >> 1.$$

Remember  $K \approx (\log L)^{\frac{1}{d}+\epsilon}$ . So we need  $\frac{4}{3d} < 1$ , that is  $d \ge 2$ . Case d = 1: use Gronwall inequality to improve on the general QUCP. Then  $\kappa(K) = ce^{-cK}$ , and the proof applies for p small enough  $(p \le ce^{-cR})$ . The Quantitative Unique Continuation Principle Lemma (Bourgain-Kenig, as in G-Klein)

Set  $\Lambda = \Lambda_L(x_0)$ . Let  $\Delta_{\Lambda}$  be the Dirichlet Laplacian on  $L^2(\Lambda)$ , let V be a bounded potential on  $\Lambda$  with  $||V||_{\infty} \leq K$ , let  $\Theta \subset \Lambda$ measurable, and consider  $u \in \mathscr{D}(\Delta_{\Lambda})$  satisfying,

 $\begin{aligned} -\Delta_{\Lambda} u + Vu &= 0, \\ \left\| u \chi_{\Lambda_{\delta}(x) \cap \Lambda} \right\| &\leq Q \quad \text{for all} \quad x \in \Lambda, \\ \left\| u \chi_{\Theta} \right\| &\geq \beta \left\| u \chi_{\Lambda} \right\|. \end{aligned}$ 

Then, there exist finite constants  $R_1 > 1$  and M > 0, where  $R_1$  depends only on  $d, K, Q, \delta$ , and M depends only on d, such that for all  $x \in \Lambda$  with

 $R := \operatorname{dist}(x, \Theta) \ge \max\{R_1, \operatorname{diam} \Theta\} \quad \text{and} \quad \Lambda_{\delta}(x) \subset \Lambda,$ we have  $\| \|_{\mathcal{O}} = \sum_{\alpha \in \mathcal{O}} \frac{M(1 + K^{\frac{2}{3}} + \log \beta)R^{\frac{4}{3}}}{2} \|_{\mathcal{O}} = \| 2$ 

$$\left\| u \chi_{\Lambda_{\delta}(x)} \right\|^{2} \geq R^{-M\left(1+K^{3}+\log\beta\right)R^{3}} \left\| u \chi_{\Theta} \right\|^{2}$$

QUCP for  $H_0 = -\Delta + V_0$ 

Let  $H_{0,L} = -\Delta_L + V_{0,L}$  with  $V_0$  bounded, and  $E_0 = \inf \sigma(H_0)$ .

Theorem (Rojas-Molina - Veselic 2012)

If  $\phi$  is an eigenfunction of the operator  $H_{0,L}$  in an interval I, and D is a Delone set, we have

$$\sum_{\gamma \in D \cap \Lambda_L} \|\varphi\|_{B(\gamma,\delta)}^2 \geq C_{UCP}(I,d) \|\varphi\|_{\Lambda_L}^2$$

Known with a periodic background: Combes-Hislop-Klopp'03, Combes-Hislop-Klopp'07

- i) Application to Wegner estimates
- ii) Perturbation of the bottom of the spectrum: denote by  $\lambda^{L}(t) = \inf \sigma(H_{t,L})$  the bottom of the spectrum of  $H_{t,L} := -\Delta_{L} + V_{0,L} + tV_{L}$  on  $\Lambda_{L}(x)$  with Dirichlet boundary conditions. Then

 $\forall t \in (0,1]: \quad \lambda^{L}(t) \geq \lambda^{L}(0) + C_{UCP}(u,l,d) \cdot t$