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Finite or infinite matrices?



a1 c1 0 0 0 b1

b2 a2 c2 0 0 0
0 b3 a3 c3 0 0
0 0 b4 a4 c4 0
0 0 0 b5 a5 c5

c6 0 0 0 b6 a6



The following pseudospectral phenomenon does not arise for self-adjoint
approximations.

If An → A∞ and ‖(An − λIn)−1‖ → ∞ as n→∞ then λ ∈ Spec(A∞),
even if λ is not close to the spectrum of any An.
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The Setting

This is joint work with Simon Chandler-Wilde at Reading.

It follows work about ten years ago by myself and a very recent paper by

Chandler-Wilde, Chonchaiya and Lindner.

The problem is to find the spectrum of a NSA operator on `2(Z) of the
form

(Af )n = σnfn−1 + fn+1

for all n ∈ Z.

The coefficients σn are chosen randomly.

We do not consider the corresponding finite problem.
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Pseudoergodic matrices, EBD 2001

CW-EBD assumes that σn = ±σ. A is said to be pseudo-ergodic if any
finite pattern of ±, such as

+ +−−−+−−+ + + + +−−+

can be found somewhere in the sequence σn.

The probability law governing σn is almost irrelevant.

Theorem

All pseudo-ergodic A have the same spectrum. All other B of the same
form have Spec(B) ⊆ Spec(A).
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The strategy

Obtain inner bounds on Spec(A) for a pseudoergodic matrix A by choosing
particular matrices B and using

Spec(B) ⊆ Spec(A).

Obtain outer bounds on Spec(A) by finding its numerical range and by the
use of perturbation arguments.
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Chandler-Wilde, Chonchaiya and Lindner

Theorem

If A is pseudo-ergodic and σn = ±1 for all n ∈ Z then

{z : |z | ≤ 1} ⊆ Spec(A).

This depends on the use of a ‘magic sequence’ σn that is not
pseudo-ergodic. C-W, C, L prove that for every |λ| < 1 there is a bounded
solution of Af = λf if one uses the magic sequence to define A.

This disproved a conjecture of Feinburg that the spectrum has dimension
less than 2.
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EBD and Chandler-Wilde, 2011

Theorem

If 0 < σ < 1 and σn = ±σ for all n and A is pseudo-ergodic then

{z : |z | ≤ 1}\H ⊆ Spec(A)

where the hole H is the intersection of two elliptical regions, namely the
interiors of

x2

(1 + σ)2
+

y2

(1− σ)2
= 1

and
x2

(1− σ)2
+

y2

(1 + σ)2
= 1.
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Some closed curves, sigma=0.5
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The hole

We cannot prove that the hole is this shape but it certainly contains

{z : |z | < 1− σ}.

Numerical studies suggest we have it right.
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All matrices with periods 7 to 10 with sigma=0.5
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The first important idea

The operators that we are considering are of the following form.

The Hilbert space H is the orthogonal direct sum of subspaces He and
Ho . If A exchanges these subspaces then it may be written as a 2× 2
block matrix.

A =

(
0 Ae,o

Ao,e 0

)
, A2 =

(
B 0
0 M

)
.
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Lemma

If QA = AP then PA2 = A2P, so He and Ho are invariant under the
action of A2. If B is the restriction of A2 to He and M is the restriction of
A2 to Ho then

Spec(A2)\{0} = Spec(B)\{0} = Spec(M)\{0}. (1)

If A is invertible then

Spec(A2) = Spec(B) = Spec(M). (2)
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The application

Lemma

Given b ∈ Ω, let c = Γ+(b) ∈ Ω be the unique sequence satisfying

c0 = 1, c2n + c2n+1 = 0, c2nc2n−1 = bn, (3)

for all n ∈ Z. Then A2
c is unitarily equivalent to Ab ⊕Mb acting in

`2(Z)⊕ `2(Z), where

(Mbf )n = −fn−1 + (c2n+1 + c2n+2)fn + fn+1 (4)

for all f ∈ `2(Z). Moreover

Spec(A2
c) = Spec(Ab) = Spec(Mb).
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The stable spectrum

This is defined as the union of the essential spectrum Ess(A) and certain
sets Un(A) for n 6= 0.

λ ∈ Ess(A) if A− λI is not Fredholm.

λ ∈ Un(A) if A− λI is Fredholm with index n.
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The second important idea

Theorem

Let A correspond to the sequence cn where cn has one periodic structure
for n < 0 and another for n ≥ 0. Then

Ess(A) ⊆ Stab(A) ⊆ Spec(A)

and Stab(A) can be computed in closed form.

The proof of the final statement uses the fact that the stable spectrum is
invariant under compact perturbations of A.
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Summary

With great effort we have found a large part of the spectrum of the
infinite tridiagonal matrix

(Af )n = ±σfn−1 + fn+1

when 0 < σ < 1 and ± are random.

Even for this example, there remains more to be done, and it needs
new ideas.

What is lacking is a systematic method of approaching all such
problems, and perhaps this does not exist.

But perhaps it does!
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