Relativistic Scott correction in self-generated magnetic field

Søren Fournais

Department of Mathematics, Aarhus University, Ny Munkegade 118, DK-8000 Aarhus C, Denmark

Based on joint work with L. Erdös and J.P. Solovej
Munich 2012

The model

Kinetic energy of a single electron:

$$
\mathcal{T}^{(\alpha)}(A):=\sqrt{\alpha^{-2} T(A)+\alpha^{-4}}-\alpha^{-2}
$$

where $\alpha>0$ is a parameter (fine structure constant).

$$
T(A):= \begin{cases}{[\sigma \cdot(-i \nabla+A)]^{2}} & \text { (Pauli) } \\ (-i \nabla+A)^{2} & \text { (Schrödinger) }\end{cases}
$$

Magnetic field $B=\nabla \times A$ and $\sigma=$ Pauli matrices.

The model

Kinetic energy of a single electron:

$$
\mathcal{T}^{(\alpha)}(A):=\sqrt{\alpha^{-2} T(A)+\alpha^{-4}}-\alpha^{-2}
$$

where $\alpha>0$ is a parameter (fine structure constant).

$$
T(A):= \begin{cases}{[\sigma \cdot(-i \nabla+A)]^{2}} & \text { (Pauli) } \\ (-i \nabla+A)^{2} & \text { (Schrödinger) }\end{cases}
$$

Magnetic field $B=\nabla \times A$ and $\sigma=$ Pauli matrices.

$$
H(\mathbf{Z}, \mathbf{R}, \alpha, A):=\sum_{j=1}^{Z}\left(\mathcal{T}_{j}^{(\alpha)}(A)-\sum_{k=1}^{M} \frac{Z_{k}}{\left|x_{j}-R_{k}\right|}\right)+\sum_{j<k} \frac{1}{\left|x_{j}-x_{k}\right|},
$$

The Hilbert space

$$
\mathcal{H}=\bigwedge_{j=1}^{Z} L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{2}\right)
$$

AARHUS UNIVERSITY

- Stability requires

$$
Z_{k} \alpha \leq 2 / \pi, \quad \text { all } k
$$

We will study $Z \rightarrow \infty, \alpha \rightarrow 0$.

- For a given vector potential A, the ground state energy of the electrons is given by

$$
E_{0}(\mathbf{Z}, \mathbf{R}, \alpha, A):=\inf \operatorname{Spec} H(\mathbf{Z}, \mathbf{R}, \alpha, A)
$$

- Minimal total energy

$$
E_{0}(\mathbf{Z}, \mathbf{R}, \alpha):=\inf _{A}\left\{E_{0}(\mathbf{Z}, \mathbf{R}, \alpha, A)+\frac{1}{8 \pi \alpha^{2}} \int_{\mathbb{R}^{3}}|\nabla \times A|^{2}\right\} .
$$

Energy in large Z limit. Non-relativistic, no A-field

$$
H:=\sum_{j=1}^{Z}\left(-\frac{1}{2} \Delta_{j}-\sum_{k=1}^{M} \frac{z_{k}}{\left|x_{j}-R_{k}\right|}\right)+\sum_{j<k} \frac{1}{\left|x_{j}-x_{k}\right|},
$$

Leading energy term of order $Z^{7 / 3}$ given by Thomas-Fermi theory (proved by Lieb-Simon (1977)).
Next term—the Scott correction- predicted by Scott (1952), proved by Siedentop-Weikard (1987) for atoms, Ivrii-Sigal (1993) for molecules,

$$
2 \cdot \frac{1}{4} \sum_{k=1}^{M} z_{k}^{2} .
$$

In the atomic case also the next (Dirac-Schwinger) term of order $Z^{5 / 3}$ is known. Proved by Fefferman-Seco (90 's).

AARHUS UNIVERSITY

Relativistic, no A-field

Kinetic energy $\mathcal{T}^{(\alpha)}(0)=\sqrt{\alpha^{-2}(-\Delta)+\alpha^{-4}}-\alpha^{-2}$.
Nuclear charges/positions $Z_{k}=Z z_{k}, R_{k}=Z^{-1 / 3} r_{k}$.
Scott correction proved by Solovej-Spitzer-Sørensen (alternative proof by Frank-Siedentop-Warzel).

Theorem

There exists a continuous, non-increasing function S on $[0,2 / \pi]$ with $S(0)=1 / 4$ such that as $Z \rightarrow \infty$ and $\alpha \rightarrow 0$ with $\max _{k}\left\{Z_{k} \alpha\right\} \leq 2 / \pi$ we have
$E_{0}(\mathbf{Z}, \mathbf{R} ; \alpha, A=0)=Z^{7 / 3} E^{\mathrm{TF}}(\mathbf{z}, \mathbf{r})+2 \sum_{1 \leq k \leq M} Z_{k}^{2} S\left(Z_{k} \alpha\right)+\mathcal{O}\left(Z^{2-1 / 30}\right)$.

Questions for full operator

Kinetic energy $\mathcal{T}^{(\alpha)}(A):=\sqrt{\alpha^{-2} T(A)+\alpha^{-4}}-\alpha^{-2}$, self-generated magnetic field.

$$
\begin{aligned}
H(\mathbf{Z}, \mathbf{R}, \alpha, A) & :=\sum_{j=1}^{Z}\left(\mathcal{T}_{j}^{(\alpha)}(A)-\sum_{k=1}^{M} \frac{Z_{k}}{\left|x_{j}-R_{k}\right|}\right)+\sum_{j<k} \frac{1}{\left|x_{j}-x_{k}\right|}, \\
E_{0}(\mathbf{Z}, \mathbf{R}, \alpha) & :=\inf _{A}\left\{E_{0}(\mathbf{Z}, \mathbf{R}, \alpha, A)+\frac{1}{8 \pi \alpha^{2}} \int_{\mathbb{R}^{3}}|\nabla \times A|^{2}\right\} .
\end{aligned}
$$

- Does there exist a Scott correction?
- Is the Scott correction the same as without magnetic field?

For non-relativistic operators with self-generated field, we proved recently that there is a Scott correction which depends on $Z \alpha^{2}$. This motivates the second question.

AARHUS UNIVERSITY

Affirmative result

Theorem (Relativistic Scott correction with self-generated field)

Assume that there exists $\kappa_{0}<2 / \pi$ such that $\max _{k}\left\{Z_{k} \alpha\right\} \leq \kappa_{0}$. Then the ground state energy with self-generated magnetic field is given by

$$
E_{0}(\mathbf{Z}, \mathbf{R} ; \alpha)=Z^{7 / 3} E^{\mathrm{TF}}(\mathbf{z}, \mathbf{r})+2 \sum_{k=1}^{M} Z_{k}^{2} S\left(Z_{k} \alpha\right)+o\left(Z^{2}\right)
$$

in the limit as $Z \rightarrow \infty$ and $\alpha \rightarrow 0$.

Techniques for the proof

Upper bounds as in [SSS] by taking $A=0$.

Techniques for the proof

Upper bounds as in [SSS] by taking $A=0$.
Lower bounds: Local semiclassical analysis combined with multiscaling. In order to localize one needs a new localization inequality

Lemma (Pull-out estimate)

Assume that $g_{i} \geq 0$ are smooth, $\sum_{i \in I} g_{i}^{2}(x)=1$. Let $H_{i}, i \in I$, be a family of positive self-adjoint operators on $L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{2}\right)$. Then

$$
\sqrt{\sum_{i \in I} g_{i} H_{i} g_{i}} \geq \sum_{i \in I} g_{i} \sqrt{H_{i}} g_{i}
$$

Theorem (Lieb-Thirring inequality for $\mathcal{T}^{(\beta)}(A)$)

There exists a universal constant $C>0$ such that for any positive number $\beta>0$, for any potential V with $[V]_{+} \in L^{5 / 2} \cap L^{4}\left(\mathbb{R}^{3}\right)$, and magnetic field $B=\nabla \times A \in L^{2}\left(\mathbb{R}^{3}\right)$, we have

$$
\begin{aligned}
& \operatorname{Tr}\left[\sqrt{\beta^{-2} T(A)+\beta^{-4}}-\beta^{-2}-V(x)\right]_{-} \\
& \quad \geq-C\left\{\int[V]_{+}^{5 / 2}+\beta^{3} \int[V]_{+}^{4}+\left(\int B^{2}\right)^{3 / 4}\left(\int[V]_{+}^{4}\right)^{1 / 4}\right\} .
\end{aligned}
$$

- If $A=0$ this is the well-known Daubechies inequality.
- For the Schrödinger case, the Daubechies inequality was generalized (and improved to incorporate a critical Coulomb singularity) to non-zero A by Frank-Lieb-Seiringer using diamagnetic techniques. For the Pauli operator there is no diamagnetic inequality.

AARHUS UNIVERSITY

Theorem (Local Lieb-Thirring inequality with a Coulomb potential)

Let ϕ_{r} be a real function satisfying supp $\phi_{r} \subset\{|x| \leq r\}$, $\left\|\phi_{r}\right\|_{\infty} \leq 1$. There exists a constant $C>0$ such that if $\beta \in(0,2 / \pi)$, then

$$
\begin{aligned}
& \operatorname{Tr}\left[\phi_{r}\left(\sqrt{\beta^{-2} T(A)+\beta^{-4}}-\beta^{-2}-\frac{1}{|x|}-V\right) \phi_{r}\right]_{-} \\
& \geq \\
& -C\left\{\eta^{-3 / 2} \int|\nabla \times A|^{2}+\eta^{-3} r^{3}+\eta^{-3 / 2} \int[V]_{+}^{5 / 2}+\eta^{-3} \beta^{3} \int[V]_{+}^{4}\right. \\
& \\
& \left.\quad+\left(\int|\nabla \times A|^{2}\right)^{3 / 4}\left(\int[V]_{+}^{4}\right)^{1 / 4}\right\},
\end{aligned}
$$

where $\eta:=\frac{1}{10}\left(1-(\pi \beta / 2)^{2}\right)$.

Reduction to semiclassics

After scaling by $Z^{-1 / 3}$ and passing to the Thomas-Fermi potential, we find a semiclassical problem

$$
\operatorname{Tr}\left[\sqrt{\beta^{-2} T_{h}(\widetilde{A})+\beta^{-4}}-\beta^{-2}-\kappa V_{\mathbf{z}, \mathbf{r}}^{T F}\right]_{-}+\frac{\lambda}{\beta^{2} h^{3}} \int|\nabla \otimes \widetilde{A}|^{2}
$$

with parameters

$$
\kappa=\min _{k} \frac{2}{\pi z_{k}}, \quad h=\kappa^{1 / 2} Z^{-1 / 3}, \quad \beta=Z^{2 / 3} \alpha \kappa^{-1 / 2}=\frac{Z \alpha}{\kappa} h .
$$

Theorem (Scott corrected semiclassics with self-generated field)

Suppose that $\lambda>0$. If $0 \leq \beta \leq h$, and $\widetilde{\kappa} z_{k}<2 / \pi$, then

$$
\begin{aligned}
& \left\lvert\, \inf _{\widetilde{A}}\left\{\operatorname{Tr}\left[\sqrt{\beta^{-2} T_{h}(\widetilde{A})+\beta^{-4}}-\beta^{-2}-\widetilde{\kappa} V_{\mathbf{z}, r}^{T F}\right]_{-}+\frac{\lambda}{\beta^{2} h^{3}} \int|\nabla \otimes \widetilde{A}|^{2}\right\}\right. \\
& \left.-\frac{2}{(2 \pi h)^{3}} \iint\left[\frac{1}{2} p^{2}-\widetilde{\kappa} V_{\mathbf{z}, \mathbf{r}}^{T F}(x)\right]_{-}-2 h^{-2} \sum_{k=1}^{M}\left(z_{k} \widetilde{\kappa}\right)^{2} S\left(\beta h^{-1} \widetilde{\kappa} z_{k}\right) \right\rvert\, \\
& \quad \leq o\left(h^{-2}\right) .
\end{aligned}
$$

Local semiclassics - no singularity

Theorem

Let $\theta, V \in C_{0}^{\infty}(B(1)), \lambda>0$ be fixed.

$$
\beta \leq C h
$$

Then

$$
\begin{aligned}
& \inf _{A}\left\{\operatorname{Tr}\left[\theta\left\{\sqrt{\beta^{-2} T_{h}(A)+\beta^{-4}}-\beta^{-2}-V\right\} \theta\right]_{-}\right. \\
& \left.\quad+\frac{\lambda}{\beta^{2} h^{3}} \int_{B(2)}|\nabla \otimes A|^{2}\right\} \\
& \left.-\frac{2}{(2 \pi h)^{3}} \iint \theta(x)^{2}\left[\frac{1}{2} p^{2}-V(x)\right]_{-} d x d p \right\rvert\, \leq C h^{-2+1 / 11}
\end{aligned}
$$

Upper bound: $A=0$ (Solovej-Spitzer-Sørensen).

Upper bound: $A=0$ (Solovej-Spitzer-Sørensen).
Lower bound: By Lieb-Thirring (for suitable vector fields A)

$$
\mathcal{B}^{2}=\int|\nabla \otimes A|^{2} \leq C \beta^{2}
$$

Also, (using Lieb-Thirring, Hölder and Sobolev)

$$
\begin{aligned}
T_{h}(A) & \geq(1-2 \epsilon)\left(-h^{2} \Delta\right)+\epsilon\left(-h^{2} \Delta-\epsilon^{-2} A^{2}\right) \\
& \geq(1-2 \epsilon)\left(-h^{2} \Delta\right)-C h^{-3} \epsilon^{-4} \mathcal{B}^{5}
\end{aligned}
$$

So (with $\gamma^{-4}=\beta^{-4}-\mathrm{Ch}^{-3} \epsilon^{-4} \mathcal{B}^{5}$ and $\tilde{h}=\sqrt{1-2 \epsilon} h$)

$$
\begin{aligned}
& \sqrt{\beta^{-2} T_{h}(A)+\beta^{-4}}-\beta^{-2}-V(x) \\
& \quad \geq \sqrt{\gamma^{-2}\left(-\tilde{h}^{2} \Delta\right)+\gamma^{-4}}-\beta^{-2}-V(x) \\
& \quad \geq \sqrt{\gamma^{-2}\left(-\tilde{h}^{2} \Delta\right)+\gamma^{-4}}-\gamma^{-2}-\left(V(x)+C h^{-3} \epsilon^{-4} \mathcal{B}^{5}\right)
\end{aligned}
$$

But with $\epsilon=h, \beta \leq h$, we get

$$
h^{-3} \epsilon^{-4} \mathcal{B}^{5} \leq h^{-2} \quad \text { TOO LARGE! }
$$

AARHUS UNIVERSITY

Solution: Localize to balls of size $\ell \ll 1$.

Lieb-Thirring

$$
\mathcal{B}^{2}=\int_{B(2 \ell)}|\nabla \otimes A|^{2} \leq C \beta^{2} \ell^{3} .
$$

Also, (using Lieb-Thirring, Hölder and Sobolev)

$$
\begin{aligned}
T_{h}(A) & \geq(1-2 \epsilon)\left(-h^{2} \Delta\right)+\epsilon\left(-h^{2} \Delta-\epsilon^{-2} A^{2}\right) \\
& \geq(1-2 \epsilon)\left(-h^{2} \Delta\right)-C h^{-3} \epsilon^{-4} \mathcal{B}^{5} \ell^{1 / 2}
\end{aligned}
$$

So

$$
\begin{aligned}
& \sqrt{\beta^{-2} T_{h}(A)+\beta^{-4}}-\beta^{-2}-V(x) \\
& \quad \geq \sqrt{\gamma^{-2}\left(-\tilde{h}^{2} \Delta\right)+\gamma^{-4}}-\beta^{-2}-V(x) \\
& \quad \geq \sqrt{\gamma^{-2}\left(-\tilde{h}^{2} \Delta\right)+\gamma^{-4}}-\gamma^{-2}-\left(V(x)+C h^{-3} \epsilon^{-4} \mathcal{B}^{5} \ell^{1 / 2}\right)
\end{aligned}
$$

But with $\epsilon=h, \beta \leq h$, we get

$$
h^{-3} \epsilon^{-4} \mathcal{B}^{5} \ell^{1 / 2} \leq h^{-2} \ell^{8}
$$

Solution: Localize to balls of size $\ell \ll 1$.

Lieb-Thirring

$$
\mathcal{B}^{2}=\int_{B(2 \ell)}|\nabla \otimes A|^{2} \leq C \beta^{2} \ell^{3} .
$$

Also, (using Lieb-Thirring, Hölder and Sobolev)

$$
\begin{aligned}
T_{h}(A) & \geq(1-2 \epsilon)\left(-h^{2} \Delta\right)+\epsilon\left(-h^{2} \Delta-\epsilon^{-2} A^{2}\right) \\
& \geq(1-2 \epsilon)\left(-h^{2} \Delta\right)-C h^{-3} \epsilon^{-4} \mathcal{B}^{5} \ell^{1 / 2}
\end{aligned}
$$

So

$$
\begin{aligned}
& \sqrt{\beta^{-2} T_{h}(A)+\beta^{-4}}-\beta^{-2}-V(x) \\
& \quad \geq \sqrt{\gamma^{-2}\left(-\tilde{h}^{2} \Delta\right)+\gamma^{-4}}-\beta^{-2}-V(x) \\
& \quad \geq \sqrt{\gamma^{-2}\left(-\tilde{h}^{2} \Delta\right)+\gamma^{-4}}-\gamma^{-2}-\left(V(x)+C h^{-3} \epsilon^{-4} \mathcal{B}^{5} \ell^{1 / 2}\right)
\end{aligned}
$$

But with $\epsilon=h, \beta \leq h$, we get

$$
h^{-3} \epsilon^{-4} \mathcal{B}^{5} \ell^{1 / 2} \leq h^{-2} \ell^{8}=h \text { for } \ell=h^{3 / 8} .
$$

Units

Length: $h^{2} /\left(m e^{2}\right)$.
Energy: $m e^{4} / h^{2}$.
Vector potential: mec/h.

