The Feinberg-Zee random hopping model

Feinberg-Zee model

E. Brian Davies

King's College London

Munich April 2012

Journal of Spectral Theory

Journal of Spectral Theory

European Mathematical Society

http://www.ems-ph.org/journals/journal.php?jrn=jst

Finite or infinite matrices?

$$
\left(\begin{array}{cccccc}
a_{1} & c_{1} & 0 & 0 & 0 & b_{1} \\
b_{2} & a_{2} & c_{2} & 0 & 0 & 0 \\
0 & b_{3} & a_{3} & c_{3} & 0 & 0 \\
0 & 0 & b_{4} & a_{4} & c_{4} & 0 \\
0 & 0 & 0 & b_{5} & a_{5} & c_{5} \\
c_{6} & 0 & 0 & 0 & b_{6} & a_{6}
\end{array}\right)
$$

Finite or infinite matrices?

$$
\left(\begin{array}{cccccc}
a_{1} & c_{1} & 0 & 0 & 0 & b_{1} \\
b_{2} & a_{2} & c_{2} & 0 & 0 & 0 \\
0 & b_{3} & a_{3} & c_{3} & 0 & 0 \\
0 & 0 & b_{4} & a_{4} & c_{4} & 0 \\
0 & 0 & 0 & b_{5} & a_{5} & c_{5} \\
c_{6} & 0 & 0 & 0 & b_{6} & a_{6}
\end{array}\right)
$$

The following pseudospectral phenomenon does not arise for self-adjoint approximations.

If $A_{n} \rightarrow A_{\infty}$ and $\left\|\left(A_{n}-\lambda I_{n}\right)^{-1}\right\| \rightarrow \infty$ as $n \rightarrow \infty$ then $\lambda \in \operatorname{Spec}\left(A_{\infty}\right)$, even if λ is not close to the spectrum of any A_{n}.

The Setting

This is joint work with Simon Chandler-Wilde at Reading.

It follows work about ten years ago by myself and a very recent paper by
Chandler-Wilde, Chonchaiya and Lindner.
The problem is to find the spectrum of a NSA operator on $\ell^{2}(\mathbf{Z})$ of the form

$$
(A f)_{n}=\sigma_{n} f_{n-1}+f_{n+1}
$$

for all $n \in \mathbf{Z}$.

The Setting

This is joint work with Simon Chandler-Wilde at Reading.

It follows work about ten years ago by myself and a very recent paper by
Chandler-Wilde, Chonchaiya and Lindner.
The problem is to find the spectrum of a NSA operator on $\ell^{2}(\mathbf{Z})$ of the form

$$
(A f)_{n}=\sigma_{n} f_{n-1}+f_{n+1}
$$

for all $n \in \mathbf{Z}$.

The coefficients σ_{n} are chosen randomly.

The Setting

This is joint work with Simon Chandler-Wilde at Reading.

It follows work about ten years ago by myself and a very recent paper by

Chandler-Wilde, Chonchaiya and Lindner.
The problem is to find the spectrum of a NSA operator on $\ell^{2}(\mathbf{Z})$ of the form

$$
(A f)_{n}=\sigma_{n} f_{n-1}+f_{n+1}
$$

for all $n \in \mathbf{Z}$.

The coefficients σ_{n} are chosen randomly.
We do not consider the corresponding finite problem.

Pseudoergodic matrices, EBD 2001

CW-EBD assumes that $\sigma_{n}= \pm \sigma$. A is said to be pseudo-ergodic if any finite pattern of \pm, such as

$$
++---+--+++++--+
$$

can be found somewhere in the sequence σ_{n}.

Pseudoergodic matrices, EBD 2001

CW-EBD assumes that $\sigma_{n}= \pm \sigma$. A is said to be pseudo-ergodic if any finite pattern of \pm, such as

$$
++---+--+++++--+
$$

can be found somewhere in the sequence σ_{n}.

The probability law governing σ_{n} is almost irrelevant.

Pseudoergodic matrices, EBD 2001

CW-EBD assumes that $\sigma_{n}= \pm \sigma$. A is said to be pseudo-ergodic if any finite pattern of \pm, such as

$$
++---+--+++++--+
$$

can be found somewhere in the sequence σ_{n}.
The probability law governing σ_{n} is almost irrelevant.

Theorem

All pseudo-ergodic A have the same spectrum. All other B of the same form have $\operatorname{Spec}(B) \subseteq \operatorname{Spec}(A)$.

The strategy

Obtain inner bounds on $\operatorname{Spec}(A)$ for a pseudoergodic matrix A by choosing particular matrices B and using

$$
\operatorname{Spec}(B) \subseteq \operatorname{Spec}(A)
$$

The strategy

Obtain inner bounds on $\operatorname{Spec}(A)$ for a pseudoergodic matrix A by choosing particular matrices B and using

$$
\operatorname{Spec}(B) \subseteq \operatorname{Spec}(A)
$$

Obtain outer bounds on $\operatorname{Spec}(A)$ by finding its numerical range and by the use of perturbation arguments.

Chandler-Wilde, Chonchaiya and Lindner

Theorem

If A is pseudo-ergodic and $\sigma_{n}= \pm 1$ for all $n \in \mathbf{Z}$ then

$$
\{z:|z| \leq 1\} \subseteq \operatorname{Spec}(A) .
$$

Chandler-Wilde, Chonchaiya and Lindner

Theorem

If A is pseudo-ergodic and $\sigma_{n}= \pm 1$ for all $n \in \mathbf{Z}$ then

$$
\{z:|z| \leq 1\} \subseteq \operatorname{Spec}(A)
$$

This depends on the use of a 'magic sequence' σ_{n} that is not pseudo-ergodic. C-W, C, L prove that for every $|\lambda|<1$ there is a bounded solution of $A f=\lambda f$ if one uses the magic sequence to define A.

Chandler-Wilde, Chonchaiya and Lindner

Theorem

If A is pseudo-ergodic and $\sigma_{n}= \pm 1$ for all $n \in \mathbf{Z}$ then

$$
\{z:|z| \leq 1\} \subseteq \operatorname{Spec}(A)
$$

This depends on the use of a 'magic sequence' σ_{n} that is not pseudo-ergodic. C-W, C, L prove that for every $|\lambda|<1$ there is a bounded solution of $A f=\lambda f$ if one uses the magic sequence to define A.

This disproved a conjecture of Feinburg that the spectrum has dimension less than 2.

EBD and Chandler-Wilde, 2011

Theorem

If $0<\sigma<1$ and $\sigma_{n}= \pm \sigma$ for all n and A is pseudo-ergodic then

$$
\{z:|z| \leq 1\} \backslash H \subseteq \operatorname{Spec}(A)
$$

where the hole H is the intersection of two elliptical regions, namely the interiors of

$$
\frac{x^{2}}{(1+\sigma)^{2}}+\frac{y^{2}}{(1-\sigma)^{2}}=1
$$

and

$$
\frac{x^{2}}{(1-\sigma)^{2}}+\frac{y^{2}}{(1+\sigma)^{2}}=1
$$

Some closed curves, sigma $=0.5$

The hole

We cannot prove that the hole is this shape but it certainly contains

$$
\{z:|z|<1-\sigma\} .
$$

Numerical studies suggest we have it right.

All matrices with periods 7 to 10 with sigma $=0.5$

Spec A for all c periodic of periods $7 \quad 8 \quad 9 \quad 10$ for $\square=0.5$

The first important idea

The operators that we are considering are of the following form.
The Hilbert space \mathcal{H} is the orthogonal direct sum of subspaces \mathcal{H}_{e} and \mathcal{H}_{0}. If A exchanges these subspaces then it may be written as a 2×2 block matrix.

$$
A=\left(\begin{array}{cc}
0 & A_{e, o} \\
A_{o, e} & 0
\end{array}\right), \quad A^{2}=\left(\begin{array}{cc}
B & 0 \\
0 & M
\end{array}\right)
$$

Lemma

If $Q A=A P$ then $P A^{2}=A^{2} P$, so \mathcal{H}_{e} and \mathcal{H}_{o} are invariant under the action of A^{2}. If B is the restriction of A^{2} to \mathcal{H}_{e} and M is the restriction of A^{2} to \mathcal{H}_{0} then

$$
\begin{equation*}
\operatorname{Spec}\left(A^{2}\right) \backslash\{0\}=\operatorname{Spec}(B) \backslash\{0\}=\operatorname{Spec}(M) \backslash\{0\} \tag{1}
\end{equation*}
$$

If A is invertible then

$$
\begin{equation*}
\operatorname{Spec}\left(A^{2}\right)=\operatorname{Spec}(B)=\operatorname{Spec}(M) \tag{2}
\end{equation*}
$$

The application

Lemma

Given $b \in \Omega$, let $c=\Gamma_{+}(b) \in \Omega$ be the unique sequence satisfying

$$
\begin{equation*}
c_{0}=1, \quad c_{2 n}+c_{2 n+1}=0, \quad c_{2 n} c_{2 n-1}=b_{n} \tag{3}
\end{equation*}
$$

for all $n \in \mathbf{Z}$. Then A_{c}^{2} is unitarily equivalent to $A_{b} \oplus M_{b}$ acting in $\ell^{2}(\mathbf{Z}) \oplus \ell^{2}(\mathbf{Z})$, where

$$
\begin{equation*}
\left(M_{b} f\right)_{n}=-f_{n-1}+\left(c_{2 n+1}+c_{2 n+2}\right) f_{n}+f_{n+1} \tag{4}
\end{equation*}
$$

for all $f \in \ell^{2}(\mathbf{Z})$. Moreover

$$
\operatorname{Spec}\left(A_{c}^{2}\right)=\operatorname{Spec}\left(A_{b}\right)=\operatorname{Spec}\left(M_{b}\right)
$$

The stable spectrum

This is defined as the union of the essential spectrum $\operatorname{Ess}(A)$ and certain sets $U_{n}(A)$ for $n \neq 0$.
$\lambda \in \operatorname{Ess}(A)$ if $A-\lambda /$ is not Fredholm.

The stable spectrum

This is defined as the union of the essential spectrum $\operatorname{Ess}(A)$ and certain sets $U_{n}(A)$ for $n \neq 0$.
$\lambda \in \operatorname{Ess}(A)$ if $A-\lambda /$ is not Fredholm.
$\lambda \in U_{n}(A)$ if $A-\lambda /$ is Fredholm with index n.

The second important idea

Theorem

Let A correspond to the sequence c_{n} where c_{n} has one periodic structure for $n<0$ and another for $n \geq 0$. Then

$$
\operatorname{Ess}(A) \subseteq \operatorname{Stab}(A) \subseteq \operatorname{Spec}(A)
$$

and $\operatorname{Stab}(A)$ can be computed in closed form.

The second important idea

Theorem

Let A correspond to the sequence c_{n} where c_{n} has one periodic structure for $n<0$ and another for $n \geq 0$. Then

$$
\operatorname{Ess}(A) \subseteq \operatorname{Stab}(A) \subseteq \operatorname{Spec}(A)
$$

and $\operatorname{Stab}(A)$ can be computed in closed form.

The proof of the final statement uses the fact that the stable spectrum is invariant under compact perturbations of A.

Some closed curves, sigma $=0.5$

Summary

- With great effort we have found a large part of the spectrum of the infinite tridiagonal matrix

$$
(A f)_{n}= \pm \sigma f_{n-1}+f_{n+1}
$$

when $0<\sigma<1$ and \pm are random.

Summary

- With great effort we have found a large part of the spectrum of the infinite tridiagonal matrix

$$
(A f)_{n}= \pm \sigma f_{n-1}+f_{n+1}
$$

when $0<\sigma<1$ and \pm are random.

- Even for this example, there remains more to be done, and it needs new ideas.

Summary

- With great effort we have found a large part of the spectrum of the infinite tridiagonal matrix

$$
(A f)_{n}= \pm \sigma f_{n-1}+f_{n+1}
$$

when $0<\sigma<1$ and \pm are random.

- Even for this example, there remains more to be done, and it needs new ideas.
- What is lacking is a systematic method of approaching all such problems, and perhaps this does not exist.

Summary

- With great effort we have found a large part of the spectrum of the infinite tridiagonal matrix

$$
(A f)_{n}= \pm \sigma f_{n-1}+f_{n+1}
$$

when $0<\sigma<1$ and \pm are random.

- Even for this example, there remains more to be done, and it needs new ideas.
- What is lacking is a systematic method of approaching all such problems, and perhaps this does not exist.
- But perhaps it does!

