Mathematisches Institut der LMU Prof. Dr. P. Müller
Dr. S. Morozov

Mathematical Quantum Mechanics II

Homework 7

For Thursday, 16 June 2016
7.1. Prove that for a self-adjoint operator H and $E \in \mathbb{R}$ the following statements are equivalent:
(a) $E \in \sigma_{\text {ess }}(H)$.
(b) There exists an orthonormal system $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ from $\mathfrak{D}(H)$ such that $\left\|(H-E) \varphi_{n}\right\| \underset{n \rightarrow \infty}{\longrightarrow} 0$.
(c) There exists a sequence of normalized vectors $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ from $\mathfrak{D}(H)$ weakly converging to zero such that $\left\|(H-E) \varphi_{n}\right\| \underset{n \rightarrow \infty}{\longrightarrow} 0$.
7.2. Prove Remark 4.20:
(a) $l^{q}\left(L^{p}\left(\mathbb{R}^{d}\right)\right) \supset L^{p}\left(\mathbb{R}^{d}\right) \cup L^{q}\left(\mathbb{R}^{d}\right)$ for $q \geqslant p$;
(b) $l^{q}\left(L^{p}\left(\mathbb{R}^{d}\right)\right) \subset l^{p}\left(L^{q}\left(\mathbb{R}^{d}\right)\right)$ for $q \leqslant p$;
(c) $l^{q}\left(L^{p}\left(\mathbb{R}^{d}\right)\right) \subset L^{p}\left(\mathbb{R}^{d}\right) \cap L^{q}\left(\mathbb{R}^{d}\right)$ for $q \leqslant p$.
7.3. Let $d \in \mathbb{N}, \delta>d / 2$ and $h:=(2 \pi)^{d / 2} \mathcal{F}^{-1}\langle\cdot\rangle^{-\delta}$. Prove that $\mathrm{e}^{\eta|\cdot|} h \in L^{2}\left(\mathbb{R}^{d}\right)$ for every $\eta \in[0,1)$ (cf. the proof of Lemma 4.24).

