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The Polaron Model

Introduced by Fröhlich in 1937, as a model of an electron interacting with the quantized
optical modes of a polar crystal. It is described by the Hamiltonian

H = −∆+

√
α

2π

∫
R3

dk

|k|
(
eikxa(k) + e−ikxa†(k)

)
+

∫
R3

dk a†(k)a(k)

acting on L2(R3)⊗F , with F the bosonic Fock space on R3.

In the large coupling limit α→ ∞ its ground state energy behaves asymptotically like
the minimum of the Pekar functional

E = inf
{
E [ψ] : ψ ∈ H1(R3), ∥ψ∥2 = 1

}
where

E [ψ] =
∫
R3

dx |∇ψ(x)|2 − α

2

∫∫
R3×R3

dx dx′
|ψ(x)|2|ψ(x′)|2

|x− x′|

(Donsker/Varadhan 1983, Lieb/Thomas 1997)
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The Non-linear Eigenvalue Problem

Some known results (Lieb 1976) about

E = inf
∥ψ∥2=1

{∫
R3

dx |∇ψ(x)|2 − α

2

∫∫
R3×R3

dx dx′
|ψ(x)|2|ψ(x′)|2

|x− x′|

}
.

The infimum is attained and the optimizer can be chosen to be symmetric decreasing. It
is unique up to translations and a phase. The Hessian of the energy functional at the
minimizer is non-degenerate (Lenzmann 2009). The Euler-Lagrange equation reads(

−∆− αψ2 ∗ |x|−1
)
ψ = −eψ .

Should be compared with linear Schrödinger equations, e.g., for the hydrogen atom(
−∆− α|x|−1

)
ψ = −α2

4 ψ

or for a mean-field model with charge density ρ(
−∆− αρ ∗ |x|−1

)
ψ = λψ .
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The Bipolaron Problem

For two electrons, the functional becomes

E(2)
U [ψ] =

2∑
j=1

∫
R6

dx|∇jψ|2 + U

∫
R6

dx
|ψ(x)|2

|x1 − x2|
− α

2

∫∫
R3×R3

dxdx′
ρψ(x)ρψ(x

′)

|x− x′|

with the density

ρψ(x) =

∫
R3

dx′
(
|ψ(x, x′)|2 + |ψ(x′, x)|2

)
.

The parameter U is the Coulomb repulsion strength. In the physical regime one has
U > α.

We are interested in the ground state energy

E(2)(U) = inf
{
E(2)
U [ψ] : ψ ∈ H1(R6), ∥ψ∥2 = 1

}
.

The minimizer will automatically be permutation symmetric, i.e., ψ(x1, x2) = ψ(x2, x1).
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The Bipolaron Ground State Energy

Properties of E(2)(U):

• E(2)(U) is a concave, increasing function of U

• E(2)(U) ≤ 2E for all U

• E(2)(0) = 8E < 2E for U = 0

If E(2)(U) < 2E, then the infimum E(2)(U) is attained (Lewin 2011). The two electrons
will form a bound pair, a bipolaron. This happens for small U .

Conversely, (FLS and Thomas 2010): There is a Uc > α such that E(2)(U) = 2E for
U ≥ Uc. In particular, for U > Uc there is no minimizer. No bipolaron formation

Explicit bound Uc < 14.7α (but Uc ≥ 1.15α by Verbist et al.; results by Benguria–Bley)
We also have results for N-polaron systems and thermodynamic stability.

Today’s topic: What happens for 0 ≤ U ≤ Uc, in particular as U ↗ Uc?
• How does the disassociation occur? • Is the ground state density radial?
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Main Results: Ground States of Bipolarons

Theorem 1 (Finite bipolaron radius). The infimum E(2)(Uc) is attained. In
particular, E(2)(U) is not differentiable at U = Uc.

Key idea: If ψU is optimizer for E(2)(U) and α(1 + δ) ≤ U < Uc, then lower bound

⟨ψU , |x1 − x2|−1ψU ⟩ ≥ Cδ > 0 .

Existence of optimizer follows from this by compactness arguments.
A similar lower bound holds for N polarons and also (for approximate ground states) in
the case of quantized fields provided Uc(α) > α.

Theorem 2 (Symmetry for small U). For all sufficiently small U ≥ 0 the ground
state is unique (up to translations and a constant phase). In particular, it has angular
momentum zero.

Perturbative argument based on Lenzmann’s result for the single polaron. No control on
‘sufficiently small’. Is this true up to U = Uc? There is something to be understood!
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Model Problem: The Helium Problem

Instead of the bipolaron functional, consider the linear Hamiltonian

HU = −∆1 − |x1|−1 −∆2 − |x2|−1 + U |x1 − x2|−1

in L2(R6). Ground state energy EU is increasing and concave wrt U .
There is a critical repulsion Uc > 1 such that

EU < −1

4
= inf spec(−∆1 − |x1|−1) if U < Uc and EU = −1

4
if U ≥ Uc .

Theorem 3 (HO2–Simon (1983)). −1/4 is an eigenvalue of HUc at U = Uc.

New proof based on

Lemma 4. If ψU is the eigenfunction for EU and 1 + δ ≤ U < Uc, then

⟨ψU , |x|−1
∞ ψU ⟩ ≥ Cδ > 0 where |x|∞ = max{|x1|, |x2|} .

We do not need positivity of ψU . Our proof works, e.g., for magnetic fields.
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Ideas of the Proof

Lemma 5. ⟨ψU , |x|−1
∞ ψU ⟩ ≥ Cδ > 0 if 1 + δ ≤ U < Uc and |x|∞ = max{|x1|, |x2|}.

Key inequality - potential barrier:

HU − EU ≥ −C
ℓ2
χ{|x|∞≤ℓ} +

(
−1

4
− EU +

c

|x|∞

)
χ{|x|∞>ℓ}

for some C, c and all ℓ ≥ ℓ0. Thus,

C

ℓ2

∫
{|x|∞≤ℓ}

ψ2
U dx ≥ c

∫
{|x|∞>ℓ}

ψ2
U

|x|∞
dx .

This, together with a calculus lemma, implies Lemma 5.

Proof of key inequality via localization into four regions (ϵ, ℓ parameters). (1) |x|∞ ≤ 2ℓ,
(2) |x|∞ ≥ ℓ, |x|∞ ≤ (1− ϵ)|x1 − x2|, — here nuclear attraction is small
(3) |x|∞ ≥ ℓ, |x|∞ ≥ (1− 2ϵ)|x1 − x2|, |x1| ≤ (1 + ϵ)|x2| — use U ≥ 1 + δ
(4) similarly.

Lesson learned: Discont. binding if net repulsion larger than r−2 at infinity
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