Best constants for Lieb-Thirring like inequalities in cylinders and their relation to symmetry properties of extremals for the Caffarelli-Kohn-Nirenberg inequalities

Maria J. Esteban

CEREMADE

CNRS \& Université Paris-Dauphine

IN COLLABORATION WITH
J. Dolbeault, M. Loss, G. Tarantello, A. Tertikas

Caffarelli-Kohn-Nirenberg (CKN) inequalities

$$
\left(\int_{\mathbb{R}^{d}} \frac{|u|^{p}}{|x|^{b} p} d x\right)^{2 / p} \leq \mathrm{C}_{a, b} \int_{\mathbb{R}^{d}} \frac{|\nabla u|^{2}}{|x|^{2 a}} d x \quad \forall u \in \mathcal{D}_{a, b}
$$

with $a \leq b \leq a+1$ if $d \geq 3, a<b \leq a+1$ if $d=2$, and $a \neq \frac{d-2}{2}$

$$
\begin{gathered}
p=\frac{2 d}{d-2+2(b-a)} \\
\mathcal{D}_{a, b}:=\left\{|x|^{-b} u \in L^{p}\left(\mathbb{R}^{d}, d x\right):|x|^{-a}|\nabla u| \in L^{2}\left(\mathbb{R}^{d}, d x\right)\right\} \\
b-a \rightarrow 0 \Longleftrightarrow p \rightarrow \frac{2 d}{d-2} \\
b-(a+1) \rightarrow 0 \Longleftrightarrow p \rightarrow 2+ \\
\frac{1}{C_{a, b}}=\inf _{\mathcal{D}_{a, b}} \frac{\int_{\mathbb{R}^{d}} \frac{|\nabla u|^{2}}{|x|^{2 a}} d x}{\left(\int_{\mathbb{R}^{d}} \frac{|u|^{p}}{|x|^{b} p} d x\right)^{2 / p}}
\end{gathered}
$$

The symmetry issue

$$
\left(\int_{\mathbb{R}^{d}} \frac{|u|^{p}}{|x|^{b} p} d x\right)^{2 / p} \leq \mathrm{C}_{a, b} \int_{\mathbb{R}^{d}} \frac{|\nabla u|^{2}}{|x|^{2 a}} d x \quad \forall u \in \mathcal{D}_{a, b}
$$

$\mathrm{C}_{a, b}=$ best constant for general functions u
$\mathrm{C}_{a, b}^{*}=$ best constant for radially symmetric functions u

$$
\mathrm{C}_{a, b}^{*} \leq C_{a, b}
$$

Up to scalar multiplication and dilation, the optimal radial function is

$$
u_{a, b}^{*}(x)=\left(1+|x|^{-\frac{2 a(1+a-b)}{b-a}}\right)^{-\frac{b-a}{1+a-b}}
$$

Questions: is optimality (equality) achieved ? do we have $u_{a, b}=u_{a, b}^{*}$?

Known results (Aubin, Talenti, Lieb, Chou-Chu, Lions, ...)

- Existence inside the half-strip $a<b<a+1, a<\frac{d-2}{2}$
- Symmetry (and existence) in the zone $a \leq b<a+1,0<a<\frac{d-2}{2}$
- Nonexistence for $a<0$ and $b=a$ or $b=a+1$.

Symmetry and symmetry breaking

SYMMETRY BREAKING: Catrina-Wang, Felli-Schneider.

Aubin, Talenti, Horiuchi, Lieb, Chou-Chu,...
Lin, Wang; Dolbeault, E., Tarantello (d=2)
Dolbeault, E., Loss, Tarantello

$$
b^{F S}(a)=\frac{d(d-2-2 a)}{2 \sqrt{(d-2-2 a)^{2}+4(d-1)}}-\frac{1}{2}(d-2-2 a)
$$

Emden-Fowler transformation and the cylinder $\mathcal{C}=\mathbb{R} \times S^{d-1}$

$$
t=\log |x|, \quad \omega=\frac{x}{|x|} \in S^{d-1}, \quad v(t, \omega)=|x|^{-a} u(x), \quad \Lambda=\frac{1}{4}(d-2-2 a)^{2}
$$

- Caffarelli-Kohn-Nirenberg inequalities rewritten on the cylinder become standard interpolation inequalities of Gagliardo-Nirenberg type

$$
\begin{aligned}
& \|v\|_{L^{p}(\mathcal{C})}^{2} \leq C_{\Lambda, p}\left[\|\nabla v\|_{L^{2}(\mathcal{C})}^{2}+\Lambda\|v\|_{L^{2}(\mathcal{C})}^{2}\right] \\
& \mathcal{E}_{\Lambda}[v]:=\|\nabla v\|_{L^{2}(\mathcal{C})}^{2}+\Lambda\|v\|_{L^{2}(\mathcal{C})}^{2} \\
& C_{\Lambda, p}{ }^{-1}:=\mathrm{C}_{a, b}^{-1}=\inf \left\{\mathcal{E}_{\Lambda}(v):\|v\|_{L^{p}(\mathcal{C})}^{2}=1\right\} \\
& a<\frac{d-2}{2} \Longrightarrow \Lambda>0, \quad a<0 \Longrightarrow \Lambda>\frac{1}{4}(d-2)^{2}
\end{aligned}
$$

Two simply connected regions separated by a continuous curve

The symmetry and the symmetry breaking zones are simply connected and separated by a continuous curve.

Open question. Do the curves obtained by Felli-Schneider and ours coincide ?

Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Let $d \geq 3$. For any $p \in\left[2, p(\theta, d):=\frac{2 d}{d-2 \theta}\right]$, there exists a positive constant $\mathrm{C}(\theta, p, a)$ such that

$$
\left(\int_{\mathbb{R}^{d}} \frac{|u|^{p}}{|x|^{b p}} d x\right)^{\frac{2}{p}} \leq \mathrm{C}(\theta, p, a)\left(\int_{\mathbb{R}^{d}} \frac{|\nabla u|^{2}}{|x|^{2 a}} d x\right)^{\theta}\left(\int_{\mathbb{R}^{d}} \frac{|u|^{2}}{|x|^{2(a+1)}} d x\right)^{1-\theta}
$$

In the radial case, with $\Lambda=\left(a-a_{c}\right)^{2}$, the best constant when the inequality is restricted to radial functions is $\mathrm{C}_{\mathrm{CKN}}^{*}(\theta, p, a)$ and (see [Del Pino, Dolbeault, Filippas, Tertikas]):

$$
\mathrm{C}_{\mathrm{CKN}}(\theta, p, a) \geq \mathrm{C}_{\mathrm{CKN}}^{*}(\theta, p, a)=\mathrm{C}_{\mathrm{CKN}}^{*}(\theta, p) \Lambda^{\frac{p-2}{2 p}-\theta}
$$

$\mathrm{C}_{\mathrm{CKN}}^{*}(\theta, p)=\left[\frac{2 \pi^{d / 2}}{\Gamma(d / 2)}\right]^{2 \frac{p-1}{p}}\left[\frac{(p-2)^{2}}{2+(2 \theta-1) p}\right]^{\frac{p-2}{2 p}}\left[\frac{2+(2 \theta-1) p}{2 p \theta}\right]^{\theta}\left[\frac{4}{p+2}\right]^{\frac{6-p}{2 p}}\left[\frac{\Gamma\left(\frac{2}{p-2}+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{2}{p-2}\right)}\right]^{\frac{p-2}{p}}$

New symmetry breaking results

- Gagliardo-Nirenberg interpolation inequalities: if $p \in\left(2,2^{*}\right)$,

$$
\|u\|_{\mathrm{L}^{p}\left(\mathbb{R}^{d}\right)}^{2} \leq \mathrm{C}_{\mathrm{GN}}(p)\|\nabla u\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}^{2 \vartheta(, d)}\|u\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}^{2(1-\vartheta(p, d))} \quad \forall u \in \mathrm{H}^{1}\left(\mathbb{R}^{d}\right)
$$

If u is a radial minimizer for $1 / \mathrm{C}_{\mathrm{GN}}(p)$ and $u_{n}(x):=u(x+n \mathrm{e}), \mathrm{e} \in \mathbb{S}^{d-1}$

$$
\begin{array}{r}
\frac{1}{\mathrm{C}_{\mathrm{CKN}}(\vartheta(p, d), p, a)} \leq \frac{\left.\left\||x|^{-a} \nabla u_{n}\right\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}^{2 \vartheta(p, d)}\| \| x\right|^{-(a+1)} u_{n} \|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}^{2(1-\vartheta(p, d))}}{\left\||x|^{-b} u_{n}\right\|_{\mathrm{L}^{p}\left(\mathbb{R}^{d}\right)}^{2}} \\
=\frac{1}{\mathrm{C}_{\mathrm{GN}}(p)}\left(1+\mathcal{R} n^{-2}+O\left(n^{-4}\right)\right)
\end{array}
$$

So, $\quad \frac{1}{\mathrm{C}_{\mathrm{CKN}}} \leq \frac{1}{\mathrm{C}_{\mathrm{GN}}}$.

New symmetry breaking results

- Gagliardo-Nirenberg interpolation inequalities: if $p \in\left(2,2^{*}\right)$,

$$
\|u\|_{\mathrm{L}^{p}\left(\mathbb{R}^{d}\right)}^{2} \leq \mathrm{C}_{\mathrm{GN}}(p)\|\nabla u\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}^{2 \vartheta(p)}\|u\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}^{2(1-\vartheta(p, d))} \quad \forall u \in \mathrm{H}^{1}\left(\mathbb{R}^{d}\right)
$$

If u is a radial minimizer for $1 / \mathrm{C}_{\mathrm{GN}}(p)$ and $u_{n}(x):=u(x+n \mathrm{e}), \mathrm{e} \in \mathbb{S}^{d-1}$

$$
\begin{array}{r}
\frac{1}{\mathrm{C}_{\mathrm{CKN}}(\vartheta(p, d), p, a)} \leq \frac{\left.\left\||x|^{-a} \nabla u_{n}\right\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}^{2 \vartheta(p, d)}\| \| x\right|^{-(a+1)} u_{n} \|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}^{2(1-\vartheta(p, d))}}{\left\||x|^{-b} u_{n}\right\|_{\mathrm{L}^{p}\left(\mathbb{R}^{d}\right)}^{2}} \\
=\frac{1}{\mathrm{C}_{\mathrm{GN}}(p)}\left(1+\mathcal{R} n^{-2}+O\left(n^{-4}\right)\right)
\end{array}
$$

So, $\quad \frac{1}{\mathrm{C}_{\mathrm{CKN}}} \leq \frac{1}{\mathrm{C}_{\mathrm{GN}}}$.
If we are able to find a positive Λ and a function g such that

$$
\begin{gathered}
\frac{1}{\mathrm{C}_{\mathrm{GN}}} \leq \mathcal{E}_{G N}[g]<\frac{1}{\mathrm{C}_{\mathrm{CKN}}^{*}(\vartheta(p, d), p, \Lambda)}, \quad \text { then }, \\
\frac{1}{\mathrm{C}_{\mathrm{CKN}}(\vartheta(p, d), p, \Lambda)} \leq \frac{1}{\mathrm{C}_{\mathrm{GN}}}<\frac{1}{\mathrm{C}_{\mathrm{CKN}}^{*}(\vartheta(p, d), p, \Lambda)}
\end{gathered}
$$

A new symmetry breaking result (2010, Dolbeault, E., Tarantello, Tertikas)

Let $\mathrm{g}(x):=(2 \pi)^{-d / 4} \exp \left(-|x|^{2} / 4\right) . \quad$ Choose $\Lambda=\Lambda_{F S}(p(\theta, d), d)$
Symmetry breaking occurs if

$$
\mathrm{L}(p, d):=\frac{\mathcal{E}_{G N}[g]}{\frac{1}{\mathrm{C}_{\mathrm{CKN}}^{*}(\vartheta(p, d), p, \Lambda)}}<1
$$

We have the following result:

A new symmetry result (June 2011, Dolbeault, E., Loss)

For $\theta=1$ and $d \geq 2$,
there exists a unique minimizer for the (CKN) problem, and it is symmetric, for all $\Lambda \leq \tilde{\Lambda}(p)$, for all $p \in\left(2, \frac{2 d}{d-2}\right)$.

$$
\tilde{\Lambda}(p):=\frac{(d-1)(6-p)}{4(p-2)}<\Lambda_{F S}(p) .
$$

$$
d=3
$$

$$
d=5
$$

Strategy of the proofs

Let L^{2} be the Laplace-Beltrami operator on S^{d-1}. So that $-\Delta$ on the cylinder becomes $-\partial_{s}^{2}-L^{2}$.

THEOREM. Let $d \geq 2$ and let u be a non-negative function on $\mathcal{C}=\mathbb{R} \times S^{d-1}$ that satisfies

$$
-\partial_{s}^{2} v-L^{2} v+\Lambda v=v^{p-1}
$$

and consider the symmetric solution v_{*}. Assume that

$$
\int_{\mathcal{C}}|v(s, \omega)|^{p} d s d \omega \leq \int_{\mathbb{R}}\left|v_{*}(s)\right|^{p} d s
$$

for some $2<p<6$ satisfying $p \leq \frac{2 d}{d-2}$. If $\Lambda \leq \tilde{\Lambda}(p)$, then for a.e. $\omega \in S^{d-1}$ and $s \in \mathbb{R}$, we have $v(s, \omega)=v_{*}(s-C)$ for some constant C.

Strategy of the proofs

Let L^{2} be the Laplace-Beltrami operator on S^{d-1}. So that $-\Delta$ on the cylinder becomes $-\partial_{s}^{2}-L^{2}$.

THEOREM. Let $d \geq 2$ and let u be a non-negative function on $\mathcal{C}=\mathbb{R} \times S^{d-1}$ that satisfies

$$
-\partial_{s}^{2} v-L^{2} v+\Lambda v=v^{p-1}
$$

and consider the symmetric solution v_{*}. Assume that

$$
\int_{\mathcal{C}}|v(s, \omega)|^{p} d s d \omega \leq \int_{\mathbb{R}}\left|v_{*}(s)\right|^{p} d s
$$

for some $2<p<6$ satisfying $p \leq \frac{2 d}{d-2}$. If $\Lambda \leq \tilde{\Lambda}(p)$, then for a.e. $\omega \in S^{d-1}$ and $s \in \mathbb{R}$, we have $v(s, \omega)=v_{*}(s-C)$ for some constant C.

REMARK 1. With the above normalization, we have

$$
\frac{1}{C_{\Lambda, p}}=\inf \frac{\int_{\mathcal{C}}|\nabla v|^{2}+\Lambda v^{2} d x}{\left(\int_{\mathcal{C}}|v|^{p} d x\right)^{2 / p}}=\left(\int_{\mathcal{C}}|v(s, \omega)|^{p} d s d \omega\right)^{\frac{p-2}{p}}
$$

REMARK 2. We choose $d \omega$ to be a probability mesaure on S^{d-1}.

(Keller) - Lieb-Thirring in 1-d

LEMMA. Let $V=V(s)$ be a non-negative real valued potential in $\mathrm{L}^{\gamma+\frac{1}{2}}(\mathbb{R})$ for some $\gamma>1 / 2$ and let $-\lambda_{1}(V)$ be the lowest eigenvalue of the Schrödinger operator $-\frac{d^{2}}{d s^{2}}-V$. Define

$$
c_{\mathrm{LT}}(\gamma)=\frac{\pi^{-1 / 2}}{\gamma-1 / 2} \frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1 / 2)}\left(\frac{\gamma-1 / 2}{\gamma+1 / 2}\right)^{\gamma+1 / 2}
$$

Then

$$
\lambda_{1}(V)^{\gamma} \leq c_{\mathrm{LT}}(\gamma) \int_{\mathbb{R}} V^{\gamma+1 / 2}(s) d s
$$

with equality if and only if, up to scalings and translations,

$$
V(s)=\frac{\gamma^{2}-1 / 4}{\cosh ^{2}(s)}=: V_{0}(s)
$$

in which case

$$
\lambda_{1}\left(V_{0}\right)=(\gamma-1 / 2)^{2}
$$

Furthermore, the corresponding ground state eigenfunction is given by

$$
\psi_{\gamma}(s)=\pi^{-1 / 4}\left(\frac{\Gamma(\gamma)}{\Gamma(\gamma-1 / 2)}\right)^{1 / 2}[\cosh (s)]^{-\gamma+1 / 2}
$$

With $V=v^{p-2}$, the equation $-\Delta v+\Lambda v=v^{p-1}$ can be seen as the "linear" equation $-\Delta v-V v=-\Lambda v$.

With $V=v^{p-2}$, the equation $-\Delta v+\Lambda v=v^{p-1}$ can be seen as the "linear" equation $-\Delta v-V v=-\Lambda v$.

Let us define $f(\omega):=\sqrt{\int_{\mathbb{R}}|v(s, \omega)|^{2} d s}$. By the Lieb-Thirring Lemma, we find that a.e. in ω,

$$
\begin{gathered}
-\Lambda \int_{\mathcal{C}}|v(s, \omega)|^{2} d s d \omega=\int_{S^{d-1}} \int_{\mathbb{R}}\left(v_{s}^{2}-v^{p}\right) d s d \omega+\int_{\mathcal{C}}|L v|^{2} d s d \omega \\
\int_{S^{d-1}} \int_{\mathbb{R}}\left(v_{s}^{2}-V v^{2}\right) d s d \omega+\int_{\mathcal{C}}|L v|^{2} d s d \omega=: \mathcal{F}[v]
\end{gathered}
$$

With $V=v^{p-2}$, the equation $-\Delta v+\Lambda v=v^{p-1}$ can be seen as the "linear" equation $-\Delta v-V v=-\Lambda v$.

Let us define $f(\omega):=\sqrt{\int_{\mathbb{R}}|v(s, \omega)|^{2} d s}$. By the Lieb-Thirring Lemma, we find that a.e. in ω,

$$
\begin{gathered}
-\Lambda \int_{\mathcal{C}}|v(s, \omega)|^{2} d s d \omega=\int_{S^{d-1}} \int_{\mathbb{R}}\left(v_{s}^{2}-v^{p}\right) d s d \omega+\int_{\mathcal{C}}|L v|^{2} d s d \omega \\
\int_{S^{d-1}} \int_{\mathbb{R}}\left(v_{s}^{2}-V v^{2}\right) d s d \omega+\int_{\mathcal{C}}|L v|^{2} d s d \omega=: \mathcal{F}[v] \\
\mathcal{F}[v] \geq-c_{\mathrm{LT}}(\gamma)^{1 / \gamma} \int_{S^{d-1}}\left(\int_{\mathbb{R}}|v(s, \omega)|^{p} d s\right)^{1 / \gamma}|f|^{2}+\int_{S^{d-1}}|L f|^{2} d \omega
\end{gathered}
$$

With $V=v^{p-2}$, the equation $-\Delta v+\Lambda v=v^{p-1}$ can be seen as the "linear" equation $-\Delta v-V v=-\Lambda v$.

Let us define $f(\omega):=\sqrt{\int_{\mathbb{R}}|v(s, \omega)|^{2} d s}$. By the Lieb-Thirring Lemma, we find that a.e. in ω,

$$
\begin{gathered}
-\Lambda \int_{\mathcal{C}}|v(s, \omega)|^{2} d s d \omega=\int_{S^{d-1}} \int_{\mathbb{R}}\left(v_{s}^{2}-v^{p}\right) d s d \omega+\int_{\mathcal{C}}|L v|^{2} d s d \omega \\
\int_{S^{d-1}} \int_{\mathbb{R}}\left(v_{s}^{2}-V v^{2}\right) d s d \omega+\int_{\mathcal{C}}|L v|^{2} d s d \omega=: \mathcal{F}[v] \\
\mathcal{F}[v] \geq-c_{\mathrm{LT}}(\gamma)^{1 / \gamma} \int_{S^{d-1}}\left(\int_{\mathbb{R}}|v(s, \omega)|^{p} d s\right)^{1 / \gamma}|f|^{2}+\int_{S^{d-1}}|L f|^{2} d \omega .
\end{gathered}
$$

Now, setting $D:=c_{\mathrm{LT}}(\gamma)^{1 / \gamma}\left(\int_{\mathcal{C}} v^{p} d s d \omega\right)^{\frac{1}{\gamma}}$, by using Hölders's inequality, we obtain

$$
\mathcal{F}[v] \geq \int_{S^{d-1}}(L f)^{2} d \omega-D\left(\int_{S^{d-1}} f^{\frac{2 \gamma}{\gamma-1}} d \omega\right)^{\frac{\gamma-1}{\gamma}}=: \mathcal{E}[f] .
$$

The generalized Poincaré inequality on the sphere states that for all $q \in\left(1, \frac{d+1}{d-3}\right]$,

$$
\frac{q-1}{d-1} \int_{S^{d-1}}(L f)^{2} d \omega \geq\left(\int_{S^{d-1}} f^{q+1} d \omega\right)^{\frac{2}{q+1}}-\int_{S^{d-1}} f^{2} d \omega
$$

The generalized Poincaré inequality on the sphere states that for all $q \in\left(1, \frac{d+1}{d-3}\right]$,

$$
\frac{q-1}{d-1} \int_{S^{d-1}}(L f)^{2} d \omega \geq\left(\int_{S^{d-1}} f^{q+1} d \omega\right)^{\frac{2}{q+1}}-\int_{S^{d-1}} f^{2} d \omega
$$

Choosing $q+1=\frac{2 \gamma}{\gamma-1}=2 \frac{p+2}{6-p}$,

$$
\mathcal{E}[f] \geq\left(\frac{d-1}{q-1}-D\right)\left(\int_{S^{d-1}} f^{q+1} d \omega\right)^{\frac{2}{q+1}}-\frac{d-1}{q-1} \int_{S^{d-1}} f^{2} d \omega
$$

To justify this step, we notice that $q \leq \frac{d+1}{d-3}$ is equivalent to $p \leq \frac{2 d}{d-2}$.

The generalized Poincaré inequality on the sphere states that for all $q \in\left(1, \frac{d+1}{d-3}\right]$,

$$
\frac{q-1}{d-1} \int_{S^{d-1}}(L f)^{2} d \omega \geq\left(\int_{S^{d-1}} f^{q+1} d \omega\right)^{\frac{2}{q+1}}-\int_{S^{d-1}} f^{2} d \omega
$$

Choosing $q+1=\frac{2 \gamma}{\gamma-1}=2 \frac{p+2}{6-p}$,

$$
\mathcal{E}[f] \geq\left(\frac{d-1}{q-1}-D\right)\left(\int_{S^{d-1}} f^{q+1} d \omega\right)^{\frac{2}{q+1}}-\frac{d-1}{q-1} \int_{S^{d-1}} f^{2} d \omega
$$

To justify this step, we notice that $q \leq \frac{d+1}{d-3}$ is equivalent to $p \leq \frac{2 d}{d-2}$.
Using the fact that $d \omega$ is a probability measure, by Hölder's inequality, we get

$$
\left(\int_{S^{d-1}} f^{q+1} d \omega\right)^{\frac{2}{q+1}} \geq \int_{S^{d-1}} f^{2} d \omega
$$

The generalized Poincaré inequality on the sphere states that for all $q \in\left(1, \frac{d+1}{d-3}\right]$,

$$
\frac{q-1}{d-1} \int_{S^{d-1}}(L f)^{2} d \omega \geq\left(\int_{S^{d-1}} f^{q+1} d \omega\right)^{\frac{2}{q+1}}-\int_{S^{d-1}} f^{2} d \omega
$$

Choosing $q+1=\frac{2 \gamma}{\gamma-1}=2 \frac{p+2}{6-p}$,

$$
\mathcal{E}[f] \geq\left(\frac{d-1}{q-1}-D\right)\left(\int_{S^{d-1}} f^{q+1} d \omega\right)^{\frac{2}{q+1}}-\frac{d-1}{q-1} \int_{S^{d-1}} f^{2} d \omega
$$

To justify this step, we notice that $q \leq \frac{d+1}{d-3}$ is equivalent to $p \leq \frac{2 d}{d-2}$.
Using the fact that $d \omega$ is a probability measure, by Hölder's inequality, we get

$$
\left(\int_{S^{d-1}} f^{q+1} d \omega\right)^{\frac{2}{q+1}} \geq \int_{S^{d-1}} f^{2} d \omega .
$$

Thus, if $D \leq \frac{d-1}{q-1}$, and if $\Lambda \leq \tilde{\Lambda}(p)$, we get

$$
-\Lambda \int_{S^{d-1}} f^{2} d \omega \geq \mathcal{E}[f] \geq-D \int_{S^{d-1}} f^{2} d \omega \geq-\Lambda \int_{S^{d-1}} f^{2} d \omega
$$

Consequence of the proof of the above theorem

COROLLARY. Let $d \geq 2$. Fix $\gamma>1$ such that $\gamma \geq \frac{d-1}{2}$ if $d \geq 4$ and let $q=\frac{\gamma+1}{\gamma-1}$.
Further fix $D \leq \frac{d-1}{q-1}$. Among all potentials $V=V(s, \omega)$ with

$$
c_{\mathrm{LT}}(\gamma)^{\frac{1}{\gamma}}\left(\int_{\mathcal{C}} V^{\gamma+\frac{1}{2}} d s d \omega\right)^{\frac{1}{\gamma}}=D
$$

the potential $V=V_{*}$ that minimizes the first eigenvalue of $-\partial_{s}^{2}-L^{2}-V$ on $L^{2}(\mathcal{C}, d s d \omega)$ does not depend on ω. Moreover, $u_{*}=V_{*}^{(2 \gamma-1) / 4}$ is extremal for the CKN inequality in the cylinder.

Remark. $V=v^{p-2} \quad$ and $\quad V^{\gamma+\frac{1}{2}}=v^{p} \quad$ implies $\quad \gamma=\frac{1}{2} \frac{p+2}{p-2}$.
and with $\gamma=\frac{1}{2} \frac{p+2}{p-2}, \quad u_{*}=V_{*}^{(2 \gamma-1) / 4} \quad$ is equivalent to $\quad V_{*}=u_{*}^{p-2}$.

The d-dimensional case I

Both $C(\Lambda, p, d)$ and $C^{*}(\Lambda, p, d)$ are monotone non-increasing functions of Λ and

$$
\begin{gathered}
C(\Lambda, p, d) \geq C^{*}(\Lambda, p, d) \\
C^{*}(\Lambda, p, d)=C^{*}(1, p, d) \Lambda^{-\frac{p+2}{2 p}}
\end{gathered}
$$

so that $\lim _{\Lambda \rightarrow 0_{+}} C^{*}(\Lambda, p, d)=\infty$.

For any $p \in\left(2, \frac{2 d}{d-2}\right)$ if $d \geq 3$, and any $p>2$ if $d=2$,

$$
\lim _{\Lambda \rightarrow \infty} \frac{\Lambda^{\frac{d-2}{2}-\frac{d}{p}}}{C(\Lambda, p, d)}=\inf _{w \in \mathrm{H}^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{d}}\left(|\nabla u|^{2}+|u|^{2}\right) d x}{\left(\int_{\mathbb{R}^{d}}|u|^{p} d x\right)^{2 / p}} \Longrightarrow \lim _{\Lambda \rightarrow \infty} C(\Lambda, p, d)=0
$$

With these observations in hand and $\gamma=\frac{1}{2} \frac{p+2}{p-2}$, we can define

$$
\Lambda_{\gamma}^{d}(\mu):=\inf \left\{\Lambda>0: \mu^{\frac{2 \gamma}{2 \gamma+1}}=1 / C(\Lambda, p, d)\right\}
$$

If $d=1$, we observe that $C(\Lambda, p, 1)=C^{*}(\Lambda, p, 1)$, so that $\Lambda_{\gamma}^{1}(\mu)=\Lambda_{\gamma}^{1}(1) \mu$ and $\Lambda_{\gamma}^{1}(1)=C^{*}(1, p, d)^{\frac{2 p}{p+2}}$.

The d-dimensional case II

$$
\Lambda_{\gamma}^{d}(\mu):=\inf \left\{\Lambda>0: \mu^{\frac{2 \gamma}{2 \gamma+1}}=1 / C(\Lambda, p, d)\right\}
$$

Next important point: $\lambda_{1}(V)$ can be estimated using $\Lambda_{\gamma}^{d}(\mu)$ provided V is controlled in terms of μ. The CKN inequality in the cylinder is equivalent to the following version of the Keller - Lieb-Thirring inequality.

Theorem. For any $\gamma \in(2, \infty)$ if $d=1$, or for any $\gamma \in(1, \infty)$ such that $\gamma \geq \frac{d-1}{2}$ if $d \geq 2$, if V is a non-negative potential in $\mathrm{L}^{\gamma+\frac{1}{2}}(\mathcal{C})$, then the operator $-\partial^{2}-L^{2}-V$ has at least one negative eigenvalue, and its lowest eigenvalue, $-\lambda_{1}(V)$, satisfies

$$
\lambda_{1}(V) \leq \Lambda_{\gamma}^{d}(\mu) \quad \text { with } \quad \mu=\mu(V):=\left(\int_{\mathcal{C}} V^{\gamma+\frac{1}{2}} d s d \omega\right)^{\frac{1}{\gamma}}
$$

Moreover, equality is achieved if and only if the eigenfunction u corresponding to $\lambda_{1}(V)$ satisfies $u=V^{(2 \gamma-1) / 4}$ and u is optimal for CKN inequalities in the cylinder.

Remark. $V=v^{p-2} \quad$ and $\quad V^{\gamma+\frac{1}{2}}=v^{p} \quad$ implies $\quad \gamma=\frac{1}{2} \frac{p+2}{p-2}$.
and with $\gamma=\frac{1}{2} \frac{p+2}{p-2}, \quad u=V^{(2 \gamma-1) / 4} \quad$ is equivalent to $\quad V=u^{p-2}$.

