Let $d \in \mathbb{N}$.
2.1. Prove the last statement of Theorem 22 (you may use all the preceding results): For $p \in(1, \infty)$, if a sequence $\left(f_{j}\right)_{j \in \mathbb{N}} \subset L^{p}$ converges weakly to $f \in L^{p}$ and $\lim _{j \rightarrow \infty}\left\|f_{j}\right\|_{p}=$ $\|f\|_{p}$, then $f_{j} \xrightarrow[j \rightarrow \infty]{L^{p}} f$.
2.2. Let f be a non-negative function from $L^{1}\left(\mathbb{R}^{d}\right)$. Prove that for every $p \in[1, \infty]$ the map $g \mapsto f * g$ is a bounded linear operator in $L^{p}\left(\mathbb{R}^{d}\right)$ with the norm equal to $\|f\|_{1}$.
2.3. For $p \in[1, \infty)$ let $\left(f_{j}\right)_{j \in \mathbb{N}} \subset L^{p}\left(\mathbb{R}^{d}\right) \ni f$. Prove or disprove: $(\mathrm{a}) \Rightarrow(\mathrm{b})$, (b) \Rightarrow (a) for
(a) $\left(f_{j}\right)_{j \in \mathbb{N}}$ converges to f in the space of distributions $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$.
(b) $\left(f_{j}\right)_{j \in \mathbb{N}}$ converges to f weakly in $L^{p}\left(\mathbb{R}^{d}\right)$.
2.4. Compute the distributional derivative in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ of the indicator function $\chi_{B_{1}(0)}$ of the unit ball in \mathbb{R}^{d}. The answer should not contain differentiation.

